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Chapter 1

Introduction and statement of
the problem

Many problems of optics involve the study of the optical response of a dielec-
tric film with a specific permittivity. For constant permittivity the problem
is of particular interest in linear optics [1], [2]. In the case of arbitrary vary-
ing field intensity independent permittivity traditionally the transfer matrix
approach [3] is used discretizing the film by a number of plane parallel dielec-
tric slabs of infinitesimal thickness with constant permittivity. The optical
response of each slab is described by a 2× 2 matrix and the net response of
the film is obtained through matrix multiplication. Furthermore the Green’s
function method [4], the invariant embedding approach [5], and the wave
splitting theory [6] are known techniques in this respect. Recently, an iter-
ative approach, based on a pair of coupled differential equations generated
from Maxwell’s equations was proposed by Menon et al [7].

Within a transfer matrix method Sedrakian et al [8], [9] reduced the problem
of finding the reflection and transmission amplitudes for arbitrary polarized
plane waves to a set of first-order differential equations for the scattering
amplitudes.

In nonlinear optics, the Kerr-like nonlinear dielectric film has been the focus
of a number of studies [10]-[15]. With respect to the nonlinear Fabry-Perot
system, the present problem has been approached under special conditions
by several authors: Marburger and Felber [16] simplified the analysis by im-
posing boundary conditions which suppose the nonlinear slab is separated
from the linear media by perfect mirrors. Danikaert et al. [17] treated the
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steady-state response of a nonlinear Fabry-Perot resonator including nonlin-
ear absorbtion and oblique incidence for transverse-electric and transverse-
magnetic polarized fields. Haeltermann et al. [18] and Vitrant [19] presented
a unified nonlinear theory for transverse effects of Fabry-Perot resonators
simplifying numerical calculations and providing a good understanding of
optical bistability. Yasumoto et al. [20] investigated the characteristics of
the directional coupler with Kerr type nonlinear gap layer by the orthogonal
collocation method, and analyzed the nonlinear grating couplers by using the
singular perturbation technique [21].

A considerable amount of interest in recent years has centered on the non-
linear media with the saturation of the nonlinear refractive index [22]-[25].

To the best of my knowledge, there exists no general solution to Maxwell’s
equations for space dependent and nonlinear (with respect to the field de-
pendence) permittivities. This is the reason to study the following problem.
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Figure 1.1: Configuration considered in this work. A plane wave is inci-
dent to a linear slab (situated between two linear media) to be reflected and
transmitted (including total reflection at y = 0).

Referring to Figure 1.1 the reflection and transmission of an electromagnetic
plane wave at a dielectric film between two linear semi-infinite media (sub-
strate and cladding) is considered. All media are assumed to be homogeneous
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in x− and z− direction, isotropic, and non-magnetic. The permittivity of
the film is assumed to be characterized by a function εf (y) + εNL(E), where
εNL(E) denotes the nonlinear part of the permittivity function.

A plane wave of frequency ω0 and intensity E2
0 , with electric vector E0 par-

allel to the z-axis (TE) is incident on the film of thickness d. Since the
geometry is independent of the z-coordinate and because of the supposed
TE-polarization the fields are parallel to the z-axis (E = Ez). The problem
is to find the solutions of Maxwell’s equations, neglecting higher harmon-
ics, for various permittivity functions εf (y) (linear, nonlinear, real-valued,
complex-valued) subject to the boundary conditions (continuity of Ez and
∂Ez/∂y at interfaces y ≡ 0 and y ≡ d).
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Chapter 2

Description of the method
illustrated at a lossless
dielectric film

2.1 Transmission and reflection at a linear

lossless dielectric film

2.1.1 Reduction of the problem to a Volterra integral
equation

To elucidate the method the case of a linear dielectric film with a real-valued
permittivity is considered in this chapter [26].

The permittivity is modelled by

ε(y) =





εc, y > d,

εf (y), 0 < y < d,

εs, y < 0,

(2.1.1)

with real constants εc, εs and with εf (y) as a real continuously differentiable
function of y on [0, d].

Due to the requirement of the translational invariance in x-direction and
partly satisfying the boundary conditions the fields tentatively are written
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as (ẑ denotes the unit vector in z-direction)

E(x, y, t) =





ẑ 1
2

[
E0e

i(px−qc·(y−d)−ω0t)+

Ere
i(px+qc·(y−d)−ω0t) + c.c.

]
, y > d,

ẑ 1
2

[
E(y)ei(px+ϑ(y)−ω0t) + c.c.

]
, 0 < y < d,

ẑ 1
2

[
E3e

i(px−qsy−ω0t) + c.c.
]
, y < 0,

(2.1.2)

where E(y), p =
√

εck0 sin ϕ, qc, and ϑ(y) are real and Er = |Er| exp(iδr)
and E3 = |E3| exp(iδt) are independent of y. The parameter qs is assumed
to be real (transmission case) or purely imaginary qs (total reflection case)
in the following.

By inserting (2.1.2) and (2.1.1) into Maxwell’s equations the linear Helmholtz
equations, valid in each of the three media (j = s, f, c), read

∂2Ẽj(x, y)

∂x2
+

∂2Ẽj(x, y)

∂y2
+ k2

0εjẼj(x, y) = 0, j = s, f, c, (2.1.3)

where k2
0 = ω2

0/c
2 and Ẽj(x, y) denotes the time-independent part of E(x, y, t).

It should be noted that the assumed TE-polarization of the incident plane
wave and the form of the permittivity function εf (y) in middle layer are
essential for deriving Helmholtz equation (2.1.3) from Maxwell’s equations.

Scaling x, y, z, p, qc, qs by the wavelength λ0 and ε by ε0, respectively, equa-
tions (2.1.3) can be written as

∂2Ẽj(x, y)

∂x2
+

∂2Ẽj(x, y)

∂y2
+ 4π2εjẼj(x, y) = 0, j = s, f, c, (2.1.4)

where the same symbols have been used for unscaled and scaled quantities.
Using ansatz (2.1.2) in equation (2.1.4) one gets for the semi-infinite media

q2
j = 4π2εj − p2, j = s, c. (2.1.5)

For the film (j = f), it follows from equation (2.1.4), by separating real and
imaginary parts,

d2E(y)

dy2
− E(y)

(
dϑ(y)

dy

)2

+
[
4π2εf (y)− p2

]
E(y) = 0 (2.1.6)

and

E(y)
d2ϑ(y)

dy2
+ 2

dϑ(y)

dy

dE(y)

dy
= 0. (2.1.7)
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Equation (2.1.7) can be integrated leading to

E2(y)
dϑ(y)

dy
= c1, (2.1.8)

where c1 is a constant that has to be determined by means of the boundary
conditions. Insertion of dϑ/dy into Eq.(2.1.6) yields

d2E(y)

dy2
+ q2

f (y)E(y)− c2
1

E3(y)
= 0, (2.1.9)

with
q2
f (y) = 4π2εf (y)− p2. (2.1.10)

As will be shown below, real qs (transmission) implies c1 6= 0, pure imaginary
qs (total reflection) implies c1 = 0. Introducing I(y) = E2(y), equation
(2.1.9) reads

−1

4
I−

3
2 (y)(

dI(y)

dy
)2 +

1

2
I−

1
2 (y)

d2I(y)

dy2
+ q2

f (y)I
1
2 (y)− c2

1I
− 3

2 (y) = 0. (2.1.11)

Multiplying equation (2.1.11) by 4I
3
2 (y) one obtains

(
dI(y)

dy
)2 − 2I(y)

d2I(y)

dy2
− 4q2

f (y)I2(y) + c2
1 = 0. (2.1.12)

Differentiating the equation (2.1.12) with respect to y leads to

−2
dI(y)

dy

d2I(y)

dy2
+ 2

dI(y)

dy

d2I(y)

dy2
+

2I(y)
d3I(y)

dy3
+ 4

d(q2
f (y))

dy
I2(y) + 8q2

f (y)I(y)
dI(y)

dy
= 0, (2.1.13)

hence
d3I(y)

dy3
+ 2

d(q2
f (y))

dy
I(y) + 4q2

f (y)I(y)
dI(y)

dy
= 0, (2.1.14)

and thus
d3I(y)

dy3
+ 4

d(q2
f (y)I(y))

dy
= 2

d(q2
f (y))

dy
I(y). (2.1.15)

Representing εf (y) in the form εf (y) = ε0
f + ε̃f (y), where ε0

f is a constant,
equation (2.1.15) can be integrated with respect to I(y), to yield

d2I(y)

dy2
+ 4κ2I(y) = −16π2ε̃f (y)I(y) + 8π2

∫ y

0

dε̃f (τ)

dτ
I(τ)dτ + c2, (2.1.16)
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where κ2 = 4π2ε0
f − p2 and c2 denotes another constant of integration. The

homogeneous equation d2I(y)/dy2 + 4κ2I(y) = 0 has the general solution

Ĩ0(y) = A cos(2κy) + B sin(2κy), (2.1.17)

so that the solution of equation (2.1.16) reads [27]

I(y) = Ĩ0(y) +

∫ y

0

dt
sin 2κ(y − t)

2κ
(c2+

8π2

∫ t

0

dτ
dε̃f (τ)

dτ
I(τ)− 16π2ε̃f (t)I(t)

)
, (2.1.18)

where the constant c2 must be determined by the boundary conditions. The
Volterra equation (2.1.18) is equivalent to equation (2.1.3) for 0 < y < d.
According to equation (2.1.18) I(y) and Ĩ0(y) satisfy the boundary conditions
at y = 0. Evaluating the first integral on the right hand side, equation
(2.1.18) reads [cf. Appendix A]

I(y) = Ĩ0(y) +
c2

2κ2
sin2(κy) +

∫ y

0

K(y, t)I(t)dt, (2.1.19)

with

K(y, t) = −8π2 sin 2κ(y − t)

κ
ε̃f (t) + 4π2 sin2 κ(y − t)

κ2

dε̃f (t)

dt
. (2.1.20)

If ε̃f (y) ≡ 0, I(y) from equation (2.1.19) is identical to the exact solution of
the linear problem [cf. Appendix B].

The solution of equation (2.1.19) can be represented as a uniformly conver-
gent series of iterations [cf. Appendix C]:

I(y) =
∞∑

j=0

Ij(y), (2.1.21)

Ij(y) =

∫ y

0

K(y, t)Ij−1(t)dt, j = 1, 2, . . . (2.1.22)

where
I0(y) = Ĩ0(y) +

c2

2κ2
sin2(κy). (2.1.23)

With the solution I(y), determined by equation (2.1.21), the phase function
ϑ(y) is given, according to equation (2.1.8), by

ϑ(y) = ϑ(d) + c1

∫ y

d

dτ

I(τ)
. (2.1.24)
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2.1.2 Boundary conditions and associated relations

To evaluate I(y) and ϑ(y) according to equations (2.1.19), (2.1.24), respec-
tively, it is necessary to determine the integration constants c1, c2 by means
of the boundary conditions (E(y) and dE(y)/dy must be continuous at y = 0
and y = d). Hence

E(0) = E3e
−iϑ(0) (2.1.25)

dE(y)

dy
|y=0 +i

dϑ(y)

dy
|y=0 E(0) = −iqsE(0) (2.1.26)

E0 + Er = E(d)eiϑ(d) (2.1.27)

2E0e
−iϑ(d) =

i

qc

dE(y)

dy
|y=d +E(d)(1− 1

qc

dϑ(y)

dy
|y=d). (2.1.28)

In general, subject to the restriction of real εf (y), the cases q2
s > 0 (trans-

mission) and q2
s ≤ 0 (total reflection) must be discriminated. In the first case

equation (2.1.26) implies
dE(y)

dy
|y=0= 0, (2.1.29)

dϑ(y)

dy
|y=0= −qs, (2.1.30)

in the second case (qs = iq̃s)

dE(y)

dy
|y=0= q̃sE(0), (2.1.31)

dϑ(y)

dy
|y=0= 0. (2.1.32)

