
University of Osnabrück

Institute of Computer Science

Department of Mathematics and Computer Science

Self-Organizing Neural Networks for Sequence Processing

Thesis by

Marc Strickert

In partial fulfillment of the requirements

for the degree of

Doctor of Computer Science (Dr. rer. nat.)

Osnabrück, Germany
June 7, 2004

Referees:

Prof. Dr. Barbara Hammer,
Research Group ‘Learning with Neural Methods on Structured Data’ (LNM),
Technical University of Clausthal, Germany.

Prof. Dr. Helge Ritter,
Faculty of Technology, Neuroinformatics Group,
University of Bielefeld, Germany.





Self-Organizing Neural Networks

for Sequence Processing

Arbeitsgruppe LNM

Institut für Informatik

am Fachbereich für Mathematik, Informatik

und Angewandte Systemwissenschaft

Universität Osnabrück

D-49069 Osnabrück, Germany

Arbeitsgruppenleiterin:

Dr. Barbara Hammer

Institutsdirektor:

Prof. Dr. Oliver Vornberger

Autor:

Dipl.-Systemwiss. Marc Strickert

Osnabrück, Juni 2004





Abstract

This work investigates the self-organizing representation of temporal data in prototype-
based neural networks. Extensions of the supervised learning vector quantization (LVQ)
and the unsupervised self-organizing map (SOM) are considered in detail. The principle
of Hebbian learning through prototypes yields compact data models that can be easily
interpreted by similarity reasoning. In order to obtain a robust prototype dynamic, LVQ is
extended by neighborhood cooperation between neurons to prevent a strong dependence
on the initial prototype locations. Additionally, implementations of more general, adap-
tive metrics are studied with a particular focus on the built-in detection of data attributes
involved for a given classification task. For unsupervised sequence processing, two modifi-
cations of SOM are pursued: the SOM for structured data (SOMSD) realizing an efficient
back-reference to the previous best matching neuron in a triangular low-dimensional neural
lattice, and the merge SOM (MSOM) expressing the temporal context as a fractal combi-
nation of the previously most active neuron and its context. The first SOMSD extension
tackles data dimension reduction and planar visualization, the second MSOM is designed
for obtaining higher quantization accuracy. The supplied experiments underline the data
modeling quality of the presented methods.

Keywords: vector quantization, self-organization, relevance learning, classification,
clustering, sequence processing, context, fractal representation.
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Preface

Efficient data processing is one of the ageless topics in computer science. Numerous algo-
rithms for the exact storage, sorting, and retrieval of data are available for dealing with
electronic information. Precise data handling is required for many man-made categories
like for those used in filing systems, dictionaries, or financial transactions; however, po-
tentially lossy methods can and should be used for processing noisy or redundant data
sources such as large images, blurry data streams, or medical data sets. Yet, lossy data
representation bears two major chances: first, in order to capture the essence of what shall
be represented, common properties of the data entities must be integrated to characteristic
features, this way allowing to focus on relevant and generalizable information also under
noisy conditions; second, the computational complexity for operating precisely on data col-
lections can be very high, like for the construction of optimum decision trees, although in
practice, faster attainable sub-optimum solutions based on reduced representations might
already be sufficient for a given task.

While there are many respectable database algorithms for storage and retrieval, such
as k-d-trees for spatial data or partial matching of discrete sequences through dynamic
programming, there is still an ongoing quest for finding regularities and particular fea-
tures according to which large data collections can be made easily accessible to humans.
Conceptually different models that use alternative data representations can be found in
the domain of neural data processing. The term ‘neural’ is motivated biologically by the
fact that, similar to the brain functionality, many simple cooperating units pass each other
bits of information, thereby transforming input stimuli into characteristic output states.
These states can be further used for classification and association, for the estimation of
intermediate positions, or for the prediction of new inputs.

One claim of neural computation is the simplicity of methods – many units operate
and pass on data in an elementary processing manner, this way producing distributed and
often compact representations. A child recognizes the scope of the word ‘apple’ usually by
presenting a few times a prototypical red exemplar, and then saying that a green apple is
also one, the rotten apple, too, and a bitten one is also still an apple. This way, the child’s
model for pattern identification is adapted, either by taking the presented, so far dissimilar
pattern, into the set of prototypes, or by extending the notion, that is, the best existing
measure for identifying this pattern is made a little more sloppy to include it next time.
Thus, new inputs can be related to already learned items by abstraction: apples need not
be stored separately in a costly manner and then recalled by lookup, but only a small
number of fundamental apples together with some allowed modifications are required to
identify the entirety of apples.

Technically, the task of apple recognition is more difficult than it seems, because dif-
ferent features have to be processed at the same time, for example color, size, shape, and
possibly weight and odor. Some of these attributes can be further split into physical units,
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such as the size that might be approximated by three values describing the height, the
width, and the depth. The description of odor and shape is even more complex for which
no standard solution exists. Consequently, attributes exist as inputs in different domains,
and they must be made mutually compatible for further processing. Observations may
include symbolic features, or natural or real numbers covering certain intervals; therefore,
a particular encoding and normalization is required before these attributes can be input
to a neural network model. In biology this works naturally: the input of different sensory
channels, like visual and auditory stimuli presented to the brain are translated into a uni-
versal code of nervous cell spiking and then fused into a unified perception. In theoretical
neuroscience, this accomplishment, which is not yet fully understood, is related to the
binding problem. In most algorithms, input data are just prepared by transformation into
normalized real number vectors of a fixed dimension.

Sequences, however, require different processing methods than vectors of predefined
dimension. It is important to manage sequences, because they are the natural domain of
physical, chemical, and biological processes described as a function of time. As a matter of
interest, repeating patterns of state changes are a first indication of structured underlying
driving forces. Sequence and subsequence classification is strongly connected to pattern
detection and requires the temporal history, the context, of the current observation to be
considered. It is an important task to represent characteristic states and to possibly iden-
tify novel situations: challenging applications are the diagnostics in process supervision,
the prediction of state changes, and the linkage of predictive models to empiric values.

Putting the parts together, this work will focus on processing labeled and unlabeled
sequential data, using biologically motivated self-organizing learning models with adaptive
prototypes and metrics. The aims are to reveal important aspects of sequence processing,
to introduce new methods for dealing with sequences, and to provide some ideas for the
design of future context learning architectures.

This work has been realized in the research group (Forschernachwuchsgruppe) ‘Learn-
ing with Neural Methods on Structured Data’ (LNM) funded by the Ministry for Science
and Culture (MWK) of Lower Saxony, Germany.
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Chapter 1

Introduction

I don’t have any solution, but I certainly admire the problem.

Ashleigh Brilliant

This work refines and proposes artificial neural approaches to process possibly labeled
data, structured by spatio-temporal characteristics. Data processing refers to a bunch of
operations, like efficient data storage, data lookup and matching similar data, and — on
a higher, more aggregated level — information retrieval and extraction.

Natural processing of real-life data

While crisp and accurate data might be best stored in data bases for further analysis, noisy
and experience-driven data or very large data sets might be more compactly represented
at a higher level of abstraction. Thus, a robust alternative to table-based data storage
is sought for an efficient representation of noisy real-life data exhibiting also temporal
structure.

A natural source of inspiration for tackling this problem is the brain of higher order
mammals which has developed the ability to extract the most interesting aspects from an
environment with a variety of sensual stimuli: within the focus of attention, the tracking of
actions refers to spatial and temporal changes which, by the laws of physics, are related to
a continuous flow of similar sensory information for a certain period of time. For example,
listening to a speaker is essentially observing a temporal frequency-intensity modulation
of highly redundant acoustic data. At first, a baby cannot assign a high level meaning
to the sounds, but it learns templates from the sentence melodies, like different voices,
reoccurring patterns in the transition of consonants and vowels, or the lowering and rising
pitch. Over time, a rough structure of the articulation space emerges which is characterized
by similar or dissimilar states. The next step is to assign meaning to the states, to put
a label on them, as the sound of the name ‘Timmy’ coinciding with the visual presence
of the speaker talking to the little child, this way consolidating the association of feeling
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addressed by a name. Finally, expert listeners have learned to assign the correct meaning
to known words and to memorize new meanings from given definitions. Thus, the natural
stages are from the unsupervised raw structure learner via the self-supervised probabilistic
associator to the supervised classifier.

Another aspect of the flexibility of the human brain is that different speakers, although
producing different sounds, might still convey exactly the same information to the listener.
This is a simple yet impressive example of how data are captured efficiently: the input
stimuli stream is online reduced to the interesting entities by recognizing characteristic
abstract acoustic features eliminating everything not related to the task of understanding
the speech or distinguishing the speakers. Instead of complete and costly data storage,
a compact model focusing on the representation of certain aspects tackles this real-time
problem efficiently.

Exhaustive approaches with precise but computationally very expensive operations are
not within the scope of this work. Due to the basic supposition that particularly spatio-
temporal real-life data are often redundant, compact models that do not store every detail
are discussed in the following. As indicated above, the main focus is put on unsupervised
and supervised neural models which yield an efficient representation of the input space.

Classical neural network architectures

Many different types of artificial neural networks exist for data interpolation and classifica-
tion. Early ideas were formulated by McCulloch and Pitts in 1943, who showed how simple
models of nervous cell systems are able to perform logical computations [103]. In 1949,
Hebb proposed a neural dynamic which integrated weighted input channels by means of
summation nodes. Hebb used the additional assumption that if two of these simple com-
puting units are simultaneously active, the weight between them is increased [66]. Suitably
adapted variants of this Hebbian learning paradigm are found in many algorithms.

Very prominent learning architectures are layered feed-forward neural networks which
propagate the input vector via weighted connections through internal layers of neural am-
plifiers to an output vector. Learning takes place in a supervised manner by the adaptation
of the connection weights according to the backpropagated error between the network out-
put and the desired output [102]. This network type is known as universal approximator
for any functional input-output relation, if enough units exist in the hidden layer(s) [72].
Extensions to temporal data processing can be obtained by unfolding time into neuron
layers, a process which is related to error backpropagation-through-time and real-time
recurrent learning [115, 170]. A partially recurrent architecture that feeds back the net
output to the context input neurons has been suggested by Jordan [75]. Elman’s mod-
ification provides context feedback neurons associated with each neuron of one internal
layer or, in case of hierarchical networks, several layers [39]. The training methods for
the above approaches are variants of backpropagation, or they are more general gradient
descent techniques for minimizing the error. Kolen and Kremer give an overview of the
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methods in [85]. A serious open problem of backpropagation networks is the exponential
error decay which leads to slow training convergence and to possibly suboptimum solutions
especially for networks with many layers [50]. A specific survey of neural network models
for time series processing is given by Dorffner [35]. As a precondition for the supervised
backpropagation, training requires labeled input samples. However, these are not always
available; therefore, one focus of this work is the unsupervised processing of temporal data.

Prototype-based data representation

The path taken in this work is an alternative one: instead of training the connection weights
between neurons of feed-forward networks, a more direct data representation is obtained
by using prototype models. Prototypes are entities that can be adapted towards states
encountered in the training set, which means that the similarity of a prototype is increased
to what it stands for. Prototype representations store information in plain vector locations
rather than in the forward-propagated, transformed network output states. Usually, the
represented state is a prominent feature of the input data, and data points near a prototype
are supposed to share the prototype’s properties, if any given, e.g. a class membership.
Different characteristic input states should be handled by different prototypes, therefore
the number of prototypes is related to the granularity of the overall data representation.
If no property or label is assigned, a single prototype should account for the fact that it
is likely to find data in its neighborhood. The collectivity of all prototypes constitutes a
rough sketch of the input space. After training, meaning can be manually associated with
the found prototype locations. Alternatively, several models can be trained on different
aspects of the input data and linked together in order to synchronize unlabeled multi-
sensory signals and to generate meaningful self-supervised states.

Throughout this work, it is supposed that the natural redundancy of real life-data can
be robustly captured by a relatively small number of prototypes. The basic ingredients
for a prototype model are 〈a〉 an appropriate metric in the input space in order to mea-
sure the similarity between data and prototypes, 〈b〉 a certain number of prototypes, and
〈c〉 a cooperation strategy to avoid the wasting of prototypes. The first point refers to
the description of the data clustering, the second point to the model size, and the last
point means that neighboring prototypes occupying the same location must negotiate a
specialization precedence or a spreading scheme.

Self-organizing learning

With respect to the prototype-based data representation, the involved methods are pre-
destined to be using concepts of self-organization. On one hand, neural methods are
called self-organizing, if they produce structured representations of the training stimuli.
An explicit target function might not be given for the ordering process; still, the im-
plicit goal might be a similarity-based mapping of the input to internal states, thereby
reducing the adaptation efforts or the costs connected with learning. On the other hand,
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self-organization refers to competition or cooperation during the learning process: a neu-
ron that is most responsive to a stimulus is selected as winner, and it takes much of the
overall available update energy for specializing on the given input, whereas less matching
prototypes are only slightly updated.

While the learning vector quantization (LVQ, in Section 6, page 18) for labeled data
is determined by a supervised competitive winner-takes-all (WTA) dynamic, the self-
organizing map model (SOM, in Section 6, page 68) with its neighborhood interactions
is an example of unsupervised competitive learning in terms of a metric-based clustering
of unlabeled data. Both methods share, as a feature of self-organization, the ability to
generate global neural orderings by local updates, and both implement Hebbian learning.
The main purpose is to solve classification tasks by exploiting certain data characteristics
in order to emphasize similarities and differences: LVQ learns distinct class labels, the
SOM assigns new data to the most similar data clusters which exist as projections on a
low-dimensional grid. Thus, LVQ can be trained as an expert for a finite set of decisions
for given data, and the SOM can be used for unsupervised detection of similarity features
in the data.

The two methods SOM and LVQ are simple and robust, and they allow a wide range
of applications. Moreover, they are well suited for the formulation of generalizations. For
certain tasks, specialized methods like those given by Duda et al. [37] might perform better
than the extensions discussed in this work. However, the challenge is to obtain light and
good data models for very different domains. Particularly, sequential data are of interest
in many scientific disciplines. Some important topics are the DNA sequence screening
in biology, complex system characterization in physics and ecology, diagnostics in medi-
cine, energy consumption and market analysis in economics, real-time signal processing
in engineering, language processing in telecommunications and linguistics, and trajectory
description of end-effectors in robotics. The common goals of these examples are process
analysis and control based on feature extraction, subsequence classification, and future
prediction. This work will contribute to some of these interesting issues.
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Scientific contribution and organization of this work

The structural simplicity of the basic LVQ algorithm, and an intuitive understanding of
what’s being done in the supervised case, make it a good starting point for self-organizing
vector quantizers. Its extensions by a cost function to relevance learning are reported
together with experiments in the first part of this thesis. The original formulation of rele-
vance adaptation for LVQ in terms of GRLVQ date back to early work of Hammer and Vill-
mann [65]; however, in cooperation with them and with other researchers, the author has
contributed to a number of publications about the successful line of GRLVQ developments:
the papers can be split into 〈1〉 extensions of GRLVQ to initialization independence, general
metrics, and rule extraction [57, 61, 162, 164], into 〈2〉 theoretic considerations [60, 62], and
into 〈3〉 studies and applications [15, 58, 59, 63, 144]. In particular, the author has a share
in the extension of GRLVQ to general adaptive metrics, he has provided the corresponding
program implementations as well as the subsequent computer experiments.

In the second part, the unsupervised SOM is discussed. Its extension to sequence
processing leads to a subdivision into two sections. One section is dealing with the author’s
modification of Hagenbuchner’s SOM for structured data (SOMSD) to possibly hyperbolic
target grids for temporal processing [146] as a special instance within a general framework
for unsupervised processing of structured data [55]. The other section presents the new
merge context model (MSOM) proposed by the author [145, 147], which can be put again
into a more general framework [56].

Before specific learning architectures are discussed, some notation conventions will be
agreed on, and data preprocessing for temporal neural networks will be briefly revisited.
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Chapter 2

Notations and conventions

What usually comes first is the contract.

Ira Gershwin

In order to avoid misunderstandings, the usage of some terms is defined. The word
dimension refers either to the number of entries in the data vectors or to the data column
addressed by a specific index, e.g. the ith dimension is the projection of the data vectors
to their ith component. A pattern is equivalent to data point which may be represented by
the weight vector of a prototype neuron. The prototype closest to the currently presented
pattern is referred to as the winner, regardless of its represented class. As usual, a cycle
is an epoch referring to one presentation of all data patterns in a training set; this must
not be confused with iteration which describes the presentation of only a single pattern
from the training set. The temporal context refers to the patterns that have just been
presented before the currently processed data item, and the spatial context is related to
the environment of a hot spot in a pattern vector or in a matrix.

The most common symbols in this work are listed in Table 2.1.

8
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Symbol Meaning
d Pattern dimension
m Number of prototypes
n Number of data
c Number of classes
γ General learning rate
γ+/γ− LVQ learning rate for correct/wrong prototype
γλ LVQ learning rate for relevances
η Learning fade rate
M Matrix notation of M
v Vector notation of v
X Pattern space
X Pattern set
x Pattern vector
xi

j Component with index j of pattern vector i
W Weight space
W Weight set
wi

j Component with index j of weight vector i
C Context space
c Context vector
cj Component with index j of context vector
α Context-weight balance for distance calculation
β Context-weight merging parameter for linear combination
C Context back-reference representation
λ Relevance profile vector
λj Dimension relevance with index j
Y Label space
y Label notation of y
f Feature type setting of f
s Symbol type setting of s
c Class
N Node (neuron) type setting of N
Ij Winner index when sequence element aj is presented
χx(w) Contribution of prototype w given pattern x
ξ Noise variable
d Distance function
E Cost function
h Neighborhood function
e Quantization error
sgd Sigmoidal function
rnk Rank function
〈A〉 ,〈B〉 Within text enumeration
xdata Data set emphasis
http:// URL emphasis
ALGO Algorithm emphasis

Table 2.1: Table of used symbols and notations.

http://


Chapter 3

Data preprocessing for temporal networks

Learning is finding out what you already know.

Richard Bach

In most cases a data set at hand is too raw to be just presented to a neural network. Real
world data are generally

– misformatted: having attributes with inappropriate notations or data types;

– inconsistent: containing discrepancies in codes or names;

– incomplete: lacking attribute values or containing only aggregate data;

– noisy: containing errors or outliers;

– instationary: exhibiting temporal trends and process changes.

Therefore, data preprocessing should be considered before data are fed to a neural network:
any effort to relax a learner’s task should be made. Data preparation includes steps of

– conversion: turning attribute data types into allowed representation;

– cleaning: filling in missing values, smoothing noisy data,
identifying or removing outliers, and resolving inconsistencies;

– transformation: mapping data to another representation,
for example to a normalized one;

– discretization: replacing numerical attributes with atomic states.

Although an all-in-one solution for data processing by a single neural network is desirable,
training can be greatly enhanced in many cases, if data are carefully put into suitable
format. Since students and researchers in the domain of neural computation tend to pay
attention on the methods rather than on the data, this section refocuses on several data
preparation techniques in order to prevent an application of neural methods to inappro-
priate data. The steps of data preprocessing and algorithm design are mutually dependent,

10
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both take influence on the final results. Complementary to adapting a neural technique to
problem-specific data, results can be significantly improved by selecting algorithm-specific
data; however, the data set selection task is beyond the scope of this work, therefore, the
interested reader is referred to the contribution of LaLoudouanna and Tarare [92].

Conversion

The most convenient data type for arithmetics on attributes is a real number, making
calculations like summations or interpolations possible; therefore, a conversion of attributes
into this target format is an appealing operation. However, this rendering to real values
may lead to accidental abuse of the gained representations. A standard example is the
inappropriate calculation of the expected value of a thrown die by µ = (1+. . .+6)/6 = 3.5.
In this case, the sides of the cube are independent symbols for which, misleadingly, an
ordinal semantics is agreed on. Similar considerations apply to ordinal survey data for
which answers to the exemplary question “How do You find X — ‘bad’, ‘indifferent’, or
‘good’ ?” might be encoded by the three values {−1, 0, 1}. The match between empiric
scales and equidistant numbers is always problematic though. An example for nominal
data is the ordering of colors, for which the physiological perception does not coincide with
colors ordered by the distances in an auxiliary RGB color cube.

A very conservative assumption is the distinct enumeration of the possible attribute
states and their encoding by unary vectors ui that accentuate the component index j

matching the state number i: ui
j = 1 for j = i, else ui

j = 0. For example, the odor repre-
sentations of a mushroom by almond=(0, 0, 0, 1), fishy=(0, 0, 1, 0), musty=(0, 1, 0, 0), and
spicy=(1, 0, 0, 0) can be used to express a mixture of, say, fishy and spicy by the normal-
ized linear combination (1/2, 0, 1/2, 0). Since any weighted linear combination of unary
base vectors with coefficients summing up to one remain inside the spanned unit simplex
plane, these interpolating vectors can be used to express certain feature combinations. If
such a vector is driven by many small steps into the direction of a particular feature, the
according value will increase, and accordingly, the overall distribution of values will reflect
a temporally smoothed feature histogram; thinking of the cube again, for which all six
frequency bins would be equal, this kind of frequency representation is most appropriate
for characterizing the average of a number of disjoint states.

Unary vectors are the best representation for clearly separated states, but they induce
high-dimensional vectors, if there are many states. For example, 26-dimensional vectors
would be required in case of the letter alphabet, and a size of 263 =17,576-dimensional
vectors for independent letter triplets, which is infeasible in practice. A lossless reduction
can be obtained for the Euclidean metric by rotating the simplex hyperplane into the
subspace for which the dimension is decremented by one. Regarding a 4-letter DNA
alphabet, the unary vectors become corner points of a tetrahedron making possible the
visualization of a representation space in 3D; at the same time, the computational costs
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are reduced by 25%. For high-dimensional data, the amount of reduction by such a
hyperplane rotation becomes pointless. However, the central idea can be reused to find a
rotational alignment along those data axes that maximize the discriminative properties.
This is related to finding the eigenvectors with the k largest eigenvalues of the unary
represented data covariance matrix. The principal component analysis (PCA) explained
below or, alternatively, the more robust singular value decomposition (SVD) can be used
for this purpose to project the data onto its k linearly most relevant dimensions [26]. If
everything fails, just a random matrix can be used to map input vectors into a linear
subspace of moderate dimension to obtain approximately disjoint non-overlapping states,
as investigated by Kaski [77].

Another useful conversion refers to the angular representation of periodic data for
which typically a relationship f(φ) = f(φ+2 ·π) is assumed: the same function values are
produced despite very different radian angle arguments. In the case that only the compact
angle representation φ of f(φ) is stored, a straight forward replacement of these angular
data are the two-dimensional coordinates φ 7→ (cos(φ), sin(φ)), expressing the equivalence
φ ≡ (φ + 2 · π) for all φ.

Cleaning

Especially for sequential data, interpolation schemes are useful cleaning operations: splines
can provide the filling of data gaps, and Bezier curves can be used for smoothing [120].
More general smoothing operations can be obtained by a wide class of filters, for example
the moving average or the Savitzky-Golay filters [131], but their choice is very specific to the
data, and they should rather be seen as a transformation step discussed in the next section.
A scenario related to filling is resampling which applies, for example, to turning input
sequences of different lengths into vectors of equal dimension; the available sample points
define interpolation functions that can be evaluated at concerted possibly equidistant
positions. Outlier detection might not be feasible beforehand, but inconsistencies in labeled
data, such as ambiguous class assignments, should be cleared.

Transformation

Data transformation is a crucial preprocessing step, aiming at normalization and base
changes. The simplest normalization step is the mean subtraction x̃ = x−µX which moves
the data set X into the origin. A widely used but not very robust normalization is the
lower–upper bound normalization x̃ = l + u · (x − minX)/(maxX − minX), with scalar
operations · and / on the vector components. This forces data into the hypercube [l; u]
with lower bounds lj ∈ l and upper bounds uj ∈ u. Such an operation is heavily suffering
from the influence of data outliers onto the extreme values minX and maxX.
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Much more recommended is the z-score transformation which defines a rescaling of
the components x̃ = (x − µX)/σX by the inverse standard deviations σj ∈ σX. This
operation prepares data to have zero mean and unit variance in all dimensions; it is an
adequate processing for the use of rotation invariant metrics like the Euclidean distance,
and many algorithms with this metric profit from such kind of standardization. The z-score
transformation can be generalized to whitening also known as sphering. This operation
addresses a cross-dimension standardization by linearly transforming a mean subtracted
input x to x̃ = Cx, for which the expected covariance matrix over all transformed input
vectors x ∈ X 7→ x̃ becomes unity: E(x̃ x̃T) = I. The matrix C can be easily determined by a
principal component analysis (PCA) on X by decomposing the original expected covariance
matrix E(x xT) = EDET, and by using its obtained orthogonal matrix of eigenvectors E

and its diagonal matrix of eigenvalues D to express C = ED−1/2 E, where D−1/2 = (1/
√

dii).
As a result, the transformed data X̃ is rotated and aligned to the axes providing maximum
linear independence with variances scaled to unity. However, for multi-modal data such
a rotation may lead to an unfavorable rearrangement of the point clusters. For data
attributes with different semantics, for example one being a chemical concentration and
the other the temperature, such a rotation with inherent dimension mixing seems counter-
intuitive. Additionally, data labels are not taken into account. However, PCA has proved to
be well-suited for unlabeled data with attributes representing the same kind of observations
such as time window vectors. In applications like sound and image compression, this PCA

preprocessing is very common and successful. A complementing technique that assumes
non-Gaussian and also unlabeled sources is the independent component analysis (ICA)
which computes an affine rotation and shearing transformation of the original data for
getting an alignment along the axes for maximum non-Gaussian target distributions [73].
The ICA method exceeds the scope of simple preprocessing though.

The purpose of data transformation is to obtain a better compatibility with the target
algorithm. Since the central ingredient to the design of self-organizing networks is the
choice of a suitable data metric, any invertible functional transform — not only a lin-
ear function like the z-score — is allowed that helps to make the data fit the metric.
Natural observations, including medical and physiological data, often exhibit exponential
and power law relationships; therefore, the logarithmic or root function can be applied to
such an attribute to deskew the corresponding unfavorable data distribution for further
clustering. These inversely transformed data can be much more appropriately handled by
standard metrics like the Euclidean distance. This is illustrated in Figure 3.1 for the two
features TSH and FTI of the hypothyroid benchmark data set which is publicly available
from the UCI repository [11]: data clusters become more pronounced and separable after
transformation.

