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1 Introduction

Regard the following optimal stopping problem: Suppose a �nite number n of
objects are presented sequentially and are identi�ed by the numerical values
of independent random variables X1;X2; : : : ;Xn. A gambler gets the true
values of these o�ers and pretends to select one according to a nonanticipating
stopping time S in order to maximize his payo�. If he rejects an o�er it can
never be recalled. The payo� function f depends on the gambler's choice
XS and on the overall maximum Yn := X1 _ � � � _Xn, which emerges in the
very end. Intuitively f should obey certain monotonicity criteria. Evidently
the overall maximum Yn is not known in advance by the gambler, who is
uninformed about future values, but it would be chosen by a prophet, who
is equivalent to a gambler with complete foresight.
Regarding the abilities of the gambler this means to maximize the functional

E (f (XS ; Yn))

with respect to nonanticipating stopping times S, where the approach is
based on the gambler's mean payo� regarding repeated sequential selection.
The gambler is informed about n, f and the joint distribution of the o�ers.

This full information optimal stopping problem arises from subsequent cases:
In the discrete time full information best choice problem of Gilbert and
Mosteller [18] or Bojdecki [6] the payo� in every realization is either 0 for
failure or 1 for a win (i.e. 1 only if XS = Yn). Suppose for example that
as requirement for a win at least 80% of the overall maximum Yn would be
suÆcient. More general an o�er x is called r{candidate if x � r(Yn), where
the socalled relax function r lies below identity. The objective now is to
maximize the probability of selection of an r{candidate | a full information
good choice problem due to relaxed demands.
Another application of the presented functional is given by the ratio of gam-
bler's choice and prophet's value, i.e. maximization of E (XS=Yn).
Finally an interesting problem in this setting is to maximize the duration
of owning an r{candidate. Here the payo� function additionally depends on
the time S of selection. This represents an extension of the full information
case of the duration problem given by Ferguson et al. [14].

Resumed in every realization a chosen o�er is measured at the end by the
overall maximum, the gambler's choice being assessed by the prophet's value.
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Abstract

Reviewing �rst connections to the literature then in chapter 2 for a �nite
number of stochastically independent o�ers a payo� function is considered,
depending on the chosen value XS and on the overall maximum Yn | subject
to conditions which ensure the regular case, including dependence on the time
S of selection. An optimal stopping time is indicated. As a main subproblem
optimal selection of an r{candidate is treated, which includes the asymptotic
value in special cases, the inspection of diverse suboptimal stopping times
and an extension to a Markov process. Particularly the asymptotic value of
sequences of concurrent threshold rules is derived, the myopic stopping time
is speci�ed and the access of the gambler is restricted in a sense. Another
subproblem is presented by the mean of the ratio of the gambler's choice and
the prophet's value, where again threshold rules are studied also.
Subsequent in chapter 3 the environment is extended to a random number
of observations: O�ers arrive at random times, the periods between arrivals
being iid, and the horizon up to which items can be accepted is �xed or
random. Concerning �xed horizon for the arrival times stress is layed on the
geometric distribution and the exponential distribution, where the problem
is verifed to be regular and an optimal stopping time is indicated. For the
latter resp. for the Poisson process, referring to selection of an r{candi-
date, the myopic stopping time is considered and asymptotic equivalence to
discrete time is displayed. For a random horizon, referring to selection of an
r{candidate, some small cases are worked out and an optimal stopping time
is described in the twice exponential as well as in the twice geometric case.
In situations where an optimal stopping time seems to be inaccessible due to
failure of the regular case the myopic stopping time is speci�ed.
Finally in chapter 4 the concept of an r{candidate is applied to the dura-
tion problem, wherefore a distinction between an overall and a temporary
r{candidate makes sense. First the duration of owning an r{candidate is
investigated for a �nite number of o�ers where with regard to recall the my-
opic stopping time is veri�ed to be optimal and the asymptotic behaviour is
described. Then the duration problem with discounted epochs is resolved.
Farther the duration of owning an r{candidate is considered for the Poisson
process, where the horizon is taken to be �xed or exponentially distributed.
Concerning the former case three kinds of access are distinguished: No recall,
permanent recall and event time recall. Optimal stopping times are speci�ed
if the problem proves to be regular, otherwise its borders are indicated.
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Connections to the Literature

The stochastic optimization problems treated in this thesis are optimal stop-
ping problems based on full information. Particularly for the case of selection
of an r{candidate relations to signi�cant problems in the literature are illus-
trated below, where the order is full information problems �rst, then some
links to related no information cases are given and third topics related to
this thesis in the broader sense are mentioned. Finally survey literature is
given and some signi�cant directions of variants of related sequential selec-
tion problems is listed.

The full information best choice problem for a �nite number of o�ers is given
in Gilbert and Mosteller [18] (section 3), being based on heuristic arguments
and including several rami�cations. An exact solution thereof is published by
Bojdecki [6], which also contains the corresponding problem for the Poisson
process with �nite horizon, while the compact version of the latter case in
Gnedin and Sakaguchi [21] includes the speci�cation of the value as a func-
tion of the arrival rate. The case of the Poisson process with random horizon
is available in Bojdecki [5]. The full information best choice problem with a
random number of o�ers in discrete time is given in Porosinski [24]. These
articles correspond with the case r � id of optimal selection of an r{candi-
date of this thesis.

In the no information best choice problem, the classic secretary problem,
items only can be ranked by the gambler. The case with a �nite number of
secretaries is for example presented in Shiryaev [32] and a random number
of o�ers in discrete time with island solutions is studied Presman and Sonin
[25]. The secretary problem in the situation of a Poisson process is given in
Cowan and Zabczyk [10].
The kind of assessment investigated in this thesis, particularly the case of
�nite valued payo�, bears analogy to the no information problem of Yeo and
Yeo [38]: A �nite number of secretaries, rankable without ties, are associated
with nonincreasing weights according to their ranks and presented in order
to select, without recall, a secretary for a single position with the aim of
maximization of the weighted probability. Explicit expressions are found for
main probabilities and numerical methods are required for optimization.
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Numerical methods for calculation of the value of maximizing the functional
f(S;XS), where S denotes the stopping time, for a Markov chain without
restrictions are presented in Darling [12].
In Chen and Starr [8] selection without replacement from an urn, �lled with
balls numbered serially, is treated: A gambler intends to select a number with
recall in order to maximize functional E (f(S; YS)), where S is the stopping
time and YS denotes the present maximum number. The payo� function,
nonincreasing resp. nondecreasing in the �rst resp. second component, obeys
conditions which ensure the myopic stopping time to be optimal.
In the �eld of prophet theory, see Harten et al. [22], the main approach
is to compare the mean of the gambler's win and that of the prophet with
regard to speci�c sets of joint distributions of the o�ers, whereas in this
thesis and in the literature it is based on the gambler and the prophet are
compared directly for each realization, which may be called maximization
regarding (the mean of) repeated selection or maximization of a functional.
Particularly the payo� functional E (XS=Yn) treated in section 2.2 may be
an appendage for ratio prophet inequalities.
There is also a relation to the optimal multivariate stopping problem of
Assaf and Samuel{Cahn [2], where h(E(X(S))) with d{dimensional random
vectors X(1); : : : ;X(n) is the functional (based on d cooperating partners
for each component). This value is compared with the socalled classical case
E(h(X(S))), the stopping time S referring to gamblers and to prophets.
Dependence structures of X(1); : : : ;X(n) are mentioned there in remark 4.4
and in case of E(h(X(S))) this relates to the subject of this thesis.
Two player competitive situations are studied in game theory with zero sum
game interpretation, see Sakaguchi [29]. Players are provided with di�erent
information referring to the values of the o�ers (e.g. complete foresight ver-
sus nonanticipation), the abilities of access is speci�ed (e.g. recall and no
recall) and a dominance or decision rule for joint access is declared.

A survey concerning the secretary problem and its rami�cations may be
found in chapter 16 of the handbook edited by Ghosh [16], in the reviews
of Freeman [15] and a discussion thereof in Ferguson [13]. In Sakaguchi [29]
there is a survey concerning game theory with two players. A more general
view to optimal stopping referring to choice theory is given in Gnedin [19].
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Subsequent signi�cant variants of optimal stopping problems related to this
thesis are listed, including references to some exemplary articles:

� The mode of sequential presentation of o�ers:
A �xed or a random number of o�ers in discrete time or continuous
time with random interarrival times and with �xed or random horizon.

� Connection resp. joint distribution of the o�ers:
iid, independence, Markovian, correlation and dependencies.

� Changes in the grade of information a gambler is provided with:
No, full and partial information (for the latter for instance imperfect
observation referring to excess of a speci�ed level, Sakaguchi [28], or
knowledge of a subset of continuous distributions, Petruccelli [23], or
information about exchangeability, the game of gogool, Gnedin [19]).

� Enlargement or reduction of access of a gambler to o�ers:
Allowance of recall, restricted recall or limited recall (i.e. memory,
Tamaki [37]), an object may be unavailable (Ano [1]) and the number
of available o�ers is restricted by random freeze (Samuel{Cahn [31]).

� Comparability of o�ers:
Ordinal structure of presented variants (Gnedin [20]) and o�ers may
not possess a total order (Stadje [33]).

� Variation of the functional:
Relaxations and variants of best choice problems: Maximizing the prob-
ability of choosing at least the k{th best (Sakaguchi and Szajowski
[30]), the best and second best (Tamaki [36]) or the k{th best o�er
gets weight wk (nonincreasing, Yeo and Yeo [38]).
Maximizing the expected value (for instance Shiryaev [32]), minimiz-
ing the expected rank (Assaf and Samuel{Cahn [3]) and the payo� may
respect costs of observations (Stadje [35]). The duration of owning a
suÆciently good o�er (no and full information in Ferguson et. al. [14]).

� Several choices or gamblers:
Multiple choice (Stadje [34]), collective choice and payment for coop-
erative gamblers (Assaf and Samuel{Cahn [2]) and game theory with
competitive players, speci�c information structures and selection crite-
ria (Sakaguchi [29]).
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2 Optimal Selection in Discrete Time

In this chapter a �nite number of objects is presented sequentially whereof a
gambler intends to choose one in order to maximize a given payo� function.
The gambler watches out for his pro�t regarding repeated selection, which is
equivalent to maximize the mean payo� referring to his strategy.

Mathematical Model

Based on a probability space (
;A;P) let X1;X2; : : : denote a sequence of iid
random variables with continuous distribution function. These are o�ers pre-
sented sequentially to a gambler. Let Yk := maxfX1; : : : ;Xkg, k 2 N, denote
relative maxima. Set additionally X0 := X1 := 0. Let Fk := � (X0; : : : ;Xk)
contain information unil time k 2 Z+ and let F := (Fk)k2Z+ represent the
�ltration. Let S denote the set of stopping times with respect to F , i.e.
random variables S with P (S 2Z+) = 1 and [Sk � k] 2 Fk for k 2 Z+.
Let the horizon 1 < n 2 N for selection be �xed. The payo� function f
performs the assessment of the gambler's choice by the value of the prophet:
Pro�t f(Xk; Yn) is payed to the gambler, if he selects the k{th object Xk

and if �nally the overall maximum Yn occurs. It is assumed that the joint
distribution of the o�ers, the number n of objects presented and the payo�
function f are familiar to the gambler. Furthermore from now on the values
X1;X2; : : : of the o�ers are supposed to be uniformly distributed on [0; 1],
where an equivalence to other distributions is mentioned in the paragraph on
pages 17f. The payo� function f is assumed to be bounded and monotone
according to assumptions (1) below.
The corresponding optimal stopping problem Pn = Pn (f; U([0; 1])) for n 2 N
(n = 1 is allowed for convenience) is to �nd the value of the problem

sup
S2Sn

E (f (XS ; Yn))

and, if possible, �nd a stopping time in Sn attaining this value; here Sn � S
denotes the set of stopping times with respect to F which don't exceed n.
The value chosen by the gambler is XS := XS(!)(!) for ! 2 
 and S 2 S.
For each stopping time S 2 Sn let vn(S) := E (f(XS ; Yn)) denote the
mean payo� applying S, the value of S. The value of Pn is abbreviated by
v�n := supS2Sn vn(S). The asymptotic value of (Pn)n2N is v�1 := limn!1 v�n,
provided this limit exists.
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Suppose k o�ers are presented to a gambler, 1 � k � n. Then next to the
number k only the values of Xk and Yk�1 represent signi�cant information
of the gambler. This information is covered by Markov process (time ho-
mogenous by the corresponding time space process) and thus problem Pn
corresponds to optimal stopping of Z := (Zk)k2Z+: Initial state Z0 := �0,
Zk := (k;Xk; Yk) for k = 1; : : : ; n, and �nal state Zk := �1 for k > n. Let
� := f(x; y) 2 [0; 1]2 : x � yg and let E := f1; : : : ; ng ��. The state space
of Z then is E[f�0; �1g and transition probabilities are evident. The payo�
function is g(k; x; y) := f(x; y_Xk+1_� � �_Xn), where g(�0) := 0 =: g(�1).

The state space is � if the point in time is �xed. In this and in the subsequent
chapter the payo� function f is assumed to be bounded on � and

f(x; y) is nondecreasing in x

f(x; y) is nonincreasing in y (1)

f(z; z) is nondecreasing in z;

where (x; y) 2 � and z 2 [0; 1]. Thus f is measurable. Without loss of
generality the range of f is [0; 1] and f(0; 1) = 0. Intuitively the payo�
f(x; y) should be nondecreasing in the gambler's choice x and nonincreasing
in the prophet's value y. To motivate the third assumption suppose payo�
function x(1 � y), which only violates the monotonicity condition on the
diagonal. Then it might be advisible for the gambler to reject a big value
Xk (close to 1, the value maximal possible) only because it is a new present
maximum, i.e. because Xk > Yk�1, which isn't reasonable.
For the proof that Pn is regular (de�nition see below) the payo� function
will additionally be allowed to depend on the time of selection.

For later reference an abstract of notations (put in italic) and facts concerning
optimal stopping of a discrete time stochastic process is given:

General Approach of Optimal Stopping and Notations

Let a stochastic process Z := (Zk)k2Z+ be observed sequentially by a gambler.
The state space of Z is assumed to be E � Rj, j 2 N, equipped with Borel
sets and the corresponding �ltration is denoted by F := (Fk)k2Z+, whereFk := � (Z0; : : : ; Zk) for k 2Z+. Let h : E ! [0; 1] denote a payo� function,
especially bounded. Set Z1 := �1 and h(�1) := 0. The objective is to �nd
the value v(e) := supS2S E (h(ZS) j Z0 = e) for e 2 E, where S denotes the
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set of stopping times with respect to F , i.e. event [S � k] 2 Fk for k 2 Z+.
Particularly the aim is to specify, if possible, a stopping time S� 2 S such
that v(e) = E (h(ZS�) j Z0 = e) for e 2 E, then S� is called optimal. S 2 S
is called suboptimal if merely v(e) � E (h(ZS) j Z0 = e) is ensured.
This approach is adapted to problem Pn, where a future maximummay a�ect
the payo� by setting Zk := (k;Xk; Yk;E (f(Xk; Yn) j Xk; Yk)) for k 2 N and
h(Zk) := E (E (f(Xk; Yn) j Xk; Yk)), the mean of the fourth component.
The optimal stopping problem is called monotone if �0 � �1 � �2 � � � �
where �k := fe 2 E : h(e) � E (h(Zk+1) j Fk; Zk = e) for k 2 Z+, which is
a notation introduced by Chow et al. [9].
The principle of backward induction is displayed for the general case of an in-
�nite sequence due to subsequent chapters: For k 2Z+ let Sk denote the set
of stopping times S with respect to F with k � S. For k 2 Z+ the random
variables Wk := ess supS2Sk E (h(ZS) j Fk) are integrable (due to bounded
payo�). They satisfy the relation Wk = maxfh(Zk); E (Wk+1 j Fk)g for
any k 2 Z+. Furthermore the sequence (Wk)k2Z+ yields a minimal su-
permartingale dominating (h(Zk))k2Z+ (due to nonnegative payo�). Then
S� := inffk 2Z+ : h(Zk) = Wkg, where inf; :=1 yields payo� h(�1) = 0,
represents an optimal stopping time i� P (S� <1) = 1. A proof is given in
section 1.5 of Gihman and Skorohod [17]. Randomization of stopping times
doesn't increase the value, since in the �nite case the initial step and there-
fore any step of the backward induction would yield the same and in the
general case the essential supremum doesn't change (modulo the probability
measure) by regarding the speci�c realizations.
From now on suppose that Z is a discrete time Markov process.
Then Wk represents the value within Sk given Zk = e for �xed e 2 E
(specifying the signi�cant information of Fk), which is denoted by vk(e) for
k 2 Z+. Now stopping sets �k := fe 2 E : h(e) = vk(e)g for k 2 Z+ are
de�ned whose �rst hitting time is optimal if it is �nite almost surely. The
problem is called regular or the regular case is valid if �0 � �1 � �2 � � � �.
The myopic stopping time or one step look{ahead rule compares stopping
versus proceeding one step, which formally represents the �rst hitting time
of �k := fe 2 E : h(e) � (Pkh)(e)g for k 2 Z+ where (Pkh)(e) :=
E (h(Zk+1) j Zk = e) for e 2 E (take in�nity if �0;�1; : : : are never entered).
This myopic stopping time turns out to be optimal in several well{known
cases (eventual �rst suitable transformation). A suÆcient criterion for opti-
mality of the myopic stopping time is that its stopping sets prove to be closed
and realizable: P (Zj 2 �j 8j > k j Zk = e) = 1 for e 2 �k and k 2 Z+ and
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P (9j 2Z+ : Zj 2 �j) = 1 | i.e. the stopping sets �0;�1; : : : are reached
sometime and then never left each with probability 1, in a sense a Markov
version of the monotone case. This notation is subject to Porosinski [24]
and a proof for suÆciency is given in Cowan and Zabczyk [11], where the
situation is an embedded, discrete time Markov process and suÆcient for
realizability is that the myopic stopping time is �nite or that h(Zk) vanishes
as k !1, each with probability one.
In case of a homogenous Markov process Z, which is achievable by intro-
ducing the corrsponding time space process, the notation is as follows: The
�rst hitting time of the set fe 2 E : h(e) = v(e)g is optimal if it is �nite
almost surely. The myopic stopping time is the �rst hitting time of the set
fe 2 E : h(e) � (Ph)(e)g, where P now is independent of time k 2Z+.

An Optimal Stopping Time

Referring to the preceding paragraph the existence of an optimal stopping
time for problem Pn is ensured via backward induction. For state (x; y) 2 �
and time 1 � k < n the mean payo� of stopping and that of proceeding
optimally depends on the number ` := n � k of draws remaining rather on
n and k, since ` speci�es the distribution of Xk+1 _ � � � _ Xn. Thus given
(x; y) 2 � and ` 2Z+ subsequent functions apply for n and k with n�k = `.

De�nition 2.1 Let state (x; y) 2 � be given and suppose ` 2 Z+ items
remain, referring to problem Pn with n > `. The mean payo� of stopping in
this situation is denoted by

s`(x; y) := E (f(x; Yn) j Xn�` = x; Yn�` = y) :

The mean payo� of proceeding at least one step and then selecting optimally
is c0 :� 0 if ` = 0 and otherwise

c`(x; y) := E (f(XiS
�; Yn) j Xn�` = x; Yn�` = y; S� > n� ` optimal ) :

The mean payo� of an optimal decision or the value of (x; y) is denoted by

v`(x; y) := maxfs`(x; y); c`(x; y)g :

The subsequent lemma is evident:
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Lemma 2.2 Let (x; y) 2 � be given and let ` 2Z+. Then

i) s`(x; y) is nonincreasing in `, nondecreasing in x and nonincreasing in
y and

s`(x; y) =

Z 1

0

f(x; y _ �) d�` = y`f(x; y) +

Z 1

y

f(x; �) d�`:

Particularly s`(x; y) is increasing in x with x � y if f(x; y) is.

ii) c`(x; y) = c`(y) is nonincreasing in y and for ` 2 N the relation

c`(y) =
R y
0
v`�1(�; y) d� +

R 1

y
v`�1(�; �) d� is valid.

iii) v`(x; y) = maxfs`(x; y); c`(y)g.
Evidently for �xed ` 2 N function c`(y) can't increase in y since the de-
mands for future selection grow. On the other hand for �xed y in general the
sequence (c`(y))`2N isn't monotone.

Lemma 2.3 The optimal stopping problem Pn(f) is regular.
The proof is shifted to lemma 2.9, where independent o�ers with varying
continuous distribution function and time dependent payo� are treated.

The following observation proves to be crucial: If it is optimal to stop in
state (x; y) 2 � where ` 2 Z+ items remain, then it is also optimal to stop
in any state (�; y _ �) for � 2 (x; 1] | due to f(x; y) � f(�; y _ �), i.e.
s`(x; y) � s`(�; y _ �), and due to c`(y) � c`(y _ �). Therefore the following
rule speci�es an optimal stopping time for problem Pn(f): \For �xed k and y
stop if x exceeds a certain value b�, otherwise continue" | here b� depends on
y and on ` := n�k (the number of draws left, which identi�es the distribution
of Xk+1 _ � � � _Xn). The following notation is used:

Notation 2.4 A boundary function b` : [0; 1] ! [0; 1], combined for ` =
n � 1; : : : ; 0, is an instruction to specify a stopping time S which considers
the present maximum: S := inff1 � k � n : Xk � bn�k(Yk)g (set inf; :=1
with resulting payo� 0 almost surely due to X1 = 0).

Thus for a number ` 2 Z+ of remaining o�ers and for present maximum
y 2 [0; 1] there is a unique critical value b�`(y) such that it is optimal to select
the topical item x if x � b�`(y) | b�` is called optimal boundary function.
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De�nition 2.5 Sequence of optimal boundary functions (b�` (y))`2Z+:
Let b�0 :� 0 on [0; 1]. For ` 2 N let

b�` (y) := inf fx 2 [0; 1] : s`(x; y _ x) � c`(y _ x)g :
The corresponding optimal stopping sets ��

` for ` 2Z+ are de�ned by

��
` := f(x; y) 2 � : x � b�` (y)g :

In addition socalled lower boundary points (b`)`2Z+ are introduced:

b` := inf fx 2 [0; 1] : s`(x; x) � c`(x)g :
Sets for in�ma in the de�nition above are nonempty, since s`(1; 1) � c`(1).
The lower boundary point b` represents a threshold for selection of a new
present maximum Yn�` while applying optimal behaviour.
According to lemma 2.3 the regular case guarantees b�0 � b�1 � b�2 � � � � or

��
0 � ��

1 � ��
2 � � � � :

Therefore c`(y) can be expressed by b�`�1(y); : : : ; b
�
0(y), at least for certain y:

Lemma 2.6 Let (x; y) 2 � and let ` 2 N. Let b�j (y) for j = ` � 1; : : : ; 0 be
given. Then for y 2 [b`�1; 1] the following holds (set

Q
; := 1):

c`(y) =
`�1X
i=0

 
`�1Y

j=i+1

b�j(y)

!
�
Z 1

b�i (y)

si(�; y _ �) d�: (2)

Proof: Due to monotonicity of the optimal boundary functions b�`(y)

c`(y) =

Z b�`�1(y)

0

c`�1(y) d� +
Z 1

b�`�1(y)

s`�1(�; y _ �) d�

= c`�1(y)b�`�1(y) +
Z 1

b�`�1(y)

s`�1(�; y _ �) d�

= c`�2(y)b�`�2(y)b
�
`�1(y) +

b�`�1(y) �
Z 1

b�`�2(y)

s`�2(�; y _ �) d� +

Z 1

b�`�1(y)

s`�1(�; y _ �) d�

: : : =
`�1X
i=0

 
`�1Y

j=i+1

b�j(y)

!
�
Z 1

b�i (y)

si(�; y _ �) d�
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by iteration, respecting c0 � 0. The smallest y this identity holds is b`�1,
since b�`�1(z) > z for z 2 [0; b`�1). 2

This lemma now permits a recursive representation of the optimal boundary
functions:

Theorem 2.7 Let ` 2 N. For y 2 [0; 1] suppose s`(x; y) is continuous and
increasing in x and let s�1` (x; y) denote its unique inverse with respect to x,
both for x � y. Then

b�`(y) = s�1`

 
`�1X
i=0

 
`�1Y

j=i+1

b�j(y)

!
�
Z 1

b�i (y)

si(�; y _ �) d� ; y

!

for y 2 (b`; 1] and b�` (y) = b` constant for y 2 [0; b`].
The optimal stopping sets ��

` now are identi�ed according to de�nition 2.5.
If s`(�; y) isn't continuous and increasing, the in�mum of those values x such
that s`(x; y) � c`(y) has to be speci�ed.
SuÆcient criteria for increase of s`(�; y): f(�; y) increasing on � (section 2.2)
or at least inside a subset of � (with boundary conditions, see section 2.1).
While b�` (y) equals constant b` for y � b`, for y > b` it may �rst increase or
decrease: As examples based on section 2.1 take r 2 R where r(b`) = b` resp.
r(b`) < b`. The behaviour of function b

�
` concerning monotonicity is exposed

regarding �nite valued payo�, see the corresponding paragraph on page 34.
Besides any stopping time using at each case b�` (y) as boundary value, wether
applying x > b�`(y) or x � b�`(y), is optimal (more general modifying ��

` on
a nullset doesn't a�ect optimality).

General Distribution Function

Regard problem Pn, where X1; : : : ;Xn are independent and distributed ac-
cording to a continuous distribution function F , which is familiar to the
gambler. Suppose F is increasing on R := fx 2 R : 0 < F (x) < 1g, other-
wise adapt ranges of F and the payo� function accordingly (which doesn't
a�ect monotonicity). Set �R := f(x; y) 2 R2 : x � yg. A payo� function f
with respect to F means f : �R ! [0; 1] with monotonicity properties ana-
logue to assumptions (1). Let Pn(f; F ) denote the optimal stopping problem
with distribution function F with corresponding payo� function f . Let F�1

denote the unique continuous inverse of F : R! [0; 1].
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Theorem 2.8 Let 1 < n 2 N and let random variables eX1; : : : ; eXn be given,
which are iid with distribution function F according to the description above.
Let eYk := maxf eX1; : : : ; eXkg for k = 1; : : : ; n. Let ef denote a payo� function

with respect to F . Regard the optimal stopping problem Pn( ef; F ): Maximize

E
� ef( eX

eS ;
eYn)�, where eS represents a nonanticipating stopping time with re-

spect to eX1; : : : ; eXn.
Let eS� := inff1 � k � n : eXk � eb�n�k(eYk)g denote an optimal stopping time.
Let S� := inff1 � k � n : Xk � b�n�k(Yk)g denote an optimal stopping time
of the optimal stopping problem Pn(f; U([0; 1]) with related payo� function

f(x; y) := ef (F�1(x); F�1(y)) for (x; y) 2 �.
Then the values of either stopping problem coincide andeb�n�k(y) = F�1(b�n�k(F (y))) (3)

where y 2 R for k = 1; : : : ; n.

Proof: Let Xk := F ( eXk) � U([0; 1]) for k = 1; : : : ; n, which are iid. Payo�
function f evidently meets the monotonicity properties (1).

Let eS denote a stopping time for Pn( ef ; F ) with boundary functions ebn�k(y)
where y 2 R for k = 1; : : : ; n: eS := inff1 � k � n : eXk � ebn�k(eYk)g. De�ne
corresponding dual boundary functions bn�k(y) := F (ebn�k(F�1(y))) where
y 2 [0; 1] for k = 1; : : : ; n, specifying a stopping time S for Pn(f; U([0; 1]).
Then eS = S, because [ eXk � ebn�k(eYk)] i� [F�1(Xk) � F�1bn�kF (F�1(Yk))]
i� [Xk � bn�k(Yk)] for k = 1; : : : ; n. Thus eX

eS = F (XS).
Let Eb (�) denote the expectation corresponding to boundary functions bn�k(y),
k = 1; : : : ; n, for Pn(f; U([0; 1])). Eeb (�) accordingly for Pn( ef; F ). LetGk(x; y)

(resp. eGk(x; y)) denote the joint distribution function of (Xk; Yn) (resp. of

( eXk; eYn)) given S = k (resp. eS = k). Then the value of S and eS coincide:

E
eb

� ef( eX
eS ;
eYn)� =

nX
k=1

P
�eS = k

�Z
�R

ef(x; y) d eGk(x; y)

=
nX

k=1

P (S = k)

Z
�R

ef (x; y) dGk(F (x); F (y))

=
nX

k=1

P (S = k)

Z
�

ef(F�1(x); F�1(y)) dGk(x; y)

= Eb (f(XS ; Yn))
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according to the theorem \change of variable" in an integral. Since the values
vn(S) and vn(eS) are equal for particular, related stopping times and since
an optimal stopping time is of the stated form, the values of the stopping
problems coincide and relation (3) applies. 2

Now let X1; : : : ;Xn be independent and let Fk denote the distribution func-
tion of Xk, which is continuous and increasing on fx 2 R : 0 < Fk(x) < 1g
and which is familiar to the gambler, k = 1; : : : ; n. Let R denote the union
of these ranges, then a payo� function f is de�ned on �R as indicated above.
The corresponding optimal stopping problem with payo� function f is called
Pn(f; F1; : : : ; Fn). The formalization of the particular terms is omitted, but
the regularity of this problem, extending lemma 2.3, is veri�ed. Moreover in
the subsequent proof the payo� function may depend on the time instant a
chosen value appeared in order to indicate the range the problem is regular.

Lemma 2.9 The optimal stopping problem Pn(f; F1; : : : ; Fn) is regular.

Proof: In this proof it is permitted that the payo� function depends on the
numbers of remaining draws: Payo� g`(x; y_Yn) is payed in state (x; y) 2 �R

if ` < n items remain. The monotonicity assumption g` � g`�1 (see de�nition
A.1 in the appendix) for ` 2 N is made, which seems to be indispensable for
validity of the regular case as far as this approach is concerned.
Let state (x; y) 2 �R and let ` < n denote the number of remaining draws,
then k := n � ` denotes the number of the present draw, x = Xk. Further
let F n

k+1 :�
Qn

j=k+1 Fj denote the distribution function of Xk+1 _ � � � _ Xn.
Now with notation according to de�nition 2.1

s`(x; y) =

Z 1

�1
g`(x; y _ �) dF n

k+1(�)

= F n
k+1(y) g`(x; y) +

Z 1

y

g`(x; �) dF
n
k+1(�)

and with regard to lemma 2.2

c`(y) =

Z y

�1
v`�1(�; y) dFk+1(�) +

Z 1

y

v`�1(�; �) dFk+1(�)

� Fk+1(y) c`�1(y) +
Z 1

y

s`�1(�; �) dFk+1(�)

Fk+1(y)c`�1(y) � c`(y)�
Z 1

y

s`�1(�; �) dFk+1(�):
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The regular case applies if inequality s`(x; y) � c`(y) implies validity of
s`�1(x; y) � c`�1(y). SuÆcient for this implication is

Fk+1(y)s`�1(x; y) � c`(y)�
Z 1

y

s`�1(�; �) dFk+1(�);

which proves to be valid since

c`(y)�
Z 1

y

s`�1(�; �) dFk+1(�)

� F n
k+1(y)g`(x; y) +

Z 1

y

g`(x; �) dF
n
k+1(�)

�
Z 1

y

�
F n
k+2(�)g`�1(�; �) +

Z 1

�

g`�1(�; �) dF n
k+2(�)

�
dFk+1(�)

= F n
k+1(y)g`(x; y) +

Z 1

y

g`(x; �) dF
n
k+1(�)�

Z 1

y

F n
k+2(�)g`�1(�; �) dFk+1(�)

�
Z 1

y

�Z �

y

g`�1(�; �) dFk+1(�)

�
dF n

k+2(�)

� F n
k+1(y)g`(x; y) +

Z 1

y

g`(x; �) dF
n
k+1(�)�

Z 1

y

F n
k+2(�)g`�1(x; �) dFk+1(�)

�
Z 1

y

�
[Fk+1(�)� Fk+1(y)] g`�1(x; �)

�
dF n

k+2(�)

� F n
k+1(y)g`�1(x; y) +

Z 1

y

g`�1(x; �) dF n
k+1(�)

�
Z 1

y

F n
k+2(�)g`�1(x; �) dFk+1(�) �

Z 1

y

Fk+1(�)g`�1(x; �) dF n
k+2(�)

+ Fk+1(y)

Z 1

y

g`�1(x; �) dF n
k+1(�)

= Fk+1(y)s`�1(x; y);

where in the last step the medial three terms cancel due to F n
k+1 � Fk+1 �F n

k+2

and where in the second last step g` � g`�1 is applied. 2

Evidently theorem 2.7 is valid for problem Pn(f; F1; : : : ; Fn) respectively. If
o�ers are iid where for instance P (X1 2Z+) = 1, then the problem is regular:
Spread any mass on an interval of proper length and adapt the payo� function
from Z+ to R+ accordingly, then the monotonicity assumptions persist.
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2.1 Optimal Selection of an r{Candidate

In this section maximization of the probability P (XS � r(Yn)) is studied,
i.e. regard problem Pn(f) with payo� function f(x; y) = 1[r(y);1](x), where
the gambler either wins one unit or he fails. The maximum Yn is reduced to
r(Yn), demands for a win are weakened by relax function r 2 R, where

R :=
n
r : [0; 1]! [0; 1] continuous, increasing, r(y) � y 8y 2 [0; 1]

o
:

LetR1 := fr 2 R : r(1) = 1g, letR1 := R\C1([0; 1]) and letR1
1 := R1\R1

(one{sided derivatives in 0 and 1; in R1 derivative 1 is allowed; in R1
1 then

r0(1�) 2 [1;1]). A relax functino for example is #y 2 R1 where # 2 (0; 1]
and yd; 1�p1 � y 2 R1

1 where d 2 [1;1).