Thus, according to equations (2.1.8), (2.1.25) and (2.1.30) the constant c1 is
given by

c1 = −qs|E3|2 = −qsI(0) (2.1.33)

in the transmission case, and by

c1 = 0 (2.1.34)

in the total reflection case, according to equation (2.1.32). It should be noted
that this result does not depend on the particular (real-valued) permittivity
function.
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Equations (2.1.27), (2.1.28) imply, introducing I = E2,

E2
0 =

1

4

{
1

4q2
cI(d)

(
dI(y)

dy
|y=d

)2

+ I(d)

(
1− 1

qc

dϑ(y)

dy
|y=d

)2
}

, (2.1.35)

E2
r =

1

4

{
1

4q2
cI(d)

(
dI(y)

dy
|y=d

)2

+ I(d)

(
1 +

1

qc

dϑ(y)

dy
|y=d

)2
}

, (2.1.36)

sin ϑ(d) = −
dI(y)

dy
|y=d

4qcE0

√
I(d)

. (2.1.37)

Evaluation of equations (2.1.35), (2.1.36) leads, by using equation (2.1.8),
(2.1.33), (2.1.34), to

|Er|2 − E2
0 =

1

qc

I(d)
dϑ(y)

dy
|y=d=




− qs

qc
|E3|2, q2

s > 0,

0, q2
s ≤ 0

(2.1.38)

and hence to

R =





1− T, q2
s > 0,

1, q2
s ≤ 0

(2.1.39)

where R = |Er|2
E2

0
, T = qs|E3|2

qcE2
0

. In the transmission case the incident intensity

E2
0 is related to the transmitted intensity I(0) according to (cf. (2.1.35),

(2.1.8))

E2
0 =

1

4

{
1

4q2
cI(d)

(
dI(y)

dy
|y=d

)2

+ I(d)

(
1 +

qsI(0)

qcI(d)

)2
}

. (2.1.40)

In the total reflection case the incident intensity E2
0 is related to the trans-

mitted intensity I(0) according to (cf. (2.1.35), (2.1.8)), (2.1.32)),

E2
0 =

1

4

{
1

4q2
cI(d)

(
dI(y)

dy
|y=d

)2

+ I(d)

}
. (2.1.41)

The phase shifts on transmission δt and on reflection δr are determined by
equations (2.1.24), (2.1.27) and (2.1.38) according to

δt = ϑ(0) = ϑ(d) + I(0)qs

d∫

0

dτ

I(τ)
, (2.1.42)
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sin δr =
E(d)

|Er| sin ϑ(d), (2.1.43)

which implies, taking into account equation (2.1.37),

sin δr = −
dI(y)

dy
|y=d

4qcE2
0

√
1− qsI(0)

qcE2
0

. (2.1.44)

for the transmission case and

δt = ϑ(d) = ϑ(0) = arccos
I(d)

2E0

, (2.1.45)

δr = 2ϑ(d) = arccos
I(d)

E0

(2.1.46)

for the total reflection case [cf. Appendix D].

Contrary to the integration constant c1 the integration constant c2 depends,
according to equation (2.1.16), on the permittivity function εf (y).

2.1.3 Transmission (q2
s > 0)

Solutions

Using equations (2.1.9), (2.1.16), (2.1.25) and (2.1.29), the constant of inte-
gration c2 in equation (2.1.18) is determined by [cf. Appendix E]

c2 = 2|E3|2(q2
s + q2

f (0)) = 2I(0)(q2
s + q2

f (0)). (2.1.47)

Taking into account equations (2.1.17), (2.1.25) and (2.1.29), Ĩ0(y) is given
by

Ĩ0(y) = I(0) cos(2κy), (2.1.48)

with I(0) (= |E3|2) related to E2
0 according to equation (2.1.40). Introducing

Î(y) = I(y)/I(0) and using the relations of the foregoing subsection the

normalized intensity Î(y) and the phase ϑ(y) can be written as

Î(y) = cos(2κy) +
q2
s + q2

f (0)

κ2
sin2(κy) +

∫ y

0

K(y, t)Î(t)dt, (2.1.49)
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Figure 2.1: (a) Dependence of the field intensity I(y) (first iteration) inside
the slab on the transverse coordinate y for εc = εs = 1, ε0

f = 1.5, ϕ =
0.35π, E2

0 = 1, d = 1.5. Dashed curve corresponds to the periodic dependence
of εf (y) = ε0

f + δ cos2 b(y
d
) for γ = 1

30
, b = 10. The solid curve corresponds

to the case of constant permittivity εf (y) = ε0
f (δ = 0); (b) the difference

between the intensities from (a).

with κ2 = 4π2ε0
f−p2, where equations (2.1.47), (2.1.48) have been used, and,

taking equations (2.1.24), (2.1.33), (2.1.37) into account,

ϑ(y) = − arcsin

dbI(y)
dy

|y=d√
(dbI(y)

dy
|y=d)2 + 4(qcÎ(d) + qs)2

+ qs

∫ d

y

dτ

Î(τ)
dτ. (2.1.50)

Equations (2.1.39), (2.1.40) together with equations (2.1.49), (2.1.50) allow
the optical response of the linear film to be calculated for arbitrary thickness
d, arbitrary angles of incidence ϕ and arbitrary permittivity εf (y). Equations

(2.1.40), (rewritten with normalized intensity Î(y)), and (2.1.49) constitute
a generalization of Fresnel’s formulae in linear optics [28].

Numerical results

To illustrate the foregoing analysis a periodic dependence of εf (y) such that
ε̃f (y) = γ cos2 b(y/d) is assumed.

The first and the second iteration of (2.1.49) lead to expressions for I(y) and
ϑ(y). The corresponding field intensity inside the slab is shown in Figures
2.1-2.3. In Figure 2.4 the phase ϑ(y) is plotted.
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Figure 2.2: Dependence of the field intensity I(y) (second iteration) inside
the slab on the transverse coordinate y for the same parameters as in Figure
2.1.
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Figure 2.3: The difference between the field intensities after the first and
second iteration.

Using equation (2.1.40) the reflectivity R is given by

R = 1− 16qcqsÎ(d)

(dbI(y)
dy

|y=d)2 + 4(qcÎ(d) + qs)2
. (2.1.51)

Plots of R are presented in Figure 2.5. The character of the obtained depen-
dence of R on the problem’s parameters (thickness d, angle of incidence ϕ)
agrees in general with the ones obtained for periodic layers [29]. The region,
where R ≈ 1 is analogous to Bragg reflection, well known in the dynamical
theory of X-ray reflection [30].

12



0.25 0.5 0.75 1 1.25
y

2

4

6

8

JHyL

d

Figure 2.4: Phase ϑ(y) inside the film, parameters as in Figure 2.1
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Figure 2.5: (a) Dependence of the reflectivity R on the layer thickness d for
the same parameters as in Figure 2.1; (b) dependence of the reflectivity R
on the angle of incidence ϕ for the same parameters as in Figure 2.1.

2.1.4 Total reflection (q2
s < 0)

Solutions

Using equations (2.1.9),(2.1.16),(2.1.25) and (2.1.31), the constant c2 in this
case is determined by

c2 = 2I(0)(q2
f (0) + q̃s

2). (2.1.52)

According to equations (2.1.17), (2.1.25), (2.1.31), Ĩ0(y) for the total reflec-
tion case is determined by

Ĩ0(y) = I(0) cos(2κy) +
q̃sI(0)

κ
sin(2κy), (2.1.53)

with I(0) (= |E3|2) related to E2
0 according to equation (2.1.41).
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Introducing Î(y) = I(y)/I(0) and inserting equations (2.1.52), (2.1.53) into
equation (2.1.19) one obtains

Î(y) = cos(2κy) +
q̃s

κ
sin(2κy) +

(q2
f (0) + q̃s

2)

κ2
sin2(κy)

+

∫ y

0

K(y, t)Î(t)dt. (2.1.54)

The phase constant ϑ(0) ≡ ϑ(d) is given by equation (2.1.45).
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Figure 2.6: (a) Dependence of the field intensity I(y) (first iteration) in-
side the slab on the transverse coordinate y for εc = 2, εs = 1, ε0

f = 3, ϕ =
0.35π, E2

0 = 1, d = 0.6. The full curve corresponds to the periodic depen-
dence of εf (y) for γ = 0.03, b = 10. Dashed curve corresponds to the case of
constant permittivity εf (y) = ε0

f (γ = 0); (b) difference between the intensi-
ties from (a).

Numerical results

To illustrate the procedure in this case, again the periodic dependence of
εf (y) (ε̃f (y) = γ cos2 b(y

d
)) is assumed. The first and second iterations of

(2.1.54) yield I(y) for the total reflection case. The results are presented
in Figures 2.6, 2.7. The permittivity constant εs in substrate is less then
in cladding and film, thus the sinusoidal wave is (internally) reflected off an
interface so that total internal reflection occurs. The corresponding plot of
the electromagnetic field in three layers, where an evanescent wave is formed
in substrate, is shown in Figure 2.8.
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Figure 2.7: (a) Dependence of the field intensity I(y) (second iteration) inside
the slab on the transverse coordinate y for the same parameters as in Figure
2.6; (b) Difference between the field intensities after the first and second
iteration.
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Figure 2.8: Dependence of the field intensity I(y) (first iteration) in cladding,
film and substrate on the transverse coordinate y for the periodic dependence
of εf (y) and for the same parameters as in Figure 2.6.
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2.2 Transmission and reflection at a Kerr-like

nonlinear lossless dielectric film

2.2.1 Reduction of the problem to a Volterra integral
equation

In the following a permittivity according to (2.1.1) is assumed, but with a
Kerr-like nonlinearity inside the film

εf = ε0
f + ε̃f (y) + aE2(y), 0 < y < d, (2.2.1)

with a real Kerr constant a. Using the same arguments as in Section 2.1.1
(cf. equations (2.1.3), (2.1.4), (2.1.5)) one obtains in place of equation (2.1.6)

d2E(y)

dy2
− E(y)

(
dϑ(y)

dy

)2

+
[
4π2(ε0

f + ε̃f (y) + aE2(y))− p2
]
E(y) = 0.

(2.2.2)
In place of equations (2.1.19),(2.1.20) now the intensity is given by

I(y) = Ĩ0(y) +
c2

2κ2
sin2(κy) +

∫ y

0

K(y, t, I(t))I(t)dt, (2.2.3)

with the kernel

K(y, t, I(t)) = −sin 2κ(y − t)

κ
(8π2ε̃f (t) + 6π2aI(t)) +

+4π2 sin2 κ(y − t)

κ2

dε̃f (t)

dt
. (2.2.4)

Compared with (2.1.20) the kernel now depends on I(t) with the consequence
that iteration of (2.2.3) leads to a sequence (instead of a series)

Ij(y) = I0(y) +

∫ y

0

K(y, t, Ij−1(t))Ij−1(t)dt, j = 1, 2, . . . (2.2.5)

where I0(y) is given by equation (2.1.23). As shown in Appendix F this
sequence uniformly converges to the solution I(y) of equation (2.2.3)

I(y) = lim
j→∞

Ij(y). (2.2.6)

The uniform convergence is proved using the Banach Fixed-Point Theorem
[cf. Appendix G]. The condition for convergence leads to a constraint for the
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parameters of the problem (definitions of ‖N1‖, ‖N2‖, ‖I0‖ see Appendix C
and F)

‖ N1 ‖ +2
√
‖ N2 ‖ · ‖ I0 ‖ < 1. (2.2.7)

It should be noted that inequality (2.2.7) is only a sufficient condition. To
evaluate it, the function ε̃f (y) and the nonlinearity must be prescribed (an
example how (2.2.7) can be evaluated is given in Appendix H).