Especially for temporal sequences, derivatives can be useful: for example, the two point
differencing x′t = xt−xt−1 approximates the first derivative that purges linear trends. Two
things must be kept in mind when derivatives are used: 〈1〉 the physical units change, for
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Figure 3.1: Data preparation. Left: scatter plot of original data, hypothyroid features TSH
versus FTI. Right: same data after a z-score subsequent to a logarithmic transform.

example from displacement to velocity, and 〈2〉 noisy fluctuations in the original data
are magnified. More complex sequence transformations can be obtained by changing the
representation base, one example is a Fourier transform that turns data streams or data
windows from the time domain into the frequency domain. If data windows are chosen suf-
ficiently large, the Fourier transform is a first step towards a shift invariant representation,
because only the presence of a certain period matters and not its location. Other popu-
lar bases are the space of spline and Bezier coefficients or the Wavelet coefficient matrix.
Mathematical backgrounds, implementation details, application areas, and drawbacks and
merits of alternatively chosen bases acting on behalf of the original data are, for example,
briefly described in the Numerical Recipes [120].

Discretization

Two main reasons for the discretization of data can be identified before processing takes
place. The first one is a histogram density representation. This representation can be
conveniently used in computer implementations for frequency-based information measures
such as the Shannon entropy or the Kullback-Leibler divergence [31, 98]. The second reason
for discretization is the generation of labels that can be used for supervised classification
and association learning.

Label generation is a mapping from a real-value attribute of an unlabeled data set
into a specified number of integer outputs. Two canonic partitioning strategies are 〈1〉 the
equal-interval (equiwidth) binning, splitting the whole range of numbers into intervals with
equal size, and 〈2〉 the equal-frequency (equidepth) binning, using intervals containing
equal number of values. A more meaningful partitioning of continuous features by means
of a self-organizing data model has been suggested by Vannucci and Colla [156].
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If a supervised discretization of the data is wanted, the values of the class variable are
used to find appropriate break points; this task is related to the construction of decision
trees [17, 121], and in its simplest iterative realization all possible splits are calculated and
the one selected that provides minimum information with respect to explaining the class
label.

Further aspects of data preprocessing

Two considerations are added related to badly separable data and to data from dynamic
sources. The first topic refers to small and noisy data sets for which the training might be
boosted by regularization, the second issue refers to the difficult task of online processing
in contrast to the offline training scenario.

Regularization Usually, noise is considered to have a negative influence on learning.
While this is true for intrinsic noise, it has been proved beneficial, if noise is externally
added to the data. This noise injection method, known as jittering, produces more in-
stances of the available data. If an appropriate jittering amount in terms of Gaussian
noise is applied, network training produces better generalization abilities in many cases.
This simple regularization ensures that the function computed by the network is no more
curved than necessary. In the domain of feed-forward networks, equivalent techniques
which change the cost function and which require specific implementations are the weight
decay and the ridge regression, the latter also known as Tikhonov regularization [10].
Jittering should be considered, if there are only few data, or if the quality of the learned
data abstraction is poor.

Online and offline processing Different stages of data preparation have been discussed
above. The appropriate choice of methods depends on aspects regarding the desired data
types, and on whether physical units should be maintained, or whether operations are
reversible. Most techniques require a global view on the data, thus making an offline data
preparation necessary. In case of dynamically observed or generated sequences, online
preprocessing is preferred [165]. In an online scenario with possibly instationary series,
for example attribute jittering is still easy, however, mean subtraction, albeit simple in
the offline case, would demand a temporally adapted estimate of the average value to be
subtracted; PCA as a more sophisticated preprocessing can only be realized offline when
the original matrix algebra is used. Therefore, smart online reformulations are required,
such as Sanger’s rule for PCA [128], but these online formulations are usually not available
for other methods.
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Supervised LVQ-type learning
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Chapter 4

Learning Vector Quantization (LVQ)

A teacher is one who makes himself progressively unnecessary.

Thomas Carruthers

The learning vector quantization algorithm (LVQ) proposed by Kohonen [81, 83] is a
supervised classifier designed to find proper data representatives in the input space. In the
presence of data labels, a good prototype location must make a compromise of 〈a〉 pointing
to a possibly local center of gravity of the data belonging to the prototype’s class and of
〈b〉 well-separating data of the prototype’s class from those with different labels.

Typical applications of vector quantization are classification and data compression.
Both features have been successfully realized by means of LVQ — or an extension of
it — for image compression and image analysis, optical character recognition, speech
analysis and recognition, signal waveform classifications, and robotics sensory implemen-
tations [82]. Kohonen points out that the main purpose of LVQ is statistical classifica-
tion or pattern recognition. Specific examples of successful applications are EEG classifi-
cation [40, 118] and surgery [22] in medical diagnostics, molecular sequence classification
in bio-informatics [171], monitoring of piston engines in industrial production [13], and
remote sensing image analysis in geoscience [163].

4.1 Vector quantization

Vector quantization is not restricted to labeled data, and a short introduction to the
unsupervised case, to be detailed in Section 6, is helpful before the discussion of supervised
learning is started. The essential idea of vector quantization is that a distortion function

E =
∑

w∈W

∫

x∈X
χw(x) · d(x, w) · p(x) dx

is minimized for the winning reference vector w. Winner selection is indicated by the value
χw(x) = 1 of the characteristic function if the prototype w is at minimum distance d(x, w),
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else χw(x) = 0. This way, a large data set X with density p(X) is represented by a
comparatively small number of prototypes, and a continuum of inputs can be quantized
to a finite number of characteristic states. These states may be optimum with respect to
a density estimation of the data, or with respect to an optimum representation of data
clusters, or with respect to any other criterion expressible by the involved metric d(·). For
example, the squared Euclidean distance d(x,w) = (x−w)2 leads to a central clustering
with high spatial correspondence of the data and their prototypes for Gaussian distributed
data [10, 19].

An early and still widely spread quantizer is the Linde-Buzo-Gray (LBG) algorithm
which minimizes a squared-error distortion measure by successive center of gravity cal-
culations for the prototype locations. Thereby, both a nearest neighbor condition and a
centroid condition are simultaneously taken into account, and the number of prototypes is
iteratively increased according to a threshold-based splitting criterion [95]. If the number
of target clusters is fixed to k, LBG yields the well-known k-means method [174]. A fuzzy
variant of this, known as fuzzy k-means, provides a soft assignment of classes to the data
points subject to membership constraints; for an overview see Cherkassky [24].

In contrast to the above offline processing of all training data, online methods adapt
prototypes after the presentations of single training patterns. Especially, the neural gas
quantizer (NG) of Martinetz, Berkovich, and Schulten [99] will become important in sub-
sequent chapters of this work. Competitive prototype interactions make the NG quantizer
robust against prototype initialization and lead to a good convergence.

Neural Gas (NG)

Prototype neighborhood competition is the core of the neural gas method: all prototypes
are dragged towards presented data points by an amount corresponding to their distance
rank, thereby exhibiting a potential-driven Brownian like motion resembling a gas particle
model [99]. The prototype rank describes the number of neurons j which are closer to
the presented pattern x than neuron i is: rnkx(i) = |{j : d(x, wj) < d(x, wi)}|. This
ranking establishes a competition between prototypes, because the amount of moving them
towards x is multiplicatively weighted by the exponential function f = exp(−rnk/σ). By
decreasing the neighborhood size σ during training, competition vanishes and the updated
prototypes become more specialized on their locally represented regions in the data space.
The final dynamic turns out to follow a stochastic gradient descent on the introduced
distortion function E with the extended indicator function f instead of χ for the squared
Euclidean distance d. As a result, a data density approximation p(X) = p(W)ν subject
to the magnification factor of ν = d/(d + 2) is achieved by the adapted prototypes, where
d is the effective data dimension. Optionally, a near optimum value of ν ≈ 1 can be
obtained by including magnification control terms in localized prototype adaptations, in
the winner determination, or in the cost function E, which has been thoroughly investigated
by Villmann and Claussen [160].
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Figure 4.1: LVQ in forward network notation.

An alternative to the NG ranking operation is obtained by arranging prototypes as
neurons in a fixed low-dimensional grid and by realizing the current prototype update
strength as a function of the grid distance from the winning neuron. Such a grid neigh-
borhood competition establishes the self-organizing map (SOM) that will be discussed in
detail in Section 6 on page 68 [80]. At the expense of quantization accuracy, the SOM

dynamic can be efficiently computed and at the same time be used for the projection of
high-dimensional data onto specialized neurons located in a low-dimensional grid.

Supervised learning

In the supervised case of class prediction for a given data point, the k-nearest neighbor
algorithm (k-NN) proposed by Cover and Hart [30] is one of the earliest and still frequently
used classifier. It is a lazy learner which memorizes all samples in the training set and
which predicts the class of unknown data by a soft majority vote weighted by the distances
of the k nearest stored points.

Kohonen’s learning vector quantization (LVQ) reduces the high memory requirement
of k-NN: LVQ is a sparse classifier with a small number of prototypes; thus, LVQ needs
significantly less comparisons for operation than k-NN, but it still leads to crisp classifica-
tion results of high generality [83]. An LVQ net is determined by the prototype neurons
and a distance measure on the input data, which is quite different from the paradigmatic
feed-forward neural net architecture where input data are passed through error-reducing
adaptive connections between neuron layers to an output layer.

Still, LVQ can be visualized, like in Figure 4.1, as input layer, intermediate layer, and
output layer by utilizing the concept of an intermediate competition layer which carries
out a global evaluation of all prototypes for the determination of a unique winner neuron
and its class label. The LVQ dynamic that aims at improving the classification accuracy
is easily obtained by paying tribute to the introduced distortion function E. For realizing
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Figure 4.2: Voronöı cells for metric
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(x− y)b. Left: b = 2 (sq. Euclidean). Right: b = 10.

supervised prototype positioning with labeled data, an extended indicator function χ can
be used, for example, by choosing χ = 1 for the closest prototype representing the same
label as the given pattern, χ = −1 for the closest prototype with a different label, and
χ = 0 else. With this choice, an intuitive Hebbian distortion minimization strategy is
locally given by moving the closest correct prototype a little towards the presented pattern
and by moving away the closest wrong prototype.

The class membership of an unknown data point is obtained by assigning the class
of the closest best-matching prototype which captures the input pattern inside its region
of responsibility. The corresponding boundaries are defined by the relative positions of
the prototypes within their neighborhood structure. Learning success is based on the
assumption that minimizing the average distance of labeled prototypes to data points is
related to maximizing the classification accuracy. However, for strongly asymmetric or
discretized data this relation distortion minimization ⇒ classification improvement does
no longer hold, unless a metric more appropriate than the Euclidean is chosen.

With respect to the relationship of the chosen metric and the decision boundary, the
notion of a prototype’s receptive field, also called Voronöı cell, is important. Such a field
is the subset of the input space

Ri = {x ∈ X | ∀wj (j 6= i → d(x,wi) ≤ d(x, wj)) }

for which prototype wi is closer to the corresponding data points than any other prototype.
This is illustrated in Figure 4.2 for a synthetic two-dimensional data set, ‘closeness’ being
measured in two ways, 〈1〉 with the standard squared Euclidean distance which is invariant
to data rotation, and 〈2〉 with a metric that focuses on the data axes. Prototypes, two
for each of the three classes, are displayed by larger symbols; the lines define the decision
boundaries of the receptive fields. For LVQ, a presented input pattern falling into the
Voronöı cell of neuron wi makes it the best-matching unit (bmu), the winner neuron.
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This way, any vector in the input space can be quantized to a discrete state associated
with the receptive field of the winning prototype vector. A key advantage of LVQ is that
after training, its final prototypes can be easily interpreted, because they live in the same
space as the processed data: prominent modes of the data are characterized by only a few
reference vectors. According to Kohonen [82], the decision borders for a two-class LVQ

problem approximate the Bayesian optimal decision border. This has been proved for the
assumption of Gaussian distributed data and the squared Euclidean distance, which leads
to piecewise linear class-separating planes along the receptive fields boundaries, as shown
in the left panel of Figure 4.2.

4.2 The basic LVQ algorithm

The original LVQ dynamic is given in Algorithm 1. Hebbian online learning is achieved
during iterative pattern presentations by local updates of the winner neurons. Winner
prototypes with correct labels are rewarded by making them more similar to the current
input, and wrong prototypes are penalized by pushing them away into opposite direction
of the pattern. As a result, LVQ locates the real-valued prototype vectors in the input
space by interpolating local centers of gravity of data points with common label, thereby
accomplishing active separation from other classes.

Algorithm 1 Basic LVQX

repeat

choose randomly a pattern x

k ← arg mini { d(x,wi) } { neuron with smallest distance d to pattern }
if class(wk) = class(x) then

wk ← wk + γ · (x−wk) { same class: drag towards pattern }
else

wk ← wk − γ · (x−wk) { different class: push away from pattern }
end if

until no more major changes

LVQ initialization

One problem of the standard LVQ algorithm is its dependence on a good prototype initial-
ization. The first problem is the choice of the number of prototypes per class. Kohonen
states that the optimum number is strongly depending on the data distribution, making
iterative trials necessary [82]: too few prototypes won’t capture all important data clus-
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ters and too many prototypes not only lead to long processing times but also to poor
generalization, because too detailed characteristics learned from the training set cannot
be transferred to new data. Secondly, the initial placement of the prototypes contributes
much to the success of LVQ. It turns out to be an unfavorable strategy to use data vec-
tors as initial prototypes, because some data clusters might be accidentally overlooked
while outliers are boosted, this way accounting for suboptimum training results. Kohonen
proposes two strategies for choosing the starting locations: 〈1〉 by selecting a subset of
reference vectors resulting from a previously trained k-nearest neighbor classifier, vectors
for which even a large k-neighborhood represents the same class, or 〈2〉 by initialization
with prototypes from the unsupervised SOM discussed in Chapter 6, for which the neu-
rons are turned by majority vote into labeled LVQ prototypes [82]. These two initialization
strategies themselves require a number of well-chosen parameters, such as their own initial
prototype positions and considerations about the number k for k-NN, or the appropri-
ate architecture for the SOM. Alternatively, the prototypes from the robust neural gas
quantizer introduced above can be labeled after convergence and then be fine-tuned by
LVQ [20]. In a later chapter, this idea will lead to an integrated model of LVQ and NG.

4.3 LVQ evaluation

Training is the essential step for obtaining a good classifier; therefore, the monitoring of
the training progress is desired to identify critical states of learning, and to see, whether
classification is developing promisingly. Also, after the training, the final model must be
evaluated.

Quantization error

For a single training run, the learning process can be easily tracked by observing the
distortion function E. In order to get independence from the data set size, errors should be
normalized. A commonly used quantization error describing the average squared Euclidean
distance of the data from the closest correct prototypes selected by χ is calculated by

e =
1
|X|

∑

x∈X

∑

w∈W

χw(x) · 1
d

d∑

i=1

(xi − wi)2 .

Without modification, this measure can be used for unlabeled data too. However, in the
supervised case of LVQ, more appropriate evaluation criteria can be found by taking label
misclassification into account.

Generalization error

A very prominent and intuitive measure is the computation of the classification error on
the training set and on the test set. The training error can be easily tracked during the
online learning process just by counting the number of winning prototypes for a class
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different from the presented pattern. A division of this count by the total number of
neurons and presentations yields the average training misclassification rate per neuron.
Opposed to that, the test set error provides an estimate of how accurate the classification
will be for unknown data. Small differences between the training error and the test error
indicate both that 〈a〉 the training set and the test set contain representative patterns and
that 〈b〉 the classifier provides a good generalization from the training data to the test
data. These two hypotheses are supported, if only small differences occur also in several
independent validation steps. Equivalently, the rate of correct classification, the accuracy,
can be considered instead of the error. Figure 5.2 on page 46 gives an example of the
improvement of the classification accuracy during learning for the considered training set
and the test set.

Receiver operating characteristic curve (ROC)

Another widely used evaluation criterion for binary classifiers is the computation of the
receiver operating characteristic (ROC) curve. It is a plot of the classifier’s sensitivity given
by the true positive rate against the false positive rate expressed by the (1–specificity)-value
of the classifier, both for the different possible cutpoints of a diagnostic test. This plotting
diagram has been originally developed in World War II for supporting signal detection tasks
of radar operators [97]. With counts tp for the true positives, fp for the false positives, tn
for the true negatives, and fn for the false negatives, the values of interest are

specificity =
tp

tp + fn
and sensitivity =

tn
tn + fp

.

High specificity means that the classifier identifies correctly most of the negative examples,
thus providing a small false-negative rate. High sensitivity means that most of the poten-
tial positives are reported; however, possibly many negatives are also reported, making
a good decision still difficult. A ROC curve demonstrates the tradeoff between sensi-
tivity and specificity: 〈1〉 the closer the curve follows the sensitivity axis and then the
(1–specificity)-axis in the ROC space, the more accurate the test, and 〈2〉 the closer the
curve approaches the 45-degree reference diagonal in the ROC space, the less accurate the
test. Equivalently, maximizing the area under the curve maximizes the test accuracy. An
illustration of a ROC curve is given in Figure 5.14 on page 62. While for a binary classifier
like support vector machines the ROC plot can be used as is, a multi-class task of LVQ

must be reduced to the binary decision ‘x is of desired class’ vs. ‘x is not of desired class’,
no matter how many other classes there are.
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4.4 LVQ variants and developments

Two main lines of improvement for standard LVQ can be drawn, one pointing at the rate
and stability of the convergence process, the other concerning the classification accuracy.

As a calculation speed-up, Kohonen has proposed an extension to the basic LVQ1

Algorithm 1 by implementing local learning rate factors γi optimal for each neuron. The
optimum refers to the equalization of the impact of all training samples on the update
and it gives the name OLVQ to this extension. As a classification improvement, Kohonen
has suggested to use simultaneously the closest correct and the closet wrong prototype to
a presented sample in order to get a better local Bayes decision boundary approximation
between them. This variant, LVQ2.1, optimizes the boundary, but it suffers from the
problem of potentially misplacing prototypes outside the data clusters. LVQ3, an extension
of LVQ2.1, is Kohonen’s answer that improves data density representation [82].

A variant with noncritical prototype initialization for avoiding local minima of the
quantization error is the combination of LVQ with the SOM update: LVQ prototypes are
attached to a low-dimensional neural grid, and during training, all prototypes within the
lattice neighborhood of the winner are updated into the direction of the sample, if they
represent the input’s class, else they are pushed away. Due to its grid neighborhood, this
LVQ-SOM yields a dimension reduction which is suitable for visualization rather than for
accurate classification [82]. Very similarly, the low-dimensional SOM can be replaced by
the unsupervised neural gas (NG) for a density-based LVQ prototype initialization [20]. As
expected, being freed from the neuron target grid, the NG classification accuracy becomes
much higher, but at the expense of the visualization. A very successful integration of
unsupervised neural gas and supervised LVQ into the supervised relevance neural gas
(SRNG) quantizer with neuron cooperation will be shortly presented in this work.

Flexible metrics

Metric adaptivity, to be explained in the following, accounts for both stabilizing the train-
ing and improving the classification. Often data are high-dimensional just because any
available information is put into the set of training vectors. This must be done, if the
features relevant for classification are unknown in advance. Otherwise, the prior knowl-
edge should be integrated into the metric for distance calculation, for example in terms of
factors weighting dimension relevances. Knowing the important data dimensions is useful
for dimension reduction, for noise cancellation, for feature detection, for speed-up, and
for the formulation of attribute-based classification rules. Since prior knowledge is hard
to integrate into models and since it is seldom available, an automatic adjustment of the
distance metric according to an optimization of the given task is desirable.

Cherkassky et al. [25] propose the batch constrained topological mapping (CTM) as
an adaptive kernel method for unsupervised learning. Batch CTM implements local linear
data regression in SOM units, thereby extracting dimension relevances heuristically from
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the sensitivity of regressor variables. Opposed to this unsupervised method, Sinkkonen
and Kaski use additional information connected with the data, such as class labels, to make
both the data distribution and the distribution of prototypes in a generic auxiliary space
as small as possible; for example, this can be achieved by minimizing the Kullback-Leibler
divergence between these two distributions which both refer to conditional probabilities
given the discrete data labels [79, 137]. Prototypes are thus adapted in the possibly low-
dimensional auxiliary space to make their overall distribution, with respect to the data
label, as close as possible to the one in the original data space. As a consequence, proto-
types must be interpreted in the auxiliary space rather than in the data space. Another
contribution to automatic feature weighting has been made by Wettschereck, Aha, and
Mohri for lazy learning algorithms like the k-nearest neighbor (k-NN) classifier [169].

In combination with LVQ, metric-based relevance learning has been proposed first as
distinctive sensitive relevance LVQ (DSLVQ) by Pregenzer [119]. In addition to the stan-
dard LVQ prototype update, a relevance vector λ belonging to an adaptive metric is given
as the weighted Euclidean distance dλ(x, w) =

( ∑d
i=1 λi · (xi−wi)2

)1/2. DSLVQ relevance
determination is heavily based on the orientation of vectors orthogonal to the linear clas-
sification boundaries, which makes a transfer to more general metrics difficult. Moreover,
DSLVQ applies the original ad-hoc rotation of LVQ also to the relevance vector λ which
gets directed orthogonal to the average classification boundaries, thereby the direction of
rotation is chosen according to seeing a prototype with a correct or with a wrong label.
Relevance LVQ (RLVQ) by Bojer, Hammer, and Toschanowitz [14] is a similar approach
with heuristic update of the dimension weights. The generalized RLVQ (GRLVQ) and the
SRNG quantizers introduced in subsequent chapters will tackle the relevance learning more
systematically by means of a cost function minimization. Complementary to the distance
distortion measure, the Gini index, known as informational energy, can be optimized dur-
ing learning; in conceptual terms, this strategy is discussed by MacKay [98]. Recently,
a specific adaptation criterion of the weighted Euclidean metric has been proposed for
Energy Relevance LVQ (ERLVQ) by Andonie and Cataron [2].

Sequence data processing

By focusing on relevant data components, metric adaptation alleviates the effects of the
curse of dimensionality for high-dimensional data. This feature allows to reconsider data
windows of a fixed dimension for temporal sequence classification. Usually, data embedding
into a possibly high-dimensional vector space combines two major drawbacks: 〈1〉 a good
embedding dimension is in many cases unknown and thus subject to empirical choices, and
〈2〉 a vast redundancy is produced, because if the window shift is small, such as only one
step, the previously generated vector is exactly the same as the current one, apart from one
additional and one dropped component, but the rest of the vector is just shifted by a single
element. Both objections are addressed by flexible metrics. Firstly, the initial dimension
of data windows can be generously chosen and the attribute relevance detection can be left
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to dynamic adaptation. Secondly, redundant information is reduced to a representation
by only a few prototypes. Redundancy, however, is pretty much metric dependent. For
example, the Euclidean distance is insensitive to order of the vector components due to
the commutative summation of their individual squared differences. Sequence processing
alternatives to the Euclidean metric should therefore take temporal or spatial ordering
into consideration, in the simplest case, just by weighting the historic context influence for
the comparison. This motivates the design of specialized metrics for a classification task,
which will be another important issue of the SRNG quantizer discussed in the next part.



Chapter 5

LVQ with cost function

Learn to adjust yourself to the conditions you have to endure,
but make a point of trying to alter or correct conditions

so that they are most favorable to you.

William Frederick Book

It has been pointed out that the learning vector quantization method yields fast and
compact classification models based on easily interpretable prototype representations. The
present part contributes to the basic LVQ technology and extends it with respect to the

• initialization of the prototypes,

• stability of learning,

• improvement of the classification accuracy,

• design of specialized and flexible data metrics,

• processing of sequential data,

• identification of relevant data dimensions, and the

• extraction of rules from trained classifiers.

These issues are addressed by the central idea that the classification task is formulated in
terms of an adaptive cost function. In the following, the prototype dynamic and the metric
adaptation will be developed for differentiable cost functions by means of a stochastic
gradient descent.

A systematic discussion of chances and challenges for a number of cost function-based
network types has been brought forward by Hertz, Krogh, and Palmer [68]. In the case
of unsupervised SOM learning, Graepel, Burger, and Obermayer formulate a target for
the process of the prototype-based cluster self-organization, given by a discontinuous error

28
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function that is minimized by probabilistic annealing [52]. Recently, this approach has been
successfully transferred to LVQ networks by Seo and Obermayer who adapt the prototypes
by maximizing the probability of a prototype-based Gaussian mixture model through
gradient descent [136]. Historically, Sato and Yamada have proposed a first generalized
extension to Kohonen’s LVQ networks with gradient-driven prototype adaptation. Their
GLVQ method makes explicit use of a cost function that measures deviations of prototypes
from data. The free parameters of that cost function are the prototype locations which are
adapted iteratively, driven by the objective to minimize the average distance to data with
the same class labels [129]. The authors show that GLVQ yields superior results compared
to LVQ3 and additionally provides a robust update dynamic [130]. In the following, the
good results of Sato and Yamada are further improved by going far beyond their GLVQ

proposal, without using the fixed assumption of Gaussian mixtures of Seo and Obermayer.
The cost function idea can be enhanced by expressing the costs in terms of specialized

distances designed for matching particular data structures during comparisons. In addition
to the prototype locations, more free parameters can be included in the cost function; for
example, the individual data attributes can be weighted by adaptable factors in order to
model the importance of each data dimension for the classification.

A first rough specification of the training procedure for an iterative minimization of the
cost function is outlined in Algorithm 2. The following subsections provide an overview of
the formal aspects of two recent LVQ variants GRLVQ [65] and SRNG [58, 164]; historically,
both methods have been formulated for the squared Euclidean distance, but the naming
will be used interchangeably in the case of more general metrics. A procedure based upon
relevance factors and prototype locations will be introduced afterwards in order to obtain
a BB-tree classification [57] with a possibly simplified set of rules.

Algorithm 2 Extended LVQ outlineX

Initialization.

repeat

Present a labeled data point randomly chosen from the training set.

Determine the closest correct and the closest wrong prototype.