From now on regard Pn(r) where r 2 R, i.e. maximize P (XS � r(Yn)).
Evidently selection of the k{th o�er Xk only makes sense if Xk might lead to
a win yet, i.e. if Xk � r(Yk), and �nally for win Xk � r(Yn) has to be valid.
So the following term is appropriate:

Notation 2.10 For given relax function r 2 R an object x 2 [0; 1] is called
an r{candidate with respect to y 2 [0; 1] if x � r(y) holds.

For Pn(r) the succinct convention is: Xk is an r{candidate if Xk � r(Yn).
Retain the stopping sets ��

` = f(x; y) 2 � : x � b�`(y)g except for ` = 0:
For convenience of subsequent formulas and propositions set b�0 :� r on [0; 1],
then ��

0 is the set of r{candidates (equivalent to payo� according to b�0 � 0
resp. ��

0 = � due to payo� 0 regarding the �nal state �1).

Remark 2.11 Additional motivation for maximization of P (XS � r(Yn)):

i) This approach means relaxing the demands of selecting the maximum
of a sequence, see the full information case of Gilbert and Mosteller [18].
In the following that article is referred to as r � id or r0(1�) = 1, the
asymptotic value is abbreviated v�id � 0:5802 and the asymptotic value
within the set of concurrent threshold rules is denoted by ev�id � 0:5174.

ii) Suppose f(x; y) = 1R+(h(x; y)) is monotone according to assumptions
(1), where h : � ! R. This �ts maximization of E (1C(XS ; Yn)) for a
set C � �. The function r(y) := inff0 � x � y : h(x; y) � 0g is well
de�ned on [0; 1], if (0; 0) 2 C (consequently the diagonal must be part
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of C) and r is nondecreasing with regard to the monotonicity of h. Then
the curve  := f(r(y); y) : y 2 [0; 1]g describes the lower boundary of
C (second coordinate). Maximizing the functional above corresponds
to a payo� function, which can be chosen to be equal to 1 above and
including  and 0 below it, i.e. the probability P (h(XS ;Mn) � 0) =
P (XS � r(Yn)) is to be maximized (points (r(y); y) of  with r(y) < y
establish a null set because of the continuous distribution U([0; 1])).

An Optimal Stopping Time

Suppose there are ` 2 N draws left. Heuristically y = Yn�` is equal to Yn with
high probability if y is suÆciently close to 1 and then in this time instant
n � ` the only threshold an item should exceed is r(y), i.e. b�` (y) = r(y)
for y suÆciently close to 1. Therefore a socalled upper boundary point b` is
de�ned for ` 2Z+, in addition to b�` (y) and b` of de�nition 2.5:

b` := inffy 2 [0; 1] : s`(r(y); y) � c`(y)g:
Again this set is nonempty, take y = 1, and b0 = 0. Below lemma 2.2 will be
speci�ed, using the inverse function % of r 2 R:

%(x) := supfy 2 [0; 1] : r(y) � xg 8x 2 [0; 1]: (4)

Then %(x) = 1 i� x 2 [r(1); 1]. If r 2 R1 and y 2 [0; 1) with r0(y) = 0, then
%0(r(y)) :=1 is declared. In this sense r 2 R1 implies % 2 C1([0; r(1)]). Con-
vention rk(y) := (r(y))k and %k(y) := (%(y))k for k 2Z+ is used throughout.

Lemma 2.12 Let r 2 R. Then for ` 2Z+ the following holds:

i) For (x; y) 2 ��
0, s`(x; y) = s`(x) = %`(x) is continuous. s` � 1 on

[r(1); 1] and on (0; r(1)) it is increasing in x and decreasing in `.

ii) c`(y) is continuous and decreasing in y 2 [0; 1] for ` 2 N and

c`(y) =
`�1X
i=0

r`�1�i(y)
�Z y

r(y)

vi(�; y) d� +

Z 1

y

vi(�; �) d�

�
; (5)

while particularly for y 2 [b`�1; 1]

c`(y) =
`�1X
i=0

r`�1�i(y)
Z 1

r(y)

%i(�) d�: (6)
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iii) v`(x; y) = maxfs`(x); c`(y)g for (x; y) 2 ��
0 and it is continuous for

(x; y) 2 � n f(r(z); z) : z 2 (b`; 1]g.
Proof: For given ` 2 N regard problem Pn with n > `.

i) Since (x; y) 2 ��
0, payo� 1 (for selecting x) only can be destroyed by a

future value: s`(x; y) = P (x � r(Xj) for j = n� ` + 1; : : : ; n) = %`(x)
due to independence. s` � 0 on � n��

0.

ii) c`(y) = P (XS � r(Yn) jXn�` = x; Yn�` = y; S > n� ` optimal) accord-
ing to de�nition 2.1, which decreases if y increases (the demands for
subsequent objects grow). The representation (5) is obtained by �rst
decomposing values of Xn�`+1 while observing a change of Yn�`+1 which
yields c`(y) = c`�1(y)r(y)+

R y
r(y)

v`�1(�; y) d�+
R 1

y
v`�1(�; �) d� and then

by iterating. c`(y) is continuous with regard to (5), since r and integrals
concerning vi are continuous (inductive on `). The representation (6)
holds due to lemma 2.6, regularity and due to b�j (y) = r(y) if y � b`�1
for j = 0; : : : ; `� 1.

iii) s`(x; y) only is discontinuous at points (r(z); z), z 2 [0; 1], and the
de�nition of b` above yields the continuity of v`(x; y) except for the
speci�ed curve. 2

Suppose there is ` = 1 draw left. Then s1(x) = %(x) and c1(y) = 1 � r(y).
Thus b1 solves y = r(1�r(y)) and b1 solves y = 1�r(y) and b�1(y) = r(1�r(y))
for y 2 [b1; b1]. A characterization of the optimal boundary functions for
` 2 N is given in the subsequent theorem, specifying theorem 2.7:

Theorem 2.13 Let r 2 R. Then for ` 2 N the following holds:

i) The upper boundary point b` is unique solution of equation

y` =
`�1X
i=0

r`�1�i(y)
Z 1

r(y)

%i(�) d�: (7)

ii) The boundary function b�` : [0; 1]! [0; 1] is given by

b�`(y) =

8>>>><>>>>:
b` if y 2 [0; b`]

r

0@" `�1X
i=0

 
`�1Y

j=i+1

b�j(y)

!Z 1

b�i (y)

%i(�) d�

#1=`1A if y 2 (b`; b`)

r(y) if y 2 [b`; 1]
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and b�` (y) is decreasing in the medial case.

iii) The lower boundary point b` is unique solution of equation b�` (y) = y.

iv) b` % r(1) for `!1.
1=2 � b` % 1 for N 3 `!1.
r(1=2) � b�`(y)% r(1) for `!1 for each y 2 [0; 1], or equivalentlyT1

`=0�
�
` = f(x; y) 2 ��

0 : x � r(1)g.

Proof: Regard theorem 2.7 for ` 2 N for a problem Pn with n > `. Unique-
ness in i), ii) and iii) is valid according to lemma 2.12: c`(y) is continuous and
decreasing in y 2 [0; 1] and s`(x; y) is continuous inside ��

0 and independent
of y for �xed x.

i) b` is the unique solution of s`(r(y); y) = c`(y) or y` = c`(y), regard
equation (6).

ii) For y 2 [b`; b`] now b�`(y) = x is the unique solution of s`(x; y) = c`(y)
while the remaining range is covered by the de�nition of the lower
resp. upper boundary points. Inside ��

0 with respect to y �rst s`(x; y)
is constant and second c`(y) is decreasing, thus b�`(y) is decreasing in
y 2 (b`; b`).

iii) b` is the unique solution of s`(y; y) = c`(y) or y = r([c`(y)]
1=`).

iv) Monotone convergence is valid because problem Pn is regular. b1 solves
y = 1 � r(y) � 1 � y, and the solution of y = 1 � y is 1=2. Selecting
an item x � r(1) will lead to success resp. to payo� 1 regardless of
` and Yn 2 [0; 1]. On the other hand suppose an item 0 � x < r(1)
is selected. Then Yn 2 (%(x); 1] will prevent success. The probability
(1 � %(x))` of this event is o(1) for ` ! 1. In addition c`(y) doesn't
vanish for ` ! 1, not even for the strongest case r � id, see Gilbert
and Mosteller [18] and remark 2.18 i) below. 2

Given r 2 R, the boundary function b�` (y) is constant on [0; b`], decreasing
on [b`; b`] and increasing on [b`; 1], where the interpretation of these parts is:
The present maximum y is inessential, y becomes relevant and �nally y is
representative with regard to the overall maximum Yn. Here r � id appears
as a marginal case where b` = b` for ` 2Z+.
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Example 2.14 Suppose relax function r(y) = y4 for y 2 [0; 1]. Theorem
2.13 yields optimal stopping sets ��

0 � ��
1 � � � � � ��

5 shown in the �gure
below, particularly b�0 � r and b�1(y) = (1 � y4)4 for y 2 [b1; b1]. Proposition
2.15 below will reveal r(b`) ' 1� 4 � 0:3695=` as `!1 with �(4) � 0:3695.

b�2(y)

b�3(y)
b�4(y)

b�5(y)

y

b�1(y)

b�0(y) = r(y) = y4

1

0

��
0

��
1

��
2

��
3

��
4

��
5

Figure 1: Maximization of P (XS � Y 4
n ): Optimal boundary func-

tions b�0(y); : : : ; b
�
5(y) and the corresponding optimal stopping sets

��
0 � ��

1 �� � �� ��
5 (with axes x and y reversed). See example 2.14.

The asymptotic behaviour of second order of the upper boundary points b`
as ` ! 1 can be speci�ed (next to theorem 2.13 iv)), since they are based
directly on relax function r:

Proposition 2.15 Let r 2 R1
1 with a := r0(1�) 2 [1;1). The asymptotic

behaviour of the upper boundary points
�
b`
�
`2N is lim`!1 `(1�b`) = �, where

� = �(a) denotes the unique solution inside (0; �1] of equation

e�(a�1)

a
=

Z �a

�(a�1)

e� � 1

�
d�; (8)

where �1 := �(1) � 0:8044 solves 1 =
R �
0

e��1
�

d�.
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Proof: Assume that r(y) = ay � a+ 1 for y close to 1 and the idea is that
b` = 1 � f(a)=` + o(1=`) as ` ! 1, where f(a) is nonnegative. Setting
"` := b` � 1 + f(a)=` it proves to be justi�able that "` = o(1=`). For y = b`

the left side of equation (7) then is
�
1 � f(a)�`"`

`

�`
while the right side is

`�1X
i=0

�
1� a(f(a)� `"`)

`

�`�1�i
a

i+ 1

"
1�

�
1� f(a)� `"`

`

�i+1
#

=

�
1� a(f(a)� `"`)

`

�̀ `�1X
i=0

a

i+ 1

24 1

1� a(f(a)�`"`)
`

!i+1

�
 

1 � f(a)�`"`
`

1 � a(f(a)�`"`)
`

!i+1
35:

With regard to lemma A.2 in the appendix the two bases with exponent i+1

now are changed to 1+x`=`, where x` := a(f(a)�`"`)
.�

1� a(f(a)�`"`)
`

�
and

x` := (a�1)(f(a)�`"`)
.�

1 � a(f(a)�`"`)
`

�
, respectively. Assuming `"` = o(1)

then all terms yield a speci�c asymptotic behaviour as `!1 and since b` is
unique solution of equation (7) it is, aside from "`, speci�ed by f(a) | now
the assumption "` = o(1=`) is justi�ed if f(a) is uniquely determined by

e�f(a) ' ae�af(a)
�
Ei(af(a))� ln

af(a)

`
� Ei((a� 1)f(a)) + ln

(a� 1)f(a)

`

�
unless a = 1, where 1 ' +Ei(f(1))� ln(f(1)=`)� ln(`)� results. In both
cases ln ` cancels. In terms of remark A.4 this leads to equation (8) specify-
ing solution f(a) = �, which is existent and unique: Let ga(�) resp. ha(�)
denote the left resp. the right side of (8). Then ga(0) = 1=a and ha(0) = 0.
Since g0a(�) = (a� 1)ga(�) and h0a(�) = e�a(1� e��)=� now g0a(0) = 1� 1=a
and h0a(0) = 1 and g0a(�) < h0a(�), because (a� 1)=a < (e� � 1)=� for a � 1
and � � 0. Compare ga(�) and ha(�) for � = 1: Estimating the integrand
(e�� 1)=� � (e��� 1)=a yields ga(1) < ha(1) i� 1+2ea�1 < ea, which is true
for a > 1 � ln(e � 2) � 1:3309, thus at least then � is unique. An upper
bound for the solution of equation (8) is speci�ed: For � = ln(a)=(a � 1)
the similar estimation by (e� � 1)(a � 1)=(a ln a) yields the corresponding
inequality (a+1) ln a < a(a�1)(a1=(a�1)�1), which is true at least for a � 4
(not veri�ed here), i.e. ln(a)=(a� 1) then is an upper bound for the solution
�(a) of equation (8). Thus � 2 (0; �1] seems coherent. 2
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By the boundary function r(y) _ r(b`) an o�er isn't rejected the optimal
stopping time of theorem 2.13 would select. According to proposition 2.15
above, for ` � a� the boundary function r(y) _ r(1 � a�=`) represents a
good approximation. With regard to the behaviour of the curves b�`(y) inside
��

0 for r 2 R1
1, which seem to become a horizontal line by computations and

simulations, the following conjecture is made:

Conjecture 2.16 Regard problem Pn(r) with r 2 R1
1, a := r0(1�) 2 [1;1).

Let stopping time Sn apply boundary functions (r(y) _ r(1 � a�=`))0<`<n
(for ` = 0 take r(y)). Then the sequence (Sn)n2N of stopping times might
be asymptotically optimal: lim

n!1
vn(Sn) = v�1(a). For the value vn(Sn) see

remark 2.32.

For �gure 2 below the values �(a) of proposition 2.15 above are computed
for some values of a = r0(1�) 2 [1; 20] and an approximation from above is
plotted, too. The marginal case �(1) � 0:8044 is in accordance with Gilbert
and Mosteller [18] (there in addition the third order is indicated).

0

0:8044

1

a

�(a)

log a
a� 1

1 2 3 20

Figure 2: The coeÆcient �(a) of asymptotic behaviour of
second order (plus its approximation from above) of the up-
per boundary values b` as ` ! 1: b` ' 1 � �(a)=`, where
a := r0(1�) and r 2 R1

1, see proposition 2.15 and its proof.
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Proposition 2.17 Approximative considerations for stopping problem Pn:
i) Di�erence in probability of winning using contiguous stopping times:

Let stopping times S resp. eS according to boundary functions b`(y) resp.eb`(y) be given. Let � := sup0�`<n supy2[0;1] j b`(y)�eb`(y) j 2 [0; 1]. Then
the probability that the payo� (applying S resp. eS) di�ers is bounded
by 1 � (1� �)n. This probability vanishes as � ! 0, leaving n �xed.

ii) L1 approximation concerning relax function: Let r : [0; 1] ! [0; 1] be
nondecreasing with 0 < r(y) � y for y 2 (0; 1] and r(0) = 0. There
are sequences (rk)k2N, (rk)k2N � R with rk(1) = rk(1) = r(1) and

rk � r � rk and qk :=
R 1

0
(rk(�)� rk(�)) d� = o(1) as k !1.

Let b0 � � � � � bn�1denote a sequence of provisional boundary functions:
b` : [0; 1] ! [0; r(1)] is nonincreasing, adjust b`(y) := y` for y 2 [0; y`],
where y` represents the unique solution of b`(y) = y, 0 � ` < n. With
regard to payo� with respect to relax function r, rk and rk, boundary
functions b` _ r, b` _ rk and b` _ rk (for 0 � ` < n) yield appropriate
stopping times, denoted by S, Sk and Sk, respectively (k 2 N).
Let Dk denote the event that the payo� gained by applying stopping
time Sk resp. Sk (or S) di�ers, k 2 N. Then P (Dk)! 0 for k !1.

Proof:

i) The probability that the payo� di�ers is bounded by the probability

P
�
S 6= eS� =

nX
k=1

P ((Xk; Yk) 2 Ck) �
nX

k=1

�(1��)k�1 = 1�(1��)n;

since P ((Xk; Yk) 2 Ck) � �(1��)k�1, where Ck := (Bkn eBk)[( eBknBk),

Bk := f(x; y) 2 � : x � bk(y)g and eBk := f(x; y) 2 � : x � ebk(y)g
for k = 1; : : : ; n.

ii) Let k 2 N. Formally Dk := [1[r(Yn);1](XSk
) 6= 1[r(Yn);1](XSk

)] and de�ne

Ck := f(x; y) 2 � : x � rk(y)g and Ck := f(x; y) 2 � : x � rk(y)gnCk.
The diagonal is not part of Ck. Now event Dk is partitioned:
On the one hand the payo� may di�er if Sk is lower than Sk: Let
Gj
k denote the (continuous di�erentiable) distribution function of Yj�1
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given Sk = j, for j = 2; : : : ; n (case j = 1 is void and Gj
k(r(1)) = 1).

Now P
�
Dk and Sk < Sk

�
is bounded by the probability (ignoring b`)

P
�
Sk < Sk

�
=

nX
j=2

P (Sk = j) P ((Xj ; Yj) 2 Ck j Sk = j)

�
nX

j=2

P (Sk = j)

Z r(1)

0

rk(y)� rk(y)

1� rk(y)
dGj

k(y);

which proves to be o(1) for k !1: The integrand is bounded by 1, the
densities (�nitely many) are uniformly bounded and in case of r(1) = 1
the integration range is restricted to [0; Æk] where Æk % 1 for k ! 1
(the integral on [Æk; 1] is o(1), which also holds for the corresponding
sum). Now use qk = o(1) for the sum with integral on [0; Æk].

On the other hand the payo�s may di�er if Sk and Sk coincide: Let
event Ej

k := [Sk = Sk = j] and let Y n
j+1 := maxfXj+1; : : : ;Xng for

j = 1; : : : ; n� 1 (the payo�s don't di�er if event [Sk = Sk = n] occurs,
event [Sk = n < Sk] refers to the �rst part). Let Gj

k denote the
(continuous di�erentiable) distribution function of Yj�1 given Ej

k and
let F j;y

k denote the (continuous di�erentiable) distribution function of
Xj given Ej

k and Yj�1 = y, where j = 1; : : : ; n � 1 | except for j = 1
where Y0 := 0 and Gj

k � 1[0;1) but F
1;0
k is continuous di�erentiable.

Let %
j
resp. %j denote the inverse of rj resp. of rj according to equation

(4) for j = 1; : : : ; n� 1. Then (respect Dk is impossible beyond r(1))

P
�
Dk and Sk = Sk

�
=

n�1X
j=1

P
�
Ej
k and (Xj ; Yj) 2 Ck and (Xj ; Y

n
j+1) 2 Ck

�
=

n�1X
j=1

P
�
Ej
k

� Z r(1)

0

Z r(1)

rk(y)

(%
k
(x))n�j � (%k(x))

n�j

1 � (%k(x))
n�j dF j;y

k (x) dGj
k(y);

which also is o(1) for k !1, analogously to the �rst part: The inte-
grands are bounded by 1 and the densities (�nitely many) are uniformly
bounded (for j = 1 then y = 0 and restrict to F 1;0

k ). Furthermore
%n�j
k
� %n�jk � %

k
� %k on [0; Æk] for j = 1; : : : ; n � 1 for an existing

sequence Æk % r(1) as k ! 1. The sum with the innermost integral
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restricted to [Æk; r(1)] yields o(1) and for the remaining sum referring to

the innermost integral on [0; Æk] the relation
R r(1)
0

(%
k
(�) � %k(�)) d� =

qk = o(1) ensures that the entire expression is o(1) for k !1.
Since Sk � S � Sk, this yields P (Dk) = o(1) for k !1. 2

Remark 2.18

i) Monotonicity of values: v�n(r1) � v�n(r2) if r1 � r2 in R (also for proper
inequalities). Let r1; r2 2 R1

1 with 1 > r01(1�) > r02(1�). Then
v�n(r1) > v�n(r2) holds �nally for n ! 1, while asymptotic inequality
v�1(r1) > v�1(r2) only may hold if v�1(r

0
2(1�)) < 1 (remark 2.30 vi)).

ii) The domain of any function r 2 R is extended from [0; 1] to R by

r(y) := 0 for y < 0 and r(y) := 1 for y > 1:

Setting additionally r(1) := 1, so r represents a distribution function.
Relevant integrals (integrand containing % and integration variable d�)
then can be rewritten according to de�nition (4) of % by dr(�). If inte-
gration variable dr(�) appears, these extensions are meant implicitely.

For example
R 1

r(y) %
i(�) d� =

R 1

y
�i dr(�), i 2 Z+, where for y = 0 this

represents the i{th uncentralized moment corresponding to r. If r 2 R1
1

then r0 represents a corresponding density (Lebesque almost surely).

General Distribution Function

Suppose X1; : : : ;Xn are independent. Let F denote the respective distribu-
tion function, continuous and increasing on R := fx 2 R : 0 < F (x) < 1g
with its unique continuous inverse F�1 on this set | analogue to the prepa-
rations preceding theorem 2.8. Let r : R ! R continuous, increasing and
r � id on R. Then Pn(r; F ) can be reduced to Pn(er; U([0; 1]) by takinger :� FrF�1 2 R, since 1[r(F�1(y));1] (F

�1(x)) = 1[er(y);1] (x) for x 2 (0; 1).

Example 2.19

i) Let F (x) = 1
2 +

1
�
arctan(x) for x 2 R and r(y) = y � 1 for y 2 R,

i.e. select an item at least one unit below the maximum. Then er(y) =
1
2+

1
�
arctan(tan(�y� �

2 )�1) for y 2 [0; 1). Thus er 2 R1
1 and er0(1�) = 1.
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ii) Let F (x) = (1 � e��x)1R+(x) for x 2 R . If r(y) = #y for y 2 R+

where # 2 (0; 1] then er(y) = 1� (1� y)# for y 2 [0; 1] and er 2 R1
1 wither0(1�) = 1 unless # = 1 where er � id. If however r(y) = 0 ^ (y � 1)

for y 2 R+ (not increasing on R+), then er(y) = 0 for y 2 [0; 1 � e��]
and er(y) = 1 � e� + ye� for y 2 (1� e��; 1] and er 62 R.

Particularly the relax function r remains unchanged if F (0) = 0, F (1) = 1
and rF � Fr, For example F � id, F � r and F � % are related. The
case where F is continuous but not increasing on R only can be included in
this section if r is selected having merged constant parts of F | otherwise r
doesn't remain continuous and only general assertions preceeding this section
apply. In case of a discrete distribution, for example P (X1 2Z+) = 1 with
corresponding relax function r on Z+, then any point mass is spread on
a proper interval and the relax function r is extended from lattice Z+ to
R+ by constant continuation. The monotonicity assumptions (1) persist
and optimal boundary functions, now consisting of a sequence of values, are
speci�ed by an in�mum, since concerning functions are not continuous.

Selection with Recall

Suppose problem Pn(r) where r 2 R. If recall is allowed, it is optimal to
take the overall maximum Yn in the last time instant. Suppose however
recall is allowed only if the present value turns out to be an r{candidate
(which doesn't a�ect the case r � id). In this optimal stopping problem Pn
with restricted recall, one tends to watch the end (to recall at best Yn) while
arrivals of not{r{candidates has to be taken into account.
Now the myopic stopping time proposes to recall y 2 [0; r(1)) (evidently an
o�er beyond r(1) is taken anyway) where ` 2 N items remain provided that
the present state (x; y) 2 ��

0 if

%`(y) �
`�1X
i=0

r`�1�i(y)
�
(y � r(y))%i(y) +

Z 1

y

%i(�) d�

�
; (9)

by comparing the mean payo� of stopping with that of the one step look{
ahead rule concerning epochs of r{candidates (for the latter the maximum
of the next r{candidate � 2 [r(y); 1] and the past maximum y can be taken).

The stopping sets of the myopic stopping time are monotone.
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Veri�cation: Fix past maximum y 2 [0; r(1)) and abbreviate r = r(y),

% = %(y) and set Ii :=
R 1

y
%i(�) d� for i 2 Z+. Let ` 2 N and suppose %` �P`�1

i=0 r
`�1�i ((y � r)%i + Ii) = (y�r)%`�1+I`�1+r

P`�2
i=0 r

`�2�i ((y � r)%i + Ii)

which proves to be not lower than %
P`�2

i=0 r
`�2�i ((y � r)%i + Ii) | then di-

viding by % the claim is veri�ed | in other words the assertion is the in-
equality (y� r)%`�1 + I`�1 � (%� r)P`�2

i=0 r
`�2�i ((y � r)%i + Ii): On the one

hand %`�1 � (% � r)(r`�1 � %`�1)=(r � %) = %`�1 � r`�1 (cancelling y � r
and using the truncated geometric series) and on the other hand inequal-
ity I`�1 � (% � r)

P`�2
i=0 r

`�2�iIi holds (by induction on `): Let ` = 2 thenR 1

y
%(�) d� � (%� r)(1� y) is obvious. Taking the inequality above as induc-

tion assumption then I` � (%� r)
P`�1

i=0 r
`�1�iIi holds, since for the left side

I` � %I`�1 is valid and the right side is not bigger than rI`�1 + (% � r)I`�1
(induction step). Cancelling I`�1 on both sides % � r + %� r results. 2

Now the conjecture is that the myopic stopping time can be speci�ed by
unique thresholds, i.e. if inequality (9) is valid for y 2 [0; 1] then for z 2 (y; 1],
too. The presumed unique solution of inequality (9) as equality is called
threshold y` for ` 2 Z+. Evidently for ` = 0 threshold y0 = 0 results
(provided Xn is an r{candidate) and particularly ` = 1 leads to a threshold
y1 2 (0; r(1)), the unique solution of %(y)+r(y) = 1. However h(y) := %`(y)�P`�1

i=0 r
`�1�i ((y � r)%i + Ii) 2 C1([0; r(1)]) if r 2 R1 isn't nondecreasing in

general, as examples verify, though they don't exclude that there is a unique
aw y`. Besides h(0) is negative and h(r(1)) = (r(r(1)))` is positive.
Under this hypothesis the stopping sets of the myopic stopping time are
closed and realizable and thus they would yield an optimal stopping time.
Then evidently y` % r(1) as ` ! 1, while the asymptotic behaviour of
second order would be as follows: Suppose r 2 R1

1 with a := r0(1�) 2 [1;1):
Then y` ' 1��=` as `!1, where � = �(a) denotes the unique solution of

1

a+ 1
+

1

a2 + a
e�(a�1=a) =

Z �a

�(a�1=a)

e� � 1

�
d�: (10)

Veri�cation: Suppose r(y) = ay � a + 1 for y close to 1 and assume y` '
1 � f(a)=` + o(1=`) as ` ! 1 (a more cautious inspection is omitted in
respect of assumption of the hypothesis). Now inequality (9) as an equation
yields�
1� f(a)=a

`

�`

'
`�1X
i=0

�
1� af(a)

`

�`�1�i 
(a� 1)f(a)

`

�
1 � f(a)=a

`

�i
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+
a

i+ 1

"
1�

�
1 � f(a)=a

`

�i+1
#!

�
1� f(a)=a

`

�`

'
�
1 � af(a)

`

�`�1
(a� 1)f(a)

`

`�1X
i=0

�
1 +

f(a)(a� 1=a)

`� af(a)

�i

+

�
1� af(a)

`

�` `�1X
i=0

a

i+ 1

�
1 +

af(a)

` � af(a)

�i+1

�
�
1 � af(a)

`

�` `�1X
i=0

a

i+ 1

�
1 +

f(a)(a� 1=a)

` � af(a)

�i+1

:

For a > 1 the �rst sum is, due to the truncated geometric series, asymptoti-
cally equivalent to (ef(a)(a�1=a)� 1)(` � af(a))=(f(a)(a� 1=a)) and the last
two sums are covered by remark A.4 resp. by lemma A.2 in the appendix.
Then the following equation holds asymptotically:

e�f(a)=a = e�af(a)
 

a� 1

a� 1=a

�
ef(a)(a�1=a)� 1

�
+ a

Z f(a)a

f(a)(a�1=a)

e� � 1

�
d�

!

unless a = 1, where 1 =  + Ei(f(1)) � ln(f(1)=`) � ln(`) �  results from
lemma A.2. Rearrangements produce equation (10) where f(a) = �. 2

Expression (9) for r � id corresponds to Gilbert and Mosteller [18], since

`�1X
i=0

1

i+ 1
y`�1�i(1� yi+1) =

`�1X
j=0

�
`

j + 1

�
1

j + 1
y`�1�j(1� y)j+1

for ` 2 N and y 2 [0; 1]. Here (on the left) a partition with respect to the
time instant of the appearance of the next r{candidate is applied, whereas in
[18] (on the right) the approach is to use the fact that the present maximum
(beyond a certain threshold) emerges as the overall maximum within the
number j of future values exceeding this threshold with probability 1=(j+1).

The optimal boundary function b�` (y) has one minimum with respect to y
(to specify: at most one strict local minimum in b`; remind the case r � id
where b` = b`). The question answered in the next paragraph is: For general
payo� function f , may the optimal boundary function b�` (y) possess several
(local) minima with respect to y, i.e. may uctuations occur?
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Finite Valued Payo� Function

Suppose that the payo� function may attain a �nite number of values: Let
f(x; y) :=

Pi0
i=1 ci �1Ci(x; y), where i0 2 N and c1; : : : ; ci0 > 0 and where sets

� � C1 � C2 � � � � � Ci0 are closed and contain (0; 0) (related to remark
2.11 ii)). The monotonicity criteria (1) are valid. Set additionally c0 := 0,
C0 := � and Ci0+1 := ;. f is bounded by 1 by scaling.
Choosing value x while �nally the overall maximum y occurs, leads to the
mean payo�

Pi
j=1 cj if (x; y) 2 Ci nCi+1, where i = 0; : : : ; i0 (with

P
; := 0).