2.2.2 Transmission (q2
s > 0)

Solutions

For real qs, instead of equation (2.1.47) one obtains

c2 = 2I(0)(q2
s + q2

f (0) + 2π2aI(0)), (2.2.8)

so that equation (2.2.3) reads, taking into account equation (2.1.48),

I(y) = I(0) cos(2κy) +
(q2

s + q2
f (0) + 2π2aI(0))I(0)

κ2
sin2(κy) +

∫ y

0

K(y, t, I(t))I(t)dt, (2.2.9)

with I(0) (= |E3|2) related to E2
0 according to equation (2.1.40).

The phase ϑ(y) is given by

ϑ(y) = − arcsin
( 1√

I(y)

dI(y)
dy

) |y=d

4qcE0

+

∫ d

y

qsI(0)

I(τ)
dτ. (2.2.10)

Numerical results

A periodic dependence of ε̃f (y) as for the linear case is assumed. The first
iteration of equation (2.2.9) is shown in Figure 2.9. For the special case γ = 0
the results of the present method can be compared with the exact analytical
solution [31] ( cf. Figure 2.10).

By means of a parametric plot the reflectivity R and the phase on reflection δr

can be evaluated straightforwardly. Results are depicted in Figures 2.11,2.12.
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Figure 2.9: Dependence of the field intensity I(y) (first iteration) inside the
slab on the transverse coordinate y for a = 0.01, other parameters are the
same as in Figure 2.1.
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Figure 2.10: (a) Dependence of the field intensity I(y) inside the slab on the
transverse coordinate y for εc = 1, εs = 1.7, ε0

f = 1.3, ϕ = 63.5◦, b = 10, γ =
0, E2

0 = 1, d = 1.5, a = 0.01. Solid curve corresponds to the exact solution
and dashed to the first iteration of equation (2.2.9); (b) the difference between
the curves from (a).
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Figure 2.11: Dependence of the reflectivity R on aE2
0 and on the thickness d

for εc = 1, εs = 1.7, ε0
f = 1.3, ϕ = 63.5◦, γ = 0.
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Figure 2.12: Dependence of the phase of reflection δr on aE2
0 and d for the

same parameters as in Figure 2.11.

2.2.3 Total reflection (q2
s < 0)

Solutions

If qs is pure imaginary, the integration constant c2 is given by

c2 = 2I(0)(q̃s
2 + q2

f (0) + 2π2aI(0)) (2.2.11)

so that the solution of equation (2.2.3) reads, taking into account equation
(2.1.53),

I(y) = I(0) cos(2κy) +
q̃sI(0)

κ
sin(2κy) +

I(0)(q̃s
2 + q2

f (0) + 2π2aI(0))

κ2
sin2(κy)

+

∫ y

0

K(y, t, I(t))I(t)dt. (2.2.12)
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Figure 2.13: Dependence of the electric field (first iteration) inside the slab
on the transverse coordinate y for the same parameters as in Figure 2.6. Solid
curve corresponds to the linear case (a = 0), dashed curve to the nonlinear
case (a = 0.01).

Numerical results

Fixing the parameters of the dielectric slab and assuming periodic depen-
dence of ε̃f (y) (ε̃f (y) = γ cos2 b(y/d)), the numerical results of the total
reflection case can be illustrated. The first iteration of equation (2.2.9) is
shown in Figure 2.13. Three dimensional picture of the dielectric slab is
presented in Figure 2.14. Again the evanescent wave is formed in substrate,
associated to total internal reflection.
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Figure 2.14: Dependence of the electric field (first iteration) in three layers
on the transverse coordinates y and x for εc = 2, εs = 1, ε0

f = 1.6, ϕ =
0.35π, E2

0 = 1, d = 0.9, a = 0.01, γ = 0.03, b = 0.1.

2.3 General remarks on the method

Before applying the method to more general permittivities (complex-valued
and saturating) it seems suitable to outline the ductus of the method on the
basis of the foregoing chapters.

The main steps are:

(I) Transformation of Maxwell’s equations to Helmholtz equations (2.1.3) by
assuming a harmonic time dependence,
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(II) transformation of Helmholtz equations (2.1.3) to a Volterra equation
(2.1.18) for the intensity I(y) inside the film by using a rather general ansatz
(2.1.2) for the field inside the film (E(y)ei(px+ϑ(y))),

(III) iteration of the Volterra equation to obtain an approximate solution for
the intensity I(y) inside the film (check of the condition of convergence in
the nonlinear case),

(IV) evaluation of the boundary conditions to determine the integration con-
stants c1 (cf. equation (2.1.24)), c2 (in the Volterra equation) depending on
the permittivity εf (y), the parameters εc, εs, and the angle of incidence ϕ
(transmission or total reflection),

(V) using the approximate solution I(y) to deduce a generalized Fresnel
formula (cf. (2.1.40)) depending on c1, c2,

(VI) calculation of the phase function ϑ(y) (cf. (2.1.24)), the phase shifts
δr, δt (cf. (2.1.42), (2.1.44), (2.1.45), (2.1.46)), and the reflectivity R (cf.
(2.1.39)) depending on c1, c2

(VII) if necessary, further iterations of the Volterra equation to obtain better
approximations for R, δr, δt.

Some comments to the foregoing are appropriate:

(i) Subject to the ansatz the transformation according to step (II) seems
always possible; it does neither depend on the permittivity nor on the dis-
crimination between the transmission and the total reflection case.

The essential feature of transformation (I) is the transition from a nonlinear
differential equation for the intensity I(y) (cf. (2.1.12)) to a linear integro-
differential equation (cf. (2.1.16)) that is equivalent to a Volterra integral
equation (cf. (2.1.18)). Apparently, this procedure works for rather general
permittivity functions.

(ii) The integration constant c1 does not explicitly depend on the permittivity
function (c1 = −qsI(0) if qs > 0, c1 = 0 if qs = i|qs|).
(iii) Comparison of the linear and nonlinear case shows that the structure
of the Volterra equation is not changed (cf. equations (2.1.19) and (2.2.3)),
whereas the kernel K and the integration constant c2 are different (cf. equa-
tions (2.1.20), (2.2.4), (2.1.47), (2.2.8), (2.1.52), (2.2.11)).
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(iv) As will be seen in the following the main steps remain unchanged if more
general permittivities are considered. Changes occur for K and c2 leading to
more complicated solutions I(y) and thus to ϑ(y) (cf. equations (2.1.24) and
(3.1.4).
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Chapter 3

Transmission and reflection at
an absorbing dielectric film

3.1 Transmission and reflection at a linear

absorbing dielectric film

3.1.1 Reduction of the problem to a Volterra integral
equation

In this chapter the (linear) absorbing dielectric film is considered [32], [33].
The permittivity in the Helmholtz equation is modelled by a complex-valued
function according to

ε(y) =





εc, y > d,

εf = εR(y) + iεI(y), 0 < y < d

εs, y < 0,

, (3.1.1)

with real constants εc, εs and real valued continuously differentiable functions
εR(y), εI(y).

The fields are written in the same form as for the case with real-valued
permittivity, according to equation (2.1.2). Considering the case of normal
incidence [34] (p = 0), the parameter qs must be real, if negative εs is excluded
[34].
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Following the lines of the previous chapter one obtains in place of (2.1.6),(2.1.7)

d2E(y)

dy2
− E(y)

(
dϑ(y)

dy

)2

+
[
4π2εR(y)

]
E(y) = 0 (3.1.2)

and

E(y)
d2ϑ(y)

dy2
+ 2

dϑ(y)

dy

dE(y)

dy
+ 4π2εI(y)E(y) = 0. (3.1.3)

Equation (3.1.3) can be integrated leading to (cf. equation (2.1.8))

E2(y)
dϑ(y)

dy
= c1 − 4π2

∫ y

0

εI(τ)E2(τ)dτ ,

so that the phase is given by

ϑ(y) = ϑ(d) + c1

∫ y

d

dτ

E2(τ)
− 4π2

∫ y

d

dτ

E2(τ)

∫ τ

0

εI(ξ)E
2(ξ)dξ. (3.1.4)

Insertion of dϑ(y)/dy according to equation (3.1.4) into equation (3.1.2) leads
to

d2E(y)

dy2
+ q2

fR
(y)E(y)−

(c1 − 4π2
y∫
0

εI(t)E
2(t)dt)2

E3(y)
= 0, (3.1.5)

with
q2
fR

(y) = 4π2εR(y). (3.1.6)

As for real permittivity, real qs (transmission) implies c1 6= 0.

Setting I(y) = E2(y) and representing εR(y) in the form εR(y) = ε0
f + ε̃R(y),

where ε0
R is a constant, one obtains from equation (3.1.5)

d3I(y)

dy3
+ 4

d(q2
fR

(y)I(y))

dy
= 2

d(q2
fR

(y))

dy
I(y)

−16π2εI(y)(c1 − 4π2
0

y∫

0

εI(t)I(t)dt). (3.1.7)

Equation (3.1.7) can be integrated to yield

d2I(y)

dy2
+ 4κ2I(y) = −16π2ε̃R(y)I(y) + 8π2

∫ y

0

dε̃R(t)

dt
I(t)dt

+64π4

∫ y

0

εI(t)

(∫ t

0

εI(z)I(z)dz

)
dt− 16π2c1

∫ y

0

εI(t)dt + c2, (3.1.8)
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where κ2 = 4π2ε0
R and c2 a constant of integration. The homogeneous equa-

tion d2I(y)/dy2 + 4κ2I(y) = 0 has the solution

Ĩ0(y) = Acos(2κy) + Bsin(2κy), (3.1.9)

so that the general solution of equation (3.1.8) reads

I(y) = Ĩ0(y) +

∫ y

0

dt
sin2κ(y − t)

2κ

(
c2 − 16π2ε̃R(t)I(t)

+8π2

∫ t

0

dε̃R(z)

dz
I(z)dz +

64π4

∫ t

0

εI(z)

(∫ z

0

εI(z
′)I(z′)dz′

)
dt− 16π2c1

∫ t

0

εI(z)dz

)
, (3.1.10)

where the constant c2 must be determined by means of the boundary con-
ditions. Calculating some of the integrals on the righthand side of equation
(3.1.10) one obtains

I(y) = I0(y)− 16π2

∫ y

0

sin2κ(y − t)

2κ
ε̃R(t)I(t)dt

+8π2

∫ y

0

sin2 κ(y − t)

2κ2

dε̃R(t)

dt
I(t)dt

+64π4

∫ y

0

εI(z)I(z)

∫ y

z

sin2κ(y − t)

2κ

∫ t

z

εI(τ)dτdtdz, (3.1.11)

where

I0(y) = Ĩ0(y) + c2

∫ y

0

sin2κ(y − t)

2κ
dt

−16π2c1

∫ y

0

sin2κ(y − t)

2κ

∫ t

0

εI(z)dzdt. (3.1.12)

The integration constants c1, c2 are determined analogously to the real case
but now taking into account equations (3.1.5), (3.1.8). Hence

c1 = −qsI(0),

c2 = 2I(0)(q2
s + q2

fR
(0)). (3.1.13)

3.1.2 Reflectance, transmittance, absorptance and phase
shifts

Conservation of energy requires that the absorptance A of the film be ex-
pressed by reflectance R and transmittance T according to [36]

A = 1−R− T, (3.1.14)
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with

T =
qs

qc

E2(0)

E2
0

, (3.1.15)

R =
|Er|2
E2

0

. (3.1.16)

The intensities E2
0 and E2

r of the incident and reflected waves are related to
the transmitted intensity I(0) according to (cf. (2.1.35), (2.1.36), (3.1.4))

E2
0 =

1

4





(
dI(y)

dy
|y=d

)2

4q2
cI(d)

+ I(d)


1 +

qsI(0) + 4π2
d∫
0

εI(τ)I(τ)dτ

qcI(d)




2


,

(3.1.17)

E2
r =

1

4





(
dI(y)

dy
|y=d

)2

4q2
cI(d)

+ I(d)


1−

qsI(0) + 4π2
d∫
0

εI(τ)I(τ)dτ

qcI(d)




2


.