For the prototype locations on a fast time scale

move the correct prototype towards the given point and

move the wrong prototype away.

For the metric weighting factors on a slow time scale

adapt the factors

possibly using normalization constraints.

until the maximum number of iterations exceeded.
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5.1 Generalized Relevance LVQ (GRLVQ) and extensions

Given a set of training data X = {(xi, yi) ∈ Rd × {1, . . . , c} | i = 1, . . . , n} to be classified
with d-dimensional elements xk = (xk

1, . . . , x
k
d) and c classes. A set W = {w1, . . . , wK}

of prototypes is used for the data representation, wi = (wi
1, . . . , w

i
n, yi) ∈ Rd × {1, . . . , c},

with class labels yi attached to locations in the data space.
The cost function to be minimized for the classification is given in the general form

EGRLVQ :=
n∑

i=1

g
(
qλ(xi)

)
where qλ(xi) =

d+
λ (xi)− d−λ (xi)

d+
λ (xi) + d−λ (xi)

.

The purpose of EGRLVQ is to express the desired distance relationships between the presented
pattern xi and two closest prototypes, wi+ representing the same label and wi− a different
label. The implicit degrees of freedom for the cost minimization are thus the locations
of the involved prototypes in the weight space and, additionally, a set of free parameters
λ connected to the distance metrics dλ(x) = dλ(x, w). Distances d+

λ and d−λ for the
correct and for the wrong prototype constitute the quotient qλ ∈ [−1; 1] which is small
(negative), if the correct prototype is closer to the pattern than the wrong prototype, and
large (positive) otherwise. In order to obtain a convergent dynamic, it must be assured
that the resulting attractive forces towards the correct data are larger than the repulsive
forces from falsely classified data. For this reason, Sato and Yamada have wrapped the
ratio qλ(xi) by a nonlinear decreasing function x ∈ R 7→ g(x) ∈ R; stable training has been
proved for the sigmoid function g(x) = sgd(x) = 1/(1 + exp(−x)) ∈ (0; 1) in combination
with the squared Euclidean distance [129, 130]. However, the convergence considerations
still hold, if the identity function g(x) = id(x) is chosen as wrapper.

The iterative update formulas for the closest correct and the closest wrong prototype
and the metric weights are obtained by taking the derivatives of the cost function EGRLVQ:

4wi+ = −γ+ · ∂EGRLVQ

∂wi+ = −γ+ · g′ (qλ(xi)
) · 2 ·d−λ (xi)

(d+
λ (xi)+d−λ (xi))2 · ∂d+

λ (xi)

∂wi+

4wi− = γ− · ∂EGRLVQ

∂wi− = γ− · g′ (qλ(xi)
) · 2 · d+

λ (xi)

(d+
λ (xi)+d−λ (xi))2 · ∂d−λ (xi)

∂wi−

4λ = −γλ · ∂EGRLVQ

∂λ = −γλ · g′ (qλ(xi)
) · 2 · ∂d+

λ (xi)/∂λ ·d−λ (xi)− 2 ·d+
λ (xi) · ∂d−λ (xi)/∂λ

(d+
λ (xi)+d−λ (xi))2

Learning rates are γλ for the metric parameters λj , and γ+ and γ− describe the update
amount of the correct and wrong prototype, respectively. Care must be taken when free
parameters with different semantics are adapted simultaneously for error minimization:
considering dimension relevances and prototype locations, the relevances should be the
result of a classifier defined by the receptive fields of the settled prototypes, not vice versa.
Therefore, time scales have to be defined that allow a fast prototype update in a slowly
changing environment which is quasi-stationary with respect to the dimension relevances.
Thus, learning rates should be chosen according to the relation 0 ≤ γλ ¿ γ− ≤ γ+ ≤ 1
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which refers to ratios of usually some orders of magnitude. The choice of γ− ≤ γ+ should
be considered to prevent a prototype explosion, because the average dragging force on
correct prototypes into the data clusters, controlled by γ+, must be greater than the
pushing force γ− on wrong prototypes. The metric update step 4λ denotes the change
of λ given pattern xi. Depending on the chosen metric, it might be advisable to restrict
its free parameters λ to a certain domain, if the cost minimization leads to vanishing
components |λj | → 0 or to diverging components |λj | → ∞.

For the gradient descent-based cost minimization it must be assured that the cost func-
tion is differentiable everywhere. For the considered cost function EGRLVQ it has been shown
by Hammer et al. that the derivatives exist, including the classification boundaries [61, 65].
In the error minimization framework, the function dλ needs not be a strict mathematical
metric, its differentiability is already a sufficient precondition. However, metrics are most
natural for carrying out comparisons; for this reason, metrics will be considered in the
following, although more general differentiable functions are valid as well.

Adaptive metrics

An early approach to data-specific distance calculations has been given by Gustafson and
Kessel, who have extended the unsupervised fuzzy k-means algorithm by covariance ma-
trices approximating the ellipsoidal radii of the k data clusters [53]. The computationally
costly operations per iteration involve k local Mahalanobis distance and determinant calcu-
lations, adding up to minimum computation complexity ofO(d2.69) for d-dimensional data.
An extension has been proposed by Gath and Geva who improve the modeling of local
cluster sizes and densities by a fuzzy Gaussian mixture decomposition of the data [47, 49].

The step away from the local distances to global metrics with adaptive parameters has
been realized in several works, some of which outlined on page 25 are batch CTM [25],
DSLVQ [119], and RLVQ [14]. These three methods share the common property that
they heuristically adapt factors which weight the influence of dimensions on an Euclidean
distance term. Sinkkonen and Kaski formulate a mathematically more rigorous approach
by means of a function for the classification costs. By definition, this function takes its
minimum for the best correspondence of the original data distribution and the distribution
modeled with data prototypes, both related to auxiliary data labels [79].

Generally, the formulation of the classifier training in terms of cost function mini-
mization permits the adaptation of any variable contributing to the costs, because a clear
objective is given. Parameter adaptation can be based on information theoretic criteria,
as done in Sinkkonen’s and Kaski’s stochastic expectation maximization framework. Al-
ternatively, the parameter update dynamic can be driven by distortion criteria reflected
by the cost function for the data and their prototypes. If this function is differentiable,
optimum parameters for its minimization can be iteratively obtained with tools from cal-
culus. Adaptive factors for weighting individual data attributes have been first introduced
for a cost function variant of LVQ by Hammer and Villmann [65].
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Recently, Hammer et al. have linked generalized relevance LVQ (GRLVQ) to the struc-
tural risk minimization framework of learning theory [60]. Following ideas of Crammer
et al. [32], it has been shown that the GRLVQ algorithm with adaptive diagonal Euclid-
ean metric restrained to

∑d
i=1 |λi| = 1 leads to margin maximization. Thereby, margin

refers to the hyperplane separating two adjacent data clusters of different classes, and the
term maximization refers to the amount of freedom for choosing the parameters, i.e. the
freedom for placing the two prototypes that determine the plane without changing the
classification results. Apart from the Euclidean distance, more generally, any kernelizable
operation leads to margin maximization. This property makes GRLVQ competitive to the
well-established support vector machine (SVM) classifier [27, 134]. Since SVM usually gen-
erates larger and computationally more demanding models of the data than GRLVQ [62],
this promising LVQ variant will be further studied in the following, and extensions to more
general metrics and to initialization-tolerant prototype cooperation will be considered.

Euclidean type metrics

The simplest metric structure to be plugged into the update equations is a generalized
weighted Euclidean distance:

dEUC
λ (x, wi) =

d∑

j=1

λbλ
j · (xj − wi

j)
bw , integers bλ, bw ≥ 0 , bw even

⇒ ∂dEUC
λ (x, wi)
∂wi

j

= −bw · λbλ
j · (xj − wi

j)
bw−1,

∂dEUC
λ (x, wi)

∂λj
= bλ · λbλ−1

j · (xj − wi
j)

bw .

The exponent bw controls how much the mismatch in single dimensions contributes to the
cost: large exponents lead to the emphasis of outlier dimensions, whereas small values
better tolerate deviations that might be subject to noise. In simple words: large bw focus
on dimensions with large differences and, compared to this, small bw focus on dimensions
with small differences. In the squared case with bw = 2, the derivative for the prototype
update 2 · (xj − wi

j) is recognizable as Hebbian learning term.
The exponent bλ takes influence on the adaptation dynamic of the factors λj ; typical

values for bλ are 0,1,2, and 4. Disregarding the metric parameters λi > 0 by setting bλ = 0
and choosing g(x) = sgd(x) yields the original GLVQ. If the metric parameters λj are taken
into account for bλ 6= 0, they become factors that weight the influence of differences in
certain data dimensions. For example, a noise dimension added to a classification task
usually does not help to drive the prototypes into the clusters where they belong: since the
position of a Voronöı decision boundary between two classes depends on every dimension
of the involved two prototypes, noisy components induce an orientation of the borderline
different from the one for omitted noise dimensions; this noise-affected borderline may lead
to the accidental inclusion of data points with wrong labels.
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Throughout this work, metrics are used for which their variables λj refer to the weight-
ing of dimension j, although a more general parameter utilization is also possible. The
forced normalization to

∑d
j=1 |λj | = 1 is necessary, because the dynamic can drive diverg-

ing relevance factors to extreme values. For an odd exponent, such as bλ = 1, an additional
clipping of the λj to non-negative values must implemented, because the corresponding
derivative of constant 1, scaled by the metric learning rate, can decrease the λj to unde-
sired negative values. This clipped normalization has been performed during each step of
the training update; thus, a comparison of the different relevance profiles is possible after
training. Putting together normalized adaptive metric parameters for bλ = 1 and GLVQ

yields generalized relevance LVQ, GRLVQ for short [65].

The choice of the exponents bw and bλ remains to be discussed. Usually, the quadratic
distortion measure d2 with bw = 2, bλ = 0 is applied which yields invariance to data
rotations and which provides risk minimization for false classification of Gaussian data. For
data attributes with incompatible semantics, the rotation invariance might be unwanted;
instead, the intra-dimensional matching should outperform the inter-dimensional fitting.
Additionally, it is known that Gaussian data can be described by the first two central
moments, the mean and the variance; for non-Gaussian data, though, moments of higher
order, expressed by larger metric exponents, are more appropriate for capturing data
statistics such as sharp cluster boundaries [9, 105].

As a matter of fact, in many experiments the quartic distance d4
λ2 with bw = 4, bλ = 2

has turned out to be a reliable metric, leading faster to classification results better than
the d2 above and also better than its adaptive counterpart d2

λ2 with bw = 2, bλ = 2. Its
derivative with respect to the prototype locations displays a Hebbian term, taken to the
power of three; thus, prototypes with badly matching dimensions are nonlinearly dragged
towards the centroids of the according attribute, which yields an alignment along the data
axes, in contrast to the rotation invariant standard Euclidean metric. Empirically, a choice
of larger exponents bw and bλ has not further improved the results, but training tends to
get numerically unstable. Recent experiments show that using bλ = 1 with clipping λj ≥ 0
leads to better results than bλ > 1 with built-in self-inhibition: higher exponents tend to
boost the most relevant dimensions at the expense of less important, yet contributing
attributes; this effect will be illustrated for a 10-dimensional artificial data set.

By means of adaptive metric parameters adjusted to minimize the cost function, the
importance of data dimensions for the classification task are determined. After the train-
ing, λ reflects a dimension relevance profile. This can be used to identify sufficiently
large λj indicating attributes onto which the data set might be projected for further clas-
sification, analysis, or for visualization. Apart from this dimensionality reduction, another
important benefit of the relevance learning is the generalization improvement of the net-
works: since noise dimensions are rated less important in the training data, false influences
will be canceled also during the classification of new data. This way, a direct connection
is established between network pruning, relevance learning, and Tikhonov regularization.
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One remark about the squared error sheds light on a more general aspect of the design
of distance metrics. The term expansion (xj−wj)2 = x2

j−2 ·xj ·wj +w2
j can be interpreted

as follows: x2
j is a pattern-specific invariant that contributes unavoidable constant costs,

and the product xj ·wj measures the linear covariance between the vectors x and w subject
to the regularization term w2

j . The adjustment of wj must thus find a compromise between
possibly small values and twice the maximum negative ‘correlation’ to the patterns that
the prototype is responsible for.

For diagonal metrics with separating dimensions dλ(x, w) =
∑d

k=1 v(λk) · fk, with
v(λk) = λ2

k and fk = f(xk, wk) = (xk −wk)2 for the squared weighted Euclidean distance,
the GRLVQ relevance adaptation is briefly studied. Only the numerator of the relevance
adaptation term 4λ is considered for a single dimension i with respect to the direction
of change; as notational convention the superscripts + and − are used which indicate
correspondence for the closest correct and the closest wrong prototype, respectively, to a
given pattern. The term of interest is transformed:

4λi ∝ d+
λ ·

∂

∂λi

d∑

k=1

v(λk) · f−k − d−λ ·
∂

∂λi

d∑

k=1

v(λk) · f+
k

⇒ 4λi ∝
(
d+

λ · f−i − d−λ · f+
i

) · ∂ v(λi)
∂λi

; assuming
∂ v(λi)

∂λi
> 0

⇒ 4λi T 0 ⇔ f−i
f+

i

T d−λ
d+

λ

.

By the example of the relevance augmentation of dimension i, that is 4λi > 0, the effect of
the involved ratios is illustrated, assuming positive distance values and positive derivatives
that indicate the demand for further adaptation. If only the ratio f−i

f+
i

was maximized, this
would mean that in the projections, the correct prototype should be as close as possible
and the wrong prototype should be far away; this feature is desired for class separation.
The dimension relevance is thus increased, if the contribution expressed by that ratio still
supersedes the global distance ratio that takes the current dimension scaling into account.
The relevance is decreased otherwise. Relevances are not updated in the equilibrium,
when the average dimension-specific distance ratios are the same as for the global weighted
distances. In contrast to RLVQ, relevance adaptation takes place independent of an explicit
distinction of d+

λ ≶ d−λ for correct or wrong classification. Instead, the Hebbian paradigm
is implicitly realized for relevance learning by distance competition.

A further question related to the relevance adaptation is whether a wrapper function
v(λi) can be found that yields an implicit normalization without degeneration to extreme
values. Although theoretic investigations are still missing, experiments that avoid forced
normalization show good results for v(λi) = sgd(λi). However, since this sigmoidal wrap-
ping suffers from slow convergence, large data sets have been trained as discussed above
with small integer exponents for the relevance factors, and with normalization.
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Related to the weighted Euclidean distance, the more general Mahalanobis metric
is computing dMAH

Cx
(x, w) = (x − w)T C−1

x (x − w) with a covariance matrix Cx of x that
compensates for the cross-dimension correlations. The case of uncorrelated dimensions,
given by Cx := Iλ, results in the GRLVQ metric with the squared Euclidean and the
λj exponent bλ = 1. Recently, an application of this distance to the k-means clustering
method has been given by Xing et al. [173]. In the present work, the full matrix has not
been used for three reasons: 〈1〉 its computational time complexity is O(d2) instead of
O(d) for each pattern; 〈2〉 data preprocessing, such as principal component analysis PCA,
could be used beforehand to scale and rotate the input data in order to minimize the
correlations between the dimensions; and 〈3〉 it is unclear how the positive definiteness of
the distance matrix can be obtained as a result of the parameter update dynamic.

Unidirectional metric with exponential fading (SEQ)

A metric taking into consideration the nature of directed sequences is expressed by

dSEQ

λ (x,wi) =
d∑

j=1

λj ·
(

j∑

k=1

e−s·(j−k) ·
v∑

u=1

(xk,u − wi
k,u)bw

)bB

.

Basically, this is the summation of blocks of exponentially weighted differences with an
exponential decay rate of 0 ≤ s ≤ 1. The third sum from u = 1 to v refers to the
comparison of the v-dimensional block parts the sequence is composed of. If, for example,
the sequence elements are symbols, then their unary encoding are vectors, and v is the size
of the alphabet. The saturation of the element distances is integrated by the second sum
that depends on the choice of s for the integer mapping k 7→ exp(−s·k). This term leads to
the limit of the geometric series

∑∞
k=0 e−s·k = (1−e−s)−1 characterizing the half-life period

of the exponential memory. As a result, a bias is induced at beginning of the sequence
for the starting indices, where a superposition with the further past is not available. The
focus on the exponentially weighted sequence blocks, the correlation between them, is
controlled by bB, higher numbers leading to a stronger subsequence influence. Although
the nested loops for the first two sums looks like anO(d2) algorithm, it can be implemented
in O(d) time complexity by exploiting that the currently calculated inner sum can be
divided by e−s·j before adding the difference that refers to the next summation index j+1.
Already during the distance calculation information can be collected that is required later
to compute the derivatives with respect to the weight wi

j and the relevance λj also in O(d)
time. The metric parameters λj measure the influence of the exponentially fading memory
for the sequence element at position j. Despite the sophisticated structure of the metric
dSEQ

λ , an improvement over simple Euclidean type metrics could not be achieved though.
Still, in a DNA classification experiment discussed later, this metric demonstrates how the
nature of sequences can be taken into account by one-way processing.
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Bidirectional local window metric (LIK)

A metric similar to dSEQ

λ but more successful can be derived from the locality improved
kernel (LIK). This metric, working bidirectionally on subsequences, has been proposed by
Schölkopf et al. [133, 175] for a very accurate classification of protein sequences with sup-
port vector machines (SVM). Subsequences within a symmetric radius of length l around
the current sequence position are compared, and their correlations across the whole se-
quence are computed by

dLIK
λ (x,wi) =

d−l∑

j=1+l

λj ·
(

l∑

k=−l

hk

hnorm

v∑

u=1

(xj+k,u − wi
j+k,u)bw

)bB

.

As for the SEQ distance, the third sum from u = 1 to v refers to the comparison of
v-dimensional sequence elements. Around a central element in a symmetric data window
of extent 2 · l − 1, the contribution of single differences are weighted by a decay function
hk = 1/(s · |k| + 1) of the distance |k|, normalized by hnorm =

∑l
j=−l hj . The width of

the resulting scaling function is controlled by s > 0, producing wide hat shapes for small
values of s and narrow hats for large s.

The derivatives for the prototype and relevance update formulas are ([61]):

∂dLIK
λ (x, wi)
∂wi

j,z

=
j+l∑

q=j−l

λq ·
(

l∑

k=−l

hk

hnorm

v∑

u=1

(xj+k,u − wi
j+k,u)bw

)bB−1

· hj−q

hnorm
· −(xj,z − wi

j,z)
bw−1 · bw · bB ,

∂dLIK
λ (x, wi)
∂λj

=

(
l∑

k=−l

hk

hnorm

v∑

u=1

(xj+k,u − wi
j+k,u)bw

)bB

.

As previously discussed, the relevance factors are normalized to non-negative values sum-
ming up to 1. Apart from the scaling, a metric very similar to LIK is the shift invariant
metric that is used by Bojer et al. for the monitoring of rotating piston compressors [13].

An interesting special case of the above LIK metric is the radius of l = 0 for which
correlations are not taken into account; as an extension of the Euclidean distance, data
blocks of a fixed dimension v can be considered as a whole. Different exponents bw for the
intra-block weighting and bB for the inter-block weighting allow the control of substructure
matching. This metric will be called the weighted block Euclidean distance dBEUC

λ .

Supervised Relevance Neural Gas (SRNG)

No word has yet been said about prototype initialization: since the considered extensions
of GLVQ drag prototypes towards data belonging to the same class and push away the
wrong prototypes, attention must be paid to prototype configurations for which well-fitted
prototypes prevent badly fitted from reaching their data cluster; the dislocated prototypes
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might be repelled from wrong clusters, this way driving them into idle regions in the data
space. In high dimensions with many degrees of freedoms, such suboptimal cases with
an equilibrium of attraction and repulsion are rare. Nevertheless, prototype convergence
to proper data space locations is significantly faster for fairly initialized prototypes. This
can be achieved by combining the supervised case with neural gas learning as proposed by
Hammer, Strickert and Villmann [59, 162].

The key idea for SRNG is to integrate the cooperative element of neural gas NG into
the prototype neighborhood of GRLVQ: for a given training pattern, the class-related
prototypes perform rank-based updates according to GRLVQ towards this pattern, and
the closest wrong prototype is pushed away. As a result, prototypes spread over the data
by the combination of the active GRLVQ class separation with the unsupervised NG.

An extension of the GRLVQ cost function by neighborhood cooperation for prototypes
of the same class yields

ESRNG :=
n∑

i=1

∑

j | c(wj)=c(xi)

g
(
qj

λ(xi)
)
· hσ(xi,wj) .

The inner sum takes all distances into account for prototypes matching the class of xi:

qj
λ(xi) =

d+j
λ (xi)− d−λ (xi)

d+j
λ (xi) + d−λ (xi)

where d+j
λ (xi) = dλ(xi,wj) .

Neighborhood cooperation is modeled by the exponential ranking of neural gas:

hσ(xi, wj) = exp(−rnk(xi, wj)/σ) · s(σ,wj) with

rnk(xi, wj) =
∣∣∣ {k | c(wk) = c(wj) ∧ d(xi,wk) < d(xi, wj)}

∣∣∣ .

The influence of the neighborhood cooperation hσ(·) is determined by the control parame-
ter σ > 0; during training σ is decreased from an initial neighborhood size to small values,
thus fading from a coarse global ordering to fine local adaptation. The scaling factor
s(σ,wj) provides normalization with respect to the number q of prototypes representing
the same class:

s(σ,wj) = 1

/
q−1∑

k=0

exp(−k/σ) with q =
∣∣ {z | c(wz) = c(wj)} ∣∣ .

EGRLVQ becomes an instance of ESRNG for small neighborhoods and d+j
λ (xi) 6= di−

λ (xi): for
σ → 0 both the exponential function exp(−rnk(xi,wj)/σ) and the normalization s(·)
approximate 1. Thus, in the cost function ESRNG the neighborhood term hσ(·) is 1 only for
the closest correct prototype. Therefore limσ→0 ESRNG = EGRLVQ.
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Just as for GRLVQ, update formulas result from the partial derivatives of ESRNG:

4w+j = −γ+ · g′
(
qj

λ(xi)
)
· hσ(xi, w+j) · 2 ·d−λ (xi)

(d+j
λ (xi)+d−λ (xi))2 · ∂d+j

λ (xi)

∂w+j

4wi− = γ− · ∑
j | c(wj)=c(xi)

g′
(
qj

λ(xi)
)
· hσ(xi,wj) · 2 ·d+j

λ (xi)

(d+j
λ (xi)+d−λ (xi))2 · ∂d−λ (xi)

∂wi−

4λ = −γλ · ∑
j | c(wj)=c(xi)

g′
(
qj

λ(xi)
)
· hσ(xi, wj) · 2 · ∂d+j

λ (xi)/∂λ ·d−λ (xi)− 2 ·d+j
λ (xi) · ∂d−λ (xi)/∂λ

(d+j
λ (xi)+d−λ (xi))2

These SRNG formulas are exactly the same as for GRLVQ, extended by the neighborhood
factor hσ(xi, wj) related to the neural gas dynamic of all correct prototypes. By the same
arguments as for the above cost function, GRLVQ update is reobtained for the limit case
σ → 0 which leads to h(·) = 1 only for the closest correct prototype. Detailed formulas
for the derivation of the adaptation rules and a proof of the differentiability of the SRNG

cost function are given by Hammer et al. [61].
The training of a given data set can be done in several modes: prototype adaptation

only, relevance adaptation only, or both combined. Like for GRLVQ, it turns out that
keeping the relevances λi fixed at the beginning and releasing them after a number of
training cycles on a time scale slower than the prototype adaptation, this will result in λ

characterizing well the relevance of input dimensions for the more or less settled prototypes.
These different time scales can be realized by choosing 0 ≤ γλ << γ− < γ+ ≤ 1.

5.2 BB-Tree: Rules from trained GRLVQ or SRNG networks

Networks of LVQ type constitute similarity-based classifiers that take simultaneously into
account all data dimensions for finding the closest prototype to a given pattern and the
searched label. Opposed to this, a classification tree successively computes characteristic
partitions that lead to class separation for each individual dimension. For efficiency, the
most relevant dimension is split into partitions first; then, depending on the currently
active partition, the second relevant dimension is split, and so forth, until a possibly
unique label can be assigned to a pattern of which the components have seeped through
the different stages of decision.

Rule-based descriptions are particularly well suited for labeled symbolic data, since
frequency and information measures can be obtained from their discrete domains in a
straightforward manner without prior partitioning; symbol frequencies make statistical and
information theoretical classification schemes possible [17, 38], and operations on symbols
allow case-based reasoning techniques [138], prolog-like knowledge-based artificial neural
networks with rule induction KBANN [150, 151], and inductive logic programming [110].

Rule acquisition for continuous data is possible after turning real-valued attributes into
an intervals by means of partitioning. For standard LVQ, a suitable method has not yet
been proposed to obtain rules from the trained prototypes; a major difficulty is that the
order of the attribute processing is unclear. However, the presented LVQ extensions to
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GRLVQ and SRNG yield a built-in detection of the data attributes’ relevances from which
a partitioning order can be derived for components of adjacent prototypes. For the case
of the weighted Euclidean diagonal metric, a method is presented to convert a trained
network into a classification tree.

5.3 LVQ and rule extraction

LVQ classification is determined by the Voronöı cells which are convex and which possess
piecewise linear hyperplane boundaries in case of the Euclidean metric. Since the input
space allows oblique boundary orientations, a compact and intuitive class characterization
is not easily attainable. It is much more convenient to think in terms of axes-parallel input
space cuts that define hypercubes which capture particular data. Such a cube is a rule
expressed by the and-concatenation of intervals belonging to the considered dimensions.
A set of rules can be layered by the dimensions and then be compactly represented as a
decision tree which can be interpreted easily. The proposed technique for the conversion
from Voronöı cells into hypercubes is called the BB-tree algorithm and, as far as known
by the author, it is the first rule extraction technique for LVQ-based architectures [57].