Let ri de�ne the lower boundary of Ci (confer remark 2.11 ii)) for i = 0; : : : ; i0
| obviously 0 � r0 � r1 � � � � � ri0 , which are assumed to be increasing and
continuous, i.e. inR. Set ri0+1 :� 1. Let %i denote the inverse of ri according
to equation (4), i = 0; : : : ; i0. Then the mean payo� stopping with (x; y) 2 �
while ` = 0; : : : ; n � 1 items remain is given by s`(x; y) :=

Pi
j=1 cj%

`
j(x) if

ri(y) � x < ri+1(y) where i = 0; : : : ; i0. Now s`(x; y) is increasing but not
continuous in x inside �.

Proposition 2.20 The optimal boundary function b�`(y), ` 2 N, for payo�
function

Pi0
i=1 ci � 1Ci(x; y) may possess i0 local minima.

For a heuristic explanation imagine that the values c1; : : : ; ci0 di�er extremely,
0 < c1 � c2 � � � � � ci0 , and consider the behaviour of function b�`(y) as y
increases from b` to 1:
Only ci0 (resp. ri0) has to be respected �rst (i.e. for y close to b`, where either
lower boundary values resemble), because values ci, i < i0, are comparable to
0 (�rst decreasing, then meeting ri0). The optimal boundary function b�`(y)
initially �ts that of relax function ri0 . As y grows, the magnitude of ci0�1
(compared to 0) takes through, the curve b�` (y) decreases and then �ts the
curve ri0�1, and so on. At the end, if y becomes suÆciently close to 1, the
magnitude of c1 in comparison to 0 steps forward.

Time Dependent Relaxation

Let time dependent relax functions ri 2 R, i = 1; : : : ; n, be given and suppose
the problem of maximizing P (XS � maxfr1(X1); : : : ; rn(Xn)g), denoted by
Pn(r1; : : : ; rn). Additionally assume ri+1 � ri for i = 1; : : : ; n � 1, i.e. the
requirements for the chosen object (with regard to the reduced reference
values rk(Xk) for k = 1; : : : ; n) weaken as time goes by | in fact they must
weaken to ensure the regular case, as the following proof shows:
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Lemma 2.21 The optimal stopping problem Pn(r1; : : : ; rn) is regular.
Proof: Fix epoch k and let Xi = xi for i = 1; : : : ; k and let unusually
yk := maxfr1(x1); : : : ; rk(xk)g. Assume xk � yk and let sk(xk) denote the
mean payo� of stopping at time k with item xk (now time index for clarity):

sk(xk) = P (xk � rk+1(Xk+1); : : : ; rn(Xn)) =
nY

j=k+1

%j(xk);

where %j represents the inverse of rj according to equation (4). Analogously
ck(yk) denotes the mean payo� for proceeding optimally (at least one step,
at time k with yk) and �nally vk(xk; yk) denotes the maximum.

ck(yk) =

Z yk

0

ck+1(yk) dxk+1 +

Z 1

yk

vk+1 (xk+1; yk+1 _ rk+1(xk+1)) dxk+1:

Here rk+1 � id is necessary, since otherwise the �rst integrand would be
ck+1(yk _ rk+1(xk+1)). No direct generalization like P (XS � ri(Xi); i 6= S).
For the following separation of the integral implication rk(xk) � yk =)
(rk+1(xk+1) � yk for xk+1 � xk) is applied, which is valid due to rk+1 � rk.
Without loss of generality xk > 0 and analog to the proof of lemma 2.9

ck(yk) � xkck+1(yk) +

Z 1

xk

sk+1(xk+1) dxk+1

xkck+1(yk) � ck(yk)�
Z 1

xk

sk+1(xk+1) dxk+1:

Given sk(xk) � ck(yk), it has to be shown sk+1(xk) � ck+1(yk). SuÆcient is

xksk+1(xk) � ck(yk)�
Z 1

xk

sk+1(xk+1) dxk+1Z 1

xk

nY
j=k+2

%j(xk+1) dxk+1 � (%k+1(xk)� xk)
nY

j=k+2

%j(xk);

which is obviously valid. Respect that the separation xk of the integral can't
be replaced by yk, since xk+1 � yk doesn't imply xk+1 � xk. 2

Thus an assertion analogue to theorem 2.7 is valid. Besides this problem
with time dependent relax functions can be combined with the case of time
indexed distribution functions of lemma 2.9 and the regular case will persist.
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The Asymptotic Value for Special Cases

For given relax function r 2 R the limit performance of the sequence (v�n)n2N
of values is studied, which depends on the behaviour of the relax function
r in the (lefthand side) neighbourhood of 1. Particularly for r 2 R1

1 and in
case of convergence the asymptotic value is denoted by v�1(r

0(1�)).
However the pathological case r(1) < 1 remains, where the concurrent thresh-
old rule T with threshold t := r(1) (for strict description see notation 2.25
in the next subsection) proves to be asymptotically optimal, since its value
vn(T ) = P (XT � r(Yn)) = 1�rn(1) converges to the maximumvalue v�1 = 1
as n!1. Moreover, concerning asymptotic behaviour, no direct connection
exists between the optimal stopping problem Pn(r) for relax function r 2 R1

and problem Pn(#r) with decayed relax function #r where # 2 (0; 1).
The asymptotic value of problem Pn with r0(1�) = 1 doesn't di�er from
the asymptotic value if r(1) < 1 and an asymptotically optimal sequence of
stopping times again is to be found in (T c

n )n2N (see notation 2.25):

Theorem 2.22 Let r 2 R1
1 with r0(1�) = 1. Then the asymptotic value

v�1 := lim
n!1

v�n attains its maximum value 1, particularly

v�1 = lim
n!1

sup
T2T c

n

vn(T ) = 1: (11)

Proof: Let T denote the concurrent stopping rule with concurrent threshold
0 < t < 1, i.e. T := inff1 � k � n : Xk 2 [t; 1]g and XT � U([t; 1]) unless
T = inf; :=1 (implies mean payo� 0: X1 = 0 and P (Yn > 0) = 1). Then

vn(T ) := P (XT � r(Yn)) � P (Yn 2 [t; %(t)]) = %n(t)� tn:

Assertion (11) is implied by: For each " > 0 and for each n0 2 N there exist
n � n0 and threshold t = t(n) such that the following last inequality holds:

1 � v�n � vn(T ) � %n(t)� tn � 1� ":

Now r0(1�) = 1 implies 1 � %(t) = o(1 � t) for t ! 1, since 0 = %0(1�) =
limx"1

%(1)�%(x)
1�x = limx"1

1�%(x)
1�x .

Expressed in terms of Æ := 1� t (consider 1� %(1� Æ) = o(Æ) for Æ! 0 and
Æ = Æ(n)) a suÆcient formulation is as follows: For each " > 0 and for each
n0 2 N there exist n � n0 and Æ = Æ(n) > 0 such that

h(n; Æ) := (1 � o(Æ))n � (1� Æ)n � 1� " (12)
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holds. With regard to n maxima of h only can be attained on the curve

n = n(Æ) = ln

�
ln(1� Æ)

ln(1� o(Æ))

��
ln

�
1� o(Æ)

1 � Æ

�
= �1

Æ
ln

�
o(Æ)

Æ

�
for Æ ! 0. These are points where the derivative of h with respect to n
equals 0. Though the second derivative might be negative, the subsequent
derivations show assertion (12) regardless of values representing maxima or
not. Now n(Æ) ! 1 for Æ ! 0, thus a suÆcient small Æ causes n � n0.
Looking for the maximal values of h, i.e. regarding h(n(Æ); Æ), the assertion
sounds as follows: For each " > 0 there exists a suÆcient small Æ such that

(1 � o(Æ))�
1
Æ
ln( o(Æ)Æ ) � (1 � Æ)�

1
Æ
ln( o(Æ)Æ ) � 1� " 

1�
o(Æ)
Æ
1
Æ

!� 1
Æ
ln( o(Æ)Æ )

�
�
1 � 1

1
Æ

�� 1
Æ
ln( o(Æ)Æ )

� 1� ":

Now the upper term tends to 1 and the lower term on the lefthand side tends
to 0 as Æ ! 0. This is valid due to the following equivalent formulation:
Given a sequence (dk)k2N with 1 > dk & 0 for k !1 the following holds:

lim
k!1

�
1� dk

k

��k lndk
= 1

lim
k!1

�
1� 1

k

��k lndk
= 0:

The �rst assertion is valid based on the relations (o(1) � 0 as k !1)

e�1�o(1) � �1 � dk
k

� k
dk � e�1 (for all k 2 N). This leads (for k !1) to

1 
�
ddkk

�1+o(1)
= e(1+o(1))dk lndk �

 �
1� dk

k

�k
dk

!�dk lndk
� edk ln dk = ddkk ! 1:

Analogously for the second assertion the relations (o(1) � 0 as k !1)

e�1�o(1) � �1 � 1
k

�k � e�1 (for all k 2 N) lead (for k !1) to

0 d
1+o(1)
k = e(1+o(1)) lndk �

 �
1 � 1

k

�k
!� lndk

� elndk = dk ! 0:

Thus assertion (12) is veri�ed, which completes the proof. 2
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Example 2.23 Take r(y) := 1�p1� y 2 R1
1 with r0(1�) =1.

Conjecture 2.24 Under the hypothesis, that the asymptotic value v�1(d) is
strictly increasing in d = r0(1�) 2 [1;1) where r 2 R1

1, the following holds
(see remark 2.30 vi)): If the (lefthand sided) di�erence quotients of function
r 2 R1 in 1 vary (�nally) in a nontrivial interval [a; b] � [1;1], say, then a
limit of the values v�n(r) as n!1 doesn't exist.

To specify: Only estimations from below resp. from above (concerning a
resp. b) are possible, since the optimal probabilities v�n of winning will also
vary in a nontrivial interval as n tends to in�nity.

Heuristic explanation of conjecture 2.24:
Suppose r 2 R1 where r0(1�) doesn't exist | for simplicity and with regard

to the approximation in 2.17 ii) let
R 1

0 jr(�) � er(�)j d� < " for " > 0 whereer is a zigzag curve from (0; 0) to (1; 1): As an example for er take the zigzag
polygon consisting of horizontal and vertical lines between linear functions
cy � c + 1 resp. dy � d + 1 where 1 � c < d (adjust er(y) > 0 for y 2 (0; 1]
which for n!1 becomes unnecessary). Particularly er0(1�) doesn't exist.
Let pj for j 2 N denote the width of the horizontal lines and set �j :=

Pj
i=1 pi

for j 2 N and �0 := 0. For each j 2 N items inside interval [�j�1; �j) can
evidently be identi�ed, since there is no prevention of a win inside these
classes (apart from terms depending on "). Now pj represents the probability
of an item inside the j{th interval, j 2 N.
According to Baryshnikov et al. [4] the probability of a tie of the maximal
value of o�ers converges i� pj=(1 � �j) ! 0 as j ! 1 | scores in this
situation are called �j with respective probability pj, j 2 N. Particularly the
probability of a tie of the maximal value then converges to 0.
Here r0(1�) resp. er0(1�) doesn't exist and therefore pj=(1 � �j) 6! 0 as
j !1 (for er the corresponding limit is (d � c)=c > 0).
A tie of the maximal value in this situation means that, next to relaxed
demands due to function r, there are a couple of items which would lead to
a win and additionally this number varies signi�cantly as n grows, which has
heavy impact on the value v�n.
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2.1.1 Suboptimal Stopping Times

Some notations concerning subsets of stopping times are speci�ed:

Notation 2.25 Stopping time T is called threshold rule (for X1;X2; : : :) if
thresholds t1; t2; : : : 2 [0; 1] exist, such that T=inffk 2 N : Xk � tkg, where
inf; :=1 (representing win 0 a.s.) and where for problem Pn the convention
is that the payo� is 0 if T > n. If all tresholds are equal to the concurrent
threshold t then T is called concurrent threshold rule. For n 2 N let Tn resp.
T c
n denote the set of these threshold rules resp. concurrent threshold rules.

Now regard optimal selection of an r{candidate, r 2 R, in Tn and in T c
n .

Optimal Threshold Rule

Let a nonincreasing sequence 1 � t1 � � � � � tn = 0 of thresholds be given.
The value of the corresponding threshold rule T := inff1 � k � n : Xk � tkg

vn(T ) =
nX

k=1

Z 1

tk

 
k�1Y
j=1

minftj; %(xk)g
!
� %n�k(xk) dxk (13)

(
Q

; := 1), veri�ed by a vivid example: For n = 4 event [T = 3] occurs i�
[X1 < t1;X2 < t2;X3 � maxft3; r(X1); r(X2); r(X4)g] i�, given X3 = x3,
[X1 < minft1; %(x3)g;X2 < minft2; %(x3)g; x3 � t3;X4 � %(x3)],
which leads to expression (13). If T additionally is restricted to acceptance
of r{candidates then its value becomes signi�cantly more complicated (in the
example above the restriction X2 < t2 _ r(X1) makes things more intricate)
| the value of this stopping time is speci�ed in remark 2.32.

Optimal Concurrent Threshold Rule

In this paragraph the subsets T c
n of stopping times is studied for n 2 N:

Suppose a single threshold tn 2 [0; 1] is applied simultaneously to n items,
i.e. regard the concurrent threshold rule Tn := inff1 � k � n : Xk � tng
| neglecting the case Xk < tn for any 1 � k � n, since asymptotic be-
haviour is the primal intention (formally inf; :=1 yields payo� 0 a.s.). The
corresponding probability of winning is given by (expression (13) simpli�es)

vn(Tn) = P (XTn � r(Yn)) =
nX

k=1

�
tk�1n

Z 1

tn

%n�k(x) dx
�
: (14)
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For an optimal concurrent threshold rule T �
n (by di�erentiation) the optimal

concurrent threshold t�n is solution of the following equation:

0 =
nX

k=1

�
(k � 1)tk�2n

Z 1

tn

%n�k(x) dx� tk�1n %n�k(tn)
�
: (15)

Otherwise, setting for example Tn := inff1 � k � n : Xk � tng with
inf; := n, the upper bound in equation (14) above should be replaced by

n� 1 and the extra term tn�1n

�R r(tn)
0

%n�1(x) dx+ 1 � r(tn)
�
occurs.

Example 2.26 Maximize P
�
XTn � Y d

n

�
within T c

n , i.e. let r(y) = yd for
y 2 [0; 1] where d 2 [1;1). The optimal concurrent threshold t�n uniquely
solves

0 =
nX

k=1

�
d(k � 1)

n � k + d
tk�2n � n+ k(d� 1)

n� k + d
t(n+k(d�1)�d)=dn

�
and the value vn(T �

n) of the optimal concurrent threshold rule T �
n , whereof

some are given numerically in table 1 below for di�erent d,

d = 1 d = 2 d = 3 d = 10 d = 20 d = 30

n= 2 0.6667 0.7708 0.8223 0.9269 0.9591 0.9715
n= 3 0.6063 0.7196 0.7773 0.9007 0.9418 0.9581
n= 4 0.5808 0.6973 0.7575 0.8886 0.9334 0.9516
n= 5 0.5667 0.6849 0.7463 0.8816 0.9286 0.9478
n= 10 0.5407 0.6617 0.7255 0.8684 0.9193 0.9404
n= 100 0.5196 0.6427 0.7082 0.8574 0.9114 0.9341
n=1000 0.5176 0.6409 0.7066 0.8563 0.9107 0.9335

Table 1: The value P
�
XT �

n
� Y d

n

�
of the concurrent

threshold rule T �
n , which is optimal within T c

n .

is given by the formula

P
�
XT �

n
� Y d

n

�
=

nX
k=1

d

n� k + d
(t�n)

k�1 �1� (t�n)
(n�k+d)=d� :
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The �rst column of table 1 �ts searching exactly the overall maximum and
its probability converges down to ev�id � 0:5174, see remark 2.11 i). How-
ever, to what extent does the last row represent the actual asymptotic value
with respect to (T c

n )n2N? To specify: Keeping r0(1�) �xed (taking r 2 R1
1

with r0(1�) < 1), how does t�n converge to 1 for n ! 1 and what is the
corresponding asymptotic value (lower bound for v�1(r

0(1�))? This will be
answered in the next paragraph.

Asymptotically Optimal Sequences of Concurrent Threshold Rules

Now the sets T c
n of concurrent threshold rules are investigated asymptotically.

For this purpose let r 2 R1
1 with d := r0(1�) 2 [1;1), excluding r0(1�) =

1 and dropping the case r(1) < 1, see theorem 2.22 and the preceding
considerations on page 36. It can be assumed that r(y) = dy � d + 1 for y
suÆciently close to 1, since the probability for the event [Yn < y0] becomes
arbitrarily small for any y0 < 1 as n becomes large | other relax functions
with derivative d at 1 will coincide in asymptotic behaviour.
The asymptotic probability of winning for the sequence of concurrent thresh-
old rules with concurrent thresholds (tn)n2N is developed (threshold tn is ap-
plied simultaneously to X1; : : : ;Xn for each n 2 N): Evidently tn should tend
to 1 as n ! 1. A concurrent threshold rule corresponds to a binomial ex-
periment (each time: exceeding the threshold or not) and therefore n(1� tn)
represents the mean number of items exceeding tn. If n(1 � tn) converges
to 0 resp. converges to a positive value resp. diverges to 1, the number of
items exceeding concurrent threshold tn will (heuristically with regard to the
probability of winning) be insuÆcient resp. is moderate resp. is oversized:

Lemma 2.27 Let r 2 R1
1 where d := r0(1�) 2 [1;1). Let thresholds (tn)n2N

specify the sequence (Tn)n2N of concurrent threshold rules.

i) If lim
n!1

n(1 � tn) = 0, then lim
n!1

vn(Tn) = 0.

ii) If lim
n!1

n(1 � tn) =: � 2 (0;1), then

lim
n!1

vn(Tn) = h(�; d) := de��
1X
k=1

�k
�
1� �1� 1

d

�k�
k!k

:

iii) If lim
n!1

n(1 � tn) =1 (divergence), then lim
n!1

vn(Tn) = 0.
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Proof: For n 2 N let Kn denote the number of objects exceeding concurrent
threshold tn,Kn � B(n; tn). The following inspections are meant for n!1,
which is equivalent to tn ! 1.

i) It is suÆcient to prove that event Kn = 0 (which is equivalent to
win 0) occurs asymptotically almost surely: P (Kn = 0) = tnn ! 1 i�
n ln(tn) = n(1� tn + o(1 � tn))! 0, which is true since tn! 1.

ii) Decomposition with respect to the number Kn = 0; : : : ; n of items
exceeding threshold tn: P (Kn = k) =

�
n
k

�
(1 � tn)ktn�kn . Using Poisson

approximation this probability asymptotically equals e���k=k!, where
� := limn!1 n(1 � tn) 2 (0;1) (especially exists). The probability of
winning givenKn = k > 0 items exceed threshold tn is (for n suÆciently
big, arbitrarily accurate) given by

P (XTn � r(Yn) j Kn = k) =

Z 1

0

�
1

d
(x+ d � 1)

�k�1
dx

=
d

k
� d

k

�
d� 1

d

�k

(by rescaling). Consider P (XTn � r(Yn) and Kn = 0) = 0. Thus the
limit behaviour of these values is as follows:

P (XTn � r(Yn)) =
nX

k=1

P (XTn � r(Yn) j Kn = k) � P (Kn = k)

n!1!
1X
k=1

 
d

k
� d

k

�
d � 1

d

�k
!
� e���

k

k!

= de��
1X
k=1

�k
�
1� �1� 1

d

�k�
k!k

:

iii) The probability of failure tends to 1, since, heuristically, tn ! 1 too
slowly: Choosing item x, the critical value %(x) will be surpassed, for
too much items above threshold tn will occur. For given d = r0(1�)
let " > 0 and choose c = c(") 2 N such that " � d

c

�
1� �1� 1

d

�c�
.

Now �x Æ > 0. Due to n(1 � tn) ! 1 it is possible to choose
n = n(c; Æ) such that P (Kn � c) � 1 � Æ is valid (a big n will be
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suÆcient, since with regard to the central limit theorem P (Kn � c) �
�
�
(n(1 � tn)� c)=

p
n(1� tn)tn

�
� �

�p
n(1� tn)=tn

�
n!1! 1). Now

XTn denotes the �rst (thus choosen) item exceeding concurrent thresh-
old tn, XTn � U([tn; 1]). Subsequent with high probability (at least
1� Æ) at least c� 1 objects beyond tn (possibly preventing a win) will
occur (these random variables are iid). The probability of failure is
estimated from below (for estimation of % take d+ � and � ! 0):

P (XTn < r(Yn)) � P (XTn < r(Yn) j Kn � c) P (Kn � c)

�
�
1�

Z 1

0

%c�1(x) dx
�
(1 � Æ)

�
 
1�

Z 1

0

�
x+ d � 1

d

�c�1
dx

!
(1� Æ)

=

�
1� d

c

�
1 �

�
d � 1

d

�c��
(1� Æ)

� (1 � ") (1� Æ):

Since " and Æ are arbitrary small, P (XTn < r(Yn)) tends to 1. 2

Theorem 2.28 Let r 2 R1
1 where d := r0(1�) 2 [1;1). A sequence (tn)n2N

of concurrent thresholds is asymptotically optimal (with respect to (T c
n )n2N)

i� limn!1 n(1 � tn) = ��, where �� = ��(d) 2 [�1;1) (for �1 see remark
2.30 ii) below) represents the unique solution of the implicit equationZ �

�(1� 1
d)

e� � 1

�
d� =

e� � e�(1�
1
d)

�
: (16)

In addition the asymptotic value with respect to (T c
n )n2N isev�1(d) := lim

n!1
sup
T2T c

n

vn(T )= h(��; d) = de��
�
R ��
��(1� 1

d)
e��1
�

d� (lemma 2.27 ii)).

Proof: With regard to lemma 2.27 sequences where limn!1 n(1�tn) is equal
to 0 or1 can be neglected. Now suppose � := limn!1 n(1� tn) 2 (0;1) (if
there are several accumulation points, subsequences with di�erent asymptotic
probability of winning can be chosen). The asymptotic probability of winning
h(�; d) of that lemma is to be maximized with respect to �:

@

@�
h(�; d) =

1 � e��=d

�=d
� h(�; d):
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Using the necessary condition h(��; d) =
�
1� e��

�=d
�
d=�, the repeated

derivation proves to be negative in its solution �� = ��(d) (if existing):

@2

@�2
h(�; d)

����
�=��

= �1� e��
�=d

(��)2=d
+
e��

�=d

��
< 0;

since this inequality is equivalent to (d + ��)e��
�=d < d: For � = 0 equality

would apply and for � > 0 the derivative of the lefthand side @
@�

�
(d + �)e��=d

�
= ��

d
e��=d < 0. Furthermore h(�; d) is continuous for � 2 (0;1) and

h(�; d)! 0 as �! 0 and as �!1. Thus a maximum of h(�; d) is existing
and unique, called ��(d) and represents the limit of n(1 � tn) for n ! 1
of (tn)n2N in order to be asymptotically optimal with respect to (T c

n )n2N. 2

The behaviour of ��(d) and the corresponding value is illustrated in table
2 below for d = 1 (1) 5 (5) 20, including its approximation according to the
subsequent theorem 2.29. Heuristically the asymptotic mean number ��(d)
of o�ers beyond the threshold is evidently increasing in d, since due to the
decreasing demands it is advisible to consider an increasing number of o�ers.
Equation (16) can (even for d = 1) not be solved explicitly, however the
following theorem clari�es the asymptotic relation between d and ��(d):

Theorem 2.29 Let the assumptions and notations of theorem 2.28 be given.
Then

��(d) ' ln(2d + 1) as d!1: (17)

Proof: Setting � = �� the equation h(�; d) = d
�
(1 � e��=d) is transformed

(rearrangements are valid since d is an upper bound for the absolute series):

de��
1X
k=1

�k
�
1 � �1 � 1

d

�k�
k!k

=
d

�
(1� e��=d)

de��
1X
k=1

�k

k!k

kX
j=1

(�1)j+1

�
k

j

�
1

dj
=

d

�
(1� e��=d)

de��
X

1�j�k<1
(�1)j+1 1

dj
�k

1

j!(k � j)!k
=

d

�
(1� e��=d)
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e��
1X
j=1

 
(�1)j+1

j!

1

dj�1

1X
i=0

�j+i

i!(j + i)

!
=

d

�
(1� e��=d)

1X
j=0

(�1)j�j 1
dj

=

1X
j=0

(�1)j
(j + 1)!

��
d

�j
1X
j=0

(�1)j�j 1
dj

= 0; (18)

where for j 2 Z+ abbreviations �j = �j(�) :=
1

(j+1)!
e��

P1
i=0

�j+1+i

i!(j+1+i)
and

�j = �j(�) := �j(�)� �j

(j+1)!
are used. In the sequel � > 0.

Estimation �j(�) � �j+1

(j+1)!
e��

P1
i=0

�i

(i+1)!
� �j+1

(j+1)!
1�e��

�
< �j

(j+1)!
for j 2 N.

Particularly �0(�) = �e�� and �1(�) = �1�e��
2

and estimation �j(�) < 0

and if j � 2 and � � 2 then j�j(�)j � �j+1

(j+1)!.

Dividing equation (18) by �0 and grouping with respect to powers of the new
variable x = x(�; d) := 1

d
�1
�0
= 1

2d(e
� � 1) 2 (0;1), the equivalent expression

1 � x+
1X
j=2

jx
j = 0 (19)

with new coeÆcients j = j(�) := (�1)j�j�j�10 =�j1 = (�1)j j�jj e�
�

2
e��1

�j
for j � 2 results. Set F�(x) :=

P1
j=2 jx

j, convergent for x 2 [0;1) and

� 2 (0;1) | jj j(j + 1)! � �e�
�

2�
e��1

�j
=: Æ�;j. Now F�(x) = o(1) for

�!1 uniformly in x 2 [a; b] with 0 < a < b <1: Æ�;j is nonnegative and
if � 2 [2;1) then Æ�;j is decreasing in j � 2. On the other hand if j � 2 then
Æ�;j = o(1) as �& 0 or as �!1 (by the rule of de l'Hospital) and maxima of
Æ�;j with respect to � lie on the implicit curve j = �2(e2��1)=(1+e�(��1)),
where the right side is positive, increasing in � and exceeds 2 for � = 2.
Therefore the maximumof Æ�;j for � � �0 and j � 2 is attained in Æ�0;2 = o(1)
as �0 ! 1. Thus Æ�;j = o(1) for � ! 1 independent of j � 2 and thus
F�(x) � o(1)(eb � b� 1) = o(1) as �!1 uniformly in x 2 [a; b].
Since according to theorem 2.28 the equation 1�x+F�(x) = 0 has a unique
solution x for �xed �, it is given by x = (e� � 1)=(2d) + o(1) as �!1 and
its limit is 1. Thus d ' (e� � 1)=2 or � ' ln(2d+ 1) as � = �� !1. 2
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d ��(d) ln(2d + 1) h(��(d); d) h(ln(2d + 1); d)

1 1.5029 1.0986 0.5174 0.4974
2 1.9359 1.6094 0.6407 0.6324
3 2.2223 1.9459 0.7064 0.7019
4 2.4387 2.1972 0.7487 0.7460
5 2.6135 2.3979 0.7788 0.7770
10 3.1900 3.0445 0.8562 0.8557
15 3.5468 3.4340 0.8906 0.8904
20 3.8068 3.7136 0.9106 0.9105

Table 2: Optimal ��(d) and optimal asymptotic value
h(��(d); d) within (T c

n )n2N and approximations thereof,
referring to theorems 2.28 and 2.29 above.

Remark 2.30

i) The basic message of theorem 2.28 is the asymptotic behaviour of the
optimal concurrent threshold rule t�n of Pn: limn!1 n(1 � t�n) = ��(d),
with corresponding asymptotic value h(��(d); d).

ii) In Gilbert and Mosteller [18] the case r � id resp. d = 1 is considered
and the corresponding term �1 := ��(1) � 1:5029 is the solution of

equation g(�) := e��
P1

k=1
�k

k!k =
1
�
(1� e��). Here h(�; 1) � g(�) and

h(�; d) = dg(�)� de��=dg
�
d�1
d
�
�
.

As h(��(1); 1) = ev�id � 0:5174 < 0:5802 � v�id = v�1(1) may indicate,
the inequality h(��(d); d) < v�1(d) may hold for any d 2 [1;1), see vi).

iii) Function h(�; d) solves the following partial di�erential equations (let
� 2 (0;1), d 2 (1;1)):

@

@�
h(�; d) =

d

�

�
1 � e��=d

�� h(�; d)

@

@d
h(�; d) =

1

d
h(�; d) � 1

d � 1

�
e��=d � e��

�
:

iv) Regard function eh(�) := h(�; (e��1)=2), i.e. regard the value referring
to the approximation of ��(d). First eh(�) is increasing in � 2 (0;1),
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since it is the solution of the di�erential equation

d

d�
eh(�) =

1

e� � 1
eh(�) + 1

2

(e� � 1)
�
e� � e�

e��3
e��1

�
�e�

� e�
e��3
e��1 � 1

e� � 3
;

where the inhomogenous term turns out to be positive for � > 0.
Second eh(�) ! 1 as � ! 1 (in accordance with theorem 2.22 where
also only concurrent threshold rules were used), which is veri�ed as fol-
lows (set d := (e��1)=2): In expression de��P1

j=1(�1)j+1e��j�1(�)=dj

the leading factor converges to 1=2, the �rst term of the series, j = 1,
equals 2, whereas for j > 1 the j{th term is O

�
�j�1e��(j�1)

�
= o(1)

for �!1, since e��j(�) = O (�j�1e�).

v�id � 0:5802ev�id � 0:5174
0:4974

1

h(��(d); d) > h(ln(2d + 1); d)

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

d = r0(1�)

Figure 3: The value ev�1(d) = h(��(d); d) for d = 1; : : : ; 20
(dots) and the approximative curve h(ln(2d + 1); d) for
d 2 [1; 20] where d := r0(1�), see remark 2.30 v) below.

v) In �gure 3 values ev�1(d), asymptotically optimal within (T c
n )n2N, are

plotted for di�erent d := r0(1�) 2 [1;1): First for �x d exact values
��(d) and probabilities of winning ev�1(d) = h(��(d); d) are computed
(according to theorem 2.28). Second the approximation h(ln(2d+1); d)
from below is plotted, according to theorem 2.29. Due to r � id the
relation v�1(d) � ev�1(d) � ev�id � 0:5174 is valid (dashed line in the �g-
ure above) and a rough estimation from below is h(ln(3); 1) � 0:4974



2 OPTIMAL SELECTION IN DISCRETE TIME 48

(based on theorem 2.29 and indicated by the baseline in the �gure).
Relation to the �nite case: Fix d = r0(1�) 2 [1;1) and let T �

n = T �
n (r)

denote the optimal concurrent threshold rule, n 2 N. Varying func-
tion r 2 R1

1 while preserving derivative d, then vn(T
�
n(r); r) 2 [ev�id; 1).