(3.1.18)
Equation (3.1.4) implies

E2(d)
dϑ(y)

dy
|y=d= −qsE

2(0)− 4π2

d∫

0

εI(τ)E2(τ)dτ. (3.1.19)

By insertion of equations (2.1.35) and (2.1.36) into equations (3.1.15) and
(3.1.16), using (3.1.19), the absorptance A can be written as

A =
4π2

qcE2
0

d∫

0

εI(τ)E2(τ)dτ. (3.1.20)

The phase shift on reflection δr is determined by equations (2.1.27), (2.1.28),
(3.1.14) and (3.1.16). Evaluation yields

sin δr = −
E(d)dE(y)

dy
|y=d

2qcE2
0

√
1− T − A

. (3.1.21)

The phase on transmission δt, is equal to ϑ(0) and can be obtained by inte-
grating equation (3.1.19) using equation (2.1.37). The result is

δt = ϑ(0) =

d∫

0

qsE
2(0) + qcE

2
0Ã(τ)

E2(τ)
dτ + arcsin

(
−

dI(y)
dy

|y=d

4qcE0

√
I(d)

)
, (3.1.22)
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where

Ã(y) :=
4π2

qcE2
0

y∫

0

εI(τ)E2(τ)dτ (3.1.23)

denotes the absorptance of a film of thickness y. The phase shift on trans-
mission can be also obtained according to equation (3.1.4).

3.1.3 Solutions

Introducing Î(y) = I(y)/I(0) and using the relations of the foregoing sub-

section the normalized intensity Î(y) and the phase ϑ(y) can be written as

Î(y) = cos(2κy) +
q2
s + q2

f (0)

κ2
sin2(κy)

+16π2qs

∫ y

0

sin2κ(y − t)

2κ

∫ t

0

εI(z)dzdt

−16π2

∫ y

0

sin2κ(y − t)

2κ
ε̃R(t)Î(t)dt

+8π2

∫ y

0

sin2 κ(y − t)

2κ2

dε̃R(t)

dt
Î(t)dt

+64π4

∫ y

0

εI(z)Î(z)

∫ y

z

sin2κ(y − t)

2κ

∫ t

z

εI(τ)dτdtdz, (3.1.24)

with κ2 = 4π2ε0
f , where equations (2.1.48), (2.1.33), (2.1.47) ,(3.1.11), (3.1.12)

have been used, and, taking equations (3.1.19), (2.1.33), (2.1.37) into ac-
count,

ϑ(y) =

d∫

y

qsE
2(0) + qcE

2
0Ã(τ)

E2(τ)
dτ + arcsin

(
−

dI(y)
dy

|y=d

4qcE0

√
I(d)

)
. (3.1.25)

Equations (3.1.17),(3.1.20) together with equations (3.1.24), (3.1.25) allow
the optical response of the linear film to be calculated for arbitrary thickness
d, arbitrary angles of incidence ϕ and rather arbitrary complex-valued per-
mittivity εf (y). Equations (3.1.17), with the normalized intensity Î(y), and
(3.1.24) constitute a generalization of Fresnel’s formulae in linear optics [28].
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Numerical results

Again a periodic dependence of εf (y) (ε̃f (y) = γ cos2 b(y/d)), and, for sim-
plicity, εI =const is assumed. Expressions for I(y) and ϑ(y) can be obtained
evaluating the first iteration of (3.1.24). The corresponding field intensity in-
side the slab is shown in Figure 3.1. In Figure 3.2 the phase ϑ(y) is plotted.
The field intensity after the first iteration can be compared with the exact
numerical solution of the system of differential equations (3.1.2), (3.1.3). The
corresponding plots are shown in Figure 3.3. Plots of A and R are presented
in Figure 3.4. Using a parametric plot routine the absorptance A and the re-
flectivity R can be evaluated straightforwardly. Results are shown in Figure
3.5.
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Figure 3.1: Dependence of the field intensity I(y) (first iteration of equation
(3.1.24)) inside the slab on the transverse coordinate y for εc = 1, εs =
1.7, ε0

f = 3.5, εI = 0.1, E0 = 1, d = 1, γ = 0.03, b = 0.1.
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Figure 3.2: Phase ϑ(y) according to equation (3.1.25), parameters as in figure
3.1.
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Figure 3.3: (a) Dependence of the field intensity I(y) inside the slab on the
transverse coordinate y for the same parameters as in figure 3.1. Solid curve
corresponds to the first iteration of equation (3.1.24) and dashed curve to
the numerical solution of the system of differential equations (3.1.2), (3.1.3);
(b) the difference between the curves from (a).
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Figure 3.4: (a) Dependence of absorptance A on the layer thickness d; (b)
Dependence of reflectance R on the layer thickness d. Parameters are as in
figure 3.1.
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Figure 3.5: (a) Dependence of absorptance A on the layer thickness d and E2
0 ;

(b) Dependence of reflectance R on the layer thickness d and E2
0 . Parameters

are as in figure 3.1.
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3.2 Transmission and reflection at an absorb-

ing Kerr-like nonlinear dielectric film

3.2.1 Reduction of the problem to a Volterra integral
equation

Again the transmission case (qs real) is considered with a nonlinearity of the
permittivity according to

εf = εR(y) + iεI(y) + aE2(y), 0 < y < d, (3.2.1)

with a real constant a. Using the same arguments as in Section 3.1.1 one
obtains in place of equation (3.1.2)

d2E(y)

dy2
−E(y)

(
dϑ(y)

dy

)2

+
[
4π2((ε0

f + ε̃R(y)) + aE2(y))
]
E(y) = 0. (3.2.2)

Equation (3.1.11) reads in this case

I(y) = I0(y) +

∫ y

0

sin2κ(y − t)

2κ

(−16π2ε̃R(t)I(t)− 12π2aI2(y)
)
dt

+8π2

∫ y

0

sin2 κ(y − t)

2κ2

dε̃R(t)

dt
I(t)dt

+64π4

∫ y

0

εI(z)I(z)dz

∫ y

z

sin2κ(y − t)

2κ
{
∫ t

z

εI(τ)dτ}dt, (3.2.3)

where I0(y) is given by equation (3.1.12). As in section 2.2.1 the solution of
the nonlinear integral equation (3.2.3) can be represented as a limit of the
uniformly convergent sequence Ij(y) [cf. Appendix I]

I(y) = lim
j→∞

Ij(y), (3.2.4)

Ij(y) = I0(y) +

∫ y

0

K(y, t, Ij−1(t))Ij−1(t)dt, j = 1, 2, . . . (3.2.5)

where I0(y) is given by equation (3.1.12) and where K can be written similar
to (2.2.4), taking into account (3.2.3) (cf. equation (3.2.7)). The uniform
convergence is again proved using the Banach Fixed-Point Theorem. The
condition for the convergence leads to a constraint for the parameters of the
problem (definitions of ‖N∗‖, ‖N2‖, ‖I0c‖ see in Appendix I)

‖N∗‖+ 2
√
‖N2‖‖I0c‖ < 1. (3.2.6)
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3.2.2 Solutions

For real qs, the constants of integration c1 and c2 are given by the equations
(2.1.33) and (2.2.8) respectively, so that equation (3.2.3) reads, taking into
account equation (2.1.48),

I(y) = I(0) cos(2κy) +
(q2

s + q2
f (0) + 2π2aI(0))I(0)

κ2
sin2(κy)

+16π2qs

∫ y

0

sin2κ(y − t)

2κ

∫ t

0

εI(z)dzdt

+

∫ y

0

sin2κ(y − t)

2κ

(−16π2ε̃R(t)I(t)− 12π2aI2(y)
)
dt

+8π2

∫ y

0

sin2 κ(y − t)

2κ2

dε̃R(t)

dt
I(t)dt

+64π4

∫ y

0

εI(z)I(z)dz

∫ y

z

sin2κ(y − t)

2κ
{
∫ t

z

εI(τ)dτ}dt, (3.2.7)

with I(0) (= |E3|2) related to E2
0 according to equation (2.1.40).The phase

ϑ(y) is given by (3.1.25).

Numerical results

Assuming the same periodic dependence of ε̃f (y), as in the linear case the
first iteration of (3.2.7) leads to expressions for the field intensity I(y) and the
phase ϑ(y) of the dielectric film, which are plotted in Figures 3.6-3.7. Plots
of the field intensity I(y) after first iteration and of the numerical solution of
the system of differential equations (3.2.2), (3.1.3) are shown in Figure 3.8.
Illustrations of absorptance A and reflectivity R are presented in Figures 3.9
and 3.10. For larger E2

0 the dependence of R on E2
0 is shown in Figure 3.11.
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Figure 3.6: Dependence of the field intensity I(y) (first iteration of equation
(3.2.7)) inside the slab on the transverse coordinate y for a = 0.01. The
other parameters are as in figure 3.1.
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Figure 3.7: Phase ϑ(y) according to equation (3.1.25), parameters as in figure
3.1, a = 0.01.
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Figure 3.8: (a) Dependence of the field intensity I(y) inside an absorbing
Kerr-like nonlinear dielectric slab on the transverse coordinate y for the same
parameters as in figure 3.6. Solid curve corresponds to the first iteration of
equation (3.2.7) and dashed curve to the numerical solution of the system of
differential equations (3.2.2), (3.1.3); (b) the difference between the curves
from (a).
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Figure 3.9: Dependence of the absorptance A on E2
0 and d for the same

parameters as in Figure 3.6.
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Figure 3.10: Dependence of the reflectivity R on E2
0 and d for the same

parameters as in Figure 3.6.
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0 and d for the same

parameters as in Figure 3.6.
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Chapter 4

Transmission and reflection at
a lossless dielectric film with a
saturating permittivity

4.1 Reduction of the problem to a Volterra

integral equation

The permittivity of the film is assumed to be modelled according to

εf = ε0
f + ε̃f (y) +

aE2(y)

1 + arE2(y)
, 0 < y < d, (4.1.1)

with real constants ε0
f , a, r and a real-valued continuously differentiable func-

tion ε̃f (y). Using the same arguments as in Section 3.1 equation (3.1.2)
reads

d2E(y)

dy2
−E(y)

(
dϑ(y)

dy

)2

+

[
4π2

(
ε0

f + ε̃f (y) +
aE2(y)

1 + arE2(y)

)
− p2

]
E(y) = 0.

(4.1.2)
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In place of equations (2.1.19),(2.1.20) one obtains

I(y) = I0(y) +
4π2

κ2

∫ y

0

sin2 κ(y − τ)
dε̃f (τ)

dτ
I(τ)dτ

−8π2

κ

∫ y

0

sin 2κ(y − τ)ε̃f (τ)I(τ)dτ

−8π2

rκ

∫ y

0

sin 2κ(y − τ)I(τ)dτ

− 4π2

κar2

∫ y

0

sin 2κ(y − τ)
1

1 + arI(τ)
dτ

+
4π2

κar2

∫ y

0

sin 2κ(y − τ) ln(1 + arI(τ))dτ, (4.1.3)

with

I0(y) = Ĩ0(y) + (c2 − 16π2

ar2
)
sin2 κy

2κ2
, (4.1.4)

where Ĩ0(y) is given by equation (2.1.17). Following the same lines of calcu-
lation as for the linear case, the constant of integration c2 in equation (4.1.4)
is determined by [cf. Appendix E]

c2 = 2I(0)(q2
s + q2

f (0))− 8π2I2(0)

1 + arI(0)

+
8π2

ar2

(
2 + 2arI(0) +

1

1 + arI(0)
− ln(1 + arI(0))

)
(4.1.5)

for the transmission case and

c2 = 2I(0)(q̃2
s + q2

f (0))− 8π2I2(0)

1 + arI(0)

+
8π2

ar2

(
2 + 2arI(0) +

1

1 + arI(0)
− ln(1 + arI(0))

)
(4.1.6)

for the total reflection case.