It is not the aim of this work to create classification trees better than those result-
ing from the traditional programs like CART of Breiman et al. [17], the C4.5 method of
Quinlan [121], QUEST of Loh and Shih [96], or DIPOL of Wysotzki et al. [172]. Instead,
the BB-tree method demonstrates that sub-symbolic information contained in a trained
extended LVQ net can be commuted into easily interpretable rules with hight classification
accuracy [57]. Historically, the topic of rule extraction from neural networks started with
the KBANN algorithm proposed by Towell and Shavlik [150]; later, McGarry et al. have
formulated rule extraction for radial basis function networks [104]; for modified multilayer
perceptrons, Duch, Adamczak, and Grabczewski have developed the MLP2LN learning
scheme [36]. A survey of rule extraction from classical neural network architectures is
given by Tickle et al. [148]; more recently, Núñez et al. [111] suggest a simple approach to
rule extraction from support vector machines.

The information required for tree construction can be obtained in a straight forward
manner from a trained GRLVQ/SRNG network: the order of splitting is taken from the
descendingly sorted dimension relevances given by vector λ, and the interval boundaries
are derived from natural splitting locations between the prototypes. Due to the relevance
ranking, only the most important dimensions are candidates for the corresponding intervals
of interest. In a recursive manner, starting at the empty root node, a decision tree is
assembled with these properties: each node N of the tree may possess an arbitrary number
kN of children; an interior node T is assigned a valid dimension index 1 ≤ IT ≤ d for which
the splitting points are represented by real values bT

1 < . . . < bT
kT−1; each leaf L is labeled

with a class number 1 ≤ cL ≤ c. Classifying a data point requires to take the decision
at the current node T, which child to choose, i.e. which path to follow. This decision
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refers to the projection of the data point to its IT
th component and to the subsequent

selection of the index of the surrounding interval (bT
j ; bT

j+1] from the node’s ordered list
of interval boundaries bT

j . Since the obtained interval refers to the next chosen child
node, a given point iteratively percolates to a leaf node, where finally the searched class
label is found. For the efficient tree construction, the most selective dimensions should
be discriminated first and should constitute the root node or near root top level nodes;
the important dimensions are obtained by ranking the trained GRLVQ/SRNG dimension
relevances λk. The nodes’ entries bT

j describing the interval borders are taken as projections
of the midpoints of two adjacent prototypes to the currently processed dimension.

Technically, the BB-tree generator is assembled as follows: Λ is the list of indices j,
sorted according to the magnitude of the weighting factors λj ; its first entry is first(Λ),
the rest of the list is denoted by rest(Λ); X refers to the training set and W is the set
of prototypes. For reasons of efficiency, it is assumed that all dimensions j which, due
to a small weighting factor λj , do not contribute to the classification are ignored, and
all prototypes with empty receptive fields are removed before starting Algorithm 3. As

Algorithm 3 BB-Tree (X,W,Λ)

if STOP then

output leaf L with class argmaxc|{xi | yi = c, (xi, yi) ∈ X}|
else

output an interior node T with |W| children

choose IT := first(Λ)

compile a sorted list [a1, . . . , a|W|] from {wi
IT |wi ∈ W}

set splitting points bT
0 := −∞, bT

|W| := ∞, bT
i := (ai + ai+1)/2, i = 1, . . . , |W| − 1

choose the ith child of T, i = 1, . . . , |W|, as the output of

BB-Tree
(

(x, y) ∈ X | x
IT ∈ (bT

i−1, b
T
i ], W, rest(Λ) • [first(Λ)]

)

end if

indicated by the list concatenation operator • and by the recursive formulation of the
algorithm, the height of the tree is technically not limited by the number ñ of entries in
the rank list. Due to the recursive splitting, the same dimension can be visited multiple
times for partitioning and still produce different data subsets, depending on the previously
selected partitions. Such a dimension revisitation might be useful, if an alternative splitting
heuristic is used, such as executing a split only in the case that the resulting interval is
large enough, e.g. larger than the average splitting interval [57]. In the experiments, the
complete midpoint splitting has been used, and a STOP has been triggered for trees
higher than dS ≤ d without wrapping-around the dimensions. Empirically, dS is chosen
according to satisfying classification requirements for both training set and test set without
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producing too many rules. Other stopping criteria are useful, if the splitting intervals are
calculated differently. By varying both constituents the tree height and the splitting
point calculation, classifiers of higher accuracy might be obtained; however, a lower model
generality has been observed for very high trees.

The presented method for rule learning takes place at two stages: the first one is a
similarity-based pattern classification, using GRLVQ for prototype positioning and dimen-
sion relevance detection, the second one is the replacement of the thus obtained Voronöı
cells by rectangular subsets of the data space. Such a data processing integrates both soft
pattern representations and crisp rules, this way constituting a tentative approach towards
the realization of a hybrid data model.

Rule simplification

As said before, single paths in the tree correspond to a rule that is established by the and-
combination of individual decisions at each node. This class representation is equivalent
to a hypercube decomposition of the input space, possibly restricted to a subspace of
only the relevant dimensions. Different cubes containing the same class can be merged by
or [90]. Technically, the merging is achieved for adjacent cubes of the same class simply by
extending the intervals corresponding to a certain data dimension to the two most distant
boundaries. For disjoint cubes of the same class, a merging to their common convex hull
or a suitable product space of the relevant dimensions may be possible, if only a negligible
amount of points belonging to other classes is located in this wrapped-up region. Optimum
subspace selection has not been considered, because this is a computationally expensive
operation: a number of d dimensions would require O(2d) probing operations. However,
some simplifications can be still obtained automatically: due to the boundary extension,
iterative merging produces intervals of the form (−∞;∞). Especially for large d, many
intervals can just be omitted then. The whole procedure with its greedy rule merging
component is given by Algorithm 4.

A purity measure is a central criterion in the algorithm for the decision if the merging
of two boxes representing the same class should be done or avoided. This measure refers
to the evaluation of the generated bounding box of both source cubes: training samples
are presented and the number of points falling into this cube are counted with respect to
the correct and wrong labels. This counting statistics is used to maximize the relative
number of correctly classified points z = Ncorrect/(Ncorrect + Nwrong) with 0 ≤ z ≤ 1.

In the field of geometric data optimization a problem very similar to the merging de-
cision can be found: collision detection for 3-dimensional geometric shapes involves the
construction of optimal bounding boxes around the points that define an object. Au-
tomatic bounding box generation requires the construction of the convex hull of point
clusters, which may result in axes parallel bounding boxes (AABB) or boxes oriented
along the principal components (OBB) of the geometry [51]. Then, rough geometry col-
lision can be efficiently tested by just calculating the intersections of the corresponding
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bounding boxes. Bounding boxes for parts of an object can be contained in a high level
box for the whole object. For such hierarchical setups, the super bounding box can be
obtained by pairwise putting together boxes that minimize the wrapped-up volume, as
proposed for the BOXTREE system [4, 5].1 If now volume minimization in 3D is replaced
by purity maximization in the high-dimensional data space for axes-parallel boxes, this
explains the basic idea of the rule reduction Algorithm 4. Since the successive bounding
box construction is non-associative, i.e. ¤ ¤ ¤ 6= ¤ ¤ ¤ , the iterative greedy procedure
cannot produce optimum results with respect to the purity maximization. However, in
high dimensions, a lot of merging can be done before the misclassification rate of the
simplified rule sets becomes unacceptably high.

In a final step, the order of rule evaluation for the classification must be given. If
the hypercubes found are disjoint, an arbitrary order can be used, but for overlapping
hypercubes that represent different classes, the boxes with higher purity are preferred,
because the associated rules are more reliable. Hence a purity-based rule ordering is
recommended. As additional default, each data point that does not fall into any cube
after the rule reduction will be assigned the class dominantly present in that case.

Patterns and Rules

The presented extraction of a classification tree from a prototype-based classifier con-
tributes to the interesting discussion of integrating patterns and rules [16]. Thereby, the
patterns can be identified by the variform convex shapes of the prototypes’ Voronöı cells
and the rules are the axes parallel input space cuts. Thus, Voronöı boundaries account
for an intuitive notion of cross-dimension, similarity-based relationships, while the axes
aligned hyperboxes capture intra-dimensional separation criteria. As in real life, some-
times the rule-based data representation leads to a compact model, and sometimes only
a few patterns can express what would require a lot of particular and badly generalizing
rules. This rating will be supported by experiments.

1Thanks to Sascha Teichmann for providing a 2D JAVA implementation of BOXTREE.
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Algorithm 4 Rule simplification

Initialization: take training data and an according tree obtained from the BB algorithm

{ use: BB-tree for obtaining initial set of hypercubes with class labels }
{ use: training data for purity calculation }

{ Greedy probing for rule merging }
for all classes c do

repeat

z ← 0

for all pairs (hi, hj)i6=j of hypercubes for class c do

h ← bounding-box(hi, hj)

z ← max(z,purityc(h))

end for

if z < puritycrit then

(i, j) ← index pair of hypercubes belonging to z

hi ← bounding-box belonging to z

purge hypercube hj

end if

until z ≥ puritycrit

end for

{ Strip trivial dimensions }
for all hypercubes hi do

purge dimensions m with interval hi
m = (−∞;∞)

end for
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Good judgement comes from experience, and experience — well,
that comes from poor judgement.

Cousin Woodman

5.4 SRNG experiments

The performance of supervised relevance neural gas will be demonstrated for different kinds
of data: 〈1〉 a synthetic real-value multi-modal data set is used for general illustration pur-
poses; 〈2〉 the discrete nominal mushroom data set from the UCI learning repository [11]
introduces rule extraction; 〈3〉 the UCI hypothyroid data are used for demonstrating data
set augmentation and the simultaneous processing of real and Boolean data; 〈4〉 discrete
linguistic data referring to diminutive prediction in Dutch tackles the processing of sylla-
ble sequences; 〈5〉 a time series from the Lorenz dynamic system introduces the concept
of relevance embedding; 〈6〉 a speaker identification data set from UCI points out the
excellent classification performance for sequences of 12-dimensional real-value elements;
and 〈7〉 DNA sequence data for splice site recognition demonstrate the applicability of the
proposed methods to large real-life data sets.

Data preparation for GRLVQ and SRNG

Before training can be started, data must be given appropriate shape. Many data sets
exhibit inhomogeneous class distributions: some classes may be represented by only a
small number of data points, but other classes may be dominantly available. For GRLVQ

and likewise SRNG, such an imbalance would yield a biased prototype update, because the
frequent presentation of data points belonging the largest class would implicitly push away
prototypes of smaller classes in the neighborhood. Therefore, the training set should be
augmented to provide a fairer class representation. As discussed in Section 3 on page 10,
instead of simple pattern replication a decent amount of jittering can be added in order
to provide different training data for better learning and generalization.

Attribute normalization is also advisable for preparation; as discussed in Section 3 on
page 10, especially the (squared) Euclidean distance metric profits from transforming the
data components according to the z-score method.

Synthetic 10-dimensional data

For a first illustration, an artificial data set with overlap is used. Points x ∈ R10 have been
generated by adding to the 2-dimensional Gaussian clusters (x1, x2) depicted in Figure 5.1
further dimensions x3 = x1 + ξ3, . . . , x6 = x1 + ξ6 , where ξi is distributed according to
Gaussian noise, with variances σ2

3 = 0.05, σ2
4 = 0.1, σ2

5 = 0.2, and σ2
6 = 0.5; attributes
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Figure 5.1: Artificial 10D data set with three classes, projected to the generating dimen-
sions. Left: one prototype per cluster. Right: one extra prototype per class.

x7, . . . , x10 contain randomly scaled white noise. This generator has been used to produce
a total number of 180 samples in [0; 1]10 describing bi-modal distributions for the three
classes around the driving components (x1, x2).

Training with SRNG has been carried out for the squared Euclidean metric with squared
relevance factors λi and a number of two prototypes per class. The training parameters
were set to γ+ = 10−4, γ− = 1

2 · γ+ and γλ = 10−6 with an initial neighborhood size
of 2 that exponentially decayed to 10−5. A number of ten training runs with 5,000 epochs
have produced an average accuracy of 83.8%±1.0%. For 3 × 3 prototypes, the accuracy
has increased to 85%±0.9%. Figure 5.1 shows projections of the prototype trajectories
during training; the left panel shows the case for one prototype per cluster, the right
panel illustrates the case of three prototypes for only two clusters per class. Training has
started with prototypes wi

1...10 = 0.5 and the initial relevance vectorλ1...10 = 0.1. Typically,
weighting factors λi have converged under the normalization constraint

∑d
i=1 |λi| = 1 to

λ = (0.29, 0.29, 0.29, 0.13, 0, 0, 0, 0, 0, 0). These values show that the important first two
data dimensions are clearly found; also, the small variance of 0.05 on the third component
has no negative effect on the classification, while the other noise components, except
for the fourth, are completely canceled. For the quartic Euclidean distance with λ2

i ,
an average accuracy of 86.6%±0.7% has been obtained by using only six prototypes with
λ = (0.24, 0.16, 0.23, 0.17, 0.11, 0.09, 0, 0, 0, 0); this result indicates that the first component
is heavily exploited for the classification, and that also its noisy replications are interpreted.

Curves of both training and test accuracy, tracked during the learning phase, indicate
the generalization capabilities and they can be used for model validation. Figure 5.2
shows a typical plot that has been obtained for a splitting of the whole data set into a
75% training partition and 25% testing partition. In the plot, snapshots of 100 sampling
stages have been smoothed by natural Bezier interpolation, and the first 500 epochs have
been omitted. For the training set, saturation at about 81% is found after 1,500 cycles.
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Figure 5.2: Training error and test error for the synthetic data set.

Further relevance adaptation leads to a successive increase of the test set accuracy while
lowering the overspecialization on the training set. Usually, and as a desirable feature of
SRNG, relevance adaptation helps to reduce overfitting data.

Another experiment has focused on the influence of only the relevance factors on the
classification. For this purpose, the prototype locations wk have been frozen by setting
γ+ = γ− = 0, thus allowing only λi to adapt. Two prototypes per class have been randomly
picked from the data, and 5,000 epochs have been trained. Table 5.1 summarizes the
parameters and the classification results for the weighted squared Euclidean metrics with
relevance exponents bλ = 1, 2. The reported averages accuracies (avg. acc.) have been
obtained from 50 independent runs for each metric; the given learning rates maximize the
accuracies. Two things are remarkable: 〈1〉 a significant classification improvement can
be obtained already without changing the prototype locations, and 〈2〉 the unit exponent
yields significantly better results. The first observation makes it attractive to think about
utilizing individual metric parameters for each prototype, because already the single global
relevance vector λ leads to a good improvement; however, future work on this idea must
take regularization strategies into account in order to avoid that the adjustment of many
free parameters relies on too few data. A possible explanation for the very recent second
finding is the race condition between the competing dimensions: the update influence
on the λj by a unit exponent is constant, but for an exponent of 2 it is in Hebbian
terms proportional to the current value. Proportionality boosts already large dimensions,
while constancy leads to more fairness. The fairness associated with the exponent λ = 1
comes along with better tolerance for the choice of the learning rate γ− which proved to
be harder to tweak for larger exponents. For all subsequent experiments, the seemingly
disadvantageous exponent of 2 has been predominantly used due to historic reasons that
aimed at the ‘natural’ Hebbian update term for the dynamic of the dimension factors.
Hence, there is still potential for improving the following results by systematically applying
the λ-exponent bλ = 1 as originally suggested in Hammer and Villmann [64, 65].
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Figure 5.3: Adapted weight factors λ1≤i≤117 for the mushroom data. Different line styles
and points indicate the membership to the 22 different attributes.

Mushroom data

The mushroom data set from the UCI repository consists of 8,124 vectors representing 22
symbolic attributes, some are binary, others take up to 12 different states. These attributes
have been converted by unary encoding into partial vectors which have been concatenated
to 117-dimensional pattern vectors. Again, the z-score transformation has been applied to
the obtained vector set. Labels for the two classes are e=edible, which belongs to 51.8% of
the data, and 48.2% of p=poisonous examples. A portion of 75% of this data set has been
randomly taken for training, 25% for validation. In a first training step with 1,000 epochs,
ten prototypes have been used for each class. Learning rates are γ+ = 0.001, γ− = 1

2 · γ+,
and no dimension weight adaptation γλ = 0; the neighborhood size is annealed from 10
to 10−5. The calculated numbers of data in the receptive fields have showed that five of
the prototypes could be removed without significantly affecting the classification accuracy
of roughly 92%; thus, three prototypes have remained for the poisonous case and two for
the edible. Training has been refined with an initial neighborhood size of practically zero,
setting γ+ = γ− = 0.00075 and γλ = 10−7. Tenfold cross-validation produces classification
accuracies ≥ 97.5% on the test data. The best set of prototypes with its adapted metric
weights λ yields 98.7% accuracy. This set has been used for the BB-tree extraction pro-
cedure. The relevances for the different components are shown in Figure 5.3. Within the
odor attribute block, feature 28.odor:none displays highest discrimination ability. This fea-
ture is followed by 41.gill-color:buff, 37.gill-size:narrow, 36.gill-size:broad, 101.spore-print-
color:chocolate, 22.bruises:no, 21.bruises:yes, 95.ring-type:pendant, 93.ring-type:large, and
27.odor:foul, respectively. Obviously, for binary items like the bruises, both possible states

λ–exponent γ− initial avg. acc. final avg. acc. avg. gain

1 5.0 · 10−4 47.89%± 5.61% 64.24%± 7.81% 16.35%
2 2.5 · 10−5 47.87%± 5.16% 60.41%± 8.29% 12.54%

Table 5.1: Results for exclusive relevance adaptation for the artificial 10D-data
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complement each other. The relevances are also reflected in the final set of rules which
have been extracted by a BB-tree of height 6 and which are given in Table 5.2. These rules
explain 97.2% of the test set and 97.5% of the training set. An amount of 88.7% can be
classified correctly by using the single rule odor=none → e; the inverse rule for mapping
to the poisonous case p accounts for only for 0.1% of the data. Still, redundancies are
visible in the set of rules, because the gill-size attribute appears twice. In that situation,
the rule simplification algorithm failed to handle the don’t care state (-).

By means of the four rules for the edible case, a good data representation is achieved
with six components; the poisonous class is subsumed in the else case. These findings are
not quite as good as compared to the results of Duch et al. [36] who obtain 100% accuracy
with three rules and five components. But interestingly, the same important attributes
have been identified: odor, gill-size, and spore-print-color.

Hypothyroid data

A difficult separation task is given by the hypothyroid data from the UCI repository. There
are three classes, n=normal, p=primary hypothyroid, and c=compensated hypothyroid,
determined by 21 attributes, 15 of which are binary and 6 are continuous. In the training
set there are 3,772 cases, and 3,428 cases are in the test set. Due to the large overlap
between the classes and the strong prominence of the n=normal class with a portion of
about 92%, this data set is known to be difficult for neural classification [132].

The first SRNG runs with the original data and have produced only the trivial 92%
accuracy that could have been more easily obtained by classifying all data as the normal
state. In a second run with training set and test set augmented to 10,000 cases each, this
result has even dropped to only 78%. A z-score transform could not significantly improve
the situation.

bruises odor gill-size gill-size gill-color spore-print-color
Class Freq.

22:no 28:none 36:broad 37:narrow 41:buff 101:chocolate

- 0 - - 1 - p 21%

- 0 1 0 0 1 p 19%

0 0 - - 0 0 p 3%

1 0 0 1 0 0 p 4%

1 1 0 1 0 - p 0.1%

0 1 - 0 0 - e 16%

1 0 1 0 0 0 e 8%

1 1 - 0 0 - e 25%

0 1 0 1 0 - e 3%

Table 5.2: Rules from a BB-tree of height 6 explaining 97.2% of the mushroom data.
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Figure 5.4: Average adapted weight factors λ1≤i≤27 with standard deviations for 20 exper-
iments on the hypothyroid data. Different line styles and points indicate the membership
to the binary (left), real (center), and logarithms of the real attributes (right).

A strong enhancement has been achieved by including logarithms of the real-value
components as additional data dimensions. This step has been discussed in the data
preparation Section 3, and it is supported by Figure 3.1 on page 14. For the weights shown
in Figure 5.4 and with a number of five prototypes per class, the classification accuracy has
increased to 97.1%. Interestingly, data augmentation has a negative effect on the correct
prediction of the ‘trivial’ normal class: the worst prototype responsible for the n class has
misclassified 11.1% of all cases, whereas the worst prototype for c has failed only in 5.5%,
and for the primary hypothyroid p class no misclassification has been encountered at all.
In other words: if one of the hypothyroid cases is predicted, this is a very certain result,
whereas the diagnosis of the normal case is not; the certainty about exceptional states and
the alert rising in the normal cases induced by the data augmentation might be a desirable
feature in diagnostics for drawing the attention to potentially interesting situations.

A clear benefit of relevance-based clustering has been shown in this experiment: trans-
formed data can just be added to the data as new dimensions. If these dimensions turn
out to be worthless for the classification, their dimension weighting factors will vanish.

Plot 5.4 shows that some of the binary features have been detected as irrelevant in 20
independent runs. A high reliability is indicated by low standard deviations, only attribute
21:FTI is uncertain. The most prominent dimensions are 23:ZLog(TSH) and 27:ZLog(FTI);
these results are confirmed for the non-transformed values by the findings of Duch et
al. [36]. As related to the weight ranking shown in Figure 5.4, the simplified extracted
rules for a BB-tree of height three can be reduced to these two features. The three obtained
rules are:

ZLog(TSH)∈ (−0.347;∞] ∧ ZLog(FTI)∈ (−∞; 0.092] → p (97%) ,
ZLog(TSH)∈ (0.366;∞] ∧ ZLog(FTI)∈ (0.068;∞] → c (94%) ,
ZLog(TSH)∈ (−∞;−0.347] → n (100%) .
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Figure 5.5: Adapted weight factors λ1≤i≤403 for the diminutive data.

With these rules, 96.2% accuracy is obtained for the test set and 97.0% for the training
set. Increasing the height of the extracted tree to 10 includes the binary data; then, a high
number of rules with poor generality is generated: the accuracy of the training set increases
to 99.1%, but the test set is predicted correctly in only 93.2% of all cases. For comparison,
a feedforward net with backpropagation produced an average accuracy of 96.13% on the
training set and 96.18% on the test set [112], but original CART classification tree methods
improve the results to accuracies of 99.8% and 99.36% for training and testing [168].

Linguistic data

In the next experiment, a classification problem for linguistic data demonstrates sequence
processing with SRNG. Thereby, the quality of the SRNG-based BB-tree rule extraction is
compared to the nearest neighbor classifier TiMBL which has been designed for the induc-
tion of linguistic knowledge [33]. The TiMBL package supplies a test set with SAMPA2

coded syllable information of Dutch words, for which one of the five possible diminutive
forms -je, -etje, -pje, -kje, and -tje shall be predicted.

Since TiMBL is a nearest neighbor classifier, it stores all 2,999 items of the diminutive
training data in memory. New data are classified according to a majority vote of examples
with best matching overlap [33]. For the 950 test cases, TiMBL achieved an accuracy
of 96.6%. SRNG training has been performed with just four prototypes per class for the
unary encoded z-scored data augmented to equal class sizes. The final result for the
prototype-based classification already provides 92.6% accuracy on the test set and 92.3%
on the training set. Figure 5.5 displays the obtained metric weights. Since patterns
are aligned to the word endings and organized in triples of vectors with the four feature
components (stress, onset, nucleus, coda), the weights reflect the intuitive fact that the
word endings determine the choice of the proper diminutive suffix.

Another interesting result is given: the rules for a BB-tree of height 25 yield an improved
classification accuracy of 95.5% and 95.1% for the test and training set, respectively.
Unfortunately, this height of 25 corresponds to a set of 117 rules which cannot be simplified

2Speech Assessment Methods Phonetic Alphabet. See http://www.phon.ucl.ac.uk/

http://www.phon.ucl.ac.uk/
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Figure 5.6: Cepstrum vectors for an ‘ae’ articulation. Left: original. Right: resampled.

easily. After all, this result is not too bad, because it might give a hint for a dilemma in
linguistic research, whether human linguistic skills are rule-based rather than analogical
pattern-based, or vice versa. Both seems to be valid: On one hand, some rules have a
high degree of generality and account for up to 10% of all cases. On the other hand,
the large number of special rules indicate that many exceptions have to be learned extra.
As a reference, the C4.5rules program [121] has generated 71 rules, and its accuracy is
about 97.1% for the test set and 97.5% for the training set.

Speaker identification

The next experiment processes speaker data from the UCI repository3. Recordings from
nine speakers of the Japanese vowel ‘ae’ are given as sequences of 12-dimensional frequency
vectors, based on a time-window Fourier transform of the sampled waveform. Each utter-
ance comprises a number between 7 and 29 of temporally connected vectors, roughly 16
on average. In the training set, 30 articulations are available for each speaker, adding up
to 270 training patterns; the test comprises a total of 370 utterances. In order to cope
with the variable number of cepstrum vectors per articulation, cubic polynomial resam-
pling has been applied to obtain a fixed number of 20 vectors per utterance. Figure 5.6
shows both an original utterance from the training data and its resampled counterpart.
The resampled vectors have been concatenated to 240-dimensional feature vectors used in
the SRNG training set and test set. Only two prototypes per class have been taken for
training. Correct prototypes have been updated by an amount of γ+ = 0.075. The adap-
tation of the wrong prototypes has been done with γ− = η ·γ+, increasing η linearly from 0
to 1 during training. Relevance factors have been updated simultaneously with a learning
rate of only γλ = 8 · 10−7. During 350 training cycles, the initial neighborhood influence
of σ = 2 decayed by a factor of 0.995 to σ = 0.346. Ten runs took about ten minutes of
calculation time and produced an average accuracy of 99.22% ± 0.21% on the training set
and an accuracy of 97.24% ± 0.38% on the test set. More than two prototype vectors did

3http://kdd.ics.uci.edu/databases/JapaneseVowels/JapaneseVowels.html

http://kdd.ics.uci.edu/databases/JapaneseVowels/JapaneseVowels.html
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Figure 5.7: Adapted weight factors λi for the ‘ae’ speaker data.

not improve the classification of the test set. The reference accuracies delivered with the
data set are 94.1% for a rule-based method and 96.2% for a hidden Markov model, both
reported by Kudo et al. [89]. Figure 5.7 shows the profile given by the 240-dimensional
relevance vector λ reassigned to the 20 feature vectors of dimension 12. Basically, higher
dimensions belonging to higher frequencies are more important than lower dimensions,
and the articulation endings are more discriminative than their beginnings.