In case of r � id then vn(T �
n) decreases in n whereas for r � id the

behaviour of ev�n(d) isn't monotone in general. If d > 1 particularly
vn(T �

n(r)) may be bigger or lower than ev�1(d) = h(��(d); d), since func-
tion r might �t (for y 2 [0; 1 � "] where " > 0 is small) function 0
(maximal probability near 1) or id (minimal probability close to ev�id).
In other words fvn (T �

n(r); r) : r 2 R1
1 with r0(1�) = dg = (ev�id; 1),

where d 2 (1;1) and n 2 N are �xed.

vi) Besides v�1(1) = v�id � 0:5802 and v�1(1) = 1 the interesting question
how v�1(d) behaves for d 2 (0;1) must be left open. Particularly it
may be possible that v�1(d) = 1 for d 2 (1;1] and it may be possible
that v�1(d) is continuous on [1;1] with v�1(d) < 1 for d 2 [1;1).

The Myopic Stopping Time

The myopic stopping time referring to selecting an r{candidate means the
one step look{ahead rule referring to the subsequence of r{candidates (see the
corresponding paragraph on page 81): Compare the mean payo� of stopping
with the mean payo� selecting the next r{candidate (if any).
If there is one draw remaining, ` = 1, the optimal and the myopic stopping
time are identical for any r 2 R | there is maximal one r{candidate to
choose yet. This already implies that the myopic stopping time can be not
optimal if r � id for ` > 1: The myopic stopping time compares the mean
payo� for accepting the present item with the scenario for selecting the next
r{candidate | regardless wether this myopic stopping time would really
accept the next r{candidate (in the case of proceeding). This di�erence
in anticipation and actual selection is possible as the proper inequalities
r(y) < b�1(y) = r(1 � r(y)) < y in a nontrivial interval (b1; b1) indicate (see
�gure 1 on page 25). On the other hand e.g. b2 = b2 is possible.
Thus in short the myopic stopping time isn't optimal in general, since its
stopping sets may miss closedness, though they may be monotone.
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Proposition 2.31 The myopic stopping time Sm for problem Pn(r) where
r 2 R stops in (x; y) 2 � with 0 < ` < n remaining o�ers if x � r(y) and

x � r

0@" `�1X
i=0

r`�1�i(y)
Z 1

r(y)

%i(�) d�

#1=`1A :

Proof: If (x; y) 2 ��
0 then s`(x) = %`(x). Set (Ps)(n;x; y) := 0 and for ` > 0

(Ps)(n� `; y) =
`�1X
i=0

r`�1�i(y)
Z 1

r(y)

%i(�) d�;

confer page 83: Decompose with respect to the arrival time of the next
r{candidate: ` � 1 � i non{r{candidates pass and (the �rst) r{candidate �
wins with respect to i future values. Similarity to c`(x; y) of (2) and (6). 2

y

y

r(y)

Figure 4: The stopping sets of the myopic stopping time Sm
(inside ��

0, axes reversed) aren't monotone: r(y) = y4 on [0; 1]
and ` = 1; : : : ; 20 (for ` = 1 coincidence with �gure 1).

The stopping sets of the myopic stopping time seem to be not monotone in
general, see �gure 4 above. For computations the recursive relation (with

reversed time index) (Ps)(`+1; y) = r(y)(Ps)(`; y)+
R 1
r(y) %

`(�) d� for ` 2Z+

with (Ps)(0; y) := 0 is useful.
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A Random Index to Take Any r{Candidate

In this paragraph the approach of the myopic stopping only to respect, in
case of proceeding, selection of the next r{candidate (if any; regardless of
its magnitude) is extended to the decision of stopping. Given relax function
R 3 r � id, regard stopping times based on the following comparison: Either
take any present r{candidate or choose the next r{candidate (if any). In the
context of stopping problem Pn such a stopping time is called random index
and denoted by In. The indicated restriction leads to a rule based on the
information: The present maximumYi exceeds a threshold ti (or not) and the
present valueXi is an r{candidate (or not), for each time instant i = 1; : : : ; n.
Thus In is speci�ed by a sequence t1; : : : ; tn, assumed to be nonincreasing,
via

In := inf f1 � i � n : ti � Yi � %(Xi)g (20)

where inf; := 1. In any case tn := 0 is advisible. The stopping sets of a
random index In inside ��

0 are speci�ed by vertical lines.

In terms of threshold rules this type of restriction means to specify a random
time Jn for thresholds u1 = : : : = uJn�1 = 1 and uJn = : : : = un = r(YJn�1)
with random height (Y0 := 0). Here Jn := 1 + sup f1 � j � n : Yj < tjg
(where sup; := 0) meets random index In.

For n = 2 the value P (XI2 � r(Y2)) =
R 1

t1
%(x) dx +

R t1
0
1 � r(x) dx is

maximal if t1 is the unique solution of r(t) + %(t) = 1. For n 2 N the value
vn(In) := P (XIn � r(Yn)) of In according to t1 � � � � � tn, see (20), is

vn(In) =

nX
i=1

�
ti�1i

Z 1

ti

%n�i(x) dx
�

+
nX
i=2

i�1X
j=1

" 
i�1Y

k=j+1

tk

!Z tj

tj+1

�Z 1

r(y)

%n�i(x) dx
�

dyj

#
(21)

by decomposing with respect to [In = i]: The �rst sum covers the case
[Yi�1 < ti and Xi � ti] for i = 1; : : : ; n, whereas the second term covers
the events [Yj 2 [tj+1; tj) and Xj+1 < tj+1; : : : ;Xi�1 < ti�1 and Xi � r(Yj)]
for j = 1; : : : ; i�1 where i = 2; : : : ; n (take Y0 := �1,

P
; := 0 and

Q
; := 1).
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Since maximization of expression (21) seems unaccessible, a more simple ap-
proach to a random index (in general suboptimal random index) with an in-
teresting performance is displayed next: Suppose to stop in state (i; x; y) 2 E
with (x; y) 2 ��

0, if the mean payo� of choosing the next r{candidate,
(Ps)(i; y), is not bigger than the mean payo� of stopping with any present
r{candidate. The smallest value to stop with then is r(y) and this means
comparison (Ps)(i; y) � (%(r(y))n�i. This, with regard to theorem 2.13 i),
speci�es uniquely the upper boundary value bn�i and the corresponding ran-
dom index is called In (for �xed n; then ti = bn�i for i = 1; : : : ; n with
b0 := 0). According to the regular case

�
b`
�
`2Z+ is nondecreasing and propo-

sition 2.15 treats asymptotic behaviour. This random index In may be a sub-
optimal random index: Heuristically, supposing a threshold lower than bn�i,
the loss while accepting smaller values (i.e. x � r(y) with s(i; x) < (Ps)(i; y))
may be prevailed by the other (big) values.
In table 3 below for relax function r(y) = y4 and n = 2(1)5; 10(10)50; 100; 500
the threshold bn�1 (interpretation: n� 1 items remain) and the value vn(In)

n bn�1 bn�1 vn(In) vn(In)

2 0.7245 0.6305 0.9498 0.9611
3 0.8427 0.8153 0.9389 0.9742
4 0.8897 0.8768 0.9401 0.9858
5 0.9151 0.9076 0.9449 0.9923
10 0.9605 0.9589 0.9631 0.9904
20 0.9809 0.9805 0.9679 0.9782
30 0.9874 0.9873 0.9680 0.9738
40 0.9906 0.9905 0.9678 0.9716
50 0.9925 0.9925 0.9676 0.9702
100 0.9963 0.9963 0.9670 0.9677
500 0.9993 0.9993 0.9662 0.9662

Table 3: Maximization of P (XS � Y 4
n ) based on random indexes:

Threshold bn�1 and the value vn(In), besides the value vn(In)
based on (asymptotic) approximation bn�1 of each threshold bn�1.

are computed. For example if n = 5 then t1 = b4 � 0:9151 and t2 =
b3 � 0:8897, and if n = 4 then t1 = b3 � 0:8897. The approximation
bn�1 := 1 � 0:3695=(n � 1) of bn�1 for n > 1 refers to �(4) � 0:3695 (see



2 OPTIMAL SELECTION IN DISCRETE TIME 52

example 2.14 and proposition 2.15), the corresponding random index based
on thresholds bn�1 > � � � > b0 being called In (b0 := b0 := 0).

In table 3 the values prove to be not monotone in n and vn(In) < vn(In)
is possible, the approximative thresholds may lead to a better performance.
Particularly for n = 2 the value of the optimal random index is approxi-
mately 0:9620, referring to the thresholds t1 � 0:5920 and t2 = 0, where t1
uniquely solves t41 +

4
p
t1 = 1.

In �gure 5 below the value vn(In) is plotted for n = 1(1)10(5)50 where
r(y) = y2; y3; y4. While limn!1 n(1 � bn) = � is known (proposition 2.15),
an analytic description of the asymptotic value limn!1 vn(In) for r 2 R1

1

with r0(1�) 2 (1;1) via expression (21) seems to be unaccessible. The
question wether the values converge for n!1 as they suggest in the �gure
below must be left open | if they do, then they may surpass the value of
optimal sequences of concurrent threshold rules and may improve their lower
bound for the value v�1(r

0(1�)) with r0(1�) 2 (1;1): See table 2 or �gure 3,
where for example h(��(4); 4) � 0:7487 while here v500(I500) � 0:9662 results
for r0(1�) = 4.

1 10 20 30 40 50

0:7443

0:8681

0:9676

n

vn(In)

1

0

Figure 5: The value vn(In) of random index In (based on
(b�`)0�`<n) for n = 1(1)10(5)50, where r(y) equals y2; y3 and
y4 (corresponding sequences of dots from bottom to top).
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Remark 2.32 The approach of expression (21) can be adapted to specify
the value of the stopping time Sn for problemPn(r) which uses the thresholds
t1 � � � � � tn and only accepts r{candidates, i.e. which applies boundary
functions t1 _ r(y); : : : ; tn _ r(y):

vn(Sn) =

nX
i=1

�
ti�1i

Z 1

ti

%n�i(x) dx
�

+
nX
i=2

i�1X
j=1

"Z tj

tj+1

  
i�1Y

k=j+1

tk _ r(y)
!Z 1

ti_r(y)
%n�i(x) dx

!
dyj

#
;

since the decomposition for the �rst sum remains una�ected, [Yi�1 < ti and
Xi � ti] for i = 1; : : : ; n with Y0 := 0, while the decomposition for the second
sum is di�erent: [Yj 2 [tj+1; tj) and Xj+1 < tj+1_r(y); : : : ;Xi�1 < ti�1_r(y)
and Xi � ti_r(Yj)] for j = 1; : : : ; i�1 where i = 2; : : : ; n (again set

P
; := 0

and
Q

; := 1).
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2.1.2 The Markovian Case

Suppose to maximize the probability of choosing an r{candidate, r 2 R,
where the sequence of o�ers X1; : : : ;Xn represents a Markov process. To
permit reasonable results in this Markovian case three minimal properties
are claimed:

1. The mean payo� doesn't shrink if the chosen value grows.

2. Unique optimal boundaries exist (see preparation of de�nition 2.5).

3. The optimal stopping problem is regular.

Let a homogenous Markov process X = (Xk)k2N with state space [0; 1] be
given. Homogeneity is assumed with regard to claim 3., see counterexample
2.35 ii), and [0; 1] is taken in order not to restate monotonicity criteria and
set R. Let conditional distribution function Fx(�) := P (Xk+1 � � j Xk = x)
for x; � 2 [0; 1] and k 2 N be continuous and increasing in � on the set
fz 2 R : 0 < Fx(z) < 1g for x 2 [0; 1]. Let Yk := maxfX1; : : : ;Xkg denote
the relative maxima, k 2 N.
Let Pm

n (r), where r 2 R and 1 < n 2 N, denote the corresponding opti-
mal stopping problem (see speci�cation of the mathematical model in the
beginning of this chapter): The objective is optimal stopping of the Markov
process Z = (Zk)k2Z+, where Z0 := �0, Zk := (k;Xk; Yk) for k = 1; : : : ; n
and Zk := �1 for k > n with payo� function is P (XS � r(Yn)) according to
a nonanticipating stopping time S 2 Sn.
Suppose (x; y) 2 � and let ` = n� 1; : : : ; 0 denote the number of remaining
draws. Again let s`(x; y) denote the mean payo� of stopping and let c`(x; y)
describe the mean payo� for proceeding at least one item and then choosing
optimally. Function % is again de�ned according to expression (4).

Suppose ` = 1: Stopping with the last but one item with x � r(y) leads to
mean payo� s1(x) = P (x � r(Xn) j Xn�1 = x) = Fx(%(x)), which should be
nondecreasing in x according to claim 1. A suÆcient condition is Fx(t) �
F�(t) for t 2 [0; 1] and (x; �) 2 �: Then Fx(%(x)) � Fx(%(�)) � F�(%(�)).
This suggests the following condition for the stochastic behaviour of X: As
Xk increases, Xk+1 should be stochastically nonincreasing, k 2 N:

P (Xk+1 � x j Xk = �) � P (Xk+1 � x j Xk = �) (22)

or F�(x) � F�(x) for x 2 [0; 1] and (�; �) 2 �.
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The subsequent lemma speci�es the behaviour of function s`(x; y) and c`(x; y).

Lemma 2.33 Regard problem Pm
n (r) for a homogenous Markov process X

ful�lling condition (22). Let (x; y) 2 � be given and let ` 2Z+.

i) If x � r(y), then s`(x) is nonincreasing in ` and nondecreasing in x.

ii) c`(x; y) is nonincreasing both in x and y.

Proof:

i) Due to homogeneity the mean payo� s`(x) doesn't shrink as ` decreases,
since the requests for a win become easier to meet (not in a strong sense:
Take ` = 2 and X1 = x = 1

2
implying X2 = X3 = 1, plus homogeneity).

Condition (22) implies s`(x) is nondecreasing in x: The case ` = 1 is
shown in the introduction above. For ` > 1 resp. k < n � 1 �xed, let
G�(x) := P

�
Y n
k+2 � x

�� Xk+1 = �
�
, where Y n

k+2 := maxfXk+2; : : : ;Xng.
Then for (x; �) 2 �

s`(x) = P
�
x � r(Xk+1) and x � r(Y n

k+2)
�� Xk = x

�
=

Z %(x)

�1
Gxk+1(%(x)) dFx(xk+1)

�
Z %(�)

�1
Gxk+1(%(�)) dFx(xk+1)

�
Z %(�)

�1
Gxk+1(%(�)) dF�(xk+1)

= s`(�);

where the last inequality is valid since the mass given by F� � Fx is
nonnegative.

ii) As the present value x grows, future o�ers become stochastically smaller,
which implies less fortune for the selection in the future meeting the
claims demanded by y resp. x _ y. On the other hand c`(x; y) is evi-
dently nonincreasing in y (since the requirements in order to select an
r{candidate grow), but it isn't decreasing: Suppose x � y < � � 1 and
take ` = 1, then possibly P (Xn 2 [r(y); r(�)) j Xn�1 = x) = 0. 2

This lemma provides regularity of problem Pm
n (r):
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Lemma 2.34 The optimal stopping problem Pm
n (r) for a homogenous Markov

process X obeying condition (22) is regular.

Proof: Let (x; y) 2 � with x � r(y) and ` 2 N, Then decomposing with
respect to Xn�`+1 = � and using monotonicity of lemma 2.33 ii) yields

c`(x; y) =

Z r(y)

�1
c`�1(�; y) dFx(�) +

Z 1

r(y)

v`�1(�; y _ �) dFx(�)

�
Z x

�1
c`�1(x; y) dFx(�) +

Z 1

x

s`�1(�) dFx(�)

= Fx(x)c`�1(x; y) +
Z 1

x

s`�1(�) dFx(�);

which leads to the estimation

Fx(x)c`�1(x; y) � c`(x; y)�
Z 1

x

s`�1(�) dFx(�):

Then, supposing s`(x) � c`(x; y) with ` 2 N, a suÆcient criterion for the
desired inequality s`�1(x) � c`�1(x; y) is

Fx(x)s`�1(x) � c`(x; y)�
Z 1

x

s`�1(�) dFx(�);

which proves to be true because the relation c`(x; y) � s`(x) � s`�1(x), see
lemma 2.33 i), leads toZ 1

x

s`�1(�) dFx(�) � (1� Fx(x)) s`�1(x);

verifying the regularity of the problem. 2

Thus optimal boundary functions resp. optimal stopping sets for this Marko-
vian setting, in principle, are speci�ed analogously to theorem 2.7.

Homogeneity of the Markov process X and condition (22) are in a sense nec-
essary to enable claims 1., 2. and 3., which is indicated by counterexamples,
chosen to be discrete to simplify matters:
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Counterexample 2.35 Indication and motivation for conditions posed:

i) Dropping condition (22) may violate claim 1. and claim 2.:
Take n = 2. Suppose X1 = 1 implies X2 = 0, thus choosing 1 would
be optimal. If now X1 = 3 implies X2 = 4, then choosing 3, seeming
more useful than 1, could be not optimal: Take 3 < r(4). This e�ect
doesn't even permit an increase of X2 by the same amount X1 does (for
example X1 � U([0; 1]) and X2 = 1+X1), since at any rate function r
may dominate this increase.

ii) Homogeneity of the Markov process X ensures regularity | claim 3.:
For a nonhomogenous Markov process X the optimal stopping problem
isn't regular in general, since s`(x) may be increasing in ` (see the last
argument in the proof of lemma 2.34, where the case Xn�`+1 2 (x; %(x)]
can't be estimated nor circumvented):
Take n = 3 and suppose X1 = 1 implies X2 = X3 = 2 where 1 � r(2)
would ensure a win of 1 unit. Besides suppose X2 = 1 implies X3 = 3
where 1 < r(3), which would lead to failure. Thus s1(1) < s2(1).
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2.2 The Ratio of Gambler's Choice and Prophet's Value

Suppose the payo� function f(x; y) = x=y (unless y = 0, where without
loss of generality payo� 0 is assumed), for which monotonicity criteria (1)
and boundedness in � apply. Thus Pn(x=y) is regular. The mean payo� of
stopping in state (x; y) 2 � with y > 0 where ` 2 Z+ draws remain is given
by

s`(x; y) =

Z y

0

x

y
d�` +

Z 1

y

x

�
d�` =

8<:
x=y if ` = 0

x(1� ln y) if ` = 1
x

`� 1(`� y`�1) if ` > 1:

Thus s`(x; y) is increasing in x inside � for any ` 2 Z+ (since x=y is) and
then optimal boundary functions resp. optimal stopping sets are in principle
speci�ed according to theorem 2.7.
If one draw remains then it is optimal to stop if the present value x isn't lower
than b�1(y) = (1� 1

2y)=(1� ln y), since c1(y) =
R y
0 �=y d� +

R 1

y
1 d� = 1� 1

2y.

Regard problem Pn with respect to the set T c
n of concurrent threshold rules:

Supposing the concurrent threshold t 2 (0; 1] the value of the corresponding
concurrent threshold rule T is given by (declaring payo� 0 if Yn < t)

E (XT=Yn)

=
n�1X
`=0

tn�`�1
Z 1

t

s`(�; �) d�

= tn�1(1� t) + tn�2
Z 1

t

�(1 � ln �)d� +
n�1X
`=2

tn�`�1
Z 1

t

�
`

`� 1
� � 1

` � 1
�`
�
d�

= tn�1(1� t) + tn�2
3� 3t2 + 2t2 ln t

4

+
n�1X
`=2

tn�`�1
�
`(1 � t2)

2(` � 1)
� 1� t`+1

(`� 1)(` + 1)

�
;

to be maximized with respect to t by numerical methods (set
P

; := 0).
Particularly for n = 2 then t � 0:2220 solving 1 = 3t � t ln t is the optimal
concurrent threshold, which yields mean payo� 0:8487. For n = 2 the payo�
maximal possible, the value v�2 is approximately 0:9171. This results by
regarding b�1(y) (setting x = y) and since threshold rules will be mentioned
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next this value is now veri�ed in terms of threshold rules: Suppose threshold
t1 2 (0; 1] and t2 = 0. Then the value of the corresponding threshold rule

is given by
R t1
0
1 � 1

2
� d� +

R 1

t1
�(1 � ln �) d� = 3

4
+ t1 � t21 +

1
2
t21 ln t1, which

maximally attains approximately 0:9171 for threshold t1 � 0:4242, the unique
solution of 1 = 3

2
t � t ln t in (0; 1] (if the �rst item is taken, i.e. concurrent

threshold t = 0, then the value is 3=4).
Now the value of stopping times referring to the set Tn of threshold rules
is displayed: The value of threshold rule T corresponding to nonincreasing
thresholds t1 � � � � � tn leads to an expression analogue to (21) by applying
a similar decomposition:

E (XT=Yn) =

nX
i=1

�
ti�1i

Z 1

ti

sn�i(x; x) dx
�

+
nX
i=2

i�1X
j=1

" 
i�1Y

k=j+1

tk

!Z tj

tj+1

�Z 1

ti

sn�i(x; y _ x) dx
�

dyj

#
;

where the �rst sum is computed on the previous page (for addend with index
` replace t by tn�`) and where the innermost integral of the second sum
(whose lower limit now is ti instead of r(y) regarding (21)) should be splitted
at value y: This innermost integral from ti to y is easy to calculate (since
s`(x; y) is linear in x) and the integral from y to 1 yields the result of the
previous page (replacing t by y and now the upper bound for ` is n � 2).
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3 Optimal Selection

with Random Arrival Times

In this chapter iid o�ers arrive at random times, where also the interarrival
times are iid. A gambler intends to elect one object in order to maximize
the mean of a payo� function, while the time of selection is terminated by a
socalled horizon, which is �xed or random.

Mathematical Model

Let X1;X2; : : : be U([0; 1]) (theorem 2.8 is adaptable). Set X0 := X1 := 0.
Let Yk := maxfX1; : : : ;Xkg denote relative maxima, k 2 N. Y0 := Y1 := 1.
The relative arrival time of Xk is denoted by Ak, k 2 N, where A1; A2; : : :
are identically distributed with distribution function G where G(0) = 0.
The time horizon is a nonnegative random variable T with distribution func-
tion H | then [0; T ] is the period the gambler is allowed to select an o�er.
Let random variables X1;X2; : : : and A1; A2; : : : and T be independent.
Set A0 := 0 and let Bk denote the absolute arrival time of object Xk: Bk :=
A0 + � � �+Ak for k 2Z+, its distribution function being denoted by G�(k).
For t 2 R+ let Nt denote the number of items arriving in time interval [0; t]:
Nt := supfk 2 Z+ : Bk � tg. Then random variable XNt represents the
value with arrival time BNt. Besides N := NT := NT (!)(!) denotes the total
number of items arriving in [0; T ]. Then YN represente the overall maximum
thereof and the last o�er arrives at time instant BN . Then P (N0 = 0) = 1
and P (N 2Z+) = 1 since G(0) = 0 and H(1) = 1. Set N1 :=1.
A decision of a gambler is restricted to epochs of an arrival, i.e. he is con�ned
to the embedded discrete time parameter Markov process Z := (Zk)k2Z+: Let
Z0 := �0 and Zk := (Bk;Xk; Yk) for k 2 N with Bk � T (i.e. 1 � k � N) and
Zk := �1 for k 2 N with Bk > T (i.e. k > N), where �0 resp. �1 denotes
the initial state resp. the �nal absorbing state. Transition probabilities are
evident. De�ning E := R+�� the state space of Z is E [ f�0; �1g.
The pro�t of the gambler choosing an object x with present maximum y is
denoted by f(x; y _ YN ), where the bounded payo� function f : �! [0; 1] is
assumed to be monotone according to the assumptions (1). Without loss of
generality f(0; 1) = 0. Additionally set f(�0) := 0 =: f(�1).
Let Ft := � (X0;X1; : : : ;XNt;A0; A1; : : : ; ANt;Nt) gather the information rel-
evant for the gambler until time t 2 R+ and let F := (Ft)t2R+contain the
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total history. In this notation let S denote the set of stopping times with
respect to F where P (S 2 fB1; B2; : : : ; BN ;1g) = 1 for S 2 S with the
convention that payo� inside event [S =1] is f(X1; YN ) = 0 almost surely.
Given payo� function f a gambler watches the objective to maximize his
mean payo� according to stopping times in S, where it is assumed that the
payo� function f , the joint distribution of the draws and the distribution
functions G and H are familiar to the gambler, i.e. full information.
Now the optimal stopping problem is to �nd a stopping time in S attaining

sup
S2S

E (f(XNS
; YN)) :

Let P = P (f; U([0; 1]); G;H) denote this optimal stopping problem. Let
v(S) := E (f(XNS

; YN )) denote the corresponding value where stopping time
S 2 S is applied. The value of P is denoted by v� := supS2S v(S). In principle
existence of an optimal stopping time S� is ensured: The general approach
of optimal stopping on pages 12f is appliable for the embedded,discrete time
Markov process Z, since P (9k 2 N : Zk = �1) = 1 due to P (N <1) = 1.
The main subject in this chapter is again given by payo� function 1[r(y);1](x)
where r 2 R, see section 2.1: An o�er x is called r{candidate (with respect
to YN ) if x � r(YN ). Then the objective is optimal sequential selection of
an r{candidate | maximization of the probability P (XNS

� r(YN )). It is
advisible to stop only if x is a present r{candidate, i.e. if x � r(y) where y
denotes the present maximum| in other words if (x; y) 2 ��

0.

3.1 Random Arrival Times and Fixed Horizon

Suppose selection is terminated by a �xed point in time h > 0. For a state
(b; x; y) 2 E of the Markov process Z throughout this section let t := h � b
denote the remaining time. The mean payo� of stopping in state (x; y) 2 �
with remaining time t 2 [0; h] is

s(t; x; y) := E
�
f(x; YN) j Fh�t;XNh�t

= x; YNh�t
= y

�
: (23)

Let c(t; y) denote the mean payo� of proceeding and then choosing optimally
(evidently depending on x only through y): c(0; y) :� 0 and for t 2 (0; h]

c(t; y) := E
�
f(XNS�

; YN ) j Fh�t; YNh�t
= y; S� > h� t

�
: (24)

Finally let v(t; x; y) := maxfs(t; x; y); c(t; y)g denote the value of this state.
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3.1.1 Geometric Arrival Times

Let the arrival times be geometrically distributed: P (A1 = j) = pqj�1 for
j 2 N where p 2 (0; 1] and q := 1 � p. Let n 2 N denote the horizon. This
optimal stopping problem is denoted by Pp.
Lemma 3.1 The optimal stopping problem Pp is regular.
Proof: Let (x; y) 2 � and let n > ` 2 Z+ denote the the number of draws
remaining, which is written as an index for functions s and c and v. As in the
last chapter again regularity of this problem is verifed for a payo� function
depending on `: Let g`(x; y_Yn) denote the payment in the situation speci�ed
above, with the additional assumption g` � g`�1 on � for ` 2 N, which seems
to be indispensable to ensure the regular case. Now

s`(x; y) =
X̀
j=0

�
`

j

�
pjq`�j

Z 1

0

g`(x; y _ �) d�j

= (yp+ q)` g`(x; y) +

Z 1

y

X̀
j=1

`
(` � 1)!

(` � j)!j!
j�j�1pjq`�jg`(x; �) d�

= (yp+ q)` g`(x; y) + p`

Z 1

y

(�p + q)`�1 g`(x; �) d�: (25)

Besides c0 � 0 and for ` 2 N by decomposition

c`(y) = qc`�1(y) + p

Z 1

0

v`�1(�; y _ �) d� (26)

� qc`�1(y) + p

Z y

0

c`�1(y) d� + p

Z 1

y

s`�1(�; �) d�

= (yp+ q)c`�1(y) + p

Z 1

y

s`�1(�; �) d�

(yp+ q)c`�1(y) � c`(y)� p

Z 1

y

s`�1(�; �) d�:

Given s`(x; y) � c`(y) for ` 2 N, it has to be shown that s`�1(x; y) � c`�1(y).
It is suÆcient to show

(yp+ q)s`�1(x; y) � c`(y)� p

Z 1

y

s`�1(�; �) d�;
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which proves to be valid due to the following calculations and estimations:

c`(y)� p

Z 1

y

s`�1(�; �) d�

� (yp+ q)` g`(x; y) + p`

Z 1

y

(�p + q)`�1 g`(x; �) d�

�p
Z 1

y

�
(�p + q)`�1g`�1(�; �) + p(` � 1)

Z 1

�

(�p + q)`�2g`�1(�; �) d�
�

d�

= (yp+ q)` g`(x; y) + p`

Z 1

y

(�p + q)`�1 g`(x; �) d�

�p
Z 1

y

(�p + q)`�1g`�1(�; �) d�

�p2(`� 1)

Z 1

y

�
(�p + q)`�2

Z �

y

g`�1(�; �) d�
�

d�

� (yp+ q)` g`�1(x; y) + p`

Z 1

y

(�p + q)`�1 g`�1(x; �) d�

�p
Z 1

y

(�p + q)`�1g`�1(x; �) d�

�p2(`� 1)

Z 1

y

�
(�p + q)`�2

Z �

y

g`�1(x; �) d�
�

d�

= (yp+ q)` g`�1(x; y) + p(` � 1)

Z 1

y

(�p + q) (�p + q)`�2 g`�1(x; �) d�

�p2(`� 1)

Z 1

y

(� � y)(�p+ q)`�2g`�1(x; �) d�

= (yp+ q)` g`�1(x; y) + p(` � 1)(yp+ q)

Z 1

y

(�p+ q)`�2 g`�1(x; �) d�

= (yp+ q)s`�1(x; y);

since g` � g`�1 on � and since x � y � �; �. 2
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An Optimal Stopping Time

A recursion formula for c`(y), analogue to lemma 2.6, holds (y 2 [b`�1; 1]):

c`(y) = qc`�1(y) + p

 Z b�`�1(y)

0

c`�1(�; y) d� +
Z 1

b�`�1(y)

s`�1(�; y _ �) d�
!

= (q + pb�`�1(y))c`�1(y) + p

Z 1

b�`�1(y)

s`�1(�; y _ �) d�

: : : = p

`�1X
i=0

 
`�1Y

j=i+1

(q + pb�j (y))

!
�
Z 1

b�i (y)

si(�; y _ �) d�: (27)

Now analogously to the last chapter optimal stopping sets can be speci�ed,
see theorem 2.7: Assuming that s`(x; y), given in (25), is increasing in x,
the inverse (with respect to x) together with expression (27) above yield a
recursive representation of optimal boundary functions b�` (y), which describe
optimal stopping sets ��

` , ` 2Z+.

Selection of an r{Candidate

Now the problem of optimal sequential selection of an r{candidate is consid-
ered, i.e. payo� function 1[r(y);1](x) with r 2 R (confer section 2.1). Then
for (x; y) 2 � expression (25) simpli�es, s`(x; y) = 1[r(y);1](x) � (%(x)p + q)`,
which implies slight changes of the representation (27). The myopic stopping
time in this context is speci�ed next (it is consistent with the case p = 1 of
proposition 2.31 and not optimal in general as indicated there):

Proposition 3.2 The myopic stopping time Sm for Pp(r) where r 2 R pro-
poses to stop in state (x; y) 2 � with ` 2 N draws remaining if x � r(y)
and

x � r

0@1

p

0@" `�1X
i=0

ri(y)
`�1X
j=i

�
j

i

�
pi+1qj�i

Z 1

r(y)

(%(�)p + q)`�1�j d�

#1=`
� q

1A1A ;

where relax function r is extended according to remark 2.18 ii).
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Proof: s`(x) = (%(x)p+ q)` if x � r(y) and for ` > 0 (confer page 83)

(Ps)(`; y) =
`�1X
i=0

ri(y)
`�1X
j=i

�
j

i

�
pi+1qj�i

Z 1

r(y)

(%(�)p + q)`�1�j d�

by decomposition: Waiting j + 1 time units for the next r{candidate, where
i non{r{candidates pass, and respecting the remaining number ` � 1 � j of
epochs resp. the corresponding mean reward choosing r{candidate �. 2

3.1.2 Exponential Arrival Times | The Poisson Process

Suppose the o�ers X1;X2; : : : arrive according to a Poisson process with ar-
rival rate � > 0, i.e. the interarrival timesA1; A2; : : : are iid with distribution
function G(x) := (1� e��x)1R+(x). Without loss of generality horizon h = 1
is assumed (else rescaling would lead to rate �h), which is equivalent to rate
1 and horizon �. Then N = N1 is Poisson distributed with parameter �.
This optimal stopping problem is denoted by P�.