Similar to the forgoing section 3.2.1 the solution of the nonlinear integral
equation (4.1.3) can be represented as a limit of the uniformly convergent
sequence Ij(y), according to equations (3.2.4),(3.2.5), where K can be writ-
ten similar to (2.2.4), taking into account (4.1.3) (cf. equation (4.2.1)) [cf.
Appendix J]

The uniform convergence can be proved and the condition for convergence
implies (definitions of ‖N1‖, ‖N2‖, ‖N3‖ and ‖N4‖ see in Appendix J)

‖N1‖+ ‖N2‖+
‖N3‖+ (1 + a)‖N4‖

r
< 1. (4.1.7)
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4.2 Transmission (q2
s > 0)

4.2.1 Solutions

Using equation (2.1.48) for Ĩ0(y) for the case of real qs and taking into account
the constant of integration c2, which is given by equation (4.1.5), equation
(4.1.3) yields

I(y) = I(0) cos(2κy) +

(
2I(0)(q2

s + q2
f (0))− 8π2I2(0)

1 + arI(0)

+
8π2

ar2
(2 + 2arI(0) +

1

1 + arI(0)
− ln(1 + arI(0)))− 16π2

ar2

)
sin2 κy

2κ2

+
4π2

κ2

∫ y

0

sin2 κ(y − τ)
dε̃f (τ)

dτ
I(τ)dτ

−8π2

κ

∫ y

0

sin 2κ(y − τ)ε̃f (τ)I(τ)

−8π2

rκ

∫ y

0

sin 2κ(y − τ)I(τ)

− 4π2

κar2

∫ y

0

sin 2κ(y − τ)
1

1 + arI(τ)
dτ

+
4π2

κar2

∫ y

0

sin 2κ(y − τ) ln(1 + arI(τ))dτ,(4.2.1)

with I(0) (= |E3|2) related to E2
0 according to equation (2.1.40). The phase

ϑ(y) is given by (2.2.10).

4.2.2 Numerical results

Again a periodic dependence of εf (y) (ε̃f (y) = γ cos2 b(y/d)) is assumed.
The first iteration of (4.2.1) leads to expressions for I(y) and ϑ(y). The
corresponding plots of the field intensity are shown in Figure 4.1. The results
after the first iteration can be compared to the numerical solution of the
system of differential equations (4.1.2), (2.1.7). The corresponding plots are
in Figure 4.2. In Figure 4.3 the phase ϑ(y) is plotted. A plot of the reflectivity
R is presented in Figure 4.4.
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Figure 4.1: Dependence of the field intensity I(y) inside the slab on the
transverse coordinate y and E2

0 for a = 0.01, r = 1000, εc = 1, εs = 1.7, ε0
f =

3.5, ϕ = 1.107, d = 1, γ = 0.033, b = 0.1.
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Figure 4.2: Dependence of the field intensity I(y) inside the slab on the
transverse coordinate y for |E3|2 = 0.1. Other parameters are as in figure
4.1. Solid curve corresponds to the first iteration of equation (4.2.1) and
dashed curve to the numerical solution of the system of differential equations
(4.1.2), (2.1.7).
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Figure 4.3: Phase function ϑ(y, E2
0) according to equation (2.2.10) inside the

slab. Parameters as in figure 4.1.
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Figure 4.4: Dependence of the reflectivity R on the layer thickness d and on
the incident wave intensity E2

0 Parameters as in figure 4.1.
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4.3 Total reflection (q2
s < 0)

4.3.1 Solutions

Using equation (2.1.53) for Ĩ0(y) for the case of pure imaginary qs and taking
into account the constant of integration c2, which is given by equation (4.1.5),
equation (4.1.3) yields

I(y) = I(0) cos(2κy) +
q̃sI(0)

κ
sin(2κy) +

(
2I(0)(q̃2

s + q2
f (0))− 8π2I2(0)

1 + arI(0)

+
8π2

ar2
(2 + 2arI(0) +

1

1 + arI(0)
− ln(1 + arI(0)))− 16π2

ar2

)
sin2 κy

2κ2

+
4π2

κ2

∫ y

0

sin2 κ(y − τ)
dε̃f (τ)

dτ
I(τ)dτ

−8π2

κ

∫ y

0

sin 2κ(y − τ)ε̃f (τ)I(τ)dτ

−8π2

rκ

∫ y

0

sin 2κ(y − τ)I(τ)dτ

− 4π2

κar2

∫ y

0

sin 2κ(y − τ)
1

1 + arI(τ)
dτ

+
4π2

κar2

∫ y

0

sin 2κ(y − τ) ln(1 + arI(τ))dτ, (4.3.1)

with I(0) (= |E3|2) related to E2
0 according to equation (2.1.41). The phase

constant ϑ(0) ≡ ϑ(d) is given by equation (2.1.45).

4.3.2 Numerical results

The numerical results are shown for a periodic dependence of εf (y) (ε̃f (y) =
γ cos2 b(y/d)). The field intensity inside the slab after the first iteration of
(4.3.1) is shown in Figure 4.5. The results after the first iteration can be
compared to the numerical solution of the system of differential equations
(4.1.2), (2.1.7). The corresponding plots are in Figure 4.6.

42



0
0.25

0.5
0.75

1
y

00.1
0.20.3
E02

0

0.2

0.4

IHy,E02L

0
0.25

0.5
0.75

1
y

00.1
0.20.3

0

0.2

0.4

Figure 4.5: Dependence of the field intensity I(y) inside the slab on the
transverse coordinate y and E2

0 for a = 0.01, r = 1000, εc = 1.7, εs = 1, ε0
f =

3.5, ϕ = 1.107, d = 1, γ = 0.033, b = 0.1.
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Figure 4.6: Dependence of the field intensity I(y) inside the slab on the
transverse coordinate y for |E3|2 = 0.1. The other parameters are as in figure
4.5. Solid curve corresponds to the first iteration of equation (4.3.1) and
dashed curve to the numerical solution of the system of differential equations
(4.1.2), (2.1.7).
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Chapter 5

Transmission and reflection at
an absorbing dielectric film
with a saturating permittivity

5.1 Reduction of the problem to a Volterra

integral equation

For absorbing media the permittivity in the Helmholtz equation is modelled
by

εf = ε0
f + ε̃R(y) + iεI(y) +

aE2(y)

1 + arE2(y)
, 0 < y < d, (5.1.1)

with real constants ε0
f , a, r and real-valued continuously differentiable func-

tions ε̃R(y), εI(y). Using the same arguments as in Section 3.1.1 equation
(3.1.2) is replaced by

d2E(y)

dy2
− E(y)

(
dϑ(y)

dy

)2

+

[
4π2

(
ε0

f + ε̃R(y) +
aE2(y)

1 + arE2(y)

)]
E(y) = 0.

(5.1.2)
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In place of equation (4.1.3) one obtains

I(y) = I0(y) +
4π2

κ2

∫ y

0

sin2 κ(y − τ)
dε̃R(τ)

dτ
I(τ)dτ

−8π2

κ

∫ y

0

sin 2κ(y − τ)ε̃R(τ)I(τ)dτ

−8π2

rκ

∫ y

0

sin 2κ(y − τ)I(τ)dτ

− 4π2

κar2

∫ y

0

sin 2κ(y − τ)
1

1 + arI(τ)
dτ

+
4π2

κar2

∫ y

0

sin 2κ(y − τ) ln(1 + arI(τ))dτ

+64π4

∫ y

0

εI(z)I(z)dz

∫ y

z

sin2κ(y − t)

2κ
{
∫ t

z

εI(τ)dτ}dt, (5.1.3)

where I0(y) is given by

I0(y) = Ĩ0(y) + (c2 − 16π2

ar2
)
sin2 κy

2κ2

−16π2c1

∫ y

0

sin2κ(y − t)

2κ

∫ t

0

εI(z)dzdt. (5.1.4)

The constant of integration c2 in equation (5.1.4) is determined by equation
(4.1.5).

Following the arguments of the forgoing section the solution of the non-
linear integral equation (5.1.3) can be also represented as a limit of the
uniformly convergent sequence Ij(y) [cf. Appendix K]. The uniform con-
vergence is proved and the condition for convergence now yields (definitions
of ‖N1‖, ‖N2‖, ‖N3‖, ‖N4‖ and ‖Nc‖ see in Appendix K)

‖N1‖+ ‖N2‖+ ‖Nc‖+
‖N3‖+ (1 + a)‖N4‖

r
< 1. (5.1.5)

5.1.1 Solutions for the transmission case

Using equation (2.1.48) for Ĩ0(y) for of real qs and taking into account the
constant of integration c2, which is given by equation (4.1.5), equation (4.1.3)
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reads

I(y) = I(0) cos(2κy) + (2I(0)(q2
s + q2

f (0))− 8π2I2(0)

1 + arI(0)

+
8π2

ar2
(2 + 2arI(0) +

1

1 + arI(0)
− ln(1 + arI(0)))− 16π2

ar2
)
sin2 κy

2κ2

−16π2c1

∫ y

0

sin2κ(y − t)

2κ

∫ t

0

εI(z)dzdt

+
4π2

κ2

∫ y

0

sin2 κ(y − τ)
dε̃f (τ)

dτ
I(τ)dτ

−8π2

κ

∫ y

0

sin 2κ(y − τ)ε̃f (τ)I(τ)dτ

−8π2

rκ

∫ y

0

sin 2κ(y − τ)I(τ)dτ

− 4π2

κar2

∫ y

0

sin 2κ(y − τ)
1

1 + arI(τ)
dτ

+
4π2

κar2

∫ y

0

sin 2κ(y − τ) ln(1 + arI(τ))dτ

+64π4

∫ y

0

εI(z)I(z)dz

∫ y

z

sin2κ(y − t)

2κ
{
∫ t

z

εI(τ)dτ}dt, (5.1.6)

with I(0) (= |E3|2) related to E2
0 according to equation (2.1.40). The phase

ϑ(y) is given by (2.2.10).

5.1.2 Numerical results

For illustration again a periodic dependence of εf (y) is assumed (ε̃f (y) =
γ cos2 b(y/d)). The first iteration of (5.1.6) leads to expressions for I(y) and
ϑ(y). The corresponding field intensity inside the slab is given in Figure
5.1. The results after the first iteration can be compared to the numerical
solution of the system of differential equations (5.1.2), (3.1.3) for the fixed
parameter |E3|2. The illustration is shown in Figure 5.2. In Figure 5.3 the
phase ϑ(y, E2

0) is plotted. Pictures of absorptanse A and of reflectivity R are
presented in Figures 5.4-5.5. Again, εI =const is assumed for simplicity.
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Figure 5.1: Dependence of the field intensity I(y) inside the slab on the
transverse coordinate y and E2

0 for a = 0.01, r = 1000, εI = 0.1, εc = 1, εs =
1.7, ε0

f = 0, ϕ = 1.107, d = 1, γ = 0.033, b = 0.1.

0.2 0.4 0.6 0.8 1
y

0.05

0.06

0.07

0.08

0.09

0.11

0.12

IHyL

d

Figure 5.2: Dependence of the field intensity I(y) inside the slab on the
transverse coordinate y for |E3|2 = 0.1. The other parameters are as in figure
5.1. Solid curve corresponds to the first iteration of equation (4.2.1) and
dashed curve to the numerical solution of the system of differential equations
(4.1.2), (3.1.3).
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Chapter 6

Summary and outlook

A rather general iterative approach was presented to solve the Helmholtz
equation for a dielectric film with various permittivities. The solutions for
the linear case and for the nonlinear case have been expressed in terms of
a uniformly convergent series and a uniformly convergent sequence of iter-
ations of the Volterra equation, respectively. The main emphasis was on
the derivation of the relationship between the Helmholtz equation (with a
specific permittivity) and the associated Volterra integral equation.