Relevance embedding of the Lorenz attractor

In the domain of nonlinear time series analysis, it is a widely used assumption that a
given scalar sequence of observations reflects only one of several differentiable components
of an unknown high-dimensional attractor [76]. According to the embedding theorem of
Whitney, data from a single component can be used to construct a manifold that is similar
to the unknown attractor, exhibiting the same topological properties and also maintaining
the temporal structure like periodicities and transient states [93]. Before revisiting the
proposal of relevance embedding in an earlier work of the author [144], some preliminaries
about the topics are given. For real-life data, a technique suggested by Takens, the so-
called ‘delay embedding’, is commonly used for the manifold reconstruction: equidistant
scalar observations x = (xi)i=1...n are grouped into d-dimensional vectors according to
Φj(x) = {xj , xj+τ , xj+2·τ , . . . , xj+(d−1)·τ}, j = 1 . . . n − (d − 1) · τ . The construction of
these delay coordinates depends on two parameters, the embedding dimension d and the
time delay τ . Both values have to be chosen properly in order to yield a good attractor
reconstruction [143].
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Figure 5.8: Lorenz attractor. Left: phase space portrait. Right: discretized z-component.

The choice of the lag τ is motivated by the desire to maximize the independence of the
delay vector components with a minimum value of τ . Some heuristics to determine τ are:
the value where the autocorrelation function decays to 1/e, where it decays to zero, where
it falls into the 95% interval of confidence, or where the mutual information exhibits its
first minimum [41]. Usually, different lags τ will result from the methods. However, any
fixed lag yields equidistant data sampling for the construction of the embedding vectors.
Thus, sampling periods may interfere with data periods, leading to aliasing artifacts or
Moiré effects. After estimating a reasonable delay τ , the target dimension d is determined
by a consideration about topology preservation: as long as there are significant differences
for the number of neighbors in ε-spheres around the embedded data points when going
from the probed dimension k to dimension k + 1, the dimensionality must be further
increased. For example, if one of three variables describing a 3-dimensional spherical
manifold is embedded into a 2-dimensional target space, singular point projections will be
recognizable by the presence of these false nearest neighbors. These accidental projection
artifacts and false neighbors will vanish when probing the transition from two to three
embedding dimensions, thus making d = 3 or above a good dimension choice. Although
too large d would not disturb analysis, Ockham demands for the lowest possible dimension.

SRNG provides a data-oriented alternative to the traditional linear delay embedding
with three benefits: 〈1〉 the sampling is defined by the metric weighting factors and must
not be equidistant, which reduces sampling artifacts; 〈2〉 by dint of the relevance learning,
dimensions contribute to the embedding with different influence; 〈3〉 embedding vectors
can be constructed according to special requirements, such as the best prediction of the
current value with certain components selected from the past.

The alternative embedding is demonstrated for the Lorenz flow which describes a min-
imum model of atmospheric convection by three differential equations. A phase space
portrait for a parameter set leading to deterministic chaos is given in Figure 5.8, but only
its z-component will be considered. Relevances are related to those historic influences
that maximize the prediction quality for the next sequence value: time window vectors are
compared to prototypes representing the current state, and the metric emphasizes dimen-
sions that matter for the explanation of the current state. This way, also the comparison
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Figure 5.9: GRLVQ relevance profile.

between two data vectors is restricted to the most important dimensions.

In order to deal with a discrete SRNG class prediction, the z-values are discretized
by median cuts into 17 states, as shown in the right panel of Figure 5.8, and each of
the states is represented by the same number of data. The training of three prototypes
per class without neighborhood cooperation and squared Euclidean metric is related to
standard GRLVQ training which has been conducted for 5,975 time window vectors zi

of length 25. Further parameters are γ+ = γ− = 10−4, γλ = 2.5 · 10−6, leading to a
predictive accuracy of 84% after 50,000 training cylcles. Alternatively, the mean square
error could have been calculated by comparing the next continuous time series value with
the median value corresponding to the predicted class. As detailed in Strickert, Bojer, and
Hammer [144], this error would better account for the fact that the classification result is
not just either wrong or right, but that in case of misclassification, often a class is selected
of which the corresponding median is neighbored to the desired median in the time series
space.

The global relevance profile of observations in the past for a one-step prediction is
displayed in Figure 5.9. Apart from the expected importance of the most recent sequence
entries, multi-modality arises as a consequence of the quasi-periodicity. A canonic decor-
relation length is indicated at the time step τ where the λτ exhibits a first minimum. The
local minimum at step 5 is associated with a characteristic decorrelation time that is in
accordance with a decay of the autocorrelation function to zero at lag τ = 6 and with the
minimum of the mutual information found at lag 5, both calculated separately.

As suggested by Bojer, Hammer, and Strickert, relevance learning can be combined
with pruning and retraining steps [144]. After a number of training and retraining cycles,
the currently smallest relevance value λi is set and fixed to 0 for the rest of the training.
This pruning proceeds until the classification error becomes unacceptably high. A reason
to use this pruning strategy and to rely not only on the built-in relevance weighting, is
the desire to explicitly force dimension reduction, even though the target of cost function
minimization might be violated then.



5.4. EXPERIMENTS 55

 20
 40

 60
 80
 100

x’
 20  40  60  80  100

x

 20

 40

 60

 80

 100

x’’

 0
 20

 40
 60

 80
 100

x’
 5  10  15  20  25  30

x

 5

 10

 15

 20

 25

 30

x’’

Figure 5.10: Attractor reconstruction. Left: std. embedding. Right: relevance embedding.

For later visualization purposes, a retraining for the three most relevant dimensions of
the steps 1,2, and 7 back in the past has been conducted, yielding λ1 = 0.833, λ2 = 0.077,

and λ7 = 0.09 and an accuracy of 76.25% on the training set. With these values, a direct
relevance embedding into R3 is given by xi = (zi

1 ·
√

0.833, zi
2 ·
√

0.077, zi
7 ·
√

0.09). The
operation xi

j = zi
j ·

√
λj undoes the learned implicit metric scaling. More generally, points

can be embedded into Rd in such a way that their unweighted distances are equivalent to
the weighted squared Euclidean metric. The required transform for each metric summand
is λi · (xi − wi)2 = (x̃i − w̃i)2 = (gi · xi − gi · wi)2 for gi =

√
λi. Of course, a prototype w

does not play a definite role at the embedding time, but this mixed notation with the
pattern x refers to the fact that relevances λ are related to prototype constellations, and
that the vectors xi and xj to be compared are represented by metric-specific prototypes.

After the preparatory work, the relevance embedding and the standard delay embed-
ding with a lag of τ = 6 are compared by two visual methods, the phase space reconstruc-
tion and the recurrence plot technique. The reconstructed 3D phase spaces are given in
Figure 5.10. Both plots are similar with respect to the band structure and the rough conic
shape, and for reasons of symmetry, the two embeddings fail to capture the original double
wing structure of Figure 5.8. Standard embedding exhibits two features, an angular cur-
vature which is a clear embedding artifact, and a pyramidally circumscribed volume that
is recognizably larger than the shell shape of the relevance embedding. Since the fractal
dimension of the Lorenz attractor is only 2.01, the shell shape of the relevance embedding
is much more preferred.

The second qualitative comparison is obtained by means of the recurrence plot tech-
nique which basically generates a picture of the quantized distance matrix of all embedding
vector pairs [101]. As such, a recurrence plot matrix displays the dynamic independent
of the data dimension d. By definition, on the lower left corner the pair furthest back
in time is located, on the upper right the most recent pair. A distance less than a given
threshold, then called recurrent, leads to drawing a pixel; otherwise the associated coor-
dinate is left blank. Trivially, all points on the diagonal are painted, and the matrix is
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Figure 5.11: Recurrence plots. Left: standard embedding. Right: relevance embedding.

symmetric. Additionally, if the dynamic in the reconstructed phase space gets close to a
location where it has already been, potential periodicity is present. Periodicities are indi-
cated as lines parallel to the diagonal, and transient states are found as bands of white;
many more details and theoretical foundations are given in Casdagli [21]. An alternative
view on the phase space portraits in Figure 5.10 is given by the related recurrence plots
in Figure 5.11, where each of the 600 × 600 pixels represents an embedding vector pair.
Both distance thresholds are chosen to display 30% recurrent points. Visual inspection
for standard delay embedding essentially displays 24 base periods as parallel lines, some
transitions, and a strong recurrence phase in the center of the displayed time. All this is
also contained in the relevance embedding, but additionally, the intra-periodic dynamic is
detected, represented by fine lines and bubbles.

In the lines above, the potential of relevance embedding has been scratched only, and
some promising properties have been demonstrated by the toy example of the Lorenz
attractor. A real world example that supports the benefits of this embedding strategy can
be found in Bojer, Hammer, and Strickert [144]. Yet, dynamic systems analysis might
profit from further studies along the line of relevance embedding.

DNA splice site recognition

So far, standard metrics have been used for dealing with sequential information stored in
linguistic data, in speaker utterances, and in the Lorenz time series. Specifically designed
sequence metrics are introduced in the following important classification problem: DNA
strings shall be separated into two classes, namely into idle intron subsequences and into
information-carrying exon strings [18, 117]. This splice site detection task can be tackled
by training SRNG. These sites mark transitions from expressed to unexpressed gene regions
and vice versa, and they are thus important for the assembly of structural and regulatory
proteins that constitute and control a metabolism. Splice site recognition is therefore a
topic of interest for the understanding of organisms. Two publicly available data sets are
taken for the training task for which a number of comparative results exist.
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The IPsplice data set contains human DNA data [11]. It consists of 765 intron-exon
boundaries, so-called acceptor sites, and of 767 exon-intron transitions which are the donor
sites. In addition, 1,654 decoy strings are present, coding no valid transitions. Thus, the
problem can be seen as a classification task with the three categories acceptor, donor,
and neither. In the data set, sequences with a fixed length of 60 nucleotides are centered
around potential splice sites. It is not documented how the decoys have been collected.
However, other results from the StatLog project that systematically compare different
machine learning approaches are given as a reference [107].

The C.elegans data are taken from the Caenorhabditis elegans genome. It is available
as nucleotide strings of length 50 in five different data sets for each of the sizes of 1,000
and 10,000 disjoint training examples; each set comes with its own test set containing
10,000 cases [141]. In the following experiments, only the canonic acceptor sites given by
the centered adenin-guanin nucleotide (AG) boundary are considered for the separation
of true and false acceptor sites. The decoys are centered around arbitrary AG tuples, and
there are roughly twice as many decoys as acceptors in the data. Results for this two-class
classification problem, obtained by state-of-the-art support vector classifiers with various
kernels, have been published in Sonnenburg [141] and Sonnenburg et al. [142].

As indicated in the data preparation Section 3, the four nucleotides A,G,T, and C are
encoded as tetrahedron points in a 3-dimensional vector space, thus producing 60 ·3 = 180
dimensions for the IPsplice and 50·3 = 150 dimensions for the C.elegans task. Prototype
weights wi are always initialized with small random perturbations around the origin 0,
and the relevance factors λ of the metrics are all equal at the beginning of the training.

IPsplice

For IPsplice, SRNG is used with eight prototypes for each of the classes acceptor, donor,
and neither. The adaptive squared and quartic Euclidean metrics d2

λ2 and d4
λ2 have been

considered as well as the exponential memory distance dSEQ

λ (cf. page 35) and the locality
improved distance dLIK

λ (cf. page 36). For SEQ, the three exponents for the sequence
element distances, the block weighting, and the relevance emphasis have been chosen as
bw = bB = bλ = 2, and the exponential fading has been assigned to s = 0.5. For LIK,
the exponents are bw = 2, bB = 3, and bλ = 1; the parameter s in the window scaling
function hk = 1/(s · |k| + 1) is set to s = 0.5 and, most importantly, the data window
radius for capturing the local correlations is set to l = 3, this radius being confirmed
by Sonnenburg’s findings [141]. In all experiments, an initial neighborhood range of 8 is
chosen and multiplicatively decreased by 0.9999 after each training epoch. The remaining
training parameters are given in Table 5.3.

Training with random pattern presentation converges after 2,000 epochs. A 10-fold
cross-validation has been carried out with randomly compiled training and test sets con-
taining 2,000 and 1,186 data points, respectively. Results are shown in Table 5.4. The
upper line contains training set accuracies, the lower line shows the results for the test
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Metric γ+ γ− from 0 to . . . γλ

d2
λ2 0.004 0.075 · γ+ 10−8

d4
λ2 0.001 0.075 · γ+ 5 · 10−9

dSEQ

λ2 0.004 0.05 · γ+ 10−8

dLIK
λ 0.004 0.5 · γ+ 10−8

Table 5.3: Training parameters for the IPsplice data set.

sets. The four leftmost SRNG test accuracies are of interest. Further results for alternative
machine learning methods given in Table 5.4 are taken from the StatLog project [107] and
from Sonnenburg et al. [142]. The results comprise a decision tree approach (C4.5), a radial
basis network (RBF) producing the best result in StatLog, a powerful stochastic hidden
Markov model approach (HMM), and three SVM approaches. The SVMs use kernels which
have been explicitly designed for splice site recognition: the locality improved kernel for
SVM is comparable to the similarity measure LIK which is used in the SRNG experiments.
The two other kernels used, the Fisher kernel (FK) and the tangent vector of posterior
(TOP) kernel, have been derived from statistical models, and they combine established
statistical modeling with the discriminative power of SVMs [152]. Since SVMs and HMMs
are used as binary classifiers, three different models for donor, acceptor, and neither class
recognition must be trained separately; therefore, errors taken from Sonnenburg et al.
being the sums of all three models are worst case estimates [142].

All in all, the SRNG results are very good: especially the LIK metric provides better
results than any of those from the StatLog project. The exponential memory metric
SEQ does not yield particularly good results, though, and it is even outperformed by the
Euclidean type metrics which are direction insensitive. Although the SRNG results cannot
be directly compared to Sonnenburg’s binary classifiers, his SVM results are supposed
to be slightly better. However, the advantages of SRNG over SVM are 〈1〉 that SRNG

is a natural multiclass method, 〈2〉 that the final number of prototypes is small, and
〈3〉 that prototypes can be easily interpreted as data representatives. Additionally, the
compactness of the model make it feasible to train also large data sets. To give a hint
about that: on a Pentium III computer with 700 MHz, only ten minutes are needed to

SRNGLIK SRNGEUC∧2 SRNGEUC∧4 SRNGSEQ RBF C4.5 SVMLIK SVMTOP SVMFK HMM

97.1± 0.3 96.0± 0.3 96.7± 0.4 95.9± 0.4 98.6 96.0 — — — —

96.5± 0.3 95.6± 0.5 95.7± 0.4 95.2± 0.3 95.9 92.4 96.3 94.6 94.7 94

Table 5.4: Accuracy (in %) of different methods for the IPsplice data. Upper row:
training set. Lower row: test set. The SVM and HMM results are taken from Sonnenburg
et al. [142], others are taken from StatLog [107].
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train and test a SRNG model on the IPsplice with the quartic Euclidean distance, and
about one hour for the given LIK distance with radius 3. The utilization of a total number
of only 3 · 8 = 24 prototypes yields compact, fast, and accurate classifiers. Contrary to
that, the large number greater than 1,000 of support vectors is responsible for the long
training times of SVMs.

Another SRNG feature to be taken from the result Table 5.4 is the generalization
ability. The large difference between the training and the test accuracy of C4.5 and RBF

shows a substantial overfitting. A better performance of the SRNG method is indicated
by smaller differences, thus confirming again the good data generalization properties of
the SRNG classifier. In future experiments, the LIK metric, already producing excellent
results, could be replaced by an even better metric for including higher order correlations.

One major advantage of the considered adaptive metrics is the possibility to obtain
dimension relevance profiles which allow insights into the classification. Figure 5.12, upper
panel, depicts the relevance factors λ within a local window achieved by training with the
weighted squared Euclidean metric, the center panel shows the relevance profile obtained
for the exponential memory metric SEQ, and the panel at the bottom shows the relevances
for the LIK similarity. The mean values of relevance triplets are plotted, because these
triplets correspond to the importance of the single nucleotides encoded in three dimensions.
As expected, the region around a potential splice site is characterized by particular impor-
tance. This location has been identified as important by all three metrics. Obviously, both
characteristic dinucleotides GT and AG are relevant, because they heavily determine the
distinction of donors, acceptors, and decoys. Furthermore, the profiles show that around
the splicing location the left side is a bit more weighted than the right one, a result which
is in good correspondence with the known high relevance of the pyrimidine rich region for
the splicing process. Strong border effects are displayed for the SEQ metric: accidental
overweighting at the sequence start for missing historic context is compensated by small
relevance factors, and missing values beyond the scope of the sequences are balanced by
large factors. The interpretability of the relevance profile is complicated by this naturally
sigmoidal shape, although it is — except for the scaling — similar to the Euclidean profile.
For LIK, the bias is mild: the relevances increase linearly within LIK radius at the borders,
which is induced by the missing data for LIK windows at the start and at the end of the
DNA strings. Comparing the unaffected inner region with the relevances for the Euclidean
metric, the LIK profile is smoothed by the averaging influence of neighbored symbols on
the distance calculation.

In addition to the visual inspection of relevance profiles, the obtained classifiers can
be evaluated analytically. As discussed in Section 4.3 on page 24, the receiver operation
characteristic (ROC) plot describes the quality of binary classifiers; ROC curves are fre-
quently used in computational genomics. Since the SRNG classifier produces hard Voronöı
boundaries, the cut-points for the decision lines are virtually fixed.
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Figure 5.12: Nucleotide relevance profiles for the classification of the IPsplice data set.
Top: adaptive squared Euclidean metric. Middle: SEQ metric. Bottom: LIK metric.
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In order to be able to use ROC analysis, a measure related to the margin size is
computed, based on the distances of the closest correct and the closest wrong prototype
to the presented pattern:

v =
d+

λ − d−λ
d+

λ + d−λ
.

This classification measure v ∈ [−1; 1] has been chosen as the test variable of the ROC
statistics. The hard SRNG classification maps all data points with values of v ≤ 0 to the
correct class. Other values of specificity and sensitivity can be achieved by varying the
classification boundary within the interval.

For the splice site recognition task the classifier’s specificity refers to the percentage
of decoys correctly identified relative to the total number of decoys in the data set. The
sensitivity refers to the percentage of correctly predicted splice sites, compared to all
available splice sites, no matter if donors or acceptors. Figure 5.14 displays the general
recognition characteristics of splice sites on DNA strings showing a plot of the true positive
rate (sensitivity) versus the false negative rate (1− specificity) together with the reference
diagonal. The corresponding curves, from which the moderate SEQ metric has been
excluded, indicate very high classifier accuracies by their asymptotic alignments to the
axes. For the IPsplice data set, only a subset of the whole ROC plane [0; 1] × [0; 1] is
depicted in Figure 5.13 in order to make the differences between the single graphs visible.
It is possible to achieve the highest values (0.93, 0.99) of specificity and sensitivity for
the weighted Euclidean metric at a cut-point of v = 0 on the test set; an even better
pair of (0.97, 0.98) is obtained for LIK, also at v = 0. This finding confirms that SRNG

performs best on what it has been designed for, namely for the Voronöı decision boundaries
corresponding to the cut-point parameter v = 0.

C.elegans

The DNA for the Caenorhabditis elegans nematode has been thoroughly sequenced. The
non-splice sites, chosen similar to true splice sites, have been added to the data sets
by Sonnenburg in a well documented way [141]. Five data sets with results known for
Sonnenburg’s models are used for comparison of SRNG with SVMs and HMMs.

A preliminary study for the present C.elegans data set has showed that the LIK met-
ric, being slow but successful for IPsplice, was only as accurate as the weighted quartic
Euclidean metric. Sonnenburg also reports a significant loss of the LIK classification per-
formance for C.elegans subsets containing more than 100 patterns in comparison to other
kernels [141]. Therefore, only two distance metrics have been further studied for SRNG, the
weighted quartic Euclidean metric dEUC∧4

λ and the weighted block Euclidean distance dBEUC
λ ,

introduced as a special case of LIK in Section 5.1 on page 36, which accounts for data
blocks but not for correlations between the blocks.
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Figure 5.13: ROC curve for the IPsplice data set. EUC∧2: weighted Euclidean measure;
LIK: locality improved similarity metric. Both high specificity and sensitivity can be
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test sets for two weighted Euclidean EUC∧{2,4} metrics, the block Euclidean BEUC, and
the locality improved LIK. The diagonal indicates the random guessing classifier.
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〈dEUC∧4
λ 〉 For the weighted quartic Euclidean, only two prototypes are necessary per

class; more prototypes do not improve the generalization error. The following model
parameters are chosen: the learning rate for the correct prototypes is γ+ = 0.005, and the
repelling γ− rate of wrong prototypes is increased from 0 to the small value of 0.05 ·γ+; the
learning rate for the relevance terms is γ− = 3 · 10−8; an initial neighborhood range of 1
is multiplicatively decreased in each training cycle to a final value of 0.002. For the small
data sets with 1,000 points, 600 epochs have been trained, while 60 epochs are sufficient for
the large sets with 10,000 points. The achieved classification accuracy is 94.602%±0.003%
for the small data sets and 94.811%± 0.003% for the large sets.

〈dBEUC
λ 〉 Using the block Euclidean metric improves these results. However, some

data preparation is necessary to capture correlations between DNA dinucleotides with
the block distance. Pairs of adjacent nucleotides are compiled from the original DNA
strings; these strings are expanded to all pairs in the secondary and tertiary diagonal of
the upper triangular recombination matrix of the sequence elements; for example, a given
substring GCAT is expanded to the pairs GC, GA, CA, CT, and AT. Thus, the scope
of pairing is restricted to radius 2 for the reasons of computational feasibility. Coding
the 42 = 16 possible pairs by blocks of 15-dimensional vectors, this yields data vectors
with (50−1 + 50−2)∗15 =1,455 dimensions. These vectors are processed with the block
Euclidean metric for blocks of size 15, with an intra-block exponent of bw = 2 and an inter-
block exponent of bB = 4. Optimum generalization has been achieved with five prototypes.
Learning rates for training are γ+ = 0.015 for correct prototypes and γ− = 0.01 · γ+ for
the closest incorrect prototype, and γλ = 3 ·10−8 for the relevance adaptation. The initial
neighborhood range of 4 is kept constant during training. Training takes 600 epochs for
the smaller sets and 100 epochs for the larger sets. The accuracy on the test sets is
95.17%± 0.22% for the sets with 1,000 training examples and 95.68%± 0.17% for the sets
with 10,000 examples.

A full comparison chart can be found in Table 5.5. SRNG results are competitive
to the results achieved by the SVM with locality improved kernel. Statistical models
combined with SVM, however, show a better performance, in particular for the large
data sets containing 10,000 points. The standard deviation of statistical models is a
bit higher, because they can exploit very specific information in different data sets; in
contrast to these findings, the few SRNG prototypes have not many degrees of freedom
for finding a minimum of the cost function; therefore, the convergence is very stable, and
very small standard deviations are obtained. The performances of the SRNG classifiers
are expressed by ROC curves that can be directly compared to those of the SVM models.
In the left panel of Figure 5.15, the most reliable SRNG classifier can be identified as
the block Euclidean distance for the sets with 10,000 training patterns. The right panel
shows results of different SVM approaches of which the TOP kernel with large data sets
performs best. Differences between the left and the right curve plots are, as revealed only
after logarithmic scaling, in favor of SVM.
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Figure 5.15: ROC curve for the C.elegans test data set. Left: for SRNG with the weighted
quartic similarity measure EUC∧4, and the block Euclidean BEUC. Right: Curve plots
taken from [141] for SVMs (with kind permission of Sonnenburg).

Similar to the special kernel design of SVM for splice site recognition, SRNG could be
equipped with a statistical similarity measure to improve the results; the block Euclidean
metric with the preprocessed data points into that direction. However, the training time
for statistical models is quite demanding. Training SRNG models takes only about one
hour on a Pentium III (700 MHz) computer for all five sets of 10,000 data points for
the quartic Euclidean, and ten hours for the high-dimensional block Euclidean metric. A
benefit of SRNG is its sparsity: the maximum of only ten prototypes makes training fast,
and the classification of large data sets is possible in only a few seconds. This is different
for SVM, for which a number of more than 1,000 support vectors are reported, making
classification time about two orders of magnitudes slower than SRNG.

Since compact models of SRNG would also be obtained for prototypes that represent
statistical models, problem-adopted fast and accurate online splice site detectors could be
realized with SRNG by using these alternative prototypes. In general, further research is
necessary to shed light on the performance of SRNG for prototypes that represent adaptive
data models which are more general than the interpolating identity functions of the data
that have been investigated here.

method SRNGEUC∧4 SRNGBEUC HMM SVMLIK SVMTOP SVMFK

1,000 94.6±0.003 95.2±0.15 97.2± 0.1 94.8±0.1 95.4±0.4 96.5±0.2
10,000 94.8±0.003 95.7±0.09 97.4± 0.2 96.1±0.2 97.7± 0.1 97.5±0.3

Table 5.5: Test set accuracies (%) by different methods for the C.elegans data set.
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Chapter 6

Self-Organizing Maps (SOM)

Experience is not what happens to you.
It is what you do with what happens to you.

Aldous Huxley

The self-organizing map (SOM) is a neural learning architecture proposed by Kohonen as a
similarity-based clustering method for unlabeled data [80]. Self-organization refers to the
Hebbian adaptation of data prototypes which are interacting by neighborhood cooperation.
In contrast to the dynamic data-topology of neural gas (NG) introduced in Section 4.1 on
page 19, the SOM neighborhood is given by a fixed low-dimensional regular structure onto
which high-dimensional input data are mapped during training.

Data visualization and abstraction are related to dimension reduction and to proto-
type representation. Both issues are tackled simultaneously by means of the SOM [82].
The original motivation of Kohonen was to suggest a simplified concept of biological self-
organization in the brain [80]: stimuli originating from different receptors, like the tactile
impressions from finger tips and toes, are mapped to different locations on the folded two-
dimensional neural cortex, but similar inputs, like from the sensors of a hand, are mapped
to neighbored cortex locations. For multi-dimensional features, such as the location on the
skin, the local temperature and the pressure intensity, a reduction to a lower-dimensional
surface takes place, this way utilizing only a small number of nerve cells. The SOM im-
plements this kind of topology preserving mapping; a concise description is provided by
Ritter [126].