An Optimal Stopping Time

Lemma 3.3 The optimal stopping problem P� is regular.

Proof: Let state (x; y) 2 � be given and let t 2 [0; 1] denote the remain-
ing time. Again this problem is veri�ed to be regular for a payo� which
depends on t: Let g(t; x; y _ YN ) denote the payo� in the situation speci�ed
above, with additional assumption that it is continuous di�erentiable in t
and @

@t
g(t; x; y) � 0. Then

s(t; x; y) := E
�
g(t; x; YN) j F1�t;XN1�t = x; YN1�t = y

�
=

1X
k=0

�Z 1

0

g(t; x; y _ �) d�k � e��t (�t)
k

k!

�

= e��tg(t; x; y)
1X
k=0

yk
(�t)k

k!

+ e��t
Z 1

y

 
g(t; x; �)

1X
k=1

(�t)k

k!
k�k�1

!
d�

= e��t(1�y)g(t; x; y) + �t

Z 1

y

e��t(1��)g(t; x; �) d�; (28)
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and using @
@t
g(t; x; �) � 0 gives the estimation

@

@t
s(t; x; y) � ��(1 � y)e��t(1�y)g(t; x; y) + �

Z 1

y

e��t(1��)g(t; x; �) d�

��2t
Z 1

y

e��t(1��)g(t; x; �) d� + �2t

Z 1

y

�e��t(1��)g(t; x; �) d�:

Functions c(t; y) and v(t; x; y) are de�ned in the beginning of this section
(see equation (24). The optimal stopping problem P� is regular if

s(t; x; y) � c(t; y) =) s(u; x; y) � c(u; y) 8u 2 [0; t):
Now a di�erential equation for c(t; y) with respect to the (remaining{time)
variable t is developed by considering a small time interval of length Æ and
Æ ! 0. Arrivals in (b � Æ; b] are decomposed into the cases of no, one and
more than one arrival and relations are given in terms of o(Æ) for Æ ! 0
(respect for the last term that the payo� function is bounded):

c(t+ Æ; y) = [1� �Æ + o(Æ)] c(t; y) + [�Æ + o(Æ)]

Z 1

0

v(t; �; y _ �) d� + o(Æ):

Arranging terms with respect to a di�erence quotient yields

c(t+ Æ; y)� c(t; y)

Æ
= ��c(t; y) + �

Z 1

0

v(t; �; y _ �) d� + o(1):

Letting Æ ! 0 results in the di�erential equation resp. in the estimation

@

@t
c(t; y) = ��c(t; y) + �

Z 1

0

v(t; �; y _ �) d� (29)

� ��(1 � y)c(t; y) + �

Z 1

y

s(t; �; �) d�: (30)

Since all functions involved are continuous di�erentiable with respect to t
problem P� is regular if the following implication is valid:

s(t; x; y) � c(t; y) =) @

@t
s(t; x; y) � @

@t
c(t; y) (31)

for t 2 (0; 1). Now assumption c(t; y) � s(t; x; y) is applied to inequality (30)
and the assertion (31) is veri�ed as follows:
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@

@t
c(t; y)

� ��(1 � y)

�
e��t(1�y)g(t; x; y) + �t

Z 1

y

e��t(1��)g(t; x; �) d�
�

+�

Z 1

y

�
e��t(1��)g(t; �; �) + �t

Z 1

�

e��t(1��)g(t; �; �) d�
�

d�

� ��(1 � y)e��t(1�y)g(t; x; y)� �2t(1� y)

Z 1

y

e��t(1��)g(t; x; �) d�

+�

Z 1

y

e��t(1��)g(t; x; �) d� + �2t

Z 1

y

�Z �

y

e��t(1��)g(t; x; �) d�
�

d�

� ��(1 � y)e��t(1�y)g(t; x; y)� �2t(1� y)

Z 1

y

e��t(1��)g(t; x; �) d�

+�

Z 1

y

e��t(1��)g(t; x; �) d� + �2t

Z 1

y

(� � y)e��t(1��)g(t; x; �) d�

= ��(1 � y)e��t(1�y)g(t; x; y)� �2t

Z 1

y

e��t(1��)g(t; x; �) d�

+�

Z 1

y

e��t(1��)g(t; x; �) d� + �2t

Z 1

y

�e��t(1��)g(t; x; �) d�

� @

@t
s(t; x; y);

due to monotonicity of g and the estimation below equation (28). 2

Since the regular case applies for problem P� now a family of optimal bound-
ary functions b�t (y) and optimal stopping sets ��

t := f(x; y) 2 � : x � b�t (y)g
for t 2 [0; 1] is, in principle, speci�ed. The sets ��

t are nonincreasing in t.

The Inhomogeneous Poisson Process

Suppose items X1;X2; : : : arrive at absolute times B1; B2; : : : (inside time
interval [0; 1]) according to an inhomogeneous Poisson process resp. intensity.
Since functions mainly depend on the remaining{time variable t, let �(t)
denote the intensity of the process at time b = 1 � t, where �(t) : [0; 1] !
(0;1) is continuous, and let �(t) :=

R t
0 �(u) du.
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It is noted that P (Nt = k) = e��(t) (�(t))
k

k! (by mass{theoretic induction) and
d
dt
P (Bk � t) = �(t)e��(t) (�(t))

k�1

(k�1)! (by using equivalence [Nt � k] i� [Bk � t]),

where t � 0 and k 2 N. Then according to expression (28)

s(t; x; y) = e��(t)(1�y)g(t; x; y) + �(t)

Z 1

y

e��(t)(1��)g(t; x; �) d�

and decomposition similar to lemma 3.3 (in terms of o(Æ) as Æ! 0) yields

@

@t
c(t; y) = ��(t)(1� y)c(t; y) + �(t)

Z 1

y

v(t; �; y _ �) d�;

since (�(t+ Æ)��(t))=Æ! �(t) as Æ! 0. The monotonicity of the optimal
stopping problem is preserved (imitating the arguments used in the proof of
lemma 3.3, where the result is that �nally the term �, �t resp. �2t = � � �t
has to be replaced by �(t), �(t) resp. �(t)�(t)).

In the remaining part of this subsection the subject is optimal selection of
an r{candidate, i.e. payo� function f(x; y) = 1[r(y);1](x):

r{Candidates: Speci�cation of Main Terms

Take relax function r 2 R, section 2.1, and suppose to select an r{candidate,
i.e. select an item which exceeds r(YN ). Then expression (28) simpli�es,

s(t; x; y) = 1[r(y);1](x) � e��t(1�%(x));
and di�erential equation (29) of the mean payo� of proceeding optimally is

@

@t
c(t; y) = ��(1 � r(y))c(t; y) + �

Z 1

r(y)

v(t; �; y _ �) d�:

Comparing s(t; x; y) and c(t; y) leads to a family of optimal boundary func-
tions b�t (y) and family of stopping sets ��

t := f(x; y) 2 � : x � b�t (y)g for
t 2 [0; 1], with lower resp. upper boundary points bt resp. bt where b�t (y) = bt
for y 2 [0; bt] and b�t (y) = r(y) for y 2 [bt; 1]. Alternatively t � h if � = 1
and horizon h 2 R+ is taken. Again ��

0 represents the set of r{candidates.
Function b�t (y) is decreasing on [bt; bt], since s(t; x; y) is constant in y inside
��

0 and c(t; y) is decreasing in y.
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The di�erence between the values applying contiguous stopping times, the
analogue of proposition 2.17 i), is treated next:

Proposition 3.4 Let two stopping times S and eS for stopping problem P�(r)
be given (r 2 R, horizon 1). Let their boundary functions be denoted by bt(y)

resp. ebt(y), t 2 [0; 1]. Let � := supt2[0;1] supy2[0;1] jbt(y) � ebt(y)j. Then

jv(S)� v(eS)j � 1 � e���.

Proof: Given N = 0, v(S) � v(eS) = 0. The probability that the payo�
di�ers given N = n 2 N is bounded by

P
�
S 6= eS ��� N = n

�
=

nX
k=1

P ((Xk; Yk) 2 CBk
)

�
nX

k=1

�(1� �)k�1

= 1 � (1� �)n;

where Ct := (Dt n eDt) [ ( eDt nDt) and Dt := f(x; y) 2 � : x � bt(y)g andeDt := f(x; y) 2 � : x � ebt(y)g where t 2 [0; 1]. Weighted summation yields

P
�
S 6= eS� � e��

1X
n=1

�n

n!
(1� (1 � �)n)

= e��
�
e� � 1 � �e�(1��)� 1

��
= 1 � e���;

bounding the absolute value of the di�erence of the payo�s from above. 2

r{Candidates: The Myopic Stopping Time

Regarding problem P�(r) with r 2 R the myopic stopping time suggests to
stop if the mean payo� selecting a present item isn't smaller than the mean
payo� choosing the next r{candidate (if any) | the one step look{ahead rule
referring to the embedded subsequence of r{candidates, see pages 81f.
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Proposition 3.5 Let problem P�(r) with r 2 R be given. The myopic stop-
ping time Sm proposes to stop in state (x; y) 2 � with y < r(1) and with
remaining time t > 0 if x � r(y) and (extend r according to remark 2.18 ii))

x � r

�
r(y) +

1

�t
ln

�Z 1

r(y)

e�t(%(�)�r(y))� 1

%(�) � r(y)
d�

��
; (32)

Proof: For (b; x; y) 2 E and t := 1� b, s(t; x) = e��t(1�%(x)) for (x; y) 2 ��
0,

else 0. The mean payo� selecting the next r{candidate (if any): Partition
with respect to the arrival time of the next r{candidate, where k� 1 non{r{
candidates pass and his interarrival time is Erlang distributed with parameter
k and � (k 2 N; no further r{candidate implies payo� 0), confer term (41):Z 1

b

Z 1

r(y)

 
e��(1�u)(1�%(�))e��(u�b)

1X
k=1

rk�1(y)
�k

(k � 1)!
(u� b)k�1

!
d� du

= �

Z 1

b

e��(u�b)(1�r(y))
�Z 1

r(y)

e��(1�u)(1�%(�)) d�
�

du;

i.e. the arrival rate of an r{candidate is �(u � b)(1 � r(y)) and the term
in parentheses divided by 1� r(y) represents the corresponding mean payo�
choosing the next r{candidate given there is one. Rearranging yields

�

Z 1

r(y)

�
e��(1�%(�)�b(1�r(y)))

Z 1

b

e��u(%(�)�r(y)) du
�

d�

= �e�b(1�r(y))
Z 1

r(y)

�
e��(1�%(�))

��(%(�) � r(y))

�
e��u(%(�)�r(y))

�1
b

�
d�

= e�b(1�r(y))
Z 1

r(y)

e��(1�%(�))

%(�) � r(y)

��e��(%(�)�r(y)) + e��b(%(�)�r(y))
�
d�

= e��(1�b)(1�r(y))
Z 1

r(y)

e�(1�b)(%(�)�r(y))� 1

%(�)� r(y)
: d�

The integrand e��u(%(�)�r(y)) equals 1 on set fz 2 [0; 1] : r(z) = zg and then
subsequent fractions are according to the rule of de l'Hospital, particularly
the fraction in the last line there represents �(1� b). These terms agree with
section 4 of Bojdecki [6], where integration with respect to � can be solved
�rst, because r � id is given. Evidently the myopic stopping time accepts
any item x � r(1) and any item with remaining time t = 0. 2
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Similar to the discrete case the myopic stopping time for P� isn't optimal in
general, since the corresponding stopping sets may miss closedness though
they may be monotone, see pages 48f. Particularly for r(y) = y4 stopping
sets are similar to �gure 4 | the diagonal seems disregarded.

Remark 3.6 i) The myopic stopping time for problem P�(r), r 2 R1,
selects X1 in any case, if A1 � 1 � (1 ^ c=�), where c = c(r) denotes

the unique solution of equation I(c) :=
R 1

0
ec��1
�

dr(�) = 1 (see remark

2.18 ii); I(c) is increasing in c, I(0) = 0 and I(1) > 1 for any r 2 R1,
since the integrand exceeds 1 on (0; 1]). Particularly c(id) � 0:8044
and c(r1) < c(r2) if r1 � r2 in R1 (changing from r1 to r2 masses move
to the left and since the integrand of I(c) is increasing in � for r2 a
bigger c is necessary for I(c) = 1). Thus c(r) 2 (ln 2; c(id)] holds (since
c("1) = ln 2 is not attained inside R).

ii) Let F denote the distribution function of X1;X2; : : :, assumed to be
continuous on R and increasing on R := fx 2 R : 0 < F (x) < 1g.
Let r : R ! R be continuous and increasing with r � id on R. Then
s(t; x) = e��t(1�F (%(x))) provided x � r(y) (the rate of arrival of an item
exceeding %(x) is �(1 � F (%(x))) ). According to the investigations

above (Ps)(t; y) = e��t(1�F (r(y)))
R 1

r(y)
e�t(F (%(�))�F (r(y)))�1

F (%(�))�F (r(y)) dF (�). For the

inhomogenous Poisson process the term �t each time has to be replaced
by �(t), as the direct generalization of the proof of proposition 3.5
shows (notations according to the paragraph on page 67).

The approach of Gnedin and Sakaguchi [21] in order to specify the value
w(�) := v(Sm) of the myopic stopping time for P�(r) via w0(�) can't be
adapted straightforward: If Æ 2 (0; 1) and o�ers below Æ are ignored, then
boundary functions remain unchanged for o�ers U([Æ; 1]) and rate �(1 � Æ)
(except for items below Æ). However the corresponding value isn't w(�(1�Æ))
but it is the value of P� with new relax function er(x) := r((x � Æ)=(1 � Æ))
(rescaled U([0; 1]), particularly equal to 0 for x 2 [0; Æ]). The di�erence of the
values referring to r and er (with regard to a di�erence quotient) doesn't seem
to be o(Æ) as Æ! 0. Particularly in case of r(x) = xa for a 2 (1;1) then er �
r on [0; 1] and regardless taking the di�erence quotient (w(�)�w(�(1�Æ)))=Æ
and letting Æ ! 0 then the value w(�) is underestimated, though then the
approach can be adapted and speci�cally this value doesn't vanish as �!1.
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r{Candidates: Selection with Recall

If permanent recall in the continuous time interval [0; 1] is allowed, then
choosing YN at time 1 is optimal. Suppose however that recall of the present
maximum is restricted to time instants where an r{candidate arrives, which
signi�es a new problem only for a relax function R 3 r � id | analogously
to restricted recall in the case of discrete time. This means optimal stopping
of the subsequence of r{candidates of the Markov process Z with recall. The
relevant states now are contained in [0; 1]2 since a new o�er only is considered
if it is a new maximum. Now regard problemP�(r) with this kind of restricted
recall:

Theorem 3.7 Regard P�(r) with restricted recall, where R1 3 r � id. Then
stopping time S� := inffBk : (Bk; Yk) 2 �� for 1 � k � Ng is optimal
(set inf; := 1), where �� := f(b; y) 2 [0; 1]2 : y � y�(1 � b)g speci�es an
optimal stopping set (which has to be restricted to epochs of arrivals). Here
y�(t) 2 [0; r(1)) depends on the remaining time t = 1 � b and denotes the
unique solution in (0; r(1)) ofZ 1

y

e�t(%(�)�r(y))� 1

%(�) � r(y)
d� = 1 + (%(y)� y)

e�t(%(y)�r(y))� 1

%(y)� r(y)

if
R 1

0
e�t%(�)�1

%(�)
d� > 1 and y�(t) = 0 otherwise. Regarding remark 3.6 i) then

y�(t) = 0 i� t � c(r)=�.

Proof: The myopic stopping time stops in (t; y) with y 2 [0; r(1)) if s(t; y)
isn't lower than the mean payo� recalling the maximum in the time instant
the next r{candidate arrives (if any, else payo� 0), see proposition 3.5:

e��t(1�%(y)) � e��t(1�r(y))
Z 1

r(y)

e�t(%(y_�)�r(y)) � 1

%(y _ �) � r(y)
d�

e�t(%(y)�r(y)) � (y � r(y))
e�t(%(y)�r(y)) � 1

%(y)� r(y)
+

Z 1

y

e�t(%(�)�r(y)) � 1

%(�) � r(y)
d�

and rearranging yieldsZ 1

y

e�t(%(�)�r(y))� 1

%(�)� r(y)
d� � 1 + (%(y)� y)

e�t(%(y)�r(y)) � 1

%(y)� r(y)
:
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Let h(t; y) :=
R 1

y
g(�; y) d� � 1 � (%(y) � y)g(y; y) 2 C1([0; 1] � [0; r(1)]),

thus stopping in (t; y) is optimal if h(t; y) � 0, where g(�; y) := e�t(%(�)�r(y))�1
%(�)�r(y) .

h(0; y) = �1 and @
@t
h(t; y) = �

R 1

y
e�t(%(�)�r(y)) d� � �(%(y) � y)e�t(%(y)�r(y)),

which evidently is positive for any t 2 [0; 1] if y 2 [0; r(1)).
On the other hand there is a unique threshold y(t) 2 [0; r(1)) such that it
is optimal to recall the present maximum if it exceeds y(t): h(t; r(1)) = �1
(terms involving g vanish synced) and if h(t; 0) � 0, i.e. if

R 1

0
g(�; 0) d� � 1,

then y(t) = 0 and else y(t) 2 (0; r(1)) uniquely, since h(t; y) decreases in y:
@
@y
h(t; y) = �g(y; y) + R 1

y
f(�; y) d� � (%0(y)� 1)g(y; y)� (%(y)� y) @

@y
g(y; y)

where f(�; y) := r0(y) (1��t(%(�)�r(y)))e
�t(%(�)�r(y))�1

(%(�)�r(y))2 . Here g(y; y) cancels. Now

calculating @
@y
g(y; y) and then rearranging the �nal term of @

@y
h(t; y) yields

(%(y) � y) @
@y
g(y; y) = � %(y)�y

%(y)�r(y)%
0(y)g(y; y) + (%(y) � y)f(y; y). Estimating

%(y)�y
%(y)�r(y) � 1, the inequality @

@y
h(t; y) � 0 proves to be equivalent to inequalityR 1

y
f(�; y) d� � (%(y)� y)f(y; y), which in turn is veri�ed as follows:

Substitution yields
R 1�r(y)
%(y)�r(y)

(1��tz)e�tz�1
z2

dr(z + r(y)) whose integrand is non-

positive and nonincreasing in z (deriving leads to e��tz � 1��tz+(�tz)2=2 =
(1 + (1 � �tz)2)=2). Thus inserting � = y yields the desired inequality:R 1

y
f(�; y) d� � (1� y)f(y; y) � (%(y)� y)f(y; y) (as indicated f(�; y) � 0).

So h(t; y) is decreasing in y 2 [0; r(1)) and increasing in t 2 [0; 1]. Thus
the stopping sets of the myopic stopping time are closed and they specify an
optimal stopping time according to Cowan and Zabczyk [11]. 2

r{Candidates: Asymptotic Characterization of the Value Function

In this paragraph the value function v(t; x; y) will be speci�ed for t ! 1,
where the horizon is enlarged and the rate is 1 according to the introductory
remarks of this subsection. For a function h let ht denote the partial deriva-
tive @

@t
h. Let r 2 R1. For (t; x; y) 2 E where x 6= b�t (y) (according to its

de�nition on page 61)

vt(t; x; y) =

�
st(t; x; y) if s(t; x; y) > c(t; y)
ct(t; y) if s(t; x; y) < c(t; y):

Fixing (x; y) 2 � with y < 1, for t suÆciently big the lower case applies
(e��t(1�%(x)) vanishes as t ! 1 and c(t; y) doesn't, since the asymptotic
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value for r � id is positive, which is also true if y 2 (0; 1) is given as default,
and since demands relax for r � id). Applying the representation (29) of
ct(t; y) gives

vt(t; x; y) = �

�
�(1� r(y))v(t; x; y)+

Z y

r(y)

v(t; �; y) d� +

Z 1

y

v(t; �; �) d�

�
:

Di�erentiation with respect to y yields

vty(t; x; y) = �
�
� vy(t; x; y) + ry(y)v(t; x; y) + r(y)vy(t; x; y)

+ v(t; y; y) � 1 � v(t; r(y); y)ry(y) + v(t; 1; y) � 0 � v(t; y; y) � 1
�

which leads to the retarded partial di�erential equation

vyt(t; x; y) = ��(1� r(y))vy(t; x; y) + �ry(y)
�
v(t; x; y)� v(t; r(y); y)

�
;

characterizing the value function v(t; x; y) for t suÆciently big, at least the-
oretically (boundary conditions: v(t; x; y) = s(t; x; y) for �xed t > 0 and
(x; y) 2 ��

t (see page 68) and particularly continuity of v(t; x; y) on the
curve f(y; b�t (y)) : y 2 [bt; bt]g and discontinuity on f(y; r(y)) : y 2 (bt; 1]g
since s(t; x; y) = 0 unless (x; y) 2 ��

0).

r{Candidates: Asymptotic Equivalence to the Discrete Case

In this paragraph the values of the optimal stopping problems Pn(r) and
P�(r) where r 2 R1

1 are compared asymptotically as n and � tend to in�nity.
To ignore small items (which become asymptotically neglectable) let a se-
quence (qn)n2N� (0; 1) of thresholds be given, such that qn ! 1 for n!1.
Let pn := 1� qn for n 2 N. Conditions for the remaining items beyond qn to
stay representative will be summarized in assumption (34) below.

Let X1;X2; : : : � U([0; 1]), iid, and regard Pn, n 2 N. Extract items beyond
threshold qn: Consider the subsequence X�1(n); : : : ;X�Kn(n)

� U([qn; 1]), iid,
where �0 := 0 and �j(n) := inffk > �j�1(n) : Xk � qng for j 2 N (set
inf; := 1) and the number of items Kn := supfk 2 Z+ : �k(n) � ng for
n 2 N, then Kn � B(n; pn) is Binomial distributed. Besides �k(n) � �k(n+1)
for k 2 N if (qn)n2N is nondecreasing.
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Consider P�n, resp. the Poisson process on [0; �n] with rate 1, where �n :=
npn ! 1 as n ! 1. Now analogously items beyond threshold qn are
extracted and an iid subsequence uniformly distributed on [qn; 1] results. Let
Ln denote the corresponding number thereof arriving within time interval
[0; �n], being Poisson distributed with parameter �n. For j 2 N let Tj := B�j

denote the arrival time of the j{th item beyond qn where, setting �0 := 0,
�j(n) := inffk > �j�1 : Xk > qng indicates its number within X1;X2; : : :
(where inf; :=1). Ln = supfk 2Z+ : B�k(n) � �ng.
The sequence of o�ers presented in Pn and in P�n may be assumed to arise
from the same probability space and to be identical. Therefore �k = �k
for k 2 N. Then implications concerning probabilities within those optimal
stopping problems apply where the random variables are not linked.

Using Poisson approximation now random variablesKn and Ln resp. its bino-
mial distribution PKn and Poisson distribution PLn can by maximal coupling
be constructed (becoming dependent), such that their original distributions
are preserved and simultaneously

P (Kn 6= Ln) = dTV (PKn; PLn) � pn for n 2 N; (33)

where dTV (PKn; PLn) := supfjPKn(A) � PLn(A)j : A � Z+g denotes the
total variation distance and the estimation is given in Ross [27], page 465 (in
this situation the upper bound (1^ 1

�n
) �np2n simpli�es since �n = npn !1).

Once properties of Pn and P�n inside event [Kn = Ln] for any n 2 N are
detected then an asymptotic statement whose probability converges to 1 as
n!1 can be inferred concerning the complete optimal stopping problems.

Assumptions and notations for subsequent considerations:
Let r 2 R1

1 with d := r0(1�) 2 [1;1), then r(y) � dy�d+1 for y suÆciently
close to 1. As indicated and illustrated in the introduction above let

(pn)n2N� (0; 1) where pn ! 0 and np2n ! 1 as n!1: (34)

For example take pn = ln(n+8)=
p
n+ 8 or take pn = n�a where a 2 (0; 1=2).

Let qn := 1� pn denote the corresponding thresholds. Let �n := npn denote
the length of the time interval of the Poisson process with rate 1, where the
total number of arrivals is N�n. The requirements pn ! 0 and �n = npn !1
as n!1 aren't suÆcient as the proof of lemma 3.8 ii) shows. Without loss
of generality monotone convergence is assumed. Some notations (n 2 N):
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S�n resp. U�
�n

denotes an optimal stopping time of Pn resp. of P�n.eS�n resp. eU�
�n

denotes an optimal stopping time of Pn resp. of P�n
where o�ers below qn are ignored.

v�n resp. w
�
�n

denotes the value of Pn resp. of P�n (rate 1 on [0; �n]).ev�n resp. ew�
�n

denotes the value of Pn resp. of P�n disregarding o�ers

below qn | i.e. the value of stopping time eS�n resp. of eU�
�n
.

Ignoring items below qn leads to suboptimality but preserves "n{optimality:

Lemma 3.8 There is a nonnegative zero sequence ("n)n2N such that:

i) v�n � "n � ev�n < v�n for n 2 N.
ii) w�

�n
� "n � ew�

�n
< w�

�n
for n 2 N.

Proof: Both proper inequalities on the right side are evident (pn 2 (0; 1)).
i) By decomposition

v�n = P
�
XS�n � r(Yn)

�� Yn < %(qn)
� � P (Yn < %(qn))

+ P
�
XS�n � r(Yn) and Yn � %(qn)

�
;

where the �rst addend is bounded by a nonnegative zero sequence since
P (Yn < %(qn)) = %n(qn) � ((qn + d� 1)=d)n = (1� pn=d)

n, which is
o(1) as n!1 (take d+ Æ and let Æ& 0 for estimation of r).
Now the value ev�n represents an upper bound for the second term, since

P
�
XS�n � r(Yn) and Yn � %(qn)

� � P
�
X

eS�n
� r(Yn)

�
where the �rst

event implies the second one.

ii) Analogously to i) (with Y0 = 0), based on the relation P
�
YN�n

< %(qn)
�

� e��n
P1

k=0
(�n(1�pn=d))k

k! = e��ne�n(1�pn=d) = e�np
2
n=d

n!1! 0. 2

This indicates that the optimal boundary function b�n, which lies beyond
r(bn), increases faster than qn but not too fast: n(1 � r(bn)) remains �nite
as n!1, where this limit is a� according to proposition 2.15 | restricted
to [bn; bn], i.e. separate from the boundary condition induced by r in [bn; 1].
The nearly optimal values ev�n and ew�

�n
become closely related as n grows:
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Lemma 3.9 There is a nonnegative zero sequence (Æn)n2N such that

ev�n � Æn � ew�
�n
� ev�n + Æn for n 2 N: (35)

Proof: For n 2 N condition on event [Kn = Ln], which is with regard to the
aim of an asymptotic statement justi�able due to relation (33).
Let random data vectors Dn resp. D�n contain the essential arrival times
of Pn resp. of P�n: Dn := (�1; : : : ; �Kn) resp. D�n := (T1; : : : ; TLn). For
simplicity it is assumed that Dn;D�n 2 Rn, �lled up by zeros.
A discretized version d(D�n) of the data vectorD�n is constructed: Subdivide
interval (0; �n] into n subintervals of length pn each. Every instant T1; : : : ; TLn
is shifted virtually to the right end point of the corresponding subinterval it
is situated. The idea is to identify time point j of Pn and right end point
jpn of the time interval ((j � 1)pn; jpn] of P�n for j = 1; : : : ; n.
Assertion: The probability that these arrival times di�er becomes negligible:

P (Dn 6= d(D�n)) = o(1) as n!1: (36)

Given Kn = k (where k = 1; : : : ; n), the arrival times �1; : : : ; �k of Pn are
distributed just as allocating k balls uniformly into n urns, multiple occu-
pancies excluded. Given Ln = k, the right{shifted time points T1; : : : ; Tk of
P�n are distributed as allocating k balls uniformly into n urns with multiple
occupancies ((T1; : : : ; Tk) itself is equal in distribution to the order statistic
of dimension k). The probability that any two balls arrive at the same urn
becomes arbitrarily small:
The restriction to event [Kn = Ln � cnpn] for n 2 N for any c 2 (1;1)
is possible (with regard to an asymptotic inspection) due to the relation

P (Kn � cnpn) � �
�
(c � 1)

p
npn=qn

�
! 1 as n!1.

Suppose allocating dcnpne balls uniformly into n urns with multiple occu-
pancies. Then the probability of the event that no urn is met more than
once, the left side of (36), is given by n(n � 1) � � � (n � dcnpne + 1)=ndcnpne,
which tends to 1 as n!1: Let m := n� dcnpne. Stirling's formula yields:

n!

m!
'
r

n

m

nn

mm

e�n

e�m
' nn

mm
e�dcnpne;

where
p
n=m ' 1=

p
1 � cpn ' 1 as n!1. Taking logarithms the assertion

n!=m! ' ndcnpne proves to be equivalent to

n ln(n)�m ln(m)� dcnpne ' dcnpne ln(n)
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ln(n)� dcnpne
m

' ln(m)

n ' m;

which is valid since dcnpne =m ' pn=(c�pn) = o(1) and since n ' n�dcnpne
subject to pn = o(1) as n!1. This proves assertion (36).

Let ev(Sn) resp. ew(U�n) denote the value of stopping time Sn resp. U�n for Pn
resp. P�n conditioned on [Kn = Ln], i.e. where items below qn are ignored.
For stopping time Sn of problem Pn let p(Sn) denote the corresponding con-
tinuous time stopping rule for P�n which takes state (b; x; y) by the state
(pn db=pne ; x; y), i.e. which defers the decision until the right end point
pn db=pne of the time interval containing b. Now relation (36) implies thatew(p(Sn)) � ev(Sn) � Æn for n 2 N for a nonnegative zero sequence (Æn)n2N.
Referring to optimal stopping times disregarding o�ers below qn this yieldsew(eU�

�n
) � ew(p(eS�n)) � ev(eS�n) � Æn, where the outer terms represent the �rst

inequality of assertion (35) and it remains to verify the second inequality.

Construction of a Poissonian version p(Dn) of discrete arrival times of Dn:
For discrete arrival time �k = j de�ne a virtual random arrival time Vk �
U((j � 1)pn; jpn]) where k = 1; : : : ;Kn and j 2 fk; : : : ; ng. Then Vk

D
= Bk

for k = 1; : : : ;Kn | provided there is an arrival inside (j� 1)pn; jpn], which
is true inside event [Kn = Ln] and [Dn = d(D�n)] due to the discrete arrival.
Resumed for k = 1; : : : ;Kn this means, conditioned on [Kn = Ln]:

event [Dn = d(D�n)] implies D�n
D
= p(Dn): (37)

Let a stopping timeU�n of problemP�n with the family of boundary functions
(bt(y))t2[0;�n] be given. This induces a randomized stopping time d(U�n) for
Pn by applying stopping time U�n to the data vector p(Dn) in the following
sense: Suppose itemXj arrives at the time �k = j resp. at the virtual instant
Vk (k = 1; : : : ;Kn and j 2 fk; : : : ; ng). Then selectXj i�Xj � b�n�Vk(Yj) i.e.
suppose remaining time �n�Vk for P�n. This is equivalent to: Xj � r(Yj) and
an additional Bernoulli experimentwith success probability � succeeds, where
� := j � inff� 2 (j � 1; j] : b�n��pn(y) � Xjg with inf; := j, particularly
accept resp. reject anyway if Xj � b�n�jpn(y) resp. if Xj < b�n�(j�1)pn(y).
Now ev(d(U�n)) � ew(U�n) � Æn, regarding relation (36) and (37). Referring
to optimal stopping times conditioned on event [Kn = Ln] then relationev(eS�n) � ev(d(eU�

�n
) � ew(eU�

�n
)� Æn applies. This veri�es the second inequality

of (35) and the proof is complete. 2
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The preceding lemmas 3.8 and 3.9 result in:

Theorem 3.10 Let the assumptions and notations on page 76 be given.
Then the values of problem Pn(r) and P�n(r) asymptotically coincide:

lim
n!1

v�n = lim
n!1

w�
�n
: (38)

An analogue assertion referring to accordance of the asymptotic value of
the myopic stopping time of problem Pn and P�n depends on the behaviour
of its boundary functions, which isn't evident regarding the corresponding
expressions of propositions 2.31 and 3.5 and regarding �gure 4.