The following integral equations were obtained:

(a) If the permittivity of the film is given by

εf = ε0
f + ε̃f (y), (6.0.1)

where ε0
f is a real constant and ε̃f (y) is a real-valued continuously differ-

entiable function, the intensity I(y) is determined according to equations
(2.1.19), (2.1.20)

I(y) = Ĩ0(y) +
c2

2κ2
sin2(κy) +

∫ y

0

K(y, t)I(t)dt, (6.0.2)

with

K(y, t) = −8π2 sin 2κ(y − t)

κ
ε̃f (t) + 4π2 sin2 κ(y − t)

κ2

dε̃f (t)

dt
, (6.0.3)

and the integration constant

c2 = 2I(0)(q2
s + q2

f (0)) (6.0.4)
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for the case of real qs (transmission), and

c2 = 2I(0)(q̃2
s + q2

f (0)) (6.0.5)

for the case of pure imaginary qs = iq̃s (total reflection);

(b) if the permittivity of the film is modelled by

εf = ε0
f + ε̃R(y) + iεI(y), (6.0.6)

where ε̃R(y), εI(y) are real-valued continuously differentiable functions, the
intensity I(y) is determined according to equations (3.1.11), (3.1.12) (if p =
0)

I(y) = I0(y)− 8π2

∫ y

0

sin2κ(y − t)

κ
ε̃R(t)I(t)dt

+4π2

∫ y

0

sin2 κ(y − t)

κ2

dε̃R(t)

dt
I(t)dt

+64π4

∫ y

0

εI(z)I(z)

∫ y

z

sin2κ(y − t)

2κ

∫ t

z

εI(τ)dτdtdz, (6.0.7)

where

I0(y) = Ĩ0(y) + c2

∫ y

0

sin2κ(y − t)

2κ
dt

−16π2c1

∫ y

0

sin2κ(y − t)

2κ

∫ t

0

εI(z)dzdt, (6.0.8)

with
c2 = 2I(0)(q2

s + q2
f (0)); (6.0.9)

(c) if the permittivity of the film is given by

εf = ε0
R + ε̃R(y) + iεI(y) + aE2(y), (6.0.10)

where a is a real constant, the intensity I(y) is determined according to
equation (3.2.3) (if p = 0)

I(y) = I0(y)− 8π2

∫ y

0

sin2κ(y − t)

κ
ε̃R(t)I(t)dt

+4π2

∫ y

0

sin2 κ(y − t)

κ2

dε̃R(t)

dt
I(t)dt

+64π4

∫ y

0

εI(z)I(z)dz

∫ y

z

sin2κ(y − t)

2κ
{
∫ t

z

εI(τ)dτ}dt

−6π2a

∫ y

0

sin2κ(y − t)

κ
I2(y)dt, (6.0.11)
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where I0(y) is given according to equation (6.0.8) and the integration constant
c2 for the transmission case is given by

c2 = 2I(0)(q2
s + q2

f (0) + 2π2aI(0)); (6.0.12)

(d) if ε̃I(y) = 0 in (c), then the following permittivity can be considered

εf = ε0
f + ε̃f (y) + aE2(y), (6.0.13)

and, the intensity I(y) is determined according to equations (2.2.3), (2.2.4)

I(y) = Ĩ0(y) +
c2

2κ2
sin2(κy) +

∫ y

0

K(y, t, I(t))I(t)dt, (6.0.14)

with the kernel

K(y, t, I(t)) = −8π2 sin 2κ(y−t)
κ

ε̃f (t) + 4π2 sin2 κ(y−t)
κ2

deεf (t)

dt

− sin 2κ(y−t)
κ

6π2aI(t),
(6.0.15)

where the integration constant c2 is given by

c2 = 2I(0)(q2
s + q2

f (0) + 2π2aI(0)) (6.0.16)

for the case of real qs (transmission) and

c2 = 2I(0)(q̃2
s + q2

f (0) + 2π2aI(0)), (6.0.17)

for the case of pure imaginary qs (total reflection);

(e) if the nonlinearity of the permittivity of the film is saturating and if
ε̃I(y) = 0 in (c), then εf is given by

εf = ε0
f + ε̃f (y) +

aE2(y)

1 + arE2(y)
. (6.0.18)

The intensity I(y) is determined according to equations (4.1.3), (4.1.4)

I(y) = I0(y)− 8π2

κ

∫ y

0

sin 2κ(y − τ)ε̃f (τ)I(τ)

+
4π2

κ2

∫ y

0

sin2 κ(y − τ)
dε̃f (τ)

dτ
I(τ)dτ

−8π2

rκ

∫ y

0

sin 2κ(y − τ)I(τ)dτ

− 4π2

κar2

∫ y

0

sin 2κ(y − τ)
1

1 + arI(τ)
dτ

+
4π2

κar2

∫ y

0

sin 2κ(y − τ) ln(1 + arI(τ))dτ, (6.0.19)
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where I0(y) is given according to equation

I0(y) = Ĩ0(y) + (c2 − 16π2

ar2
)
sin2 κy

2κ2
. (6.0.20)

The constant of integration c2 in equation (6.0.20) is determined by

c2 = 2I(0)(q2
s + q2

f (0))− 8π2I2(0)

1 + arI(0)

+
8π2

ar2

(
2 + 2arI(0) +

1

1 + arI(0)
− ln(1 + arI(0))

)
(6.0.21)

for the transmission case and

c2 = 2I(0)(q̃2
s + q2

f (0))− 8π2I2(0)

1 + arI(0)

+
8π2

ar2

(
2 + 2arI(0) +

1

1 + arI(0)
− ln(1 + arI(0))

)
(6.0.22)

for the total reflection case;

(f) if the permittivity of the film is modelled by

εf = ε0
f + ε̃R(y) + iεI(y) +

aE2(y)

1 + arE2(y)
, (6.0.23)

the intensity I(y) is determined according to equations (4.1.3), (4.1.4) (if
p = 0)

I(y) = I0(y)− 8π2

κ

∫ y

0

sin 2κ(y − τ)ε̃R(τ)I(τ)

+
4π2

κ2

∫ y

0

sin2 κ(y − τ)
dε̃R(τ)

dτ
I(τ)dτ

−8π2

rκ

∫ y

0

sin 2κ(y − τ)I(τ)dτ

− 4π2

κar2

∫ y

0

sin 2κ(y − τ)
1

1 + arI(τ)
dτ

+
4π2

κar2

∫ y

0

sin 2κ(y − τ) ln(1 + arI(τ))dτ

+64π4

∫ y

0

εI(z)I(z)dz

∫ y

z

sin2κ(y − t)

2κ
{
∫ t

z

εI(τ)dτ}dt, (6.0.24)
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where I0(y) is given according to equation

I0(y) = Ĩ0(y) + (c2 − 16π2

ar2
)
sin2 κy

2κ2

−16π2c1

∫ y

0

sin2κ(y − t)

2κ

∫ t

0

εI(z)dzdt. (6.0.25)

The constant of integration c2 for the transmission case in equation (6.0.25)
is equal to

c2 = 2I(0)(q2
s + q2

f (0))− 8π2I2(0)

1 + arI(0)

+
8π2

ar2

(
2 + 2arI(0) +

1

1 + arI(0)
− ln(1 + arI(0))

)
. (6.0.26)

If the intensity I(y) has been determined the phase ϑ(y) is given by (cf.
equation (3.1.4))

ϑ(y) = ϑ(d) + c1

∫ y

d

dτ

E2(τ)
− 4π2

∫ y

d

dτ

E2(τ)

∫ τ

0

εI(ξ)E
2(ξ)dξ, (6.0.27)

where (cf. equation (2.1.37))

sin ϑ(d) = −
dI(y)

dy
|y=d

4qcE0

√
I(d)

, (6.0.28)

and c1 is general to −qsI(0) and to zero for the transmission case and the
total reflection case, respectively.

As shown above, the agreement between the approximate analytical solu-
tions and the exact numerical solutions is satisfactory. Thus it seems that
the method proposed can serve as a means to optimize certain parameters
(material and/or geometric) for particular purposes.

Furthermore it seems that the method can be applied to a rather large class
of different (real, complex, linear, nonlinear) permittivity functions. For a
example for the film exhibiting the local Kerr-like nonlinearity the constant
a was assumed to be real in the foregoing, but it can also be complex [cf.
Appendix L].

This leads to the question where this method is not applicable.

First, as outlined above, certain parameters must be small in order to use
the first iteration of the Volterra equation as a good approximation.
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Second, TE-polarization and the dependence ε = ε(y, |E(y)|2) is essential;

otherwise ∇ · −→E 6= 0 so that Helmholtz equation (2.1.4) is not valid.

Third, it is not clear yet how reflection and transmission of a plane TM-wave
can be treated since a system of two coupled Helmholtz equations must be
considered [37], [38].

Finally it should be remarked, that the approach can be applied to a wide
field of further investigations concerning the great number of different pa-
rameter combinations which all apply to interesting theoretical and practical
situations.
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Appendix A

On the evaluation of the
integral in (2.1.18)

The second integral from (2.1.18) reads

A = 8π2

∫ y

0

sin 2κ(y − t)

2κ
dt

∫ t

0

dε̃f (τ)

dτ
I(τ)dτ

= 8π2

∫ y

0

dε̃f (τ)

dτ
I(τ)dτ

∫ y

τ

sin 2κ(y − t)

2κ
dt

= 8π2

∫ y

0

dε̃f (τ)

dτ
I(τ)dτ

(
sin2 κ(y − τ)

2κ2

)

= 8π2

∫ y

0

sin2 κ(y − τ)

2κ2

dε̃f (τ)

dτ
I(τ)dτ (A.0.1)

For ε̃I(y) = 0 ( ε̃R(y) = ε̃f (y)) equation (2.1.18) is a special case of equation
(3.1.11) . Thus the relation

8π2 sin2 κ(y − t)

2κ2
=

4π2

κ2

(
1− cos 2κ(y − t)

2

)
=

−2π2 cos 2κ(y − t)− 1

κ2
(A.0.2)

holds, and, equations (3.1.11) and (2.1.19) - (2.1.20) are consistent (if ε̃I(y) =
0).
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Appendix B

On the evaluation of the
limiting case ε̃(y) ≡ 0 for the
linear dielectric lossless film

If ε̃f (y) ≡ 0, equations (2.1.19), (2.1.20) yield

I(y) = |E3|2 cos(2κy) +
|E3|2(q2

s + q2
f (0))

κ2
sin2(κy). (B.0.1)

After some algebra one obtains

I(y) = E2(y) =
|E3|2
q2
s

(
q2
s sin2 qfy + q2

f cos2 qfy
)
, (B.0.2)

hence the result is consistent with equation (37), Section 5 ”The linear case”
from [31].
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Appendix C

Proof of the uniform
convergence of series (2.1.21)
by induction

Denoting the norm by ‖ I0 ‖= max0≤y≤d |I0(y)| and ‖ K ‖= max0≤y,t≤d |K(y, t)|
the iterations Ij(y) can be estimated according to

|Ij(y)| ≤‖ I0 ‖‖ K ‖j yj

j!
. (C.0.1)

For j = 1 equation (2.1.22) implies

|I1(y)| ≤‖ I0 ‖
∫ y

0

|K(y, t)|dt ≤‖ I0 ‖‖ K ‖ y. (C.0.2)

Assuming that (C.0.1) holds one obtains

|Ij+1(y)| ≤‖ I0 ‖‖ K ‖j+1

∫ y

0

tj

j!
dt, (C.0.3)

which yields the required estimate (C.0.1). Thus (C.0.1) is valid for all j,
leading to

|I(y)| ≤
∞∑

j=0

|Ij(y)| ≤‖ I0 ‖
∞∑

j=0

(‖ K ‖ y)j

j!
=‖ I0 ‖ ey‖K‖. (C.0.4)

Hence series (2.1.21) converges uniformly on [0, d] according to the Weier-
strass uniform convergence criterion.
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Appendix D

On the evaluation of the phase
on reflection δr for the total
reflection case

According to the formula Er = |Er| exp(iδr), the phase on reflection δr for
the total reflection case is given by

δr = 2ϑ(d), (D.0.1)

where equations (2.1.27), (2.1.39) were used.