The SOM method is related to the supervised LVQ in the way that it is also a prototype-
based method, but unlike LVQ, the SOM reference units are arranged with lateral neigh-
borhood competition in a neural output grid onto which the input vectors are mapped.
Like LVQ, the SOM algorithm provides a similarity-based Hebbian prototype update mech-
anism, but in contrast to LVQ, it is essentially designed for handling unlabeled data. This
unsupervised processing makes the SOM particularly interesting for data mining, because
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many raw data have been recorded and made available; for example, document collections
and data bases from the Internet can be visualized and browsed by similar topics with
the SOM variants WebSOM and HSOM [91, 114]. Information mining requires clustering,
grouping and analysis of possibly high-dimensional data contained in large repositories. By
means of the similarity-based neighborhood relationship of the SOM, the data complexity
is reduced to a visualizable grid of neurons where similar inputs are grouped together.

The main purpose of the SOM is the low-dimensional clustering and visualization of
unlabeled high-dimensional data, useful for a large number of problems. Many applications
of the SOM can be found in the book edited by Oja and Kaski [113]; the given examples
comprise financial data analysis and market studies, image processing and pattern recog-
nition, image retrieval, document retrieval, medical investigations, document classification
with hierarchical maps, and navigation in large data bases. Additional studies in that
book refer to SOM-based optimization, and to nonlinear component analysis. More work
about the SOM and its usage can be found in the book by Allinson et al. [1].

It is important to mention that the notion of a ‘self-organizing map’ or a ‘SOM network’
is wider than just ‘the SOM’; the the SOM refers to Kohonen’s specific idea of implementing
a high-dimensional mapping onto a low-dimensional grid, while a SOM network possesses
the properties of self-organization and vector quantization, which apply to the SOM as well
as to the NG approach, and also to the supervised LVQ. This chapter gives an overview of
the SOM and of its recent variants for unsupervised SOM-type learning, before extensions
to sequence processing will be discussed in subsequent chapters.

6.1 The basic SOM algorithm

The essential constituents of the SOM are 〈1〉 prototype neurons with a memory of input
vectors they have specialized on, 〈2〉 a definition of the target space and the neuron neigh-
borhood given by connections in a low-dimensional grid for realizing local interactions,
and 〈3〉 a metric to evaluate the similarity of the prototypes to the input stimuli. The
policy ‘map similar inputs to similar outputs’ is realized by neural competition for special-
ization: the most similar winning neuron adapts strongest and, additionally, informs its
grid neighbors to also rotate — just a little weaker — into the direction of the input; with
even lower influence, the same request is passed on to the not yet visited neighborhood,
and so on, until the amount of adaptation has decreased to a negligible value.

Algorithm 5 describes the training procedure in a generic manner. The parameters
are: 〈1〉 the learning rate γ < 1, possibly decreasing during training to ensure convergence,
〈2〉 a neuron neighborhood function D(i, j) = D(j, i) to measure the shortest grid distances
between neurons i and j in the target space, and 〈3〉 an update strength function f ≤ 1
that calculates the amount of update for the current neuron, depending on its distance
to the winner in the target space under the influence of a control parameter σ which is
cooled down during training; typically, f is a bell-shaped Gaussian f = exp(−D2/σ2).
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Algorithm 5 Basic SOMX

repeat

chose randomly a pattern x

k ← arg mini { d(x,wi) } { neuron with smallest distance d to pattern }
for all neurons j do

wj ← wj + γ · f(σ,D(k, j)) · (x−wj) { γ, f, σ,D: see text }
end for

until no more major changes

Before learning starts, the neuron arrangement must be defined, for example, as a
rectangular 2D-lattice that defines the neighborhood connectivity of the neurons. Further
SOM initialization is quite simple; the learning rate has to be set to a starting value, say
γ = 0.1, and the wi are initialized with random values located within the range of the
training data. Alternatively, neurons can be initialized more expensively by PCA as the
centroids of the rectangular tiles belonging to the tessellation of a linear data subspace
which is obtained by the projection of the data to the two most important eigenvectors of
the data covariance matrix.

Generally, two phases can be observed during training: a contraction of the neurons to
the center of gravity of the data for the initially large neighborhood cooperation f , and an
unfolding of the neural lattice within the data according to the data density distribution.
Usually, the relationship between the data density and the prototype density is described
by the generic power law P (x) ∝ P (w)α. The exponent with optimum information trans-
fer is given by α = 1. For SOM, however, the exponent α depends on the intrinsic data
dimension d̃ and the SOM lattice dimension, typically leading to α < 1. This discrepancy
of prototype density and data density, i.e. α 6= 1, is referred to as magnification. With
neighborhood cooperation, only the case of one-dimensional lattices has been identified
as α = d̃/(d̃ + 2) by Ritter [124]. For vanishing neighborhoods, thus for a degeneration
of SOM to winner-takes-all vector quantization, an overview of magnification factors for
different learning architectures is given by Villmann and Claussen [160]. Local update
control strategies have been proposed by Bauer, Der, and Herrmann for obtaining opti-
mally trained SOMs with α ≈ 1 for arbitrary dimensions [67], and specific magnification
strategies have been used by Merényi and Jain for feature enhancement and detection
in spectral images [106]. In many other practical applications, however, a discrepancy
between data density and prototype density can be accepted.

A potential problem of the SOM occurs in case of an incompatibility between the
input data and the representation space. This mismatch may result from using inappro-
priate metrics or from dealing with multi-modal and high-dimensional data that cannot be
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faithfully mapped to a low-dimensional neuron lattice. As a consequence, the lattice un-
folding in the input space might produce anomalies like self-penetration and thus unwanted
ambiguous mappings. Villmann discusses the issues of topology preservation and magnifi-
cation control for grid architectures in his PhD thesis [159] and in subsequent work [161].
Van Hulle reuses the idea of magnification control based on information transfer, and he
extends it by locally adaptive radial basis functions to obtain faithful data representations
and topographic maps [155].

So far, a detailed theory for convergence and stability of SOM training following an
optimization of a clear energy function has been made available by Cottrell and Fort only
for a mapping of one-dimensional data to an open chain of neurons [28, 29]. No such
theory exists for the typically considered high-dimensional situation where the necessary
factorization into a product of one-dimensional problems cannot be ensured. Ritter et
al. provide further analysis of convergence [127]: it has been showed that in the special
case of high-dimensional data from a finite discrete set the training dynamic obeys a clear
cost function minimization. Heskes proposes modifications of the original dynamic to
generally obtain a cost function based SOM training [69]. For computational ease and for
maintaining the straight-forward interpretation of the Hebbian learning mechanism, the
original update, tried and tested in applications many times, will be taken as a basis for
extensions here.

6.2 SOM variants and developments for sequence processing

The versatility and the simplicity of the SOM algorithm have triggered many developments
ranging from associative memory models to feature detectors and route optimizers and
other extensions; a number of them can be found in Kohonen’s book [82] and in the book
of Seiffert and Jain [135]. In the following, the focus is put on variants corresponding to
sequence processing architectures. First, some historic approaches will be outlined, then
the two major directions of recent SOM developments will be examined that separately
take into consideration different metrics and alternative neuron lattice structures.

SOM in the past

A remarkable extension of the standard SOM which can be used for sequence processing
is the adaptive subspace SOM (ASSOM) [84]. This algorithm is very close to the original
formulation, but it generalizes the view on the data in the way that neurons match tem-
plates Fϕj

(x) for linear subspaces of the data generated by basic transformations. The
original SOM is obtained for the identity model Fϕj

(x) = idϕj
(x) that yields ϕj which

act as usual data prototypes wj . A variant for sequence processing is realized, if the pa-
rameters ϕj represent coefficients of Fourier transformed data windows of a fixed length;
in this case, the best matching neuron is in best resonance with the input pattern in the
time-shift invariant frequency space. More generally, operators with free parameters ϕj
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can be associated with the neurons for representing adaptive data models with Hebbian
learning dynamic [94]. However, computationally intensive operations might be required
for the update, or similar results might even be obtainable by means of a priori data
transformation.

In order to avoid time window techniques which possibly induce the disadvantages
of high dimensionality and redundancy, integrated signals can be processed instead. In
combination with the SOM, response filter models that evaluate the exponentially weighted
sum of the input data have been studied by several authors. The Temporal Kohonen
Map (TKM) of Chappell and Taylor [23], and the Recurrent SOM (RSOM) of Varsta
et al. [157] and Koskela et al. [86] both belong to this class of ‘leaky integrator’ SOM

networks. While TKM uses the temporal integration of exponentially weighted errors
only for the determination of the best matching neuron, RSOM exploits, for the winner
determination, the norm of the vector calculated by the exponentially integrated correction
vectors, and the direction of the integrated vector is applied to the prototype update. In
both approaches, only the implicit filter response constitutes the temporal context. Further
comparison of TKM and RSOM can be found in Varsta et al. [158], and a general taxonomy
of different types of memory, such as the leaky integration, is given by Mozer [109].

Miikkulainen complements natural exponential fading by integrating a retention mech-
anism into the proposed SARDNET architecture, a network of SOM type with Sequential
Activation, Retention, and Delay: after its winner selection each neuron remains inactive
until its activity status has decreased to a state ready for reactivation, this way realizing
disjoint trajectories of neuron activations on the map [74, 108].

SOM with non-standard lattices

The quantization accuracy of the SOM can be improved by using neuron lattices different
from the original two-dimensional rectangular or hexagonal structures. For example, under
the assumption of exponential context diversification for sequences of increasing lengths, a
grid with power law neighborhood scaling at varying radii on the grid is an inappropriate
choice. To tackle this problem, Ritter has proposed an hyperbolic SOM (HSOM) [125],
where the neurons are located at the mesh nodes of a regularly triangulated hyperbolic
plane. The neuron indexation can still be calculated quickly with only two coordinates,
and local projections of the hyperbolic to the Euclidean plane allow to browse the map
interactively on screen. Large text collections have been successfully processed by this
architecture [114].

In order to account for special needs of the data topology in a more flexible man-
ner, other SOM variants implement data-driven adaptive lattices. Prominent methods are
Fritzke’s Growing Grid and Growing Cell Structures [43, 44, 45], and the growing hyper-
cubical output spaces with adaptive dimensionality of the target grid proposed by Bauer
and Villmann [8]. A slightly different direction is taken by Rauber, Merkl, and Ditten-
bach who have designed a growing hierarchical SOM (GHSOM) that generates individual
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SOMs for each level of data granularity and which are arranged in a tree-like manner,
running from an abstract root map to more concrete stages; successful applications are
the clustering of country descriptions and the automatic ordering of a digital library [122].

As introduced in the LVQ section on page 19, the neural gas NG method makes it
possible to get rid of a neural grid to allow a data-driven topology of the optimum neuron
constellation. The rank function D(i, k) = rnkx(i) required by NG can be plugged into
the generic form of the SOM Algorithm 5 to determine the number of neurons that are
closer to the presented pattern x than neuron i is. Although the framework of SOM is
used, this approach does no longer refer to a grid target space, but it describes geometric
relationships in terms of the dynamic nearest neighbors in the input space [99]. As a
matter of fact, Martinetz and Schulten have shown that the original data topology is
represented by the trained NG prototypes, if all closest pairs are connected by lines, this
way inducing a subgraph of the complete Delaunay graph of the data [100]. In contrast to
the SOM, NG does not yield a reduction of the input space dimension to a simplified target
space. The NG ranking operation requires a time complexity of O(m log m) for sorting
the m neurons during training, not only m distance comparisons like the SOM. However,
since no topology restriction is given on the output space, the vector quantization is more
accurate than for the SOM.

Sequential data may lead to exponential context increase depending on the length;
therefore, a hyperbolic grid structure is desired for sequence learning. If accurate context
quantization is more important than visualization and fast update, an extension of the
neural gas architecture to temporal data is promising.

SOM with non-standard metrics

An obvious alteration to the standard algorithm is to use metrics d(·, ·) other than the
Euclidean distance for winner determination. These metrics not only allow different data
evaluation characteristics, but they are also a handle for processing non-vectorial input
data like character strings, if appropriate prototype adaptation schemes are defined too.
For example, in order to process data sets that contain sequences of variable lengths,
Somervuo uses the time warping method discussed in Kruskal [88] which is based on
dynamic programming to compare sequences for online SOM learning of word similarities
and bird songs [139, 140].

A structurally different model proposed by Finish researchers implements a semi-
supervised SOM with adaptive metrics for incorporating auxiliary information [116]. As
previously discussed in the text, LVQ with cost function is a supervised counterpart to the
semi-supervised SOM: for both methods a global distortion measure is minimized during
the prototype adaptation, and the proofs of convergence are given for semi-supervised
SOM by Kaski [78] and for SRNG by Hammer et al. [61].

Graepel, Burger, and Obermayer propose an alternative approach to the SOM: they use
a non-differentiable cost function which implicitly provides a topographic mapping from
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the data space onto the neuron grid [52]. Due to the craggy error surface, the cost function
is minimized by deterministic annealing. This way of finding optimum parameters fits into
the framework of expectation maximization which usually requires long computing times.
The authors show in small data compression-reconstruction experiments a good signal to
noise ratio of their method called soft topographic vector quantization (STVQ).

Related to adaptive metrics is the online determination of irrelevant dimensions that
can be successively ignored during training; this is done by Bojer et al. by pruning those
dimensions which contribute only little to the average influence on global features, such
as changes in topology [15].

A new perspective taken on the problem of temporal processing is obtained when
the nature of sequences is appropriately accounted for: the currently observed state is
explained by the most recent sequence element and its context. Importantly, context
refers again to context to establish a recursive model. Existing recursive SOM models are
briefly outlined, before recursive formulations for both HSOM and NG will be presented.

Recently proposed methods with explicit context representation are the Recursive SOM

of Voegtlin (RecSOM) [166, 167] and the SOM for Structured Data (SOMSD) by Hagen-
buchner et al. [54]. The RecSOM model refers back to the last time step with high accuracy:
each neuron is given an additional vector that characterizes the average activation of all
other neurons one time step before becoming the winning neuron. Winner selection de-
pends on both the pattern match and a good conformance of the stored context with the
current data context. A similar but much more reduced context notion is provided by
SOMSD. The essential idea of neuron context specialization implies that the number of
paths leading to a succeeding state is small; otherwise, it would not be specialized. Thus,
the learning process is accompanied by minimizing the context variability of a potential
winner neuron. This justifies that only the previous peak activation — the last winner —
is referred to in SOMSD. Actually, this variant can easily be implemented as an extension
of a SOM with regular neuron grid, because only the average winner coordinate, usually
a two-dimensional lattice index, needs to be stored in order to obtain a simple local con-
text model. More generally, SOMSD is designed for processing directed acyclic graphs;
for example, in case of binary trees, this requires the storage of not only one predecessor,
but the back-reference to the left and the right ancestor by applying the above recursive
addressing scheme.

6.3 Context evaluation

For sequence processing models, the temporal quantization error is a useful performance
measure to express the capability to detect context structure. This value refers to the
quality of representation for sequence elements located t steps back in time. The error is
expressed by the average standard deviation of the given sequence and the winner unit’s
receptive field, both considered at the temporal position t.
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More formally, a sequence processing neural map is assumed as well as a sequence
{x1, x2, . . .} in which xj ∈ Rd denotes the element of time step j. For neuron i, the number
of time steps being selected as winner is Ni = |{j | Ij = i}|, where Ij is the index of
the winner neuron when sequence element xj is presented. Then, the mean activation of
neuron i for step t in the past is

ai(t) =
1
Ni

∑

j | Ij=i

xj−t .

The temporal quantization error of neuron i for time step t in the past is defined as

ei(t) =


 1

Ni

∑

j | Ij=i

∥∥ xj−t − ai(t)
∥∥2




1/2

.

The map quantization error for all m neurons is the average at step t in the past:

e(t) =
1
m

m∑

j=1

ei(t) .

Thus, e(0) just denotes the standard error for the currently presented pattern.

In the case of symbol sequences, the temporal quantization error can be made more
crisp and expressed as the temporal receptive field. For neuron i this is the set of all
sequences which lead to unambiguous winner selection of this neuron. In practice, neuron
competition restricts the potentially infinite length of the temporal scope to a length
above which other neurons are specialized on the tailing context. Therefore, the effective
receptive field of a winner is determined from the training data as the longest string in the
intersection of all sets of strings that occur in the data as historic contexts of the neuron.
Voegtlin calls the length of the effective string the depth of the receptive field or temporal
capacity [167].

Related to the determination of temporal receptive fields is the context reconstruction
from trained maps. Instead of using training data for the extraction of the scope of the
neurons’ responsibilities, introspection can be applied to obtain the learned precedence
relationships from the map only. Basically, context reconstructions are obtained by a
recursive calculation of the conditional probabilities of symbols — represented by previous
neurons — by applying the Bayes rule to the probabilities of neuron contributions of
past stages to the current state. Such kind of context backtracking will be illustrated
in experiments later. However, it cannot be expected that state transitions coded in the
maps coincide perfectly with the transition probabilities of the training data. The reason
for this is that both the map architecture and the implemented context model limit the
backtracking and the reconstruction accuracy. Magnification effects are known for SOM

architectures, and magnification may lead to extraction artifacts which still emphasize the
observation that context becomes exponentially uncertain when going back in time.
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A technique that refers to context analysis and to rule extraction rather than to context
evaluation is the transfer of Ultsch’s U-matrix method to recursive maps [153, 154]. This
approach, recently presented by Blohm, is not canvassed here, but the interested reader is
referred to Blohm’s bachelor thesis, where the extraction of finite state machines and rule
determination for continuous sequence elements are discussed in detail [12].

6.4 SOM extension proposals

Two directions of research are investigated in the following, the first will focus on an
extension of SOMSD from rectangular grids to more general lattices, the second will study
an alternative context model to combine neural gas with sequence processing.

〈1〉 The standard rectangular lattice of SOMSD will be replaced by a triangular planar
graph structure that is more general than the original neuron assembly. Euclidean grids
can be reobtained by connecting each neuron with six neighbors, while seven or more
neighbors produce lattices with hyperbolic neighborhood branching. In the Euclidean case,
the relationship between a neuron’s number of neighbors and a given radius is determined
by a power law, whereas in the hyperbolic case, the neighborhood grows exponentially
with the radius. The generalized SOMSD architecture will be studied for Euclidean and
hyperbolic grid topologies. This context as well as SOMSD context refers to the average
grid position of the previous winner neuron; hence, this context storage is essentially based
on an efficient addressing of grid locations.

〈2〉 In order to get rid of the restrictions caused by the topology of the target lattice
and a specific indexation scheme, another context encoding strategy will be developed.
The proposed Merging SOM (MSOM) will overcome the dependence on orderly indexable
output grid topologies for addressing neurons. It does so by referring to the two properties
of the last winner rather: location and context [145, 147]. The proposed back-reference
to both weight and context is already part of the context model, which results in a re-
cursive context definition. MSOM shares the efficiency of SOMSD due to this compressed
context representation. As for TKM, the MSOM context is expressed in the weight space
and appears as fractal code [158], but since context is made explicit and with separate
adaptation, a better control is obtained, leading to a substantially improved context rep-
resentation. Investigations on the proposed encoding are carried out on the basis of data
sets from different domains.
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Chapter 7

The SOM for Structured Data (SOMSD)

with lattice topology

My opinion, my conviction, gains immensely in strength and sureness
the minute a second mind has adopted it.

Novalis

In this section, the focus is put on the compact representation of temporal context by
using a back-reference to the previous winner location in the map, complementary to the
usual weight vector for the currently presented pattern. This type of recursive context
model was first proposed as the self-organizing map for structured data (SOMSD) which
has been used for processing binary tree structures by taking into account the current
node and its recursive left and right descendants [54]. The formulation of SOMSD will
be motivated by the discussion of a general framework for the unsupervised processing of
structured data. Then, a concrete description of the original SOMSD will be briefly given.
Finally, an extension from rectangular neuron lattices to more general triangle meshes
will be proposed to account for the exponential context diversification specific to sequence
processing.

7.1 Unifying notation for structure processing SOM

As discussed in the previous chapter, various architectures, like TKM, RSOM, or RecSOM

exist for temporal data processing. A tentative approach to formulating these methods in
a uniform taxonomy for unsupervised spatio-temporal connectionist networks (STCN) has
been proposed by Barreto, Araújo, and Kremer [6, 7]. Their four identified constituents
are: a network initialization function, a function for adapting the trainable parameters,
a state computation function, and an output function. Temporal context is realized by
integrating the network output into the state computation. In this sense, the proposed
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taxonomy for unsupervised STCN is very general and it can be used for expressing a
number of unsupervised architectures in terms of a unified algorithm where method-specific
operations are replaced by generic function calls.

At the same time and independent of STCN, a framework for the unsupervised process-
ing of structured data, the general SOM for structured data (GSOMSD), has been proposed
by Hammer, Micheli, Sperduti, and Strickert [55]. From the beginning, this framework has
been designed for the recursive processing of directed acyclic graphs; therefore, the special
case of sequences is automatically covered by this approach. Graphs can be expressed by
the STCN formalism too, but they are not mentioned by Barreto, Araújo, and Kremer.
More recently, Hammer, Micheli, Sperduti, and Strickert provide interesting theory about
convergence properties and context representation capabilities for TKM, RSOM, RecSOM,
and SOMSD expressed in the GSOMSD notation [56].

Ingredients for the GSOMSD are 〈1〉 a metric for data comparison, 〈2〉 a formal rep-
resentation of trees and a recursive metric for their pairwise comparison, 〈3〉 a number of
neurons as tree nodes, each containing a data prototype and a fixed-size set of pointers to
descendant neurons, and 〈4〉 a mapping of node activations to a formal tree representation.

Particularly, the SOMSD for clustering directed acyclic graphs can be expressed by the
notation of GSOMSD. As will be discussed in detail, the sequence processing version of
SOMSD can be expressed in terms of GSOMSD by: 〈1〉 a squared Euclidean metric, 〈2〉 a
degenerated tree with left (or right) descendants only, indexed by integer value coordinates
in a neural grid, compared by means of another squared Euclidean metric, 〈3〉 neurons in
an indexable grid, containing a weight and a context reference to the previous winner, and
〈4〉 a maximum activation search for the determination of winner neurons. This illustrates
how the generic formalism can match the requirements of a specific model. Many more
examples and proofs can be found in the article of Hammer et al. [55]. In the following,
the work will stick to specific methods, starting with an explicit description of SOMSD.

7.2 SOMSD dynamic

Originally, SOMSD has been proposed for processing trees with a fixed fan-out k [54]; the
special case k = 1 addresses sequential data. Neurons Nι are arranged on a rectangular
q-dimensional grid. Lattice coordinates are used for the neuron indexation

ι = INι = (ι1, . . . , ιq) ∈ {1, . . . , m1} × · · · × {1, . . . , mq} , mi ∈ N

of a total number of m = m1 · . . . ·mq neurons. Each neuron Nι contains a weight vector
wι for the state representation. Additionally, k vectors cι

1, . . . , cι
k ∈ Rq store the context

of a tree related to the coordinates of the winner neurons for the previously processed
k subtrees. The winner index for a given tree t with root label x and subtrees t1, . . . , tk

is recursively defined by

I(t) = arg min
ι
{β · ‖x−wι‖2 + α · ‖I(t1)− cι

1‖2 + . . . + α · ‖I(tk)− cι
k‖2 } .
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The first summand weighted by β refers to the usual SOM comparison of a given pattern x

and the prototype weight vector wι. The summands weighted by α refer to the quality
of context matching, depending on the difference between the coordinates of the previous
winners for the subtrees ti and the currently stored context representations cι

i . The para-
meters α and β control the influence of context and pattern on the winner determination.
For the tree leaves, no context is available; this situation is handled by the representation
of the empty tree I(ξ) = (−1, . . . ,−1) ∈ Nq. Thus, starting at the leaves, the winner is
recursively computed for an entire tree.

Hebbian learning is applied for SOMSD. The vectors (wι, cι
1, . . . , c

ι
k) attached to the

winner Nι are moved into the direction (w,I(t1), . . . ,I(tk)) by γ fractions after each recursive
processing step. The neighborhood is updated into the same direction with the learning
rate γ scaled by a decreasing function of the radius around the winner.

Hagenbuchner et al. have demonstrated the applicability of SOMSD for unsupervised
clustering of pictures described by trees [54]. During training, a similarity-based clustering
has emerged with respect to the descriptive constituents of the pictures. The objects have
been properly arranged according to the similarity of sub-categories; thereby, the empty
tree representation I(ξ) = (−1, . . . ,−1) ∈ Nq leads to an orientation of the map unfolding.
Within the clusters, a further differentiation with respect to the involved attributes could
be observed, which reflects the clustering characteristic of standard SOM.

In the following, the tree fan-out is set to k = 1 for sequences, and the winner com-
putation is reduced to matching both the currently processed sequence element and the
recursively expressed historic context. Without loss of generality, one weight influence
factor can be replaced by β = (1−α) to control the influence of the two summands on the
winner computation. For continuous sequences, the empty tree representation I(ξ) is only
required to express the beginning of the data stream, when the recent past is unknown.

7.3 SOMSD with alternative lattice topology

The original architecture is based on a regular rectangular neuron lattice, for which the
introspective back-reference to previous winner is established by ordered grid coordinates.
For the practical purpose of visualization, the dimension of the target grid is usually set to
two. Here, this standard Euclidean grid topology will be extended to more general neuron
triangle meshes [146]. Preferably, the alternative target space should remain planar and
convex for the visualization and for an efficient update; also, the grid should provide a
possibly small number of pathways along the edges to get from one neuron to another: this
supplement enables the well-behaving training update discussed below. The new meshing
provides a branching with power law growth for grids with 6-neighbor connections per
neuron, this way emulating the properties of an Euclidean target space; for 7 and more
neighbors, though, the meshing yields properties of the hyperbolic space, characterized by
an exponential neighborhood increase as the function of the radius.
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The advantage of the hyperbolic topology becomes apparent for sequential data. In
the case of words over an alphabet {a1, . . . , aM} with an average number of p successors
for each symbol, the context size is roughly an exponential function pl of the word length.
While a Euclidean target grid with its power law neighborhood scaling is not suited for
a faithful representation of the context branching, the sequential data topology is better
preserved by a hyperbolic neuron grid. Its adequate data representation has been demon-
strated by Ontrup and Ritter [114] for texts from a movie data base with a non-recursive
hyperbolic SOM. However, sequences shall be processed in the following.