3 OPTIMAL SELECTION WITH RANDOM ARRIVAL TIMES 80

3.2 Random Arrival Times and Random Horizon

In this section the arrival times of the o�ers and the horizon T are random,
the detailed mathematicalmodel are given on pages 60f. Given relax function
r 2 R it is the objective to �nd a stopping time S 2 S maximizing

P (XNS
� r(YN )) :

Example 3.11 Suppose maximal two objects arrive: G � 1[1;1) and p :=
P (T = 1) = 1 � P (T = 2) 2 [0; 1). The following threshold rule is optimal:

S� = 1 if X1 � t� := (r + %)�1
�
1�2p
1�p _ 0

�
and S� = 2 otherwise. The value

then is given by v�2 = p+ t�(1� 2p) + (1� p)
�R 1

t�
%(�) d� � R t�

0
r(�) d�

�
.

Veri�cation: LetX1 = x. s1(x) = p+(1�p)%(x) and c1(x) = (1�p)(1�r(x)),
with usual notation. Stopping is advisible if p+(1�p)%(x)�(1�p)(1�r(x)) �
0 i� %(x)+r(x) � (1�2p)=(1�p). The latter term doesn't exceed 1. Function
(% + r) : [0; 1] ! [0; 2] is continuous and increasing and %(1) + r(1) > 1. If
p = 0, then x � r(1 � r(x)) results. For p 2 [1=2; 1] it is optimal to choose
X1 (which is evident if r � id and for r � id demands relax). 2

Example 3.12 Let the number of items be uniformly distributed on f1; 2; 3g,
1=3 = P (T = 1) = P (T = 2) = P (T = 3), where G � 1[1;1). The optimal
boundary functions and value functions (number ` of remaining draws):

` = 1: b�1 � r and v�1(x; y) =
�

1
2 (1 + %(x)) if x � r(y)
1
2
(1 � r(y)) if x < r(y)

where (x; y) 2 �.

` = 2: On the one hand b�2(y)=�1
2
+
q

1
4
� r2(y) +

R 1

r(y)
%(�) d� for y 2 [b2; b2]

(which is extended on [0; b2) by b2 and on (b2; 1] by r) and on the other hand

v�2(x; y) =

(
1
3
(1 + %(x) + %2(x)) if x � b�2(y)

1
3

�
1 � r2(y) +

R 1

r(y) %(�) d�
�

if x < b�2(y)
where (x; y) 2 �.

Veri�cation: For ` = 1 take example 3.11 with p = 1=2. For ` = 2 evidently
s2(x) =

1
3 (1 + %(x) + %2(x)), recursion, straightforward since b�1 � r, gives

c2(y) =
1
3

�
1 � r2(y) +

R 1

r(y)
%(�) d�

�
, which yield b�2(y) and v�2(x; y). 2

For the case r � id where maximal three objects arrive see Porosinski [24].
A generalization of the uniform distribution of example 3.12 fails, see page 84.
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Since the remaining time is not known in advance, in this section s(b; x; y) and
c(b; x; y) (resp. sk(x; y) and ck(x; y)) represent the mean payo� of stopping
and that of skipping the present item and then proceeding optimally in state
(b; x; y) 2 E (resp. (k; x; y) 2 E).
It is convenient to introduce the moment generating function of Nt,

m(t; z) := E
�
zNt
�
=

1X
n=0

znP (Nt = n) ; (39)

denoting the mean payo� in the moment of an arrival if the remaining time
is supposed to be t � 0 and where value z 2 [0; 1] represents a boundary
subsequent values shouldn't exceed (referring to U([0; 1])).
The mean payo� of stopping in state (b; x; y) 2 E where x � r(y) is

s(b; x) = E (m (T � b; %(x)) j T � b)

=
1

1�H(b�)
Z 1

b

m(t� b; %(x)) dH(t): (40)

The Subsequence of r{Candidates

It is advisible only to select an item, which is an r{candidate referring to
previous o�ers. A transformation of the Markov process Z = (Zk)k2Z+ to
the subsequence concerning r{candidates is performed: Set �0 := 0 and for
k 2 N let, using inf; :=1 and Y0 = 0,

�k := inf
�
n 2 N : �k�1 < n � N and Xn � r(Y�k�1)

	
;

representing numbers of r{candidates. Now de�ne for k 2Z+

Rk :=

8<:
�0 if k = 0

(�k; B�k ;X�k ; Y�k) if k > 0 and �k <1
�1 if k > 0 and �k =1:

Particularly �1 = 1 only if B1 � T . Setting E := N � R+ � � the state
space of the stochastic process R := (Rk)k2Z+ is E [ f�0; �1g, where �0

resp. �1 denotes the initial resp. �nal state with f(�0) := 0 =: f(�1).
Now R is a homogenous Markov process (due to Y�k+1 = Y�k _ X�k+1 , the
de�nition of the �k and due to independence of X1;X2; : : : ; A1; A2; : : : ; T ). A
situation for a decision consists of a quadrupel (i; b; x; y) 2 E. The transition
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probabilities result from the following expressions: P (R0 = �0) = 1 and
P (Rk+1 = �1 j Rk = �1) = 1 for k 2 N (homogeneity) and

P (R1 = �1 j R0 = �0) = P (B1 > T ) =

Z 1

0

(1 �G(t)) dH(t);

and for � 2 (0;1), � 2 [0; 1]

P (�1 = 1; B1 � �;X1 = Y1 � � j R0 = �0) = �

Z 1

0

G(� ^ t) dH(t);

and for i > k 2 N
P (Rk+1 = �1 j �k = i; Bi = b;Xi = x; Yi = y)

=
1

1�H(b�)
Z 1

b

1X
j=0

rj(y)P (Nu = i+ j) dH(u)

and for i > k 2 N, � 2 (0;1), (�; �) 2 �
P(�k+1 = j;Bj � �;Xj � �; Yj � � j �k = i; Bi = b;Xi = x; Yi = y)

= rj�i�1(y)(� � r(y))P (Bj � (� ^ (T � b)) j T � b)

= rj�i�1(y)(� � r(y))
1

1�H(b�)
Z 1

b

G�(j�i)(� ^ (t� b)) dH(t)

if j > i, � � b, � � r(y) and � � y and this probability equals 0 otherwise.
Here the fact is exploitet, that the joint distribution of Xj and Yj given
Xj � r(Yi) possesses virtually a one{dimensional density.

The natural �ltration F := (Fk)k2Z+ with Fk := � (X0; : : : ;Xk ;A0; : : : ; Ak).
Set R1 := �1. The set S of stopping times with respect to F is, without
loss, reduced

S0 := fS 2 S : (S = k =) Xk � r(Yk)) 8k 2 Ng
for any stopping time S 2 S0 de�ne a related stopping time

S0 :=

�
k if S = �k <1, for k 2 N
1 if S =1:

S0 2 S0 and S0 is a stopping time with respect to the �ltration (F�k)k2Z+.



3 OPTIMAL SELECTION WITH RANDOM ARRIVAL TIMES 83

The transformed problem now consists of optimal stopping of the homoge-
nous Markov process R := (Rk)k2Z+ with reward function f0, representing the
probability that the value x of state (i; b; x; y) 2 E remains an r{candidate:
f0(i; b; x; y) = f0(b; x) := 1

1�H(b�)
R1
b
m(t; %(x)) dH(t) if H(b�) < 1 and

f0(b; x) := 0 otherwise, with additional convention f0(�0) := 0 =: f0(�1).
Then P (XS � r(YN )) = f0(RS0) for S 2 S0.

The Myopic Stopping Time

The mean payo� of stopping in (b; x; y) 2 E in the general case is given by
expression (40). The mean payo� of proceeding until the next r{candidate
arrives is generally denoted formally by Ps and equals 0 if H(b�) = 1 and
otherwise, applying the transition probabilities of the preceeding paragraph,

(Ps)(b; y) (41)

=
1

1 �H(b�)
Z 1

b

 1X
k=1

rk�1(y)
Z t�b

0

�Z 1

r(y)

s(b+ u; �) d�

�
dG�(k)(u)

!
dH(t):

Here k�1 non{r{candidates pass (k 2 N, payo� 0 if no r{candidate arrives).
Now s � Ps speci�es the myopic stopping time or one step look{ahead rule
of epochs of arrivals, which in general proves to be not optimal, see page 48.

Subsequent the myopic stopping time is illustrated in situations where an
optimal stopping time seems intricate. Suppose deterministic arrival times:
G � 1[1;1). Then without loss of generality the horizon T is assumed to be
discrete: P (T 2Z+) = 1. Let �k := P (T = k) and let �k :=

P1
j=k �j denote

the tail probability where k 2 Z+. Let state (k; x; y) 2 E with x � r(y) be
given. Then the mean payo� of stopping is

s(k; x) =
1

�k

1X
j=k

�j%
j�k(x)

while choosing the next r{candidate (if any) yields the mean payo�

(Ps)(k; y) =
1

�k

1X
j=k+1

�j

j�kX
i=1

ri�1(y)
Z 1

r(y)

s(k + i; �) d�

=

1X
j=k+1

�j
�k
rj�k�1(y)

Z 1

r(y)

s(j; �) d�:
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In this situation for r � id and unrestricted distribution of T socalled stop-
ping islands may occur, see Porosinski [24] whose approach can't be adapted
since the myopic stopping time isn't optimal in general if r � id.
Particularly the problem of selection of an r{candidate where the number of
the draws is uniformly distributed on f1; : : : ; ng seems to be not regular. In
case of r � id the myopic stopping time proves to be optimal, see the cited
article, and in the general caseR 3 r � id already the proof that the problem
is regular (see section 2.1 or 3.1) fails. In addition there is a connection to
the problem of maximizing the duration of owning a temporary r{candidate
without recall, see the corresponding paragraph on page 97 of section 4.1.2.

Geometric Horizon

Let the arrival times and let the horizon be geometrically distributed: Let
P (A1 = k) = p(1� p)k�1 for k 2 N where p 2 (0; 1], including the case p = 1
of deterministic arrivals G � 1[1;1), and let P (T = k) = �(1��)k for k 2Z+

where � 2 (0; 1) (the alternative geometric distribution is mentioned below).
Let this optimal stopping problem be denoted by Pp;�. Let q := p(1� �)=�.

Theorem 3.13 For optimal stopping problem Pp;�(r) where r 2 R1 the stop-
ping time S� := inff1 � k � T : XNk

� x�g (with inf; :=1) is optimal |
take the �rst value above x�. Here x� 2 [0; r(1)) denotes the unique solution
in (0; r(1)) of

1 + q(1� x)

1 + q(1� %(x))
=

Z 1

x

q

1 + q(1� %(�))
d�

if
R 1

0
1

1+q(1�%(�)) d� >
1
q
and x� = 0 otherwise (q := p(1 � �)=�).

The value of Pp;�(r) | the probability of winning applying S� | then is

P (XNS�
� r(YN )) =

q

1 + q(1� x�)

Z 1

x�

1

1 + q(1� %(�))
d�:

Proof: Suppose �rst that recall is allowed. The mean payo� of recalling
the value y 2 [0; r(1)) is independent of the time of recall since G and H is
memoryless (given the horizon hasn't terminated the choosing yet; an o�er
beyond r(1) ensures maximal payo� 1 anytime):

s(y) = �

1X
k=0

(1 � �)k
kX

j=0

�
k

j

�
(1 � p)k�jpj%j(y)
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= �

1X
k=0

(1 � �)k (1� p+ p%(y))k

=
�

� + (1 � �)p(1 � %(y))

=
1

1 + q(1� %(y))
:

The one step look{ahead rule watches for the mean payo� of choosing the
maximum of y and the new o�er in the moment of the next arrival (in
case of no further arrival payo� 0). The probability for another arrival is
P (A1 � T ) = q=(1 + q) and thus the myopic stopping time stops if

1

1 + q(1� %(y))
� q

1 + q

Z 1

0

1

1 + q(1� %(y _ �)) d�
1 + q(1� y)

1 + q(1� %(y))
�

Z 1

y

q

1 + q(1� %(�))
d�:

Let h(y) := 1+q(1�y)
1+q(1�%(y)) �

R 1

y
q

1+q(1�%(�)) d� 2 C1([0; r(1)]). h(y) is increasing,

since h0(y) � 0 i� %0(y)(1 � �)p(� + (1 � �)p(1 � y)) � 0. h(r(1)) = 1.

h(0) � 0 is equivalent to
R 1

0
q

1+q(1�%(�)) d� � 1, i.e. take the �rst item if this

is true and else there is a unique solution inside (0; r(1)) solving h(x) = 0.
Thus the stopping sets of the myopic stopping time are closed and realizable
(the mean payo� vanishes as time grows to in�nity) and thus they specify
an optimal rule. If S� = 1 then P (X1 � r(YN )) = 0, including the case
N = 0 with resulting payo� 0 due to Y0 = 1.
The probability of winning applying S�: Since P (A1 � T ) = q=(1 + q) de-
composition with respect to the number k 2 N of arrivals and then with
respect to the number j = 1; : : : ; k of the �rst value beyond x� yields

P (XS� � r(YN )) =
1

1 + q

1X
k=1

�
q

1 + q

�k kX
j=1

(x�)j�1
Z 1

x�
%k�j(�) d�

=
1

1 + q

1X
j=1

�
q

1 + q

�j Z 1

x�
%j�1(�) d�

1X
j=k

�
qx�

1 + q

�j�k

=
1

1 + q

q

1 + q(1� x�)

1X
j=1

�
q

1 + q

�j�1 Z 1

x�
%j�1(�) d�

=
q

1 + q(1� x�)

Z 1

x�

1

1 + q(1� %(�))
d�;
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which in other words means: An o�er beyond x�, called �, occurs with prob-
ability q(1�x�)=(1+ q(1�x�)) and the integral divided by 1�x� represents
the mean payo� choosing � given there is one beyond x�. 2

Evidently the optimal threshold is x� = 0 if q � 1, i.e. if p � �=(1 � �). If
in theorem 3.13 alternatively P (T = k) = �(1� �)k�1, k 2 N, is taken, the
mean payo� is s(y) = ���p(1�%(y))

�+(1��)p(1�%(y)) .

Example 3.14 Suppose r(x) = #x for x 2 [0; 1] where # 2 (0; 1]. ThenR 1

x
q

1+q(1�%(�)) d� = # ln(1 + q(1 � x=#)) + q(1 � #). Therefore x� = 0 is the

optimal threshold i� # ln (1 + q) + q(1 � #) � 1 i� # � 1�q
ln(1+q)�q . Otherwise

x� 2 (0; #) uniquely solves equation 1+q(1�x)
1+q(1�%(x)) = # ln(1+q(1�x=#))+q(1�#).

Particularly x� = 0 if q � 1 and x� > 0 if q > e� 1, whereas x� 2 [0; #) in

case of q 2 (1; e� 1]. The value of Pp;�(#x) is ln(1+q(1�x�=#))+q(1�#)
1+q(1�x�) .

Taking p = 1 and # = 1 this meets the geometric case of Porosinski [24]:
q = (1��)=� yields x� = 0 if � � 1=e and otherwise x� = 1��e

1�� . The optimal
probability of winning is �� ln� and 1=e, respectively.

Now for geometric horizon and general arrival times the myopic stopping
time is displayed: Let P (T = k) = �(1 � �)k�1 for k 2 N and distribution
function G. Let (b; x; y) 2 E, where x � r(y). Since [T � b] implies [T � dbe]
now P (T = i+ dbe j T � dbe) = �(1� �)i+dbe�1=(1 � �)dbe�1 for i 2Z+:

s(b; x) =
1X
j=1

m(j + bbc � b; %(x)) �(1� �)j�1:

Due to (41) choosing the next r{candidate (if any) yields the mean payo�

(Ps)(b; y) =
1X
j=1

1X
i=1

ri�1(y)
Z j+bbc�b

0

�Z 1

r(y)

s(�) d�

�
dG�(i)(u)�(1� �)j�1

=

Z 1

r(y)

s(�) d� �
1X
j=1

1X
i=1

ri�1(y)G�(i)(j + bbc � b)�(1� �)j�1

=

Z 1

r(y)

s(�) d� �
1X
j=1

1 �m(j + bbc � b; r(y))

1 � r(y)
�(1� �)j�1

=
1� s(r(r(y)))

1� r(y)

Z 1

r(y)

s(�) d�; (42)
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where particularly the third equality sign is based on the following identities
(set z := r(y) 2 [0; 1) and let u � 0):

1�m(u; z)

1� z
=

1

1 � z
�
 1X

i=0

zi

! 1X
j=0

zjP (Nu = j)

!

=
1

1 � z
�

1X
j=0

zjP (Nu � j)

=
1

1 � z
�

1X
j=0

zj
�
1�G�(j+1)(u)

�
=

1X
j=0

zjG�(j+1)(u);

because events [Nu � j] and [A1 + � � � +Aj+1 > u] are equivalent.

Exponential Horizon

Let the horizon be exponentially distributed, T � exp(�) with � > 0, while
the distribution function of A1 is G. Let (b; x; y) 2 E where x � r(y). Then

s(b; x; y) = s(x) =

Z 1

0

m(t; %(x))�e��t dt; (43)

independent of b due to memorylessness of T . The myopic stopping time is
illustrated: Let y < r(1) and referring to expression (41) rearrange the order

of integrals (respect 1
1�H(b)

R1
b

R t�b
0

1 dG�(k)(u)dH(t) =
R1
0
G�(k)(t)�e��t dt):

(Ps)(y) =

Z 1

0

 1X
k=1

rk�1(y)
Z 1

r(y)

s(�) d� G�(k)(t)�e��t
!

dt

=

Z 1

r(y)

s(�) d� �
Z 1

0

1 �m(u; r(y))

1 � r(y)
�e��u du

=
1 � s(r(r(y)))

1 � r(y)

Z 1

r(y)

s(�) d�;

where the second equality sign is veri�ed similar to the discrete case, see
below expression (42).
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Now the interarrival times and the horizon are assumed to be exponentially
distributed: Let A1 � exp (�) and T � exp (�), where �; � > 0 and � := �=�.
Let this optimal stopping problem be denoted by P�;�(r) for r 2 R.
By an appropiate limiting procedure problem P�;� represents the limit of the
twice geometric case Pp;� of theorem 3.13, in this sense the latter is more
general. However this problem P�;� proves to be equivalent to the duration
problem Dt

�;�, see page 119, and therefore its solution is given in detail:

Theorem 3.15 For problem P�;�(r) where r 2 R1 with � := �=� the stop-
ping time S� := inffb 2 [0; T ] : XNb

� x�g (with inf; := 1) is optimal |
take the �rst value above x�. Here x� 2 [0; r(1)) denotes the unique solution
in (0; r(1)) of

� + 1 � x

� + 1� %(x)
=

Z 1

x

1

� + 1� %(�)
d�;

if
R 1

0
1

�+1�%(�) d� > 1 and x� = 0 otherwise.

The value of P�;�(r) | the probability of winning applying S� | is

P (XNS�
� r(YN )) =

�

� + 1 � x�

Z 1

x�

1

� + 1 � %(�)
d�:

Proof: Suppose �rst that recall is allowed. Due to memoryless of G and H
the mean payo� of recalling y 2 [0; 1] is independent of the moment of recall:

s(y) = �

Z 1

0

e�(�(1�%(y))+�)u du =
�

�+ �(1 � %(y))
=

�

� + 1 � %(y)
:

Regarding now event time recall, i.e. recall only in moments of an arrival, this
expresseion is compared with the mean payo� recalling the topical maximum
in the moment of the next arrival, which also is time independent. Since any
further arrival occurs with probability P (A1 � T ) = �=(� + �) = 1=(� + 1)
this means

�

� + 1� %(y)
� 1

� + 1

Z 1

0

�

� + 1 � %(y _ �) d� (44)

� + 1 � y

� + 1� %(y)
�

Z 1

y

1

� + 1 � %(�)
d�;
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a condition veri�ed to be consistent with selection in moments of an arrival
but without recall and with the in�nitesimal look{ahead rule based on per-
manent recall in continuous time. This condition speci�es when to choose an
o�er independent of time and thus recall is redundant.
Let h(x) := �+1�x

�+1�%(x) �
R 1

x
1

�+1�%(�) d� 2 C1([0; r(1)]). Now h is increasing,

since h0(x) proves to be nonnegative i� %0(x)(� + 1� x)=(� +1� %(x))2 � 0.

If h(0) = 1 � R 1

0
1

�+1�%(�) d� � 0 then take the �rst item, if any. Otherwise

the solution of h(x) = 0 yields an unique threshold inside (0; r(1)), since
h(r(1)) = 1. Since the stopping sets of this myopic stopping time are closed
and realizable an optimal stopping time is speci�ed. If S� = 1 then the
mean payo� is P (X1 � r(YN )) = 0 (X1 = 0, including the case N = 0 due
to Y0 = 1).
The optimal probability of winning applying S�: Decomposition with respect
to the total number of o�ers and watching for the �rst one beyond x� yields
(due to P (A1 � T ) = 1=(� + 1))

P (XS� � r(YN )) =
�

� + 1

1X
k=1

 �
1

� + 1

�k kX
j=1

(x�)j�1
Z 1

x�
%k�j(�) d�

!

=
�

� + 1

1X
j=1

 �
1

� + 1

�j Z 1

x�
%j�1(�) d�

1X
k=j

�
x�

1 + �

�k�j!

=
�

� + 1

1

� + 1� x�

1X
j=1

 �
1

� + 1

�j�1 Z 1

x�
%j�1(�) d�

!

=
1

� + 1� x�

Z 1

x�

�

� + 1 � %(�)
d�;

in other words: Since the rate � of an arrival beyond x� is �(1�x�) (for each
arrival an additional and independent Bernoulli experiment), the probability
of an arrival beyond x� is �(1� x�)=(�+ �(1� x�)) = (1� x�)=(� +1� x�).
Besides the integral divided by 1 � x� represents the mean payo� choosing
an o�er beyond x� given there is an o�er beyond x�. 2

Particularly x� = 0 is the optimal threshold if � � �, since in mean the
process will end before an item occurs (in the proof the integrand then is
lower than 1 on [0; 1)).
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Example 3.16 Suppose r(x) = #x for x 2 [0; 1] where # 2 (0; 1]. The

condition for x� = 0 is
R #
0

1
�+1��=# d� + 1�#

�
� 1 or # � ��1

� ln(1+1=�)�1 . If this is

not the case x� 2 (0; #) is speci�ed by �+1�x
�+1�x=# = # ln

�
�+1�x=#

�

�
+ 1�#

�
.

Particularly x� = 0 if � � 1 and x� 2 (0; #) if � < 1
e�1 � 0:5820, while

x� 2 [0; #) in case of � 2 [ 1
e�1 ; 1). The value of P�;�(#x), i.e. the optimal

probability of winning is 1�#
�+1�x� +

�#
�+1�x� ln

�
�+1�x�=#

�

�
.

This is in accordance with the case # = 1 resp. r � id of Bojdecki [6]: Here
x� = 0 if � � 1=(e � 1) and otherwise x� = 1 � �(e � 1). The optimal
probability of winning is �

�+1
ln
�
�+1
�

�
and 1=e, respectively.

Particularly take # = 0:8. Then x� = 0 if � � 0:6959, approximately. For
example the value is 0:3773 if � = 1 and if � = 1=2, computing x� � 0:2847,
the value is 0:4370.
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4 The Duration Problem

Based on r{Candidates

In this chapter the full information case of the duration problem of Ferguson
et al. [14] (sections 3 and 4.2) is applied to r{candidates, where o�ers are
compared via relax function r 2 R (see section 2.1): On the one hand the
subject in this article is to select an item in order to maximize the upcoming
period until the end provided it proves to be best overall | here the item
�nally has to emerge as an r{candidate (an overall r{candidate). On the
other hand it is the aim to select an item while proposing to own it as long
as possible until the moment where it is surpassed | here the criterion will
be the duration the selected item remains an r{candidate (a temporary r{
candidate). The concept of an r{candidate, notation 2.10, will be speci�ed
in the corresponding subsections.
In this chapter the sequenceX1;X2; : : : of o�ers is assumed to be independent
and U([0; 1]) (see the �nal remark 4.20), relative maxima are denoted by
Yk := maxfX1; : : : ;Xkg for k 2 N and stopping times refer to this sequence.
The corresponding optimal stopping problems are called duration of owning
an overall resp. temporary r{candidate and they are denoted by Do(r) resp.
Dt(r) for given relax function r 2 R, where no recall as well as allowance of
recall is investigated.
Anytime the case r � id or r 2 R1

1 with r0(1�) = 1 refers to the article [14].

4.1 The Duration Problem in Discrete Time

In this section let 1 < n 2 N be �xed and regard the speci�cation of an
optimal, nonanticipating stopping time referring to the sequence X1; : : : ;Xn.
This discrete optimal stopping problem, which is denoted by Do

n resp. Dt
n

corresponding to an overall and a temporary r{candidate, is investigated in
two subsections below, where the de�nition of an r{candidate will be speci�ed
formally.

4.1.1 The Duration of Owning an Overall r{Candidate

For k = 1; : : : ; n the value Xk is called an overall r{candidate if Xk � r(Yn),
the corresponding duration then being n � k + 1. Selecting according to a
nonanticipating stopping time S, the duration of owning XS concerning an
overall r{candidate is D := (n+ 1� S) � 1[r(Yn);1](XS).
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The prophet isn't restricted to nonanticipating stopping times, but has com-
plete foresight. A gambler's duration of owning an overall r{candidate is
bounded by that of the prophet, in every realization and thus also in mean:

The Prophet's Choice

For any realization the prophet elects the maximum of the durations of any
overall r{candidate of X1; : : : ;Xn, which in mean leads to the payo�Z 1

0

nX
k=1

�
(y � r(y))k�1rn�k(y) k

�
n

�
n

k

�
�
�

n

k + 1

���
dy: (45)

Veri�cation: The prophet would choose the �rst overall r{candidate, i.e. the
�rst item x for which x � r(y) holds, where Yn = y. Decomposing then
with respect to the number k of items ful�lling this property, the maximal
duration is n� i, if there are i not{r{candidates preceding the �rst of them
(where i = 0; : : : ; n � k); the remaining k � 1 r{candidates and n � k � i
not{r{candidates may be in any order:

Pn�k
i=0 (n � i)

�
n�1�i
k�1

�
= n

�
n
k

� � � n
k+1

�
(using

Pm
i=k�1

�
i

k�1
�
=
�
m+1
k

�
repeatedly while telescoping

Pj
i=k�1

�
i

k�1
�
for

j = k� 1; : : : ; n� 2, then �n
k

�
occurs n times in place of k times). The factor

k reects the number of positions the maximum y can take. 2

In the case r � id expression (45) corresponds with 1
n

Pn
i=1 i =

n+1
2

(there is
a single overall r{candidate, k = 1).

Example 4.1 For n 2 N the mean of the maximal duration of any overall
r{candidate of X1; : : : ;Xn with r(x) = #x for x 2 [0; 1] where # 2 [0; 1) is
given by the concave function

dn(#) := n � #

1 � #
+
# (1 � #n)

n(1 � #)2
:

Veri�cation: Reversing sum and integration in expression (45), the integral
yields 1=n (extracting factors), which gives

nX
k=1

k

�
n

k

�
#n�k(1� #)k�1 �

n�1X
k=1

k

n

�
n

k + 1

�
#n�k(1� #)k�1
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= n�
n�1X
k=1

k

k + 1

�
n � 1

k

�
#n�k(1 � #)k�1

= n� #

1� #

n�1X
k=1

�
n� 1

k

�
#n�1�k(1� #)k +

n�1X
k=1

1

k + 1

�
n � 1

k

�
#n�k(1 � #)k�1

= n� #

1� #

�
1 � #n�1

�
+

1

n

#

(1� #)2
�
1 � #n � n(1� #)#n�1

�
= n� #

1� #
+
# (1� #n)

n(1� #)2
;

where the second sum in the third last line needs extra computation: Write
(1� #)�2(1� #)k+1=(k + 1) as an integral, and add and substract two terms
to get an expression according to the binomial theorem.
The case # = 0 gives dn(0) = n (take the �rst item) and also the marginal
case # ! 1 or r � id is preserved: dn(#) ! (n + 1)=2 as # ! 1 (applying
two times the rule of de l'Hospital to the uni�ed two last terms of dn(#)
altogether yields n + (2n� n(n+ 1)#n�1)=(2n) as #! 1).
The concavity of dn(#), i.e. d00n(#) � 0, is equivalent to the nonpositivity of

4� 2n+2(n+1)#� n(n+1)#n�1 +2(n� 2)(n+1)#n � (n� 2)(n� 1)#n+1:

First d002 � 0 and now let n > 2 and # 2 (0; 1): d00n(#) � 0, since d00n(1) = 0 and

d
(3)
n (#) � 0, where the latter in turn is true since d(3)n (1) = 0 and d

(4)
n (#) � 0

| in this last inequality only consecutive exponents of # appear, with factors
which are integer multiples of the positive product (n � 2)(n � 1)n(n + 1).

Thus inequality d
(4)
n (#) � 0 holds i� �1 + 2#� #2 = �(1� #)2 � 0. 2

Selection without Recall

The optimal stopping problem Do
n without recall seems not to be regular in

general. Let (x; y) 2 �. The mean payo� choosing x with x � r(y) is 1 if
` = 0 and if ` 2 N items remain it is given by

s`(x) = (`+ 1)%`(x):

Alternatively proceeding at least one step and then choosing optimally yields

c`(y) = r(y)c`�1(y) +
Z 1

r(y)

v`�1(�; y _ �) d�;
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which leads to the estimation yc`�1(y) � c`(y) � `
R 1

y
%`�1(�) d�. Assuming

s`(x) � c`(y) this optimal stopping problem would be regular if

y`%`�1(x) � (` + 1)%`(x)� `

Z 1

y

%`�1(�) d�Z 1

y

%`�1(�) d� �
�
` + 1

`
%(x)� y

�
%`�1(x);

which in turn is valid if (` + 1)=`%(x) � 1 i� x � r(`=(` + 1)) (for r 2 R1
1

with r0(1�) = a this would require roughly x � (` + 1 � a)=(` + 1)). Only
if the reverse inequality would imply that stopping is optimal, which doesn't
seem to be evident, then problem Do

n without recall would be regular.

Selection with Recall

For problem Do
n with recall the duration is D := (n + 1 � S) � 1[r(Yn);1](YS)

according to stopping time S. Heuristically the aim is to wait suÆciently
long in order to recall an item which will be an overall r{candidate and to
respect the simultaneous decrease of the (possibly) outstanding duration.

Theorem 4.2 An optimal stopping time for Do
n(r) with recall and r 2 R1

| maximizing the duration of owning an overall r{candidate with recall |
is given by S� := inff1 � k � n : Yk � y�n�kg, where y�0 = 0 and y�` for ` 2 N
is the unique solution inside [r(1=2); r(1)) of equation�

` + 1

`
%(y)� y

�
%`�1(y) =

Z 1

y

%`�1(�) d�: (46)

The sequence (y�` )`2Z+ of optimal thresholds is strictly increasing.