Actually, according to |E2
r | = |E2

0 |,

Er = E0e
iδr (D.0.2)

and thus
E0 + E0e

iδr = E(d)eiϑ(d). (D.0.3)

This equation implies


 E0 + E0 cos δr = E(d) cos ϑ(d),

E0 sin δr = E(d) sin ϑ(d),
(D.0.4)

hence

tan ϑ(d) =
E0 sin δr

E0 + E0 cos δr

=
sin δr

1 + cos δr

= tan
δr

2
, (D.0.5)

and thus equation (D.0.1), disregarding the periodicity of tan.
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Appendix E

On the evaluation of the
constant of integration c2

The constant of integration c2 depends on the permittivity function inside
the film εf (y) and on the parameter qs. It can be calculated for every case
independently, but always in the same manner, that can be exemplified by
the case of the lossless linear dielectric film.

Considering equation (2.1.16) at y = 0, the constant of integration c2 is
determined by

c2 =
d2I(y)

dy2

∣∣∣∣
y=0

+ 4q2
f (0)I(0). (E.0.1)

According to equation (2.1.9), the second derivative of the field E(y) at y = 0
is given by

d2E(y)

dy2

∣∣∣∣
y=0

=
c2
1

E3(0)
− 4q2

f (0)E2(0). (E.0.2)

In case of real qs (transmission) equation (E.0.2) yields, taking into account
equations (2.1.25), (2.1.29),

c2 = 2|E3|2(q2
s + q2

f (0)) = 2I(0)(q2
s + q2

f (0)). (E.0.3)

For the pure imaginary qs (total reflection) the constant of integration c2 is
determined by

c2 = 2|E3|2(q̃2
s + q2

f (0)) = 2I(0)(q̃2
s + q2

f (0)), (E.0.4)

where equations (2.1.31), (2.1.34) have been used.
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Appendix F

Proof of the uniform
convergence of sequence (2.2.6)

The nonlinear operator F is considered:

F (I) := I0(y) + N1I + N2I
2, (F.0.1)

where N1 and N2 are linear bounded integral operators in the Banach space
C[o, d] and I0(y) is given by equation (2.1.23). Let

N1ψ :=

∫ y

0

K1ψ(t)dt, N2ϕ :=

∫ y

0

K2ϕ(t)dt, (F.0.2)

with

K1 = (−sin 2κ(y − t)

κ
8π2ε̃f (t)− 2π2 cos 2κ(y − t)− 1

κ2

dε̃f (t)

dt
)

K2 = (−6π2a

κ
sin 2κ(y − t)). (F.0.3)

The norms ‖N1‖, ‖N2‖ are defined by

‖ N1 ‖= max
0≤y≤d

∫ y

0

|K1|dt, ‖ N2 ‖= max
0≤y≤d

∫ y

0

|K2|dt. (F.0.4)

Then equation (2.2.3) can be rewritten in operator form

I(y) = F (I)(y). (F.0.5)

In order to prove that the equation (F.0.5) under certain assumptions has
only one solution the following quadratic equation is considered

z =‖ I0 ‖ + ‖ N1 ‖ z+ ‖ N2 ‖ z2, (F.0.6)
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where ‖ I0 ‖ is defined in Appendix A. This equation has two positive roots
if and only if the following conditions are satisfied:

(‖ N1 ‖ −1)2 − 4 ‖ N2 ‖‖ I0 ‖> 0, ‖ N1 ‖< 1. (F.0.7)

These inequalities imply

‖ N1 ‖ +2
√
‖ N2 ‖ · ‖ I0 ‖ < 1. (F.0.8)

Let r and R be the smallest and the largest root of equation (F.0.6), respec-
tively. In order to satisfy the conditions of the Banach Fixed-Point Theorem
[cf. Appendix G], [39] it must be checked whether operator F maps the ball
SR(0) = {y ∈ C[0, d] : ‖y‖ < R} ( and Sr(0)) to itself. If I(y) ∈ SR(0) then

‖ F (I) ‖≤‖ I0 ‖ + ‖ N1 ‖‖ I ‖ + ‖ N2 ‖‖ I ‖2

<‖ I0 ‖ + ‖ N1 ‖ R+ ‖ N2 ‖ R2 = R.
(F.0.9)

Thus F (I) ∈ SR(0). Hence equation (F.0.5) has at least one solution inside
SR(0). F is contractive [39] in Sr(0), because, if I1, I2 ∈ Sr(0), then

‖ F (I1)− F (I2) ‖=‖ N1(I1 − I2) + N2(I
2
1 − I2

2 ) ‖
≤ ‖ N1 ‖ ‖ I1 − I2 ‖ +‖ N2 ‖ ‖ I1 − I2 ‖‖ I1 + I2 ‖
≤ ‖ N1 ‖ ‖ I1 − I2 ‖ +2r‖ N2 ‖ ‖ I1 − I2 ‖
= (‖ N1 ‖+ 2r‖ N2 ‖) ‖ I1 − I2 ‖ .

Thus the inequality
‖ N1 ‖ +2r ‖ N2 ‖< 1 (F.0.10)

holds and thus the contraction of F . Inequality (F.0.10) is satisfied if (F.0.8)
holds. Hence one can conclude [39] that the iteration procedure (2.2.5),
(2.2.6) converges uniformly on [0, d] inside the ball Sr(0).

The set of the balls, where the iteration procedure converges uniformly, can
be increased. Let us consider ρ from the interval r ≤ ρ ≤ R. Following the
foregoing arguments it must be checked whether operator F maps the ball
Sρ(0) to itself. If I(y) ∈ Sρ(0) then

‖ F (I) ‖≤‖ I0 ‖ + ‖ N1 ‖‖ I ‖ + ‖ N2 ‖‖ I ‖2

<‖ I0 ‖ + ‖ N1 ‖ ρ+ ‖ N2 ‖ ρ2 ≤ ρ.
(F.0.11)
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This inequality holds if r ≤ ρ ≤ R. Thus for ρ from the interval

1− ‖ N1 ‖ −
√

(1− ‖ N1 ‖)2 − 4 ‖ N2 ‖ · ‖ I0 ‖
2 ‖ N2 ‖ ≤ ρ

≤ 1− ‖ N1 ‖ +
√

(1− ‖ N1 ‖)2 − 4 ‖ N2 ‖ · ‖ I0 ‖
2 ‖ N2 ‖ , (F.0.12)

F (I) ∈ Sρ(0). Hence equation (F.0.5) has at least one solution inside Sρ(0).
According to inequality (F.0.10), contraction of F holds for ρ from the fol-
lowing interval

1− ‖ N1 ‖ −
√

(1− ‖ N1 ‖)2 − 4 ‖ N2 ‖ · ‖ I0 ‖
2 ‖ N2 ‖ ≤ ρ ≤ 1− ‖ N1 ‖

2 ‖ N2 ‖ . (F.0.13)
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Appendix G

The Banach Fixed-Point
Theorem

The Banach fixed-point theorem represents a fundamental convergence the-
orem for a broad class of iterations methods.

The operator equation
u = Au, u ∈ M (G.0.1)

can be solved by means of the following iteration method

un+1 = Aun, n = 0, 1, . . . , (G.0.2)

where u0 ∈ M . Each solution of (G.0.1) is called a fixed point of the operator
A.

Theorem (The fixed-point theorem of Banach). We assume that:

(a) M is a closed nonempty set in the Banach space X over K, and

(b) the operator A : M → M is k-contractive, i.e., by definition,

‖Au− Av‖ ≤ k‖u− v‖ (G.0.3)

for all u, v ∈ M , and fixed k, 0 ≤ k < 1.

Then, the following hold true:

(i) Existence and uniqueness.

The original equation (G.0.1) has exactly one solution u, i.e., the operator A
has exactly one fixed point u on the set M .
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(ii) Convergence of the iteration method.

For each given u0 ∈ M , the sequence (un) constructed by (G.0.2) converges
to the unique solution of equation (G.0.1).

(iii) Error estimates.

For all n = 0, 1, . . . there is the so-called a priori error estimate

‖un − u‖ ≤ kn(1− k)−1‖u1 − u0‖, (G.0.4)

and the so-called a posteriori error estimate

‖un+1 − u‖ ≤ k(1− k)−1‖un+1 − un‖. (G.0.5)

(iv) Rate of convergence.

The following is true for all n = 0, 1, . . .

‖un+1 − u‖ ≤ k‖un+1 − un‖. (G.0.6)

This theorem was proved by Banach in 1920. The Banach fixed-point theo-
rem is also called the contraction principle [39].
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Appendix H

On the evaluation of inequality
(2.2.7)

As an example, function ε̃f (y) in (2.2.1) and the parameters are chosen ac-
cording to

ε̃f (y) =
1

30
cos2 y

10
. (H.0.1)

and d = 1, ϕ = 1.107, E0 = 1, εc = 1, εs = 1.7, ε0
f = 2.3, a = 0.01. Regarding

the transmission case, one obtains c2 = 61.32, I(0) = 0.319, so that ‖I0‖ =
0.32, according to (2.1.17), (2.1.23). The kernels K1,K2, defined by (F.0.3),
can be estimated by

0
0.25

0.5

0.75

10

0.25

0.5

0.75

1

0.334
0.336
0.338
0.34

0.342

0
0.25

0.5

0.75

Figure H.1: K1 from (F.0.3).

66



K1 =
8π2

30κ
sin 2κ(y − t) cos2 0.1t +

4π2

150κ2
sin2 κ(y − t) sin 0.1t cos 0.1t

≤ 8π2

κ
cos2 0.1t +

4π2

150κ2
sin2 κ(y − t), (H.0.2)

|K2| = |6π
2a

κ
sin 2κ(y − t)| ≤ 6π2a

κ
. (H.0.3)

As shown in figure H.1, K1(y, t) ≥ 0, 0 ≤ y, t ≤ d holds. Hence the norm
‖N1‖ (cf. (F.0.4)) can be calculated to yield ‖N1‖ = 0.34. According to
(H.0.3), (F.0.4) one obtains ‖N2‖ = 0.078. Inserting ‖I0‖, ‖N1‖, ‖N2‖ into
(2.2.7) this inequality is fulfilled, so that the sequence of iterate solutions
Ij(y) of equation (2.2.6) converges uniformly.
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Appendix I

Proof of the uniform
convergence of sequence (3.2.4)

The nonlinear operator F is considered

F (I) := I0c(y) + N1(I) + N2(I) + N3(I) + N4(I), (I.0.1)

where N1, N2, N3 and N4 are bounded integral operators in the Banach space
C[0, d]. These operators and I0c(y) are given by

N1(I) = −8π2

κ2

∫ y

0

sin 2κ(y − τ)ε̃R(τ)I(τ)dτ

N2(I) = −6aπ2

κ

∫ y

0

sin 2κ(y − τ)I2(τ)dτ

N3(I) =
4π2

κ2

∫ y

0

sin2 κ(y − τ)
dε̃R(τ)

dτ
I(τ)dτ

N4(I) =
24π4

κ

∫ y

0

ε̃I(z)ψ(y, t, z)I(z)dz

I0c(y) = Ĩ0(y) + c2

∫ y

0

sin2κ(y − t)

2κ
dt

−16π2c1

∫ y

0

sin2κ(y − t)

2κ

∫ t

0

ε̃I(z)dzdt, (I.0.2)

where constant c2 is from equation (2.2.8) and

ψ(y, t, z) =

∫ y

z

sin2κ(y − t)

2κ
{
∫ t

z

ε̃I(τ)dτ}dt. (I.0.3)
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The norms ‖N1‖, ‖N2‖, ‖N3‖, ‖N4‖, ‖I0c‖ are defined by