Graph Lattice

Here, an alternative topological setup is considered by using a graph description for the
neuron grid: connections are realized by assigning each neuron a set of direct neighbors.
For the experiments, a grid generator is used to obtain lattices with a circular triangle
meshing around a center neuron and a fixed neighborhood degree of n > 5. The number of
neurons ki to be added at map radius l is recursively computed by kl = (n−4) ·kl−1−kl−2

with k0 = 0, k1 = n. Starting with one center neuron at radius l = 0, kl is just the number
of neurons required to generate fully occupied rings at a distance of radius l from the
center. If during the incremental graph construction the desired total number of neurons
leads to only a sparse filling of the outer ring, a best symmetric solution is taken.

In order to integrate the tempo-

N 3

N 2

N 1

T

ß 1 3

ß 1 2

D 1

D 2

Figure 7.1: Hyperbolic self organizing map with
context. Neuron n refers to the context given by
the winner location in the map, indicated by the
triangle of neurons N1, N2, and N3, and the precise
coordinates ß12,ß13. If the previous winner is D2,
adaptation of the context along the dotted line
takes place.

ral data characteristic, SOMSD adapts
not only the weight vector but also the
neurons’ representations of the previ-
ous winner locations during training.
For the original rectangular Euclidean
planar grid, a tuple of real values can
be easily updated into the direction
of the last center of maximum activ-
ity. For the proposed triangular mesh
structure the adaptation is different.
In this case, the continuous represen-
tation, necessary for addressing any
location within the neural grid dur-
ing the incremental Hebb-learning, is
given by two ingredients: a set of three
adjacent nodes and a tuple of coordinates referring to a point inside the spanned tri-
angle. Ritter provides direct 2D-locations for the neurons in the tessellated hyperbolic
plane H2 and he is therefore able to calculate node distances efficiently with hyperbolic
geometry [125]. Here, in order to deal with more general 2D-triangulated manifolds, an
alternative way is taken for the neuron grid distance calculation.
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Figure 7.1 illustrates neuron localization by the example of a small hyperbolic grid
for the context of neuron T. The context of this neuron is given by a two-dimensional
triangle coordinate (ß12,ß13) within the triangle of neurons N1, N2, and N3. The distance dB′

on the grid between any other winner neuron, say D2, and the triangle is easily obtained:
the shortest length of the three possible paths is computed by adding to the value looked
up in the neuron distance matrix the extra path length from the respective corner to
the point addressed inside the triangle. The required entries of the distance matrix are
calculated once during the grid construction, reflecting the minimum number of edges
that have to be visited to get from one node to another. In a scenario with hyperbolic
neighborhood, these distances are mixed with locally Euclidean distances for coordinates
inside the triangles — a mixture which is supposed to produce no harmful bias, because
local projections of the hyperbolic space to the Euclidean space exist. For the update
procedure, it is convenient to store, as additional matrix entry, an adjacent edge that
points as a signpost into the direction of a shortest path. The range of dB′ is normalized to
dB by scaling with the inverse maximum grid distance. In Figure 7.1, the non-normalized
distance dB′ (D2,(N1,N2,N3,ß12, ß13)) = |D2N1|+(ß2

12+ß2
13 + ß12 ß13) is somewhat greater than 2

under the assumption of locally Euclidean trigonometry. Although the nodes N2 and N3

do not appear in the distance term, they are implicitly present by defining ß12 and ß13.
However, the dotted update path of the context to the target D2 is different from the one
assumed for distance calculation. Since adaptation along the edges alone would impose
the restrictions of locally one-dimensional trajectories, an interpolation scheme is given
that allows a further degree of freedom, without adulterating the underlying distance too
much: the direction inside a triangle patch is taken relative to the distance contribution
of the two closest corners that are located on the target path; for this reason, the shown
setup with |D2N1| = |D2N3| leads to taking a mid-way across the edge N1N3.

Winner computation

The distance d of neuron j to the current pattern xt is computed by

dj(xt) = (1− α) · ‖xt −wj‖2 + α · dB(C
t, cj)

in which, as explained above, dB is the grid distance between the currently stored context
given by the 5-tuple cj and the back-reference to the winner C

t in the previous time step.
The influence of both the context cj and the weight representation wj on the distance
computation is controlled by the parameter α. Its choice also effects the determination of
the winner neuron, for which the obtained distance must be minimum. Since at the begin-
ning of training nothing is known about the temporal structure, this parameter starts at
α = 0, resulting in the standard SOM without context. During the training, it is decreased
to an application dependent value that mediates between the externally presented pattern
and the internally gained model about historic contexts.
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Training

Training is done by the presentation of an entry xi = (xi
1, . . . , x

i
d), the determination of

the winner k, and the usual Hebbian style update of weight and context. The update is
applied to all neurons in the breadth first search graph around the winning neuron, with
an adaptation amount being a decreasing function of the grid distances to the winner.
Hence, weight wj is updated for sequence entry xi by

∆wj = γ · hjk · (xi −wj) .

The learning rate γ is typically exponentially decreased from a value of 0.1 to 0.005 during
training. The amount of neighborhood cooperation hjk describes the spatially decreasing
influence of the winner k to the current neuron j; usually, the Gaussian bell function
hjk = exp(−dB(Nj ,(Nk,Nk,Nk,0,0))2/σ2) with slowly decreasing σ is taken. Context update is
analogous: the current context, expressed by the neuron triangle corners and coordinates,
is moved by a γ-fraction of the shortest path’s distance along such a path towards the
previous winner location by adapting ß12/13, a moving operation which possibly induces
the exchange of N1/2/3 by grid neighbors to maintain currently valid triangles.
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Stern accuracy in inquiring, bold imagination in describing,
these are the cogs on which history soars or flutters and wobbles.

Thomas Carlyle

7.4 SOMSD experiments

Three types of experiments shed light on different aspects of SOMSD. For comparison
with existing results from Voegtlin, 〈1〉 the real-valued Mackey-Glass time series and a
〈2〉 discrete binary automaton have been studied [167]; an additional experiment with the
〈3〉 Reber grammar over an alphabet of seven discrete symbols has been conducted in
order to overcome the limitations of scalar sequence entries.

Mackey-Glass time series

The first task is to learn the dynamic of the real-valued chaotic Mackey-Glass time series
dx
dτ = bx(τ) + ax(τ−d)

1+x(τ−d)10
shown in Figure 7.2, using a = 0.2, b = −0.1, d = 17. This setup

has been chosen to make a comparison to Voegtlin’s results possible [167]. Three types
of maps with 100 neurons have been trained: 〈1〉 standard SOM with a 6-neighbor map
but no context, 〈2〉 a map with six neighbors combined with context (SOMSD), and 〈3〉 a
7-neighbor map providing a hyperbolic grid with context utilization (HSOMSD). Each run
has been computed with 1.5 · 105 presentations starting at random positions within the
Mackey-Glass series, using a sampling period of ∆t = 3; the neuron weights have been
initialized with uniform noise taken from [0.6; 1.4]. The context influence parameter α has
been increased from 0 to 0.03. The learning rate γ is exponentially decreased from 0.1
to 0.005 for weight and context update. Initial neighborhood cooperation is σ = 10, cooled
down to σ = 1 during training.

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 0  20  40  60  80  100  120  140  160

x(
t)

t

Figure 7.2: Mackey-Glass time series.



7.4. EXPERIMENTS 85

 0

 0 . 0 5

 0 . 1

 0 . 1 5

 0 . 2

 0  5  1 0  1 5  2 0  2 5  3 0

Qu
an

tiz
ati

on
 Er

ror

I n d e x  o f  p a s t  i n p u t s  ( i n d e x  0 :  p r e s e n t )

*  S O M*  R S O MN G*  R e c S O M
H S O M S D
S O M S D

M N G

Figure 7.3: Temporal quantization errors of different model setups for the Mackey-Glass
series. Results indicated by ∗ are taken from [167]. Method MNG will be explained later.

Figure 7.3 shows the temporal quantization errors for different models with parameters
chosen to produce optimum results. At the present instant, that is for time step t = 0, the
errors for the pattern quantization are small. For increasing t, i.e. for going further back
into the past, temporal quantization errors remaining small indicate that the neurons do
not only specialize on the current entry but also on the historic context.

Especially the neural gas (NG) and the standard SOM catch the eye: while they yield
best results for t = 0, large cyclic oscillations are observed for t > 0, corresponding to the
quasi-periodicity of the training series. Since both methods do not account for context
information, these quantization results can be seen as upper bounds for temporal models
with and without grid topology: certainly, the data optimum topology of NG allows smaller
quantization errors than the SOM. Obviously, the restricted context of RSOM does not
yield a significant improvement of the temporal quantization error; however, the displayed
error fluctuations are anti-cyclic to the original series.

RecSOM leads to a much better quantization error than RSOM and NG. The increase of
the quantization error is smooth and the final values after 29 time steps is still better than
the default given by standard SOM. In addition, almost no periodicity can be observed
for RecSOM. SOMSD and HSOMSD further improve the results: only little periodicity
can be observed, and the overall quantization error increases smoothly for the past values.
These models are superior to RecSOM in the quantization task while requiring less com-
putational power. HSOMSD allows a slightly better representation of the immediate past
compared to SOMSD due to the hyperbolic topology of the lattice structure that matches
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better the characteristics of the input data. The MNG graph will be discussed later in
Section 8.4 on page 98, when the merging neural gas is introduced as a learner that is
driven by data topology, implementing a compact back-reference to the previous winner
inspired by SOMSD. Another example for beneficial application of SOMSD to multivariate
continuous data will be given for comparison with MNG in Section 8.4 on page 103 for the
B-1991 time series.

Binary automata

In the second experiment given by Voegtlin, a discrete 0/1-sequence generated by a binary
automaton with transition probabilities P (0|1) = 0.4 and P (1|0) = 0.3 shall be learned.

By means of Figure 7.4, the other probabilities are

1

P(0|0) P(0|1)

P(1|0)

P(1|1)

0

Figure 7.4: Binary Automaton.

gained: P (0|0) = 1− P (1|0) = 0.7 and P (1|1) = 0.6;
additionally, the temporally stationary solution for
the frequency of 0 is given by the Master equation
∂P (0)/∂t = P (1) · P (0|1) − P (0) · P (1|0) = 0 for
P (0) = 4/7, inducing P (1) = 3/7. For discrete data,
the specialization of a neuron can be defined as the
longest sequence that still leads to an unambiguous

winner selection. A high percentage of active specialized neurons indicates that temporal
context is learned by the map. In addition, one can compare the distribution of special-
izations with the original distribution of strings generated by the underlying probability.

Context specialization

Figure 7.5 shows the specialization of a trained HSOMSD. Training has been carried out
with 3 ·106 presentations, increasing the context influence exponentially from 0 to 0.06 and
providing 106 test iterations for the determination of the receptive field. The remaining
parameters have been chosen as in the Mackey-Glass experiment. Putting more empha-

0
1
2
3
4
5
6
7
8
9

10
11

100 most likely sequences
HSOMSD, 100 neurons
64 specialized neurons

Figure 7.5: Receptive fields of a HSOMSD compared to the most probable subsequences of
the binary automaton. Left branches denote symbol 0, right branches denote 1.
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sis on the context leads to a smaller number of active neurons representing rather longer
strings but covering only a small part of the total input space. If a Euclidean lattice is
used instead of a hyperbolic neighborhood, the quantizer performances differ only slightly.
This indicates that the representation of binary symbols and their contexts in their 2-
dimensional product space hardly benefits from exponential branching. In the depicted
run, 64 of the neurons express a clear profile, whereas the other neurons have fallen idle
during training. A likely reason for this is the training dynamic: the neighborhood cooper-
ation σ is decreased, but the increased context influence α leads to a positive feedback and
thus to a preferential treatment of the already good prototypes. However, the specializa-
tion displayed in Figure 7.5 corresponds nicely to the 100 most characteristic sequences of
the probabilistic automaton as indicated by the graph. Unlike RecSOM,presented in [167],
also neurons at interior nodes of the tree are expressed for HSOMSD. These nodes refer to
transient states which are represented by corresponding winners in the network.

RecSOM, in contrast to SOMSD, does not rely on the winner index only, but it uses a
more complex representation: since the transient states are spared, longer sequences can
be expressed by RecSOM.

Context development

The simple two-state structure of the binary automaton is used for a further investigation
of the SOMSD context development: snapshots of neuron activities during SOMSD training
can be found in Figure 7.6. A line of 101 neurons is the target architecture, in which the
context is represented as an interpolating back-reference to a neuron index between 0
and 100. Neural activity is plotted in the upper panel for the first ordering without
context: only two neurons at both ends of the neuron chain specialize on the symbols 0

and 1, reflecting the original symbol frequencies. By paying more attention to the context
for the winner calculation, more neurons are getting involved and activated. Finally, a
fractal-like iterative bisecting focus on so far unused regions of the neuron space can be
observed.

A posteriori map analysis

In addition to the examination of neuron specialization, the representation capability of
the map can be characterized by comparing the transition statistics of the input symbols
with the learned weight and context relations. While the current symbol is coded by the
winning neuron’s weight, the previous symbol is represented by the average of weights
of the winner’s context triangle neurons. The obtained two values — the neuron’s state
and the average state of the neuron’s context — are clearly expressed after training: most
neurons specialize on values very close to 0 or 1, and only few neurons contain values in an
indeterminate interval [13 ; 2

3 ]. Results for the reconstruction of three automata can be found
in Table 7.1. The left column indicates in parentheses the number of clearly expressed
neurons and the total number of neurons in the map. Obviously, the automata can be



88 CHAPTER 7. SOMSD WITH LATTICE TOPOLOGY

 0  20  40  60  80  100

ne
ur

on
 a

ct
iv

ity

neuron index

first specialization (1)
during training (2)
further training (3)

after training (4)

Figure 7.6: Snapshots of 101 neuron activations for SOMSD with open neuron target chain.

Type P (0) P (1) P (0|0) P (1|0) P (0|1) P (1|1)

Automaton 1 4/7 ≈ 0.571 3/7 ≈ 0.429 0.7 0.3 0.4 0.6
Map (98/100) 0.571 0.429 0.732 0.268 0.366 0.634

Automaton 2 2/7 ≈ 0.286 5/7 ≈ 0.714 0.8 0.2 0.08 0.92
Map (138/141) 0.297 0.703 0.75 0.25 0.12 0.88

Automaton 3 0.5 0.5 0.5 0.5 0.5 0.5
Map (138/141) 0.507 0.493 0.508 0.492 0.529 0.471

Table 7.1: Results for the extraction of binary automata with different symbol transition
probabilities, recursively calculated by the Bayes rule for the previous neuron activation
probabilities. The extracted probabilities clearly follow the original ones.
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well reobtained from the trained maps with respect to the overall symbol frequencies and
their transition statistics derived by means of Bayes law for the activation probabilities of
the previous winner prototypes. These results show that the temporal dependencies are
faithfully captured by the maps.

Reber grammar

In a third type of experiment, a more structured symbolic sequence was generated by the
Reber grammar [123] shown in Figure 7.7.

The seven symbols have been encoded in

B

V
V

PX

X

P

ST

S

T

E

Figure 7.7: Reber grammar state graph.

a 6-dimensional Euclidean space, analogous to
the corners of a tetrahedron in 3-dimensional
space. The concatenation of randomly gener-
ated words led to sequences with 3 · 106 and
106 input vectors for training and testing. The
chosen map radius of 5 corresponds to m = 617
neurons on a hyperbolic grid with seven neigh-
bors per neuron. For the initialization and the training, the same parameters as in the
Mackey-Glass experiment were used, except for an initially larger neighborhood range
of 14, accounting for the larger map, and the context influence was increased from α = 0
to α = 0.2 during training. 338 neurons, i.e. 55%, develop a specialization for Reber strings.
The average length of the represented words is 7.23 characters. Specialized neurons sep-
arate into strict clusters with sector shape on the circular grid, topologically ordered by
the last character. In agreement with the grammar, the letter T takes the largest sector
on the map in Figure 7.8. In comparison, the Euclidean grid produces the polymorphic
coherent patches shown in Figure 7.10.

Similar to learning tasks for the binary automata, the map representation was analyzed
by the reconstruction of the trained data by backtracking all possible context sequences of
each neuron up to length 3. As a result, only 118 of 343 combinatorially possible trigrams
are realized. In a ranked table the most likely 33 strings cover all attainable Reber trigrams.
These are shown in the log-probability Plot 7.9: a leap between entry number 33 and 34 is
observable, corresponding to the valid triplet TSS and the invalid word XSX, respectively.
This is another indication for the presence of the Reber characteristic coded in the map.
The correlation of the probabilities of Reber trigrams and their relative frequencies found
in the map is r2 = 0.75. An explicit comparison of the probabilities of valid Reber strings
can be found in Figure 7.11. The values deviate from the true probabilities, in particular
for cycles of the Reber graph, such as consecutive letters T and S, or the VPX-circle. This
effect is due to the magnification factor different from 1 for the SOM; magnification gets
even more emphasized during recursion, which should be systematically investigated in
future work on sequences processing.
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Figure 7.8: Arrangement of Reber words on a hyperbolic lattice structure. The words are
arranged according to their most recent symbols (shown on the right of the sequences).
The hyperbolic lattice yields a sector partitioning.
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Figure 7.10: Arrangement of Reber words on a Euclidean lattice structure. The words are
arranged according to their most recent symbols (shown on the right of the sequences).
Patches emerge according to the most recent symbol. Within the patches, an ordering
according to the preceding symbols can be observed.
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Figure 7.11: SOMSD frequency reconstruction of trigrams from the Reber grammar.



Chapter 8

The Merge SOM (MSOM)

with data topology

God does not care about our mathematical difficulties.
He integrates empirically.

Albert Einstein

The merge SOM (MSOM) context model [145] presented in this chapter aims at the combi-
nation of two desirable objectives: 〈1〉 to free the context representation from its intimate
connection to the SOMSD grid indexation scheme, and at the same time 〈2〉 to get a
yet more efficient update of context and weight than RecSOM. The first request seeks to
bridge the gap between the SOM neuron grid topology and the NG data topology. The
second one, concerning efficiency, will be accompanied by the reduction of expressiveness
of the context to focus on proper representations of immediate precedence relationships.
So, neural gas with efficient context representation is the final target architecture, and
the merge context model has been designed to meet the requirements [145]. The general
formulation of the MSOM model will be preceded by a revisit of a distantly related model,
the temporal Kohonen map (TKM) [23]; finally, MSOM will be combined with neural
gas [147].

Temporal Kohonen Map (TKM)

An early approach to sequence processing with SOM is the temporal Kohonen map (TKM)
proposed by Chappell and Taylor [23]. The TKM neurons implement recurrence in terms
of leaky signal integration. For a sequence (x1, . . . , xt), the integrated distance of neuron i

with weight vector wi is computed by

di(t) =
t∑

j=1

α · (1− α)(t−j) · ‖xj −wi‖2 .

92
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This distance expresses the neurons’ quality of fit, not only to the current input pattern,
but also to the exponentially weighted past. The parameter α ∈ (0; 1) is kept constant
to control the rate of decay signal during summation, that is the balance between the
currently processed and the historic inputs. Hence, winner selection denotes the best
matching compromise between the present and the past.

An equivalent recursive formalization of the integrated distance di(j) of neuron i after
the j th time step is given by di(j) = α · ‖xj −wi‖2 + (1− α) · di(j − 1) with di(0) := 0.
TKM training is realized as Hebbian learning, i.e. the weights wi are adapted each time
step with respect to the unintegrated current input xj according to the standard SOM

update rule 4wi = γ · hσ(xj ,wi) · (xj −wi) [23].
The recurrent SOM of Koskela et al. is similar to TKM; it takes into account the inte-

grated direction of change not only for distance calculation but also for weight update [87].
Both RSOM and TKM refer to context by signal integration. Only RSOM stores context
information in the weight vectors for further comparison, but due to summation, these
vectors do not allow a differentiation between the currently processed pattern and the
history. Therefore, the interpretation and analysis of trained RSOMs is a difficult task.

In the following model, a strict distinction is made between the representation of the
sequence elements and the context. This beneficial approach doubles the memory require-
ment of neurons to explicitly store precedence relationships of neuron activations.

8.1 Merge context

Roughly speaking, the merge context refers to a fusion of two properties characterizing
the previous winner: the weight and the context of the last winner neuron are merged
by a weighted linear combination. In addition to the mandatory weight vector wi for
representing the given pattern, each neuron i possesses a context vector ci ∈ C with
the same dimension d as the weight vector. The adaptation target is given by a global
context descriptor which represents each training step in terms of the currently presented
pattern and a recursively expressed back-reference to the past. Thus, the vector tuple
(wi, ci) ∈ W × C ≈ W2 of neuron i in the product space of weights and contexts is
adapted into the direction of the current pattern and context descriptor according to
Hebb learning. The inclusion of C ⊆ W is the result of the involved linear combination of
the weight vectors which will be explained below.

The winner is the best matching neuron j for which the recursively computed distance

dj(xt) = (1− α) · ‖xt −wj‖2 + α · ‖C
t − cj‖2

to the current sequence entry xt and the context descriptor C
t is minimum; weight and

context contributions to the distance are balanced by the parameter α.
The context descriptor

C
t = (1− β) ·wIt−1 + β · cIt−1
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is the linear combination of the properties of winner It−1 = arg minj∈1,...,n dj(xt−1) in the
last time step. A typical merging value for 0 ≤ β < 1 is 0.5.

8.2 Merge context for neural gas (MNG)

Integration of the merge context into self-organizing networks like the SOM or into LVQ is
easily possible. Here, the focus is put on a combination of the context model with neural
gas (NG) that will be called merging neural gas (MNG).

The extension of the neural gas dynamic by the merge context is straight forward: after
the presentation of sequence element xt, for each neuron j its rank k = rnkx(j) is computed
with the recursive distance dj(xt) from above. The update amount for the weight vector
is calculated as usual, involving the exponential function of the rank, and the same kind
of update is applied to the context vector:

∆wj = γ1 · exp(−rnkx(j)/σ) · (xt −wj) ,

∆cj = γ2 · exp(−rnkx(j)/σ) · (C
t − cj) .

As stated above, the context descriptor C
t is updated during training by keeping track of

the respective last winner. In experiments, the learning rates have been set to identical
values γ1 = γ2 = γ. The neighborhood influence σ decreases exponentially during training
to obtain neuron specialization.

Choice of the weight/context balance parameter α

A crucial parameter of the recursive distance is α which is considered in this paragraph.
The initial contribution of the context term to the distance computation and thus to
the ranking order is chosen low by setting the weight/context balance parameter α to
a small positive value. Since the weight representations become more reliable during
training, gradually more attention can be paid to the specific contexts that refer to them.
Thus, after an initial weight specialization phase, α can be unfixed and steered to a value
that maximizes the neuron activation entropy. In computer implementations, such an
entropy-driven adaptation has been realized: α is increased, if the entropy is decreasing,
i.e. the representation space for the winner calculation is widened by allowing more context
influence to counteract the specialization of the neurons on only the patterns; otherwise,
if the entropy is increasing, α is slightly decreased in order to allow a fine tuning of the
context influence and of the ordering. As a result, the highest possible number of neurons
should — on average — be equally active by the end of training. Figure 8.1 shows neuron
histograms that illustrate the involvement of neurons, starting with two specialized neurons
shown in the inset, and after further training with entropy-controlled context influence.
Thinking in terms of hierarchical neural activation cascades, this heuristic may not be
optimal, for example when a small number of often visited root states are branching out
to states of decreasing probability. However, the entropy-driven α-control strategy has
proved to be very suitable for obtaining good results in the experiments.
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Figure 8.1: Sorted neuron activation frequencies for the α-entropy control strategy for
a biased binary automaton. Inset: before context consideration, two neurons specialize,
reflecting the sequence element frequencies P (0) = 3/7 and P (1) = 4/7. Large plot: after
entropy maximization, all 64 neurons are involved.

8.3 Properties of the merge context

The properties of the merge context is studied in two steps: 〈1〉 the optimum choices for
the prototype weight and the context are investigated; 〈2〉 it is proved that these optima
result from the training dynamic as stable fixed points.

〈1〉 The best adaptation of neuron j is the one for which wj and cj yield dj(xt) = 0:

dj(xt) = (1− α) · ‖xt −wj‖2 + α · ‖(1− β) ·wIt−1 + β · cIt−1 − cj‖2 .

Both squared summands can be considered separately. The left one trivially becomes the
minimum of 0, if the weight vector represents the input pattern, i.e. for wopt(t) = wj = xt.
Then, by induction, the right one expands to

copt(t) = (1− β) · xt−1 + β · cIt−1

= (1− β) · xt−1 + β · ((1− β) · xt−2 + . . . + β · ((1− β) · x1 + 0)
)

=
t−1∑

j=1

(1− β) · βj−1 · xt−j (note: j − 1 is exponent, t− j is index)

with the assumption of zero context at the sequence start x1.

〈2〉 Now, focusing on the convergence of a neuron that is specialized on a particular se-
quence element within its unique context, asymptotically stable fixed points of the training
update dynamic are obtained. The analysis of iterative weight adaptation in presence of
the target vector yields:

‖wIt + γ · (xt −wIt)− xt‖ = (1− γ) · ‖wIt − xt‖ ⇒ wIt → xt .
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This describes an exponential convergence because of γ ∈ (0, 1). Analogously,

‖cIt + γ ·
(
(1− β) ·wIt−1 + β · cIt−1 − cIt

)
− copt(t)‖ ⇒ cIt → copt(t)

describes the context convergence, if

(1− β) ·wIt−1 + β · cIt−1 → copt(t)

can be shown. With wIt−1 → xt−1 and by induction of cIt−1 → copt(t−1) with cI1 := 0:

(1− β) · xt−1 + β · copt(t−1) = (1− β) · xt−1 + β ·
t−1∑

j=2

(1− β) · βj−2 · xt−j

=
t−1∑

j=1

(1− β) · βj−1xt−j = copt(t)
¤

This sum for copt denotes a fractal encoding of the context vector in the weight space,
which is known to be a very compact and efficient representation [149].