Proof: The mean of the duration choosing y 2 [0; 1] where ` = 0; : : : ; n � 1
items remain is s`(y) = (` + 1)%`(y). The one step look{ahead rule yields

c`(y) = ys`�1(y) +
Z 1

y

s`�1(�) d�:

The myopic stopping time suggests to stop, if s`(y) � c`(y), i.e. if

(` + 1)%`(y) � `y%`�1(y) + `

Z 1

y

%`�1(�) d��
` + 1

`
%(y)� y

�
%`�1(y) �

Z 1

y

%`�1(�) d�: (47)



4 THE DURATION PROBLEM BASED ON R{CANDIDATES 95

The corresponding stopping sets are monotone (let y 2 [0; r(1)): Suppos-
ing s`(y) � c`(y), i.e. inequality (47), and using

�
`+1
`
%(y)� y

�
%`�1(y) <�

`
`�1%(y)� y

�
%`�2(y)%(y) and

R 1

y
%`�1(�) d� � %(y)

R 1

y
%`�2(�) d�; the desired

inequality s`�1(y) > c`�1(y) follows (dividing by %(y) > 0), where 1 < ` 2 N.
Let ` 2 N and let h(y) :=

R 1

y
%`�1(�) d��� `+1

`
%(y)� y

�
%`�1(y) 2 C1([0; r(1)]).

Now h(y) is decreasing, because [(`� 1)y � (`+ 1)%(y)] %`�2(y)%0(y) � 0 i�

h0(y) is nonpositive. Besides h(0) =
R 1

0
%`�1(�) d� > 0 and h(r(1)) = �1=`.

Particularly for ` = 1 an optimal decision is given via threshold y�1 := r(1=2).
Therefore a unique threshold y�` 2 [r(1=2); r(1)) is speci�ed by equation (46).
Thus the stopping sets of the myopic stopping time are closed and realizable
(since Yk is nondecreasing). Besides monotonicity y�1 < y�2 < � � � holds. 2

While evidently y�` tends to r(1) as ` ! 1 the asymptotic behaviour of
second order is as follows:

Proposition 4.3 Let r 2 R1
1 and a := r0(1�) 2 [1;1). The asymptotic

behaviour of optimal thresholds of theorem 4.2 is lim
n!1

`(1 � y�` ) = a�, where

� = �(a) represents the unique solution inside (0; ln(2)] of equation

a =
� � 1

� + 1� e�
:

Proof: Assume r(y) = a(y � 1) + 1 or %(y) = (y + a � 1)=a in the neigh-
bourhood of 1. Then equation (46) yields an asymptotic relation as `!1:�

` + 1

`

y�` + a� 1

a
� y�`

��
y�` + a� 1

a

�`�1
' a

`

"�
� + a� 1

a

�̀#1
y�`

y�` (a+ `+ 1 � a`) + (a+ ` + 1)(a� 1)

a`

�
y�` + a� 1

a

�`�1
' a

`
:

In order to get a second order speci�cation of y�` set "` := y�`�1+f(a)=` for ` 2
N, where f : [1;1) ! [0;1) with f(1) = ln 2 (heuristically and �nally the
optimal threshold y�` should decrease as a increases, i.e. as the demands relax,
thus f(a) should be increasing and its range being contained in [ln 2;1), see
below). This produces, applying (y�` + a� 1)=a ' 1 � f(a)=(a`) + "`=a, the
following relation:

(f(a)� `"`)
�
a� 1 � a+1

`

�
+ a2 + a

a`

�
1 � f(a) + `"`

a`

�`�1
' a

`
:
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Cancel 1=`, drop term f(a)(a + 1)=` = o(1) and suppose "` = o(1=`) as
` ! 1, then this leads to a transcendental equation, which speci�es f(a)
(its uniqueness, i.e. that of y�` , will justify the assumption concerning "`):

f(a)

a
(a� 1) + a+ 1 = aef(a)=a;

preserving the case f(1) = ln(2). De�ne g(a) := f(a)=a for a 2 [1;1). Now
g is positive and g is di�erentiable if f is supposed to be. Then

g(a)(a� 1) + a+ 1 = aeg(a)

or G(a; g(a)) := g(a)(a� 1) + a+1� aeg(a) � 0, which by derivation reveals
g0(a) = (1 + g(a) � eg(a))=(1 � a + aeg(a)). Since this term is negative, g is
decreasing with range contained in (0; ln(2)]. Substituting its inverse | take
g(a) = � and a = h(�) | yields the expression

h(�) =
� � 1

�+ 1 � e�
;

where h : (0; ln(2)]! [1;1) is decreasing with h(ln(2)) = 1 and h(0+) =1
(see �gure 6 on page 100). Thus the assumption "` = o(1=`) is justi�ed.
Resumed this means: Given a, specify � solving equation h(�) = a. Then
h(�)� = ag(a) = f(a) is the desired value to build y�` ' 1� a�=`.
Besides f proves to be increasing: f 0(a) = g(a) + ag0(a), which is positive i�
(1+g(a)=a)=(1�g(a)) > eg(a) (valid by estimating g(a)=a > 0). Particularly
f 0(1) = g(1) + g0(1) = ln 2 + 1=h0(ln 2) = (3 ln(2) � 1)=2 � 0:5397. 2

Example 4.4 Let r(y) = y5 for y 2 [0; 1], i.e. let a = r0(1�) = 5. The
following optimal thresholds y�` (based on theorem 4.2) and approximating
thresholds y` := 1� a�=` (based on �(5) � 0:4391, proposition 4.3) result:

` 10 20 30 40 50 100
y�` 0.7952 0.8939 0.9285 0.9460 0.9567 0.9782
y` 0.7805 0.8902 0.9268 0.9451 0.9561 0.9781
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4.1.2 The Duration of Owning a Temporary r{Candidate

The duration of owning a temporary r{candidate for a k = 1; : : : ; n means
the period object Xk with Xk � r(Yk) stays an r{candidate with regard to
the remaining sequence Yk+1; : : : ; Yn. Selecting according to a nonanticipat-
ing stopping time S the duration D of owning a temporary r{candidate is
given by the number of time units the present r{candidate XS remains an
r{candidate: D :=

Pn�S
j=0 1[r(YS+j);1](XS).

The prophet's choice in this context and the corresponding mean of the max-
imal duration of a temporary r{candidate seems awkward and inaccessible.

Selection without Recall

The optimal stopping problem Dt
n(r) without recall doesn't seem to be reg-

ular in general. It is related to the problem P(r) of selecting an r{candidate
where the number of values presented is uniformly distributed on f1; : : : ; ng:
The mean payo� of stopping in state (x; y) 2 � with ` 2Z+ remaining items
is evidently 1

`+1

P`
j=0 %

j(x) provided x � r(y). Apart from factor 1
`+1

this
coincides with the mean payo� of Dt

n given in expression (49) below (replace
y by x and presume x � r(y)).

Selection with Recall

For Dt
n(r) with recall the number of time units YS stays an r{candidate

matters, formally the mean of D :=
Pn�S

j=0 1[r(YS+j);1](YS) is the relevant

functional.

Theorem 4.5 An optimal stopping time for Dt
n(r) with recall where r 2 R1

| maximizing the duration of owning a temporary r{candidate with recall
| is given by S� := inff1 � k � n : Yk � y�n�kg, where y�0 = y�1 = 0 and y�`
for 1 < ` 2 N is the unique solution inside (0; r(1)) of equation

%`(y) + (1� y)

`�1X
j=0

%j(y) =

`�1X
j=0

Z 1

y

%j(�) d�: (48)

The sequence (y�` )`2N of optimal thresholds is strictly increasing.
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Proof: Suppose present maximum y 2 [0; 1] where ` 2 Z+ o�ers remain,
then the mean duration of owning y as an overall r{candidate is

s`(y) = (` + 1)%`(y) + (1 � %(y))

`�1X
j=0

(j + 1)%j(y) =
X̀
j=0

%j(y); (49)

by decomposing with respect to the number j + 1 of the item �nishing the
beginning duration. For ` 2 N now let c`(y) represent the mean payo� of the
one step look{ahead rule, i.e. the mean duration choosing Yn�`+1:

c`(y) = ys`�1(y) +
Z 1

y

s`�1(�) d�:

The myopic stopping time suggests to stop if s`(y) � c`(y), i.e. ifX̀
j=0

%j(y) � y

`�1X
j=0

%j(y) +
`�1X
j=0

Z 1

y

%j(�) d�

%`(y) + (1 � y)
`�1X
j=0

%j(y) �
`�1X
j=0

Z 1

y

%j(�) d�: (50)

The corresponding stopping sets are monotone: Let 1 < ` 2 N, y 2 [0; r(1))
and suppose s`(y) � c`(y) (evidently for y � r(1) stopping anytime). Using
both %`(y) < %`�1(y) and %(�) � %(y) then inequality (50) leads to

%`�1(y) + (1� y)
`�1X
j=0

%j(y) >

`�2X
j=0

Z 1

y

%j(�) d� + (1� y)%`�1(y);

which is equivalent to s`�1(y) > c`�1(y) (substracting (1� y)%`�1(y)).
Let h(y) :=

P`�1
j=0

R 1

y
%j(�) d� � %`(y) + (1 � y)

P`�1
j=0 %

j(y) 2 C1([0; r(1)])

where ` 2 N. Now h(y) is decreasing, since h0(y) proves to be nonpositive i�

�
h
`%`�1(y) + (1 � y)

P`�1
j=1 j%

j�1(y)
i
%0(y) � 0. Moreover h(r(1)) = �1 and

h(0) =
P`�1

j=1 %
j(�) d� > 0 if ` > 1 and h(0) = 0 if ` = 1 (in the latter case

even y = 0 could be chosen to stay optimal). Therefore a unique threshold
y�` 2 (0; r(1)) is speci�ed by equation (48).
Thus the myopic stopping sets are closed and realizable (Yk is nondecreasing)
and monotonicity y�0 = y�1 < y�2 < � � � holds. 2

Obviously y�` % r(1) as `!1 while the second order behaviour is as follows:
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Proposition 4.6 Let r 2 R1
1 and a := r0(1�) 2 [1;1). The asymptotic

behaviour of optimal thresholds of theorem 4.5 is lim
`!1

`(1 � y�` ) = a�, where

� = �(a) represents the unique solution of equation

1� a� 1

ae�
=

Z 0

��

e� � 1

�
d� (51)

inside (0; �1], where �1 := �(1) � 1:3450 is the solution of 1 =
R 0

��
e��1
�

d�.

Proof: Regard equation (48) and suppose %(y) = (y � 1 + a)=a for y close
to 1. Then the asymptotic behaviour of y�` as `!1 is given by�
y�` + a� 1

a

�`

+ (1 � y�` )
`�1X
j=0

�
y�` + a� 1

a

�j

'
`�1X
j=0

a

j + 1

 
1�

�
y�` + a� 1

a

�j+1
!
:

Assuming y�` ' 1 � f(a)=` this yields (setting y�` = 1 � f(a)=` + "` as in
proposition 4.3 again justi�es "` = o(1=`) by exactly the same arguments)�
1� f(a)

a`

�`

+
f(a)

`

`�1X
j=0

�
1� f(a)

a`

�j

'
`�1X
j=0

a

j + 1

 
1�

�
1� f(a)

a`

�j+1
!
:

The asymptotic behaviour as ` ! 1 of either leftmost term is evident,P`�1
j=0 (1 � f(a)=(a`))j ' �

1� e�f(a)=a
�
a`=f(a) according to the truncated

geometric series and
P`�1

j=0
1

j+1

�
1� f(a)

a`

�j+1

' Ei(�f(a)=a) � ln (f(a)=(a`))

according to lemma A.2 in the appendix (set x` := �f(a)=a). This yields

e�f(a)=a+ a
�
1� e�f(a)=a

� ' a

�
ln(`) +  + ln

�
f(a)

a`

�
� Ei

�
�f(a)

a

��
:

Cancel ln(`), introduce g(a) := f(a)=a (for a 2 [1;1) with range contained
in (0;1)) and respect remark A.4, then equation (51) results from

a+ (a� 1)e�g(a) = a

Z g(a)

0

1� e��

�
d�;

where f(a) = ag(a). Now analogously to the case of an overall r{candi-
date the inverse of g is displayed (g is di�erentiable if f is supposed to be):

G(a; g(a)) := 1�a�1
a
e�g(a)�R g(a)0

1�e��
�

d� � 0, which by derivation reveals
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� e�g(a)

a2
+g0(a)

�
a�1
a
e�g(a) � 1�e�g(a)

g(a)

�
� 0 or g0(a) = 1

.�
a2 � a� a2 e

g(a)�1
g(a)

�
,

which is negative since g is positive. Thus g is decreasing and the inverse of
g(a) = � denoted by h(�) = a exists (also decreasing, with h(0+) =1):

h(�) = 1

��
1� e�

�
1 �

Z �

0

1 � e��

�
d�
��

:

Thus, given a, specify � solving h(�) = a. Then h(�)� = ag(a) = f(a)
yields the desired coeÆcient of the term y�` ' 1� a�=` as `!1.
Besides f(a) may be increasing: f 0(a) = g(a)+ag0(a) proves to be positive i�
1+ g(a)+(1� g(a))=a < eg(a), which is evident only if g(a) � 1. Particularly
f 0(1) = g(1) + g0(1) = �1 + 1=h0(�1) = �1(e�1 � 2)=(e�1 � 1) � 0:8711.

Finally
R 0

��1(e
� � 1)=� d� =

R 0

�1(e
�1� � 1)=� d� =

R 1

0
(1� e��1�)=� d�. 2

1
0

30

0 ln 2 � 0:6932 �1 � 1:3450

�

h(�)

Figure 6: Function h(�) for Do
n resp. Dt

n with recall (dashed resp. solid
line) reveals lim`!1 `(1 � y�` ) = f(a) via f(a) = �h(�) and a = h(�).
Particularly f(1) � 0:6932 resp. 1:3450 and besides f 0(1) � 0:5397 resp.
0:8711. See the proof of proposition 4.3 resp. 4.6.

Example 4.7 Take r(y) = y5 for y 2 [0; 1], i.e. take a = r0(1�) = 5. For
some ` the optimal thresholds y�` according to theorem 4.5 and approxima-
tions y` := 1� a�=` where �(5) � 0:7261, see proposition 4.6, are given:

` 10 20 30 40 50 100
y�` 0.6731 0.8275 0.8830 0.9115 0.9288 0.9641
y` 0.6370 0.8185 0.8790 0.9092 0.9274 0.9640
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4.2 The Discounted Duration of Owning an r{Candidate

Suppose to maximize the duration of owning an r{candidate where future
epochs are discounted by an amount of Æ 2 (0; 1) per period. For relax
function r 2 R1 this socalled discounted duration problem is denoted by
DÆ(r). Heuristically it is advisible to watch for a big item whose quality as
an r{candidate will last but on the other hand not to hesitate too long, since
the valence of periods decrease.
Suppose �rst that recall is allowed such that formally it is the objective to
maximize random variable D := (1� Æ)P1

j=1 Æ
j1[r(YS+j);1] (YS), where selec-

tion according to stopping time S is applied (factor 1�Æ for standardization;
set payo� 0 if S = 1). The mean duration selecting resp. recalling object
Yk = y in epoch k 2 N then is given by

sk(y) = (1 � Æ)Æk

 
1 +

1X
j=1

ÆjP (y � r(Xk+1); : : : ; r(Xk+j ))

!

=
(1 � Æ)Æk

1 � Æ%(y)
(52)

(which simpli�es if y 2 [r(1); 1]). According to the statements on page 13
(and boundedness of the payo� by 1) the following stopping time is optimal:

S� := inf
k2N

�
sk(Yk) � ess sup

S2Sk
E (sS(YS) j X1; : : : ;Xk)

�
: (53)

Let w(y) denote the value of the duration with discounting, if stopping be-
low y 2 [0; 1] is avoided. w(y) is nonincreasing in y since the set of stopping
times allowed shrinks. Now time invariance holds in the following sense:
ess supS2Sk E (sS(YS) j X1; : : : ;Xk) = Ækw(Yk). Applying this to the in-
equality given in (53), using (52) and setting Yk = y this leads to the relation

1 � Æ

1 � Æ%(y)
� w(y):

Since the left side is increasing in y and the right side is nonincreasing in
y and since this relation is independent of the epoch y occurs, a concurrent
threshold rule proves to be optimal | this in turn is based on the Xk and
therefore this concurrent threshold rule will also be optimal for the discounted
duration problem without recall.
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Theorem 4.8 For the discounted duration problem DÆ(r) with or without
recall, where r 2 R1 and Æ 2 (0; 1) is the discount factor, the stopping time
S� := inffk 2 N : Xk � x�g (with inf; := 1) is optimal | take the �rst
value above x�. Here x� 2 [0; r(1)) denotes the unique solution inside (0; r(1))
of

Æ

1� Æx
= � @

@x
ln

�Z 1

x

1

1� Æ%(�)
d�

�
(54)

(or of equation (56) below) if �(Æ) :=
R 1

0
1= (1=Æ � %(�)) d� > 1 and x� = 0

(choose the �rst item) if �(Æ) � 1.
The value of DÆ(r) | the mean E (D�) of the optimal discounted duration D�

applying S� | is given by (1� Æ)=(1� Æ%(x�)) and (1� Æ)�(Æ), respectively.

Proof: The optimality of a concurrent threshold rule S is veri�ed in the in-
troduction. Supposing concurrent threshold x 2 [0; r(1)) �rst XS � U([x; 1])
holds and second E

�
ÆS
�
= (1� x)

P1
j=1 Æ

jxj�1 = (1� x)Æ=(1� Æx), leading
to the mean duration E (D) according to S (using expression (52)):

E (D) = E

�
(1� Æ)ÆS

1� Æ%(XS)

�
=

1� Æ

1� x
E
�
ÆS
� Z 1

x

1

1� Æ%(�)
d�

=
(1� Æ)Æ

1� Æx

Z 1

x

1

1� Æ%(�)
d�: (55)

Supposing x > 0, a necessary condition for maximal payo� is that its deriva-
tive

(1� Æ)Æ2

(1� Æx)2

Z 1

x

1

1� Æ%(�)
d� � (1 � Æ)Æ

1 � Æx

1

1 � Æ%(x)

with respect to x vanishes, which proves to be equivalent toZ 1

x

1

1� Æ%(�)
d� =

1

Æ

1 � Æx

1� Æ%(x)
: (56)

Let h(x) :=
R 1

x
1

1�Æ%(�) d�� 1
Æ

1�Æx
1�Æ%(x) 2 C1([0; r(1)]). Now h is decreasing, since

h0(x) = �%0(x)(1�Æx)=(1�Æ%(x))2. If h(0) � 0, then x = 0 (selecting the �rst
item) is an optimal threshold, since positive thresholds lead to minor payo�.
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If h(0) > 0, then h(r(1)) = �1=Æ combined with continuity of h ensures
uniqueness of an optimal threshold in (0; r(1)) and h0(x) � 0 is suÆcient for
the existence of a maximum. Altogether this shows, that a unique optimal
threshold inside [0; r(1)) exists.
The mean E (D�) for x� > 0 is computed by applying identity (56) to ex-
pression (55) and for x� = 0 it is given directly by expression (55). 2

Remark 4.9

i) For �xed Æ an optimal threshold x� is invariant inside the set of func-
tions r 2 R1, where % varies on (0; x�) and remains unchanged on
[x�; 1].

ii) Given relax function r 2 R1, there is a crucial Æ0 = Æ0(r) 2 (1=2; 1�1=e]
such that x�(Æ) = 0 for Æ 2 (0; Æ0]: Since function 1

1=Æ�x is increasing in
x 2 [0; 1], the relation "1 � r � id yields

� ln(1� Æ) =
Z 1

0

1
1
Æ
� �

d� �
Z 1

0

1
1
Æ
� �

dr(�) <

Z 1

0

1
1
Æ
� �

d"1(�) =
Æ

1 � Æ

where the leftmost term doesn't exceed 1 for Æ � Æ0(id) = 1 � 1=e �
0:6321 and the rightmost term remains lower or equal to 1 if Æ 2 (0; 1=2].
Besides Æ0(r1) < Æ0(r2) holds generally if r1 � r2 in R1.

iii) Given relax function r 2 R1, the optimal threshold x�(Æ) is nonde-
creasing in Æ (with regard to ii) above increasing only on [Æ0; 1]) |
heuristically: Weaker discounting (growing Æ) allows upgrading the
requirements, i.e. x�. Furthermore it is heuristically evident, that
x�(Æ) ! r(1) as Æ ! 1. Besides r1 � r2 in R1 doesn't imply x�(r1) �
x�(r2), as �gure 7 indicates.

iv) The mean E (D�) of the optimal discounted duration D� particularly
for Æ = Æ0 simpli�es to 1� Æ0 (since �(Æ0) = 1). For r � id in the case
0 < x� = (1� e(1� Æ))=Æ the mean reduces to 1=e independent of Æ.

Example 4.10 Some special cases treated here correspond to �gure 7 below.

i) Let r(x) = #x for x 2 [0; 1] where # 2 (0; 1]. Then Æ0 = f�1(#) where
f�1 is the unique inverse function of f : (1=2; 1 � 1=e]! (0; 1] setting
f(Æ) = (2Æ�1)=(Æ+(1�Æ) ln(1�Æ)) | here f(1=2) = 0, f(1�1=e) = 1



4 THE DURATION PROBLEM BASED ON R{CANDIDATES 104

and f 2 C1([1=2; 1 � 1=e]) and f 0(Æ) > 0 for Æ 2 (1=2; 1 � 1=e].
Particularly for # = 1=2, where Æ0(x=2) � 0:5471 results, the optimal
threshold x�(Æ) for Æ 2 (Æ0; 1) is determined uniquely by equationR #
x

1
1�Æ�=# d� +

1�#
1�Æ =

#
Æ

�
ln
�
1 � Æ�

#

��#
x
+ 1�#

1�Æ =
1
Æ

1�Æx
1�Æx=#.

The case # = 1: Æ0(id) = 1�1=e and x�(Æ) = 0_ 1�e(1�Æ)
Æ

(dashed line).

ii) Let r(x) = 1 �p1� x, x 2 [0; 1]. Then Æ0(1 �
p
1� x) � 0:5747 and

the optimal threshold x�(Æ) for Æ 2 (Æ0; 1) is determined by equationR 1�x
0

1
1�Æ+Æ�2 d� = arctan

�
(1� x)

q
Æ

1�Æ

�.p
Æ(1� Æ) = 1

Æ
1�Æx

1�Æ+Æ(1�x)2 .

iii) Suppose relax function r(x) = x3, x 2 [0; 1], which leads to Æ0(x3) �
0:5610 and the optimal threshold x�(Æ) for Æ 2 (Æ0; 1) is determined byR 1

x
1

1�Æ 3p�
d� = 1

2Æ3
[�3Æ�(2 + Æ�) � 6 ln(1� Æ�)]1px =

1
Æ

1�Æx
1�Æ 3px .

0:5 1 � 1=e

Æ

x�(Æ)

0
0

1

1

Figure 7: The optimal threshold x�(Æ) as a function of the discount
factor Æ, where relax function r(x) equals x (dashed line) or x=2
resp. 1 �p1 � x resp. x3 (solid lines, see example 4.10 i), ii) and
iii), in the lower part of the �gure from left to right, respectively).
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4.3 The Duration Problem

Referring to the Poisson Process

In this section o�ers arrive according to a Poisson process and the time
horizon up to which a gambler may select an o�er is constant or exponentially
distributed. For relax function r 2 R, analogously to the discrete case in
section 4.1, the objective is to maximize the duration of owning an overall
r{candidate resp. a temporary r{candidate, speci�ed and treated in two
subsections below | see �gure 8 for an illustration of the di�erence.
An abstract of notations, analogue to chapter 3: A random number N of
o�ers X1; : : : ;XN arrive at times B1; : : : ; BN and T denotes the time hori-
zon. X1;X2; : : : are assumed to be U([0; 1]), Yk := X1 _ � � � _ Xk and
Bk := A1 + � � � + Ak for k 2 N, where A1; A2; : : : are iid and exponentially
distributed with parameter � > 0. The time horizon T is assumed to be
constant (without loss of generality equal to 1) or exponentially distributed
with rate � > 0. X1;X2; : : : ; A1; A2; : : : ; T are assumed to be independent.
Nt denotes the number of items arriving during time interval [0; t] for t 2 R+

while N :� NT denotes the total number of items o�ered, P (N 2Z+) = 1.
The history is F := (Ft)t2R+, where Ft := � (X0; : : : ;XNt;A0; : : : ; ANt;Nt)
for t 2 R+. Let S denote the set of stopping times with respect to F with
the possible restriction to times of arrivals, as speci�ed below. For marginal
cases set X0 := X1 := 0, Y0 := 2, Y1 := 1, B0 := 0, N1 := 1 and set
r(2) := 1 for any r 2 R.

In this situation for r 2 R the problem of maximizing the duration of own-
ing an overall resp. temporary r{candidate is denoted by Do

� resp. Dt
� if

the horizon is equal to 1. If the horizon is exponentially distributed with
parameter � > 0 it is called Do

�;� resp. Dt
�;�.

Three kinds of access are considered for problem Do
� and Dt

�: No recall
(concerning the discrete time Markov process (Bk;Xk; Yk)1�k�N ), event time
recall (concerning the discrete time Markov process (Bk; Yk)1�k�N ) and per-
manent recall (concerning the continuous timeMarkov process (t; YNt)t2[0;T ]).
Recall proves to be unessential for problem Do

�;� and Dt
�;�. Any process is

equipped with an initial state �0 and an absorbing �nal state �1 and payo�
of stopping in �0 or �1 is de�ned to be 0. Stopping times for discrete time
processes are restricted to the times of arrivals, while for continuous time
they aren't restricted.
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According to the sketch of optimal stopping on pages 12f the myopic stopping
time which refers to a sequence of o�ers is optimal if its stopping sets prove
to be closed and realizable. The latter is valid because the �nal state is
reached with probability 1, due to the �nal state and P (N <1) = 1. For
the continuous time process the in�nitesimal look{ahead rule is considered.
Now for later reference some main terms for �xed horizon are resumed:

Lemma 4.11 Let r 2 R and let problem Do
�(r) or Dt

�(r) be given. Let
s(t; x; y) resp. s(t; y) represent, dependent on no recall or recall, the corre-
sponding mean duration of stopping with (x; y) 2 � resp. y 2 [0; 1] with
remaining time t 2 [0; 1]. Three kinds of access of a gambler are considered:

i) If recall is not allowed then the problem is regular if

@

@t
s(t; x; y) � ��(1� y)s(t; x; y) + �

Z 1

y

s(t; �; �) d�: (57)

ii) If event time recall is allowed (concerning the discrete time Markov
process) then the one step look{ahead rule suggests to stop if

s(t; y) � �

Z t

0

e��(t�u)
�
ys(u; y) +

Z 1

y

s(u; �) d�

�
du (58)

and is optimal if the corresponding stopping sets prove to be closed.

iii) If permanent recall is allowed (concerning the continuous time Markov
process) then the in�nitesimal look{ahead rule proposes to stop if

@

@t
s(t; y) � ��(1 � y)s(t; y) + �

Z 1

y

s(t; �) d� (59)

and it is optimal provided the corresponding stopping sets are closed.

Proof: In this section function s(t; x; y) resp. s(t; y) proves to be di�eren-
tiable in t, bounded and continuous. For problem Do

� and Dt
� in case of event

[S � 1] the declaration S := 1 can be made with resulting duration 0.

i) The development is presented in the proof of lemma 3.3 of section 3.1.2.
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ii) Compare the mean duration recalling y 2 [0; 1] and the mean payo� of
proceeding one item (if any) and then recalling the topical maximum:

s(t; y) � �

Z 1

1�t

�Z 1

0

s(1 � w; y _ �)e��(w�(1�t)) d�
�

dw;

where the arrival time of the next o�er � is called w, the rate of an
arrival being �(w � (1 � t)), and the maximum of y and the present
o�er � can be selected. This results in inequality (58). Through this an
optimal stopping time is speci�ed according to the general approach of
optimal stopping on pages 12f (based on Cowan and Zabczyk [11]), if
the corresponding stopping sets prove to be closed.

iii) Suppose present maximum y 2 [0; 1]. Then the mean payo� of the Æ{
look{ahead rule is, supposing remaining time t+Æ and waiting a period
of length Æ 2 (0; 1� t),

(1� �Æ + o(Æ))s(t; y) + (�Æ + o(Æ))

�
ys(t; y) +

Z 1

y

s(t; �) d�

�
+ o(Æ)

= s(t; y)� �Æ(1� y)s(t; y) + �Æ

Z 1

y

s(t; �) d� + o(Æ):

Hereafter it seems advisible to choose y with time t + Æ to go if this
expression doesn't exceed s(t+ Æ; y), i.e. if

s(t+ Æ; y)� s(t; y)

Æ
� ��(1 � y)s(t; y) + �

Z 1

y

s(t; �) d� + o(Æ):

Letting Æ ! 0 this yields the condition (59). If the corresponding
stopping sets additionally prove to be closed then this in�nitesimal
look{ahead rule is optimal according to Ross [26] | in other words
stop as early as the in�nitesimal operator (which is equal to the right
minus the left side) becomes nonpositive. In the cited article take
� = 0 and take c � 0 then the set B0 is closed and speci�es an optimal
stopping time (stopping times here are bounded by 1). 2
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In �gure 8 below the di�erence between the subjects of the next two subsec-
tions, i.e. between problem Do

� and Dt
� (referring to no recall), is illustrated.

B2

X4

X2

X5

0

1

1

X3

A1 = B1

Y4 = Y5

Y3

r(Y5)

Y1 = Y2X1

B3 B4 B5

Figure 8: A sample path of (XNt)t2[0;1] with N = 5 where Xk resp. r(Xk)
is indicated by �lled resp. empty dots, k = 1; : : : ; 5. For example X3 is
an overall r{candidate (with duration 1 � B3, chosen in B3) and X1 is
not (duration as temporary r{candidate is B4 �B1, chosen in B1).

4.3.1 The Duration of Owning an Overall r{Candidate

Maximizing the duration of owning an overall r{candidate without recall
means maximizing the mean of random variable

D := (T � S) � 1[r(YN );1](XNS
);

which represents the remaining time choosing value XNS
provided he �nally

proves to be an r{candidate with respect to YN . The horizon T is equal to 1
or exponentially distributed and selection takes place according to a nonan-
ticipating stopping time S with convention S = T in case of event [S � T ]
with resulting duration 0. If recall is permitted XNS

is replaced by YNS
.
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Duration of Owning an Overall r{Candidate with Permanent Recall

Theorem 4.12 Let the duration problem Do
� with r 2 R1 be given. Then an

optimal stopping time is given by S� := inffb 2 [0; 1] : (b; YNb
) 2 ��g (set

inf; := 1) with optimal stopping set �� := f(b; y) 2 [0; 1]2 : y � y�(1 � b)g.
Here y�(t), where t := 1�b denotes the remaining time, is the unique solution
in (0; r(1)) of Z 1

y

e�t%(�) d� =

�
1

�t
+ %(y)� y

�
e�t%(y)

if �t
R 1

0
e�t%(�) d� > 1 and y�(t) = 0 otherwise.