‖N1‖ =
8π2

κ2
max
0≤y≤d

∫ y

0

| sin 2κ(y − τ)| · |ε̃R(τ)|dτ

‖N2‖ =
6aπ2

κ
max
0≤y≤d

∫ y

0

| sin 2κ(y − τ)|dτ

‖N3‖ =
4π2

κ2
max
0≤y≤d

∫ y

0

| sin2 κ(y − τ)| · |dε̃R(τ)

dτ
|dτ

‖N4‖ =
24π4

κ
max
0≤y≤d

∫ y

0

|ε̃I(z)| · |ψ(y, t, z)|dz

‖I0c‖ = max
0≤y≤d

|I0c|. (I.0.4)

Then equation (3.2.3) can be rewritten in operator form

I(y) = F (I)(y). (I.0.5)

Let us consider R such that ‖I‖ = max
0≤y≤d

I(y) ≤ R. In order to satisfy the con-

ditions of the Banach Fixed-Point Theorem [39] it must be checked whether
operator F maps the ball SR(0) to itself. If I(y) ∈ SR(0) then

‖F (I)‖ ≤ ‖I0c‖+ ‖N1‖‖I‖+ ‖N2‖‖I‖2 + ‖N3‖‖I‖+ ‖N4‖‖I‖
≤ ‖I0c‖+ ‖N∗‖R + ‖N2‖R2 ≤ R, (I.0.6)

with
‖N∗‖ = ‖N1‖+ ‖N3‖+ ‖N4‖. (I.0.7)

This inequality holds for R from the interval

1− ‖N∗‖ −
√

(1− ‖N∗‖)2 − 4‖N2‖‖I0c‖
2‖N2‖ ≤ R

≤ 1− ‖N∗‖+
√

(1− ‖N∗‖)2 − 4‖N2‖‖I0c‖
2‖N2‖ (I.0.8)

and imply
‖N∗‖+ 2

√
‖N2‖‖I0c‖ < 1. (I.0.9)

For this R F (I) ∈ SR(0). Hence equation (I.0.5) has at least one solution
inside SR(0). F is contractive [39] in SR(0), because, if I1, I2 ∈ SR(0), then

‖F (I1)− F (I2)‖ = ‖N∗(I1 − I2) + N2(I
2
1 − I2

2 )‖
≤ ‖N∗‖‖I1 − I2 ‖ + ‖ N2‖‖I1 − I2‖‖I1 + I2‖
≤ ‖N∗‖‖I1 − I2‖+ 2R‖N2‖‖I1 − I2‖
= (‖N∗‖+ 2R‖N2‖)‖I1 − I2‖.

(I.0.10)
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Thus the inequality
‖N∗‖+ 2R‖N2‖ < 1 (I.0.11)

holds and thus the contraction of F . Inequality (I.0.11) is satisfied if (I.0.9)
holds. Hence one can conclude [39] that the iteration procedure (3.2.4),
(3.2.5) converges uniformly on [0, d].
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Appendix J

Proof of the uniform
convergence of iteration
sequence for (4.1.3)

The nonlinear operator F is considered

F (I) := I0s(y) + N1(I) + N2(I) +
1

r
N3(I) +

1

r2
N4(I) +

1

r2
N5(I), (J.0.1)

where N1, N2, N3, N4 and N5 are bounded integral operators in the Banach
space C[0, d]. These operators and I0s(y) are given by

N1(I) =
4π2

κ2

∫ y

0

sin2 κ(y − τ)
dε̃f (τ)

dτ
I(τ)dτ

N2(I) = −8π2

κ

∫ y

0

sin 2κ(y − τ)ε̃f (τ)I(τ)dτ

N3(I) = −8π2

κ

∫ y

0

sin 2κ(y − τ)I(τ)dτ

N4(I) = −4π2

κa

∫ y

0

sin 2κ(y − τ)
1

1 + arI(τ)
dτ

N5(I) =
4π2

κa

∫ y

0

sin 2κ(y − τ) ln(1 + arI(τ))dτ

I0s(y) = Ĩ0(y) + (c2 − 16π2

ar2
)
sin2 κy

2κ2
, (J.0.2)

where constant c2 is from equation (4.1.5).
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The norms ‖N1‖, ‖N2‖, ‖N3‖, ‖N4‖, ‖N5‖, ‖I0s‖ are defined by

‖N1‖ =
4π2

κ2
max
0≤y≤d

∫ y

0

| sin2 κ(y − τ)| · |dε̃f (τ)

dτ
|dτ

‖N2‖ =
8π2

κ
max
0≤y≤d

∫ y

0

| sin2 κ(y − τ)| · |ε̃f (τ)|dτ

‖N3‖ =
8π2

κ
max
0≤y≤d

∫ y

0

| sin2 κ(y − τ)|dτ

‖N4‖ =
4π2

κa
max
0≤y≤d

∫ y

0

| sin 2κ(y − τ)|dτ

‖N5‖ =
4π2

κa
max
0≤y≤d

∫ y

0

| sin 2κ(y − τ)|dτ

‖I0s‖ = max
0≤y≤d

|I0s|. (J.0.3)

The norms ‖N4‖, ‖N5‖ of the operators N4(I) and N5(I), respectively, are
equal. In following for the both norms only the determination ‖N4‖ will be
used.

Equation (4.1.3) can be rewritten in operator form

I(y) = F (I)(y). (J.0.4)

Let us consider R such that ‖I‖ = max
0≤y≤d

I(y) ≤ R. In order to satisfy the con-

ditions of the Banach Fixed-Point Theorem [39] it must be checked whether
operator F maps the ball SR(0) to itself. If I(y) ∈ SR(0) then

‖F (I)‖ ≤ ‖I0s‖+ ‖N1‖ · ‖I‖+ ‖N2‖ · ‖I‖+
1

r
‖N3‖ · ‖I‖

+
1

r2
‖N4‖ · 1

1 + ar min
0≤y≤d

I(y)
+

1

r2
‖N4‖ · ar‖I‖

≤ ‖I0s‖+ ‖N1‖ ·R + ‖N2‖ ·R +
1

r
‖N3‖ ·R +

1

r2
‖N4‖

+
a

r
‖N4‖ ·R < R. (J.0.5)

‖I0s‖+
1

r2
‖N4‖+ (‖N1‖+ ‖N2‖+

1

r
(‖N3‖+ a‖N4‖)) ·R < R. (J.0.6)

This inequality holds if

‖I0s‖+ 1
r2‖N4‖

1− (‖N1‖+ ‖N2‖+ ‖N3‖+a‖N4‖
r

)
< R, (J.0.7)
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‖N1‖+ ‖N2‖+
‖N3‖+ a‖N4‖

r
< 1. (J.0.8)

Thus for R, which satisfy condition (J.0.7), F (I) ∈ Sρ(0). Hence equation
(F.0.5) has at least one solution inside SR(0).

The iteration procedure for (4.1.3) convergence on [0, d] uniformly, if operator
F is contractive [39]. To prove the contraction of F the following difference
is considered

F (I1)− F (I2) = N1(I1 − I2) + N2(I1 − I2) + N3(
1

r
(I1 − I2)) +

N4(I1 − I2) + N5(I1 − I2), ⇒ (J.0.9)

‖F (I1)− F (I2)‖ ≤ ‖N1‖‖I1 − I2‖+ ‖N2‖‖I1 − I2‖+

‖N3‖‖1

r
(I1 − I2)‖+ ‖ 1

r2
N4(I1 − I2)‖+ ‖ 1

r2
N5(I1 − I2)‖ (J.0.10)

The following terms are considered to be estimated:

1) ‖ 1

r2
N4(I1 − I2)‖ ≤ max

0≤y≤d

4π2

κar2

∫ y

0

| sin 2κ(y − τ)| ·
∣∣∣∣

1

1 + arI1(τ)
− 1

1 + arI2(τ)

∣∣∣∣ dτ =

max
0≤y≤d

4π2

κar2

∫ y

0

| sin 2κ(y − τ)| ·
∣∣∣∣

arI2(τ)− arI1(τ)

(1 + arI1(τ))(1 + arI2(τ))

∣∣∣∣ dτ

≤ 1

r
max
0≤y≤d

4π2

κ

∫ y

0

| sin 2κ(y − τ)|dτ · ‖I1 − I2‖, (J.0.11)

hence

‖ 1

r2
N4(I1 − I2)‖ ≤ ‖N4‖

r
· ‖I1 − I2‖. (J.0.12)

2) ‖ 1

r2
N5(I1 − I2)‖ ≤ max

0≤y≤d

4π2

κar2

∫ y

0

| sin 2κ(y − τ)| ·
|ln(1 + arI1(τ))− ln(1 + arI2(τ))| dτ. (J.0.13)

Let us consider the difference of ln in the equation (J.0.13)

|ln(1 + arI1)− ln(1 + arI2)| =
∣∣∣∣ln

1 + arI1

1 + arI2

∣∣∣∣

=

∣∣∣∣ln
(

1 +
ar(I1 − I2)

1 + arI2

)∣∣∣∣ ≤ ar‖I1 − I2‖, (J.0.14)
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which implies

‖ 1

r2
N5(I1 − I2)‖ ≤ 1

r2
· ‖N4‖ · ar · ‖I1 − I2‖ =

a‖N4‖
r

‖I1 − I2‖. (J.0.15)

Thus from equation (J.0.10) one obtains

‖F (I1)− F (I2)‖ ≤ (‖N1‖+ ‖N2‖+
‖N3‖

r
+
‖N4‖

r
+

a‖N4‖
r

)

·‖I1 − I2‖
= (‖N1‖+ ‖N2‖+

‖N3‖+ (1 + a)‖N4‖
r

) · ‖I1 − I2‖. (J.0.16)

According to inequality (J.0.16), contraction of F holds if the following con-
dition is satisfied

‖N1‖+ ‖N2‖+
‖N3‖+ (1 + a)‖N4‖

r
< 1. (J.0.17)

Hence one can conclude [39] that the iteration procedure for (4.1.3) converges
uniformly on [0, d].
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Appendix K

Proof of the uniform
convergence of iteration
sequence for (5.1.3)

The proof of the uniform convergence of iteration sequence for (5.1.3) follows
the lines of the proof in Appendix E. The additional term, associated to the
imaginary part of permittivity function ε̃I(y), must be taken into account.
After some algebra, the final condition of uniform convergence reads

‖N1‖+ ‖N2‖+ ‖Nc‖+
‖N3‖+ (1 + a)‖N4‖

r
< 1, (K.0.1)

where

‖Nc‖ =
24π4

κ
max
0≤y≤d

∫ y

0

|ε̃I(z)| · |ψ(y, t, z)|dz, (K.0.2)

with ψ(y, t, z) from equation (I.0.3).
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Appendix L

Complex constant of
nonlinearity for the Kerr-like
nonlinear case

For the Kerr-like nonlinear dielectric film with a complex constant of nonlin-
earity a = aR + iaI the permittivity in the Helmholtz equation is modelled
by a complex-valued function according to

εf = εf (y) + (aR + iaI)E
2(y), 0 < y < d, (L.0.1)

with real constants aR, aI .

Following the lines of section 3.1.1 one obtains in place of equations (3.1.2)),
(3.1.3))

d2E(y)

dy2
− E(y)

(
dϑ(y)

dy

)2

+
[
4π2εf (y) + aRE2(y)

]
E(y) = 0 (L.0.2)

and

E(y)
d2ϑ(y)

dy2
+ 2

dϑ(y)

dy

dE(y)

dy
+ 4π2aIE

3(y) = 0. (L.0.3)

Equation (L.0.3) can be integrated leading to (cf. equation (3.1.4))

E2(y)
dϑ(y)

dy
= c1 − 4π2aI

∫ y

0

E4(τ)dτ,

so that the following steps of the method can be done leading to the corre-
sponding Volterra equation.
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