Results given in the experiment section show that for binary sequences, a non-overlapping
fractal context emerges which resembles a Cantor set, if a parameter of β = 0.5 is chosen.
The spreading dynamic of the context, being initialized to the average data of zero for
assumed mean subtracted data, is self-organizing with respect to the density of the context
contributions: since the context is a function of the previous winner’s weight and context,
the adaptation is a moving target problem; therefore, it is generally a good policy to have
either a faster weight adaptation than context update, or to put more influence on the
pattern matching than on the context matching by choosing α < 0.5.

In theory, the length of the neurons’ temporal receptive fields is limited by the com-
puting accuracy for discriminating between fixed point solutions of the context dynamic
expressed by the fractal summation. In practice, however, for reasonably distributed data,
a very large number of neurons can be used without interference, because multi-modality
and high-dimensionality yield a reliable context spreading.
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History is a race between education and catastrophe.

H. G. Wells

8.4 MSOM experiments

For comparison with SOMSD the same three data sets have been used for training MNG:
〈1〉 the continuous Mackey-Glass 1D time series, 〈2〉 discrete sequences from binary au-
tomata, and 〈3〉 words generated with the Reber grammar. In addition, 〈4〉 a medical
3-variate series with physiological observations has been investigated, and finally, 〈5〉 a
promising experiment on speaker identification based on an a posteriori labeling of trained
MSOM prototypes has been carried out.

Mackey-Glass time series

An introductory example for MNG refers to the Mackey-Glass series which has already
been discussed in Section 7.4 on page 84 for the SOMSD approach. The errors of different
quantizing techniques are shown in Figure 7.3 on page 84, and all but one curve have
already been discussed in that section. Now, the focus is put on the not yet considered plot
for MNG. As for the other methods, the corresponding training involves 100 prototypes.
The parameters are β = 0.75, and the entropy-controlled balance parameter starts at
α = 0, reaching a final value of α = 0.18 after training. The values of the trained
MNG context cover the subinterval [0.7; 1.15] of the input domain [0.4; 1.3]. As shown
in Figure 8.2, all neurons are well spread in the context vs. weight plane; the vertical
line at a weight value of 0.93 marks the average of 106 Mackey-Glass values which serves
as the prototypes’ context initialization. At first, context influence is ignored, and the
prototype weight distribution is — by a magnification functional — closely related to
the data distribution shown in the histogram Plot 8.3. By virtue of the subsequently
activated context dynamic, an additional dimension is utilized in order to represent also
the history of the currently processed element. This specialization is successful enough to
just outperform all other methods in the quantization error Graph 7.3. It must be kept
in mind, though, that the quantization ability of MNG is not restricted by a fixed target
grid topology as in case of most of the other methods.

The context control parameter α in the distance calculation exploits the entropy of
the neural activity during training. Figure 8.4 shows the entropy starting from highly
specialized neurons without context: a decent number of active neurons yields a skewed
activity histograms which lead to small entropy values. By gradually augmenting the
context influence α, a richer state space for the distance computation is obtained. This
triggers a more detailed winner selection, and the entropy of neuron activations grows.
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Figure 8.2: Prototypes in the MNG context vs. weight space for the Mackey-Glass series.
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Figure 8.4: MNG entropy during Mackey-Glass training, steering α from 0 to 0.18.
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A theoretical upper bound is H = −∑100
i=1 pi · log(pi) = −100 · 1/100 · log(1/100) = 4.605

with equal activation probabilities of pi = 1/100 for all neurons. The control strategy for α

is to adapt it dynamically at run time, aiming at entropy maximization: α is increased
in case of an entropy decay trend and it is decreased otherwise. As shown in Figure 8.4,
entropy saturation takes place after about 300 cycles. Spurious entropy fluctuations and
instabilities during further adaptation of α have been avoided by means of a momentum
term. Empirically, a sampling of about 1,000 entropy values proved to be sufficient for
controlling a complete training task, a number that has also been used in the subsequent
experiments.

Binary automata

In the second learning task, the focus is put on the representation of the most likely sub-
words in binary sequences generated by automata with given transition probabilities. Two
questions concerning the MNG context are addressed: Can the theoretical fractal encoding
be observed in experiments? What is the empirical representation capability?

Context development

Figure 8.5 displays the experimental context space resulting from MNG training of 128
neurons for a random binary sequence that contains 106 symbols 0 and 1 independently
drawn with P (0) = P (1) = 1/2. Parameters are a learning rate of γ = 0.03, a fair
combination of context and weight by β = 0.5, and an initial context influence of α = 0.001
that has reached α = 0.34 after training. During adaptation, two of the 128 neurons
have fallen idle, the others finally represent meaningful sequences. Plot 8.5 is reduced
to the 63 active neurons that represent the current symbol 0. These neurons refer to
points in the context space which are located on the lower horizontal line of zeroes. It
can be observed that the context fills the input space in the interval [0; 1] with an almost
equidistant spacing. The stacked symbols point into the further past of the neurons’
temporal receptive fields. In good agreement with the theory Section 8.3, the longest
sequences uniquely discriminated by the neurons are arranged in a Cantor-like way in the
context space.

Figure 8.5: MNG context associated with the current symbol 0 of a binary sequence.
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100 most likely sequences
MNG (2 idle neurons)

Figure 8.6: MNG receptive fields for the binary automaton. Left branching: 0; right: 1.

Representation capability

For comparison, the empirical representation capability has been investigated for the same
transition probabilities that has been used for SOMSD in Section 7.4: P (0|1) = 0.4 and
P (1|0) = 0.3. Training has been carried out with γ = 0.025, β = 0.45, and the initial
value of α = 0 was steered to a final value of 0.37 after 106 pattern presentations. Two
neurons fall into idle state during training, because the specialization on updating context
is a moving target problem which can cause prototypes to surrender at the varying data
boundaries. At the beginning, i.e. for zero context influence, the weight specialization to
almost crisp values of 0 and 1 can be observed; finally, the contexts are also spread over
the interval [0; 1], exhibiting a fractal arrangement. This pattern is similar to the one
obtained in the previous experiment, but it is biased with respect to the automaton state
probabilities.

Figure 8.6 shows, in tree form, the resulting 100 MNG neurons’ receptive fields which
correspond to the longest words for which neurons are still unique winners. This tree
is compared to the 100 most likely sequences produced by the automaton. As shown in
the figure, many neurons have developed disjoint receptive fields, with the exception of
transient neurons, indicated by bullets on the interior tree nodes, for which the descen-
dants represent still longer sequences. After all, a total number of 63 longest words can
be discriminated by MNG, and they reflect pretty well the most frequent 100 sequences
generated by the automaton.

In contrast to the results of HSOMSD, presented in Figure 7.5 on page 86, the context
representation for the binary data set succeeds better with MNG. The HSOMSD model,
representing a total number of 28 distinct longest sequences, requires many idle nodes for
a clear separation of incompatible adjacent regions on the 2D-hyperbolic neural grid.

If a SOMSD neuron grid is not needed, MNG helps to reduce the additional parameters
for the description of the target grid topology. Without this specification, only the number
of neurons m, the learning rate γ, the metric balance parameter for context and weight
α, their merging parameter β, and some canonic initializations are required. These few
choices make the selection of a good quantization model quite easy.
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Reber grammar

Once more, the Reber grammar automaton, already used in Section 7.4 and depicted
in Figure 7.7 on page 89, is studied for MNG. Again, a number of 3 ∗ 106 and 106 six-
dimensional input vectors have been used for training and testing, respectively. For com-
parison with the successful hyperbolic SOMSD, 617 MNG neurons are taken. The merge
parameter is β = 0.5, the context influence is initialized by α = 0, the starting neighbor-
hood size is σ = 617, and the context vector is initialized to 0 ∈ R6 which is the center
of gravity of the embedded symbols. The learning rate is γ = 0.03; after training, the
adjusted parameters are σ = 0.5 and α = 0.43.

Finally, the context information stored by the ensemble of neurons has been analyzed.
The average length of Reber strings from the test sequence leading to unambiguous winner
selection is 8.902, whereby 428 neurons develop a distinct specialization on Reber words.
The reference results of the hyperbolic SOMSD are an average string length of 7.23, and
a number of 338 active neurons.

In addition to this external statistics based on the test sequence, a network-internal
backtracking has been performed like this: 〈1〉 visit for each neuron all other neurons,
〈2〉 calculate their merging vectors for context and weight, 〈3〉 sort the vector distances
to the current neuron’s context increasingly, 〈4〉 determine the symbols associated with
the neurons in the sorted list. With this context backtracking, on average 67.9 neurons,
corresponding to the best matching contexts, represent the same symbol, before a different
symbol is encountered. This large number is a very strong support for a high consistency
of the context and for a proper precedence learning.

Therefore, further backtracking has been performed to collect the string associated
with each neuron, strings composed of symbols represented by the recursively visited best
matching predecessors. The string assembly stops at the first revisit of a neuron: words
with an average length of 13.78 are produced, most of them with valid Reber grammar. The
longest word TVPXTTVVEBTSXXTVPSEBPVPXTVVEBPVVEB corresponds almost
perfectly to the data-driven specialization TVPXTTVVEBTSXXTVPSEBPVPXTVVE

that has been determined by keeping track of the winners for the training set. A similarly
high correspondence of shorter strings could be observed for most neurons.

For comparison with SOMSD on page 89ff., the best matching backtracked words of
length 3 have been counted. Only valid Reber strings were found, of which the frequencies
are given in Figure 8.7. Interestingly, MSOM does not overemphasize the VPX and SSS

cycles as strong as SOMSD, and for TTT even an under-representation can be found. The
correlation of the probabilities of Reber trigrams and the reconstructed frequencies from
the map is r2 = 0.77, which is even higher than r2 = 0.75 for SOMSD. This is another
indication of an adequate neural representation of the Reber characteristic.



8.4. EXPERIMENTS 103

Figure 8.7: MSOM frequency reconstruction of trigrams of the Reber grammar.

Physiological 3-variate series (B-1991)

A real-life data series has been taken from physionet.org containing recordings of a
patient suffering from apnea during sleep. The first column contains the heart rate, the
second the chest volume, and the third is the blood oxygen concentration. Linear trends,
caused by parameter drifts in the gage, have been removed from the data by calculating
the first derivative of a smooth order 4 spline interpolation. Mean subtraction has been
carried out, and a logarithmic transform x̃ = sgn(x) · log(|x| + 1) has been computed
for each column to account for the sharp peaks in the otherwise moderate physiological
dynamic. Data preprocessing has been concluded by a z-score transform. The final B-1991
set contains 64,701 samples of temporally dependent 3D-vectors.

For the obtained series, training has been conducted with a 20-fold presentation of its
elements. It is assumed that the singular wrap-around events at the end of the sequence to
its beginning do not disturb the training significantly. Figure 8.8 shows the quantization
errors for three methods, each of them possessing a number of 617 neurons: original NG,
hyperbolic SOMSD with seven neighbors per neuron, and MNG. The error is the average
of the three attributes’ variances that have been obtained separately for each column
the same way as for the Mackey-Glass series. As expected, NG without context is the
worst temporal quantizer, MNG works pretty well up to four steps in the past, and it is
then outperformed by SOMSD. Since the temporal data vectors form, in phase space, a
curve of concatenated spatial loops around the origin 0 with a roughly unimodal density
distribution, a long-term integration for the MNG context falls into the indistinguishable
center of gravity of the dynamic. Thus, distinct context clusters cannot easily emerge
for histories longer than four steps, and MNG results asymptotically in the standard NG

physionet.org
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Figure 8.8: Temporal quantization errors for the preprocessed B-1991 data.

quantization performance. SOMSD does not suffer from this problem, and it remains on
a smaller error level; this is because the SOMSD context representation does not require a
folding of historic information into the weight domain, but it uses the more independent
space of neuron indices instead.

Speaker identification by a posteriori MNG labeling

This experiment revisits the UCI speaker data discussed in Section 5.4 on page 51 [11].
In contrast to the SRNG-specific data resampling explained in that section, MNG does not
require this resampling operation; only mean subtraction has been applied to the original
data. However, care must be taken during the data presentation: the temporal structure of
each articulation is represented by a variable number of successive 12-dimensional cepstrum
vectors, but between different utterances there is no such temporal connection. Therefore,
a special neuron is added to represent the default state w = c = 0 when no context is
available at an utterance start.

After the unsupervised MNG training that does not account for the speaker identity,
each of the 150 neurons used is assigned a 9-bin histogram containing activation frequencies
for the speakers from the training set. For each articulation sequence from the test set, the
accumulated majority vote over the bins of activated neurons is calculated to identify the
speaker. The resulting histograms are very specific for the speakers. Figure 8.9 supports
a good clusterability of the trained weight/context product space: the 2×12-dimensional
prototypes have been projected to two dimensions by means of the linear discriminant
analysis (LDA) technique [46]; the parameters of the 24×2-projection matrix have been
adapted by projection pursuit to yield a maximum Gaussian separation of the prototypes
in the two dimensional target space [42]. Hence in the unprojected original space, a good
separability can be expected, which is confirmed by the experiment.
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Figure 8.9: LDA-projection of the weight× context-space of speaker data.

When, finally, the obtained a posteriori labels are checked against the data, there is
no error on the training set and an error of only 2.7% on the test set. This accuracy
is much better than the reference errors of 5.9% and 3.8% accompanying the original
data set. Surprisingly, the result is even slightly better than the SRNG error of 2.76%,
although the number of free prototype parameters are 240 × 18 = 4320 for SRNG and
only 24 × 150 = 3600 for MNG, given by the product of prototype dimension and the
number of prototypes. For MNG training with 1,000 neurons, a number of 21 neurons
fall into idle state during context formation, and the error decreases to only 1.6%. This
interesting result illustrates that good-natured interpolation emerges from the dynamic, if
more neurons than training examples are given.
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Dave, my mind is going, I can feel it . . . I can feel it.

HAL 9000

Summary

Sequence processing has been studied with self-organizing neural models for supervised
and unsupervised processing of multi-dimensional discrete and continuous data. Two
widely established methods, LVQ and the SOM, both being simple and powerful prototype-
based Hebbian learners, have served as starting points for the extensions to sequence data
presented in this work.

GRLVQ/SRNG Basically, time is integrated into LVQ by means of high-dimensional time
window vectors for which the curse of dimensionality is reduced by adaptive metrics, and
potential multi-modality is tackled by neural neighborhood cooperation which leads to the
supervised relevance neural gas (SRNG) algorithm. The backbone of the presented LVQ

extensions is the formulation in terms of a cost function minimization from which robust
update rules are derived for the local prototype positions and for the global metric para-
meters. Due to the high modularity of SRNG, customized metrics can be easily plugged-in
for specific learning tasks; for example, DNA processing highly profits from the locality
improved bi-directional sequence metric LIK. In the case of GRLVQ with weighted Euclid-
ean distance, the converged prototypes and dimension weighting factors can be used to
turn a network into a BB-tree of classification rules. Experiments on sequence processing
have been conducted for the prediction of word forms of linguistic data, for the attractor
reconstruction of the Lorenz attractor by means of the proposed relevance embedding,
for a speaker identification problem, and for DNA splice site recognition. In comparison
with other methods, the presented LVQ variants produce excellent results by compact and
intuitive data models with prototypes and relevance profiles that can be easily interpreted.

SOMSD/MSOM In the extended SOM, sequential inputs are represented by a recursive
back-reference to the previous winner neuron: in case of the SOM for structured data
(SOMSD), each neuron keeps track of a compact location index for addressing the most
recent winner in the grid of neurons; in case of the merge SOM (MSOM), the grid index is
replaced by a grid-independent context which combines the previously represented pattern
and the previously active context.

The modifications of SOMSD presented in this work focus on sequence processing and
introduce a graph-based alternative target lattice of neurons. This way, the potentially
exponential context growth of sequences can be mapped to neuron neighborhoods with
hyperbolic connectivity. Experiments with the Reber grammar have shown the struc-
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tural difference of the map ordering for Euclidean and hyperbolic target grids. This and
other experiments point out the good quality of context representation, expressed by low
temporal quantization errors and by a high correspondence between training data and con-
text. Context representations of trained maps have been obtained by backtracking neuron
activation transitions and by data-driven calculations of the temporal receptive fields.

Good temporal quantization properties also apply to the new MSOM technique. Not
only the experiments but also the analysis of the dynamic yield compact context encoding
by fractal codes which turn out to be stable fixed points of the training. Particularly,
multi-modal data can be efficiently represented this way.

Limitations

Despite the very good classification results of SRNG, a principal drawback remains for
temporal data: although adaptive metrics reduce the curse of dimensionality, the time
window training is computationally still demanding. For multi-dimensional sequence en-
tries, traditional measures like the autocorrelation function fail for the determination of
the time window dimension; alternatively, the multi-dimensional histogram calculation for
a reliable identification of the time shift corresponding to the first minimum of the mutual
information requires too many data points. Therefore, the combination of the MSOM

context with SRNG would be desirable to make sure that the available number of neurons
is optimally used for representing the most prominent data histories. This combination
has indeed been studied, but a yet unsolved problem has been encountered: SRNG adapts
correct and wrong prototypes towards the presented pattern and away from it. Now, how
to deal with the context? If the prototype is correct, the MNG adaptation can be applied,
but for the wrong prototype neither adaptation towards the current context descriptor
nor away from it can be justified. The paradox is: either the context vector is made more
similar, although the represented class is wrong, or the context is made more dissimilar
but is then representing a wrong history. Both variants and other scenarios have been ex-
tensively tested, but without producing results superior to the simple presentation of the
compound pattern (xt−1, xt, yt) to standard SRNG. Therefore, a mathematical derivation
in the framework of supervised recursive cost function minimization would be worthwhile.

For the given experiments with SOMSD and MSOM, data sets are mostly good-natured
in two senses: the data are stationary by definition or quasi-stationary by multi-epoch
training, and the context of the data sets is well connected. This coherence is important,
because in a counter-example, where xt and xt−2 are correlated, but neither is correlated
to xt−1, an overhead of all occurring transitions of xt−2 to xt−1 must be learned before
the subsequence (xt−2, xt−1, xt) can be reasonably represented. Hochreiter and Schmid-
huber [71] and Hochreiter and Mozer [70] propose architectures for the modeling of long
short-term memory LSTM to circumvent this problem. However, these models are rather
designed for discrete sequences than for noisy data, and larger networks induce severe
computational problems for the training [48].
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Interestingly, the back-reference models for SOMSD and MSOM are not implementing
just a simple fading memory for which events in the further past contribute less to the
definition of the current state. As the experiments have demonstrated, an ordered acti-
vation dynamic leads to disjoint receptive fields. As a matter of fact, a past event has
major influence on the pathway of activations. The length of such a historic chain, the
temporal scope, depends on the data modes, the data dimension, the number of neurons
in the network, on the quality of training, and, in case of MSOM, also on the computing
accuracy.

Future work

Hebbian learning turns out to be a suitable method for the presented models, because
a large number of training epochs can be realized. However, limitations occur for repre-
senting dynamics that take place on different time scales, or at its extreme, for one-shot
learning problems. The question is how long it takes to identify and represent a given data
example by a class or a specialized cluster of its own. In other words, the plasticity-stability
dilemma of memory adaptivity to new patterns is addressed.

For still maintaining the Hebbian learning principle, this would require to know before-
hand the importance of the currently presented stimulus, because the prototype adaptation
rate should be greater for very prominent data and smaller for unsurprising examples. In
addition to the definition of data similarity, the dissimilarity — which needs not be the
inverse distance measure — could be used for assigning the learning rate associated with
the novelty of a pattern.

In this respect, three ideas should be studied for future learning architectures: dynamic
network sizes, context-specific metrics, and interactive network visualization.

1. Dynamic network growing and shrinking

A promising contribution to one-shot learning is to let new inputs create new represen-
tations by adding more neurons on demand. This is weakly related to learning by heart,
using a dynamically growing table of unknown size. Therefore, a valuable extension of
the presented classifiers would be an implementation of a data-driven dynamic network
growing and age-based shrinking, such as proposed by Fritzke [44, 45]. He describes the
dynamic growing for grid and data topologies for the supervised and the unsupervised
case. This way, also nonstationary online data can be dealt with. For convergence and
stability of training, the annealing of learning rates and the neighborhood radius is only
suitable for the assumption of stationary data; for the ability to adopt to instationary
changes, the dynamic network growth must ensure a basic level of activity, at least for
the recently added neurons. An instationary scenario may be a comforting reason for not
insisting on a gradient-based minimization technique which would be applied to a cost
function that is subject to continuous changes.
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2. Context-specific metrics

According to the well-known experience that different situations require different ratings
even for the same input stimulus, a context-specific application of a particular metric and
a weighting of several competing metrics are appealing domains for future research. More
specifically, a multi-metric approach with experience-based metric selection, realized by
Hebbian training, could capture different facets of the data. For example, one metric
could measure the norm of a difference vector, another return the vector variance or the
amount of the most prominent attribute. Since all vector norms in real-valued spaces
are conceptually equivalent, possibly ‘orthogonal’ aspects of the data might be better
captured by functions Rd 7→ R with non-metric properties. Then, of course, the notion
of neural winner selection must be redefined. For biologically plausible learning and for
perception binding, a double LVQ architecture with self-supervised reinforcement of input
pairs from different data channels has been proposed by deSa [34]; this could be used as a
basis for context-specific metric adaptation. For sequence processing, metrics sensitive to
specific time scales could be realized by integrating the presented data over a number of
observations with or without exponential weighting. Although the evaluator for multiple
adaptive metrics is a natural extension to the generalized adaptive metrics as discussed for
SRNG, a fundamental question of interest is whether the high number of free parameters
can be reasonably adapted, or if parameter regularization can be realized. For unsuper-
vised learning, metric adaptation must rely on implicit targets such as the maximization
of the clusterability, of the information transfer, or of the topology preservation in grid
architectures [15].

From a rather visionary point of view, context-specific evaluation refers to an imple-
mentation of artificial emotions, for which the cost function to be optimized depends on
the current state of the classifier. As discussed e.g. in Aretz, this issue is of great interest
for the robotics community with respect to the design of robust autonomous agents and
with respect to creating well-accepted machine-human interfaces [3].

3. Interactive visualization

In combination with the SOM, a major concern of future work should be adequate visual-
ization. For Euclidean SOMSD lattices, a proper display on a screen or on a sheet of paper
is no problem in principle, but the development of long range back-reference connections
to the temporal context shatters preceding winner nodes on large areas on the neural map.
This specialization according to the ordering of the most recent symbol elements is wanted
for the diversification of the representations. For sequence analysis, though, which is the
focus of the presented SOMSD, a complementary view must answer the question of tem-
poral backtracking: which are the most likely context states belonging to a neuron? Due
to Hebbian learning, these temporal states are not given by the grid neighbors, and their
determination would require an online temporal backtracking of the context of a neuron
picked by the user.
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Another interactive component must be provided for hyperbolic grid topologies, be-
cause a static plot can only focus on a fish-eye magnification of local data projections;
thus, an overall data visualization can no longer be obtained, and visual inspection must
be extended by an interactive component to browse a trained map. For example, Ontrup
and Ritter have implemented a browser for navigation in a movie data base [114]. If in-
teractive visualization is agreed on, also the beneficial neural gas data topology could be
locally projected into plane in real time.

So, for a wide acceptance of HSOMSD and NG type networks, visualization and naviga-
tion should be a crucial point of further investigations. The remaining benefit of HSOMSD

is its update efficiency which takes a computing time complexity of only O(m) for both
the winner search and the neighborhood update, in contrast to the sorting complexity of
O(m · log(m)) for the NG prototype ranking. Trivial speedups can be obtained for SOMSD

by defining a threshold for the neighborhood contribution below which more distant graph
nodes are excluded from further visitation. The ranking complexity NG can be reduced by
restricting the search to only k of m nearest prototypes, or by sorting distances on parallel
hardware, for example with the bitonic merge sort.

Mission statement

This work has investigated aspects of temporal self-organization in Hebbian learning mod-
els. The author hopes that his contribution will be a source of ideas for future SOM

designs. He thinks that these model will profit to a great extent from adaptive metrics,
variable model topologies, context integration, and visualization. Additionally, as indi-
cated by the back-reference models, self-introspection is useful for taking into account the
current internal state for complementing the externally given stimulus. As in real life,
such a further reflection is generally a good strategy before a decision is taken, and before
a subsequent action is about to take influence on the future.
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[93] H. Lange. Charakterisierung ökosystemarer Zeitreihen mit nichtlinearen Methoden.
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binding, perception-, iii

classification tree, 38
context, 8
context descriptor, 93
cost function, 28

GRLVQ, 30
SOM, 71, 73
SRNG, 37

cycle, 8

differencing (preprocessing), 13
dimension, 8

encoding, unary, 11

fractal code, 96

generalization, 23
GRLVQ (generalized relevance LVQ), 29

Hebbian learning, 3
hyperbolic SOM grid, 72

iteration, 8

jittering (preprocessing), 15

lower–upper normalization (preprocessing), 12
LVQ (learning vector quantization), 18

magnification, 70
mean subtraction (preprocessing), 12
metric

LVQ, 19, 32
adaptive, 26, 31

SOM, 69
adaptive, 73

Euclidean type, 19, 32
preprocessing, 13

MNG (merging neural gas), 94

distance, 93
MSOM (merge SOM), 92

neighborhood
NG, 19
SOM, 69
SRNG, 37

neural data processing, ii
NG (neural gas), 19, 73

online vs. offline, 15

pattern, 8
prototype representation, 4

quantization error, 23
temporal, 75

receptive field, 21
temporal, 75

regularization, 15

self-organization, 4
SOM (self-organizing map), 68
SOMSD (SOM for structured data), 78
sphering, see whitening (preprocessing)
SRNG (supervised relevance neural gas), 36
supervised learning, 5

unsupervised learning, 5

vector quantization, 18
Voronöı cell, see receptive field

weight vector, 8
whitening (preprocessing), 13
winner neuron, 5, 8, 21
winner-takes-all (WTA), 5

z-score (preprocessing), 13
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