Proof: Recalling the value y with time t > 0 to go yields the mean duration

s(t; y) = te��t(1�%(y)); (60)

where the rate of an arrival of an item beyond %(y) is �(1 � %(y)). Now
@
@t
s(t; y) =

�
1 � �t(1 � %(y))

�
e��t(1�%(y)), i.e. s(t; y) is increasing in t i�

�t(1 � %(y)) < 1 and therefore an optimal stopping doesn't stop inside the
set f(1� t; y) : �t(1�%(y)) > 1g since waiting is pro�table, see remark 4.14.
The in�nitesimal look{ahead rule of inequality (59) states the condition

(1� �t(1� %(y)))e��t(1�%(y)) � ��t(1� y)e��t(1�%(y)) + �

Z 1

y

te��t(1�%(�)) d�Z 1

y

e�t%(�) d� �
�
1

�t
+ %(y)� y

�
e�t%(y):

Let h(t; y) :=
R 1

y
e�t%(�) d� �

�
1
�t
+ %(y) � y

�
e�t%(y) 2 C1((0; 1] � [0; r(1)]).

Now @
@t
h(t; y) proves to be positive i�

R 1

y
%(�)e�t%(�) d� > (%(y)�y)%(y)e�t%(y),

which is true if y 2 [0; r(1)), and on the other hand
@
@y
h(t; y) = �%0(y)e�t%(y)(2 + �t(%(y) � y)). Thus h(t; y) is increasing in t

and decreasing in y. If h(t; 0) =
R 1

0
e�t%(�) d� � 1=(�t) is nonpositive, then

y�(t) = 0 is optimal (for t = 0, too), else there is a unique solution y�(t)
inside (0; r(1)), because h(t; r(1)) = �1=(�t). Since y�(0) = 0 the set for the
in�mum of S� isn't empty unless N = 0. 2
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Example 4.13 Let r(y) = #y for y 2 [0; 1] where # 2 (0; 1]. Then regard

theorem 4.12:
R 1

0 e
�t%(�) d� = #

�t

�
e�t � 1

�
+ (1 � #)e�t � 1

�t
is equivalent to

# � h(�t) where h(u) := 1�ueu
eu�1�ueu for u > 0. Now h(u) < 0 for u 2 (0; u0),

h(u) 2 (0; 1) for u 2 (u0; ln(2)) and h(u) > 1 for u > ln(2) where u0 � 0:5671
solves 1 = ueu (h(u0) = 0, h(ln(2)) = 1 and h is increasing at least on (0; 1)).
Thus y�(t) = 0 if t � u0=� and y�(t) 2 (0; #) if t > ln(2)=�, regardless of #. If
however t 2 (u0=�; ln(2)=�], then y�(t) = 0 if # � h(�t) and otherwise y�(t) 2
(0; #) is the unique solution of (�t(1�#)+#)e�t = (1+#+�ty(1=#�1))e�ty=#.
An instance (where # = 0:8 and rate � = 9) is plotted in �gure 9 on page
116, along with the corresponding problem Dt

� with permanent recall.

Duration of Owning an Overall r{Candidate, Event Time Recall

Regard problem Do
� where recall is restricted to time instants of arrivals.

The myopic stopping time suggests to stop if the mean payo� recalling y 2
(0; r(1)], expression (60), isn't lower than the payo� recalling the maximum
in the time instant of the next arrival of an item (if any), inequality (58):

te��t(1�%(y)) �
Z 1

b

�
�e��(u�b)

Z 1

0

(1� u)e��(1�u)(1�%(y_�)) d�
�

du;

and since
R 1

b
(1 � u)e�cu du = [�(1� u)e�cu=c+ e�cu=c2]1b this gives

te��t(1�%(y)) � �e��(1�b)
Z 1

0

�
e�%(y_�)

Z 1

b

(1 � u)e��u%(y_�) du
�

d�

te�t%(y) � �

Z 1

0

�
e�%(y_�)

�
t
e��b%(y_�)

�%(y _ �) +
e��%(y_�) � e��b%(y_�)

(�%(y _ �))2
��

d�

te�t%(y) �
Z 1

0

�
t
e�(1�b)%(y_�)

%(y _ �) +
1

�

1 � e�(1�b)%(y_�)

%2(y _ �)
�

d�

te�t%(y) � yt
e�t%(y)

%(y)
+

1

�

1 � e�t%(y)

%2(y)
+

Z 1

y

�
t
e�t%(�)

%(�)
+

1

�

1 � e�t%(�)

%2(�)

�
d�

and thus the myopic stopping time proposes to stop if (respect y 2 (0; r(1)])�
1 � y

%(y)

�
�te�t%(y) � y

1� e�t%(y)

%2(y)
�

Z 1

y

�
�t
e�t%(�)

%(�)
+
1� e�t%(�)

%2(�)

�
d�:
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Let h(t; y) :=
�
1 � y

%(y)

�
�te�t%(y) � y 1�e�t%(y)

%2(y)
� R 1

y

�
�t e

�t%(�)

%(�)
+ 1�e�t%(�)

%2(�)

�
d�

which is in C1([0; 1]� (0; r(1)]), so it is suggested to stop if h(t; y) � 0.

Now @
@y
h(t; y) = %0(y)

�
�2t2 %(y)�y

%(y)
e�t%(y) + 2y�t 1

%2(y)
e�t%(y) + 2y 1�e�t%(y)

%3(y)

�
, where

the �rst term in parantheses is nonnegative and the sum of the last two
addends, too, since rearrangement yields e��t%(y) � 1 � �t%(y). This repre-
sentation implies that h(t; y) is increasing in y 2 (0; r(1)] for any t 2 (0; 1].
Besides h(t; r(1)) = r(1)(e�t � 1) is positive if t 2 (0; 1]. Thus, given t, the
myopic stopping time accepts the present maximum y if y � y�(t) with a
unique threshold y�(t) 2 [0; r(1)).
But the stopping sets of the myopic stopping time don't seem to be mono-

tone in general: @
@t
h(t; y) = �

�
(1 + �t(%(y)� y))e�t%(y) � �t

R 1

y
e�t%(�) d�

�
,

proven to be negative only if �t(1 � %(y)) > 1: While �t(%(y) � y)e�t%(y) �
�t
R %(y)
y

e�t%(�) d� holds generally, for a universal conclusion the �rst inequality

of e�t%(y) � �t(1 � %(y))e�t%(y) � �t
R 1

%(y) e
�t%(�) d� seems to be necessary.

Thus the stopping sets of the myopic stopping time for Do
� with event time

recall can be veri�ed to be closed in general only if �t(1 � %(y)) > 1, see
remark 4.14 below.

Duration of Owning an Overall r{Candidate | No Recall

Problem Do
� without recall doesn't prove to be regular in general: The mean

duration of stopping in (x; y) 2 �with x � r(y) and time t to go is, according
to expression (60), s(t; x) = te��t(1�%(x)): This problem is regular if inequality
(57) holds, which in this case is�
1� �t(1� %(x))

�
e��t(1�%(x)) � ��t(1� y)e��t(1�%(x))+ �t

Z 1

y

e��t(1�%(�)) d�

where rearrangement yields�
1 + �t(%(x)� y)

�
e�t%(x) � �t

Z 1

y

e�t%(�) d�:

This is veri�ed to be true by partition of the integral in %(x) if �t(1�%(x)) � 1
holds. Thus problem Do

� without recall is veri�ed to be regular at most in
the beginning of the process or in C�, see the subsequent remark 4.14.
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Remark 4.14 For problem Do
�, regardless of the kind of access, the set

C� := f(b; y) 2 [0; 1]2 : �(1 � b)(1 � %(y)) � 1g plays an essential role for
regularity. C� represents the beginning of the process, where b and YNb

is
small. C� = ; for � 2 (0; 1), C1 = f(0; 0)g and C� % [0; 1) � [0; r(1)) as
�!1.

Duration of Owning an Overall r{Candidate, Exponential Horizon

Inspect problem Do
�;�, i.e. the Poisson process with arrival rate � > 0 and

exponentially distributed horizon T with parameter � > 0.

Theorem 4.15 For problem Do
�;�(r) where r 2 R1 with � := �=� the stop-

ping time S� := T ^ inffb � 0 : XNb
� x�g is optimal (set inf; := 1) |

take the �rst value above x�. Here x� 2 [0; r(1)) denotes the unique solution
in (0; r(1)) of

� + 1 � x

(� + 1� %(x))2
=

Z 1

x

1

(� + 1� %(�))2
d�

if
R 1

0
1=(� + 1� %(�))2 d� > 1=(� + 1) and x� = 0 otherwise.

The value of Do
�;�(r) | the mean duration applying S� | then is

E
�
(T � S�) � 1[r(YN );1](XNS�

)
�

=
1

�

1

� + 1 � x�

Z 1

x�

1

(� + 1 � %(�))2
d�:

Proof: Supposing �rst that permanent recall is allowed, the mean payo�
recalling y 2 [0; r(1)] is

s(y) =

Z 1

0

ue��(1�%(y))u�e��u du =
�

(�+ �(1 � %(y)))2
=

1

�

1

(� + 1 � %(y))2
;

independent of the elapsed time and being proportional to 1=� while keeping
the rescaled rate � = �=� �xed. Now compare s(y) and the mean payo�
of proceeding one item (if any), similarly to inequality (44) in the proof of
theorem 3.15 (any further arrival occurs with probability �=(� + �)):

�

(� + �(1� %(y)))2
� �

� + �

Z 1

0

�

(� + �(1� %(y _ �)))2 d�
� + 1 � y

(� + 1� %(y))2
�

Z 1

y

1

(� + 1 � %(�))2
d�:
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Let h(y) := �+1�y
(�+1�%(y))2�

R 1

y
1

(�+1�%(�))2 d� 2 C1([0; r(1)]). Then h is increasing,

since h0(y) = 2%0(y)=(� + 1 � %(y)). If h(0) = 1
�+1 �

R 1

0
1

(�+1�%(�))2 d� � 0,
then taking the �rst item is optimal, otherwise there is a unique solution of
h(0) = 0 in (0; r(1)) representing an optimal threshold, since h(r(1)) = 1=�
| thus recall is superuous/redundant.
The optimal mean duration applying S� is evident analogously to the in-
terpretation indicated at the end of the proof of theorem 3.15: An item
exceeding x� arrives with probability (1�x�)=(� +1�x�) and then take the
mean payo� choosing him given there is one (1� x� cancels).
In case of an empty set of the in�mum then S� = T with corresponding
payo� 0 (event [T =1] is irrelevant as a nullset). 2

Example 4.16 Suppose r(y) = #y for y 2 [0; 1] where # 2 (0; 1]. Then
the equation �+1�x

(�+1�x=#)2 =
#
�
� #

�+1�x=# +
1�#
�2

uniquely determines an optimal

threshold x� 2 (0; #) unless # � 1 + � � �2, where x� = 0 is optimal.
Particularly x� 2 (0; #) if � � 1, on the opposite side the optimal threshold

is x� = 0 if � � 1+
p
5

2 � 1:6180 and in remaining cases x� 2 [0; r(1)) may

occur. The value of Do
�;�(#x) is

1
�

1
�+1�x�

�
#
�
� #

�+1�x�=# +
1�#
�2

�
.
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4.3.2 The Duration of Owning a Temporary r{Candidate

Maximizing the duration of owning a temporary r{candidate without recall
means maximizing the mean of

D := (T �BN ) � 1[r(YN);1](XNS
) +

N�NS�1X
j=0

�
ANS+j+1 � 1[r(YNS+j);1](XNS

)
�
;

representing the epoch a value XNS
, which is an r{candidate with respect

to YNS
, stays an r{candidate with respect to YNS+1; : : : ; YN (set

P
; := 0).

Here Ak denotes the relative arrival time of object Xk, k = 1; : : : ; N . If
recall is permitted XNS

has to be replaced by YNS
. Here S represents a

nonanticipating stopping time and for simplicity, to cover all cases, setD := 0
in case of event [S < A1] or event [S > T ].

Duration of Owning a Temporary r{Candidate, Permanent Recall

Regard problem Dt
� with permanent recall, i.e. take horizon T = 1.

Theorem 4.17 Let the duration problem Dt
� with r 2 R1 be given. Then an

optimal stopping time is given by S� := inffb 2 [0; 1] : (b; YNb
) 2 ��g (set

inf; := 1) with optimal stopping set �� := f(b; y) 2 [0; 1]2 : y � y�(1 � b)g.
Here y�(t), where t := 1�b denotes the remaining time, is the unique solution
in (0; r(1)) ofZ 1

y

1� e��t(1�%(�))

1� %(�)
d� = 1 + (%(y)� y)

1 � e��t(1�%(y))

1� %(y)

if t > c=� and y�(t) = 0 if t � c=�, where constant c = c(r) is speci�ed in
lemma 4.18 below.

Proof: If the present state is (t; y) where y 2 [0; r(1)), then the distribution
of the arrival time of the next y{beating r{candidate is exp (�(1 � %(y))) and
the probability that no such arrives is e��t(1�%(y)). Therefore the correspond-
ing mean duration of stopping is given by

s(t; y) = te��t(1�%(y)) +
Z t

0

u�(1� %(y))e��u(1�%(y)) du

=

Z t

0

e��u(1�%(y)) du

=
1� e��t(1�%(y))

�(1� %(y))
; (61)
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which consistently for y 2 [r(1); 1] yields t by the rule of de l'Hospital. It is
suggested to stop by the in�nitesimal look{ahead rule, inequality (59), if

e��t(1�%(y)) � ��(1� y)s(t; y) + �

Z 1

y

s(t; �) d�Z 1

y

1 � e��t(1�%(�))

1 � %(�)
d� � 1 + (%(y)� y)

1� e��t(1�%(y))

1� %(y)
:

Let h(t; y) :=
R 1

y
1�e��t(1�%(�))

1�%(�) �1�(%(y)�y)1�e��t(1�%(y))1�%(y) 2 C1([0; 1]�[0; r(1)])
and it is advisible to stop if h(t; y) � 0. @

@t
h(t; y) is positive i� inequal-

ity
R 1

y
e�t%(�) d� > (%(y) � y)e�t%(y)) holds, which is true if y 2 [0; r(1)).

Thus this stopping problem is monotone. On the other hand @
@y
h(t; y) =

%0(y)
(1�%(y))2

�
(%(y)� y)(1� %(y))�te��t(1�%(y)) � (1� y)

�
1� e��t(1�%(y))

��
where

the term in brackets is negative for y 2 [0; r(1)), because this is based on

1+�t(1�%(y)) < e�t(1�%(y)) (estimating %(y)�y
1�y � 1). Thus h(t; y) decreases in

y 2 [0; r(1)) for t 2 [0; 1] and the following holds: If h(t; 0) is nonpositive, or,
with regard to lemma 4.18, if t � c=�, then y�(t) = 0 is an optimal threshold.
Otherwise, if t > c=�, there is a unique solution y�(t) inside (0; r(1)), such
that stopping is optimal if y � y�(t), since h(t; r(1)) = �1. The set the
in�mum is speci�ed by isn't empty unless N = 0 (payo� 0). 2

Lemma 4.18 For r 2 R let c = c(r) 2 (1; c1] denote the unique solution ofZ 1

0

1� e�c(1�%(�))

1 � %(�)
d� = 1; (62)

where c1 � 1:3450 solves
R 1

0
1�e�c�

�
d�. Besides c(r1) < c(r2) if r1 � r2 in R.

Proof: Let I(c) denote the left side of the following equivalent equation:Z 1

0

1� e�c�

�
dq(�) = 1

with distribution function q(�) := 1 � r(1 � �) for � 2 R (using remark 2.18
ii); mass 1 � r(1) in 0) and where the integrand will be called fc(�). Since
I(c) is continuous and increasing in c (because the integrand is), I(0) = 0
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and I(2) > 1, a value c(r) exists and is unique | I(0) = 0 holds because the
integrand vanishes due to the rule of de l'Hospital and also I(2) > 1 holds for
any r 2 R: For c > 0 a proper lower bound of the integral I(c) is given by
the area of the triangle with the edges (0; 0), (0; c) and (1^ (c3=2); 0), whose
area is, for c � 3

p
2, given by c=2: First fc(0) = c and f 0c(0) = �c2=2. Second

f 0c(�) � 0 and f 00c (�) � 0 (for � 2 (0; 1] leading to the series expansion of ec�

to �rst and second order, respectively). f 0c(�) � 0 and id � q now imply that
the Lebesgue{measure on [0; 1] minimizes the area of the triangle for r 2 R.
For the supplement let r1; r2 2 R. Now r1 � r2 implies q(r2) � q(r1). Thus
c(r1) < c(r2), since fc(�) is decreasing in � (f 0c(�) � 0, see above). Particu-
larly the maximal value is c1 := c(id) � 1:3450, and the minimal value (not
attained inside R) is c("1) = 1. 2

Example 4.19 Let r(y) = #y for y 2 [0; 1] where # 2 (0; 1]. The constant

c(#y) is determined by
R 1

0
1�e�c(1�%(�))

1�%(�) d� = #
R 1

0
1�e�c�

�
d� + (1 � #)c = 1.

Then y�(t) = 0 if t � c=� and otherwise y�(t) 2 (0; #) is the unique solution
of equation #

R 1�y=#
0

1�e��t�
�

d� + (1 � #)�t = 1 + (y=#� y) 1�e��t(1�y=#)
1�y=# .

��
0:8

b = 1� t

C9

y�(1 � b)

Figure 9: The optimal stopping set �� (the area beyond curve y�(t))
of problem Do

� resp. Dt
� (dashed resp. solid line) each with permanent

recall where r(y) = 0:8y and � = 9, see example 4.13 resp. 4.19. The
area beyond 0.8 evidently is contained in ��. For Do

� it is advisible
not to stop inside set C9 indicated by the dotted line r(1 � 1=(9t)),
since waiting is pro�table (remark 4.14 and proof of theorem 4.12).
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Duration of Owning a Temporary r{Candidate, Event Time Recall

Regard problemDt
� where recall is restricted to time instants of arrivals. The

myopic stopping time recalls y 2 (0; r(1)) according to inequality (58) if
1� e��(1�b)(1�%(y))

�(1 � %(y))
�

Z 1

b

�
�e��(u�b)

Z 1

0

1 � e��(1�u)(1�%(y_�))

�(1 � %(y _ �)) d�

�
du

1� e��(1�b)(1�%(y))

�(1 � %(y))
� e��t

Z 1

0

�Z 1

b

e�(1�u) � e�(1�u)%(y_�)

1 � %(y _ �) du

�
d�; (63)

respecting that the integrand is bounded. Now the innermost integral is
(using abbreviation % = %(y _ �))Z 1

b

1X
k=1

(�(1 � u))k(1 � %k)

k!(1� %)
du

=
1

�

"
�

1X
k=1

(�(1 � u))k+1(1� %k)

(k + 1)!(1� %)

#1
b

=
1

�(1 � %)

1X
k=1

(�t)k+1(1 � %k)

(k + 1)!

=
1

�(1 � %)

�
�1 � �t + e�t � 1

%

��1� �t%+ e�t%
��

=
1� %+ %e�t � e�t%

�%(1 � %)
;

which is identical to the formal integration of the corresponding fraction.
Resumed inequality (63) is equivalent to (resolve %(y _ �) by partition of
the integration range with respect to �, apply the rule of de l'Hospital for
� 2 [r(1); 1] resp. for % = 1)

1 � e��t(1�%(y))

1� %(y)
� y

1 � %(y)

�
1 � e��t +

e��t � e��t(1�%(y))

%(y)

�
+

Z r(1)

y

1 � e��t

1� %(�)
+
e��t � e��t(1�%(�))

%(�)(1 � %(�))
d�

+(1 � r(1))

�
t� 1� e��t

�

�
;
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which by rearrangement yields

(1� y)%(y)� y(1� %(y))e��t � (%(y)� y)e��t(1�%(y))

%(y)(1� %(y))

�
Z r(1)

y

%(�) + (1 � %(�))e��t � e��t(1�%(�))

%(�)(1 � %(�))
d� + (1� r(1))

�
t� 1� e��t

�

�
:

Now let h(t; y) denote the di�erence of the left side minus the right one,
h 2 C([0; 1]� (0; r(1)). Thus the myopic stopping time proposes to stop if
h(t; y) � 0. Now on the one hand @

@t
h(t; y) =

�ye��t+(%(y)�y)e��t(1�%(y))
%(y)

+ �
R r(1)
y

e��t�e��t(1�%(�))
%(�)

d� � (1� r(1))(1 � e��t),

not nonpositive in general, as examples suggest. On the other hand @
@y
h(t; y) =

%0(y)
h�
1� y + ye��t � (1 + �t(%(y)� y))e��t(1�%(y))

�
%(y)(1 � %(y)) ��

(1� y)%(y)� y(1� %(y))e��t � (%(y)� y)e��t(1�%(y))
�
(1 � 2%(y))

i.
[%2(y)(1� %(y))2], where the nominator seems to be nonnegative, but seems
to be not easy to verify.

Thus, analogously to problem Do
� with event time recall, here the stopping

sets of the myopic stopping time don't seem to be closed in general and an
optimal stopping time isn't speci�ed through this.

Duration of Owning a Temporary r{Candidate | No Recall

Problem Dt
� without recall isn't resolved, but the main terms are given,

regarding the regular case: According to expression (61) the mean payo� of
stopping in (x; y) 2 � with x � r(y) and time t to go is

s(t; x) =
1� e��t(1�%(x))

�(1 � %(x))
:

Now inequality (57) in this setting yields

e��t(1�%(x)) � ��(1 � y)
1� e��t(1�%(x))

�(1 � %(x))
+ �

Z 1

y

1� e��t(1�%(�))

�(1 � %(�))
d�;

where rearrangements yield

1 + (%(x)� y)
1� e��t(1�%(x))

1 � %(x)
�

Z 1

y

1 � e��t(1�%(�))

1� %(�)
d�:
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This inequality proves to be true if

1 �
Z 1

%(x)

1� e��t(1�%(�))

1� %(�)
d�

by partitioning the integral in %(x) and respecting that the integrand is non-
decreasing in � and � � y � x.
If however the reverse inequality would be true, then at least the following
can be concluded: The mean duration choosing x exceeds the mean duration
for choosing the next r{candidate beyond %(x) (if there is none then payo�
is 0, if there is one then pretend he is as early as possible, i.e. time t to go):

1 � e��t(1�%(x))

�(1� %(x))
>

1� e��t(1�%(x))

1 � %(x)

Z 1

%(x)

1 � e��t(1�%(�))

�(1 � %(�))
d�;

where however arrivals with value inside [r(y); %(x)) aren't considered.

Duration of Owning a Temporary r{Candidate,
Exponential Horizon

The optimal stopping problem Dt
�;�(r) is equivalent to problem P�;�(r) of

theorem 3.15, since the mean payo� recalling y 2 [0; r(1)) is given by

s(y) =

Z 1

0

1 � e��u(1�%(y))

�(1 � %(y))
�e��u du

=
�

�(1 � %(y))

��
�1
�
e��u

�1
0

�
�

1

�(1 � %(y)) + �
e�(�(1�%(y))+�)u

�1
0

�
=

1

�(1 � %(y))

�
1 � �

�(1 � %(y)) + �

�
=

1

�(1 � %(y)) + �

=
1

�

1

1 � %(y) + �
;

which di�ers from the mean payo� of selecting an r{candidate by factor ��,
see theorem 3.15. The factor 1=� again covers proportionality to time keep-
ing � := �=� �xed. For an instance see example 3.16, where, next to �, �
has to be speci�ed and then the values must be divided by ��.
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Lastly the duration problems of this whole chapter are considered for a more
general distribution function of the o�ers:

Remark 4.20 Suppose X1;X2; : : : are iid with distribution function F , where
F is increasing on R := fx 2 R : 0 < F (x) < 1g and absolute continuous
with a density nonvanishing almost everywhere on R. As relax function take
r : R! R continuous and increasing with r � id on R. The duration prob-
lems of theorems in this chapter where the myopic stopping time proves to
be optimal are resolved in the same manner, where now the density of F
appears and the argumentation is the same. The results are as follows:
Regard the main equations in theorems of this chapter, which specify a so-
lution y depending on the remaining time ` or t: A term %(y) resp. y has to
be replaced by F (%(y)) resp. F (y) and integration is with respect to dF (�).
Exemplary for the discrete setting take equation (48), which changes to

(F (%(y)))`+(1�F (y))P`�1
j=0(F (%(y)))

j =
P`�1

j=0

R 1

y
(F (%(�)))j dF (�), with a

unique solution y` inside (0; r(supfx 2 R : F (x) < 1g)) for 1 < ` 2 N.

Regarding problem Do
n and Dt

n with recall the optimal thresholds of the
former seem to be bigger than those of the latter. Particularly this is true
asymptotically as �gure 6 suggests. This may reect the phenomenon that
the chosen o�er in one case must represent an overall r{candidate, while
in the other case an intermediate r{candidate is worthwhile. Consistently
this relation seems to persist for problem Do

� compared with Dt
� each with

permanent recall, see �gure 9.
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Concluding Remarks

In this thesis an optimal stopping problem with full information and mainly
with iid o�ers has been investigated in discrete and continuous time. The
dedicated functional is given by the mean of a payo� function, which depends
in its most general form on the stopping time S, the value of the chosen of-
fer XS and the overall maximum YN , where N denotes the total number of
presented o�ers. In chapter 2 and 3 this payo� function obeys monotonicity
assumptions which seem to be indispensable in order to ensure in general
that the problem is regular. In this case optimal stopping sets are, in princi-
ple, speci�ed. Optimal selection of an r{candidate has been the main task,
a generalization of the full information best choice problem. Threshold rules
have been considered and the myopic stopping time has been speci�ed and
veri�ed to be optimal or indicated to be not optimal. In the last chapter the
socalled duration problem has been investigated based on r{candidates.

In the case of optimal selection of an r{candidate it would be interesting
to specify the value of the myopic stopping time, particularly in the case
of the Poisson process, though the performance seems to be not promising
regarding its stopping sets.
A main question is the behaviour of the asymptotic value referring to optimal
selection of an r{candidate as a function of r0(1�). For this purpose the
indicated threshold rules restricted to r{candidates may be helpful.
As an extension for optimal selection of an r{candidate observation costs
can be taken into account, which seems to be accessible only for selection
with recall due to the regular case. Further o�ers may supposed to be un-
available with a certain probability or the period of accepting o�ers may be
terminated by a freezing random variable, while the total number of o�ers
remains una�ected.
Regarding the duration problem based on r{candidates investigation of thresh-
old rules would be interesting in the case of no recall in discrete and in
continuous time in order to get access to the problem.
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A Appendix

De�nition A.1 Let two real functions g1; g2 with identic domain G be given.
The relation g1 � g2 is de�ned to be valid, if g1(x) � g2(x) for x 2 G.
The relation g1 � g2 holds if g1 � g2 and if there is an x 2 G such that
g1(x) < g2(x) is valid.

An application of this notation: Let two distribution functions F and G
with F � G be given and let h : [0; 1] ! (0;1) be nonincreasing. ThenR 1

0
h(x) dF (x) <

R 1

0
h(x) dG(x) or E (h(V )) < E (h(W )), where F resp. G is

the distribution function of random variable V resp. W , i.e. V is stochasti-
cally lower than W . This can be veri�ed by mass theoretical induction based
on nonincreasing functions.

Lemma A.2 Let (x`)`2N� R denote a convergent sequence with x := lim
`!1

x`.

X̀
k=1

1

k

�
1 +

x`
`

�k
'

(
 + ln ` if x = 0

Ei(x)� ln jxj+ ln ` if x 6= 0
as `!1; (64)

where the exponential integral function Ei is de�ned below.

Proof: Let "` := x` � x = o(1) as ` ! 1. Taking x = 0 the relationP`
k=1

1
k

�
1 + "`

`

�k '  + ln `, known if "` = 0 8` 2 N, is valid for "` = o(1):

The left side is equal to
P`

k=1
1
k

�
1 + o

�
1
`

��
= o(1) +

P`
k=1

1
k
, using the

binomial theorem (o(1
`
) depends on k). The assertion is, as `!1,

X̀
k=1

1

k

�
1 +

x`
`

�k
=
X̀
k=1

"
1

`

��
1 +

x`
`

�`�k=�̀
k

`

#
'  +

Z 1

1=`

ex�

�
d�: (65)

Now �x "` = o(1) as `!1 and restrict x on interval [a; b] � R. Then de�ne
g`(x) :=

P`
k=1

1
k

�
1 + x+"`

`

�k � R 1

1=`
ex�

�
d�. Now g0` is uniformly convergent

to 0 on [a; b]: g0`(x) =
P̀
k=1

1
`

�
1 + x+"`

`

�k�1 � h ex�
x

i1
1=`

=
(1+x+"`

` )
`�1

x+"`
� ex�ex=`

x
,

according to lemma A.3 below (pathological terms are understood accord-
ing to the rule of de l'Hospital). Due to lim`!1 g`(0) =  the following
holds on [a; b] (with �xed "` = o(1)): g` is uniformly convergent, the limit
lim`!1 g`(x) =: g(x) exists, g is di�erentiable and g0(x) = lim`!1 g0`(x).
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Then g0 � 0 or g �  on this interval, because g(0) = . Thus relation
(65) is veri�ed for any x 2 R and "` = o(1) as ` ! 1. Besides the lower
integration limit 1=` in (65) can't be replaced by o(1) due to the case x = 0.

The right side of (65) equals +Ei(x)�Ei (x=`), where Ei(x) :=
R x
�1

e�

�
d�

denotes the exponential integral function (for x 6= 0; for x > 0 the principal
value is taken). The relation Ei(x=`) � ln jx=`j !  as ` ! 1 results for
example from the identity  = � R1

0
e�� ln � d� via integration by parts. 2

Lemma A.3 Function
(1+x+"`

` )
`�1

x+"`
� ex�ex=`

x
is uniformly convergent to 0 on

interval [a; b] � R as `!1 (see the proof of lemma A.2).

Proof: Set c := maxfjaj; jbjg + sup`2N j"`j < 1, then jxj; jx + "`j � c for

` 2 N. Telescope (1+x+"`
` )

`�1
x+"`

� ex+"`�1
x+"`

+ ex+"`�1
x+"`

� ex�1
x

+ ex�1
x
� ex�ex=`

x
, then

all three di�erences are uniformly convergent to 0 on [a; b] as `!1:

The last di�erence is
���ex�1x

� ex�ex=`
x

��� = 1
`

P1
k=0

jx=`jk
(k+1)!

� ec=` = o(1).

The medial di�erence yields
���ex+"`�1x+"`

� ex�1
x

��� = ���P1
k=2

(x+"`)k�1�xk�1

k!

���
= j"`j

P1
k=2

1
k!

Pk�2
j=0

�
k�2
j

�jx + "`jk�2�jjxjj � j"`j
P1

k=2
1
k!c

k�22k�2 � j"`je2c,
which is again o(1).

The �rst di�erence: Function h`(y) :=
(1+ y

` )
`�ey

y
is nonincreasing resp. non-

decreasing in ` for ` > c on [�c; 0] resp. on [0; c] and its limit is 0 for each
y 2 [�c; c] (h`(0) = 0 for ` 2 N, applying the rule of de l'Hospital). Accord-
ing to the theorem of Dini the convergence then is uniform on [�c; 0] resp.
on [0; c] and thus on [�c; c]. Regarding h`(x + "`) the uniform convergence
is preserved: If x < 0 then x+ "` < 0 �nally, if x > 0 then x+ "` > 0 �nally
and if x = 0 then the sign of x+ "` may alternate but negative and positive
values are covered concerning a uniform bound on [�c; c] and h`(0) = 0.
All three di�erences prove to be uniformly convergent to 0 on [a; b] and thus
their sum is, too. 2

Remark A.4 The entire exponential integral function is de�ned for x 2 R:
Ein(x) :=

R x
0

1�e��
�

d� = �P1
k=1

(�x)k
k!k = +ln jxj�Ei(�x) (with Ein(0) = 0).

Let lim
`!1

x` = x 6= 0 and lim
`!1

y` = y 6= 0. Then, regarding lemma A.2:

lim
`!1

P̀
k=1

1
k

��
1 + x`

`

�k� �1 + y`
`

�k�
= Ei(x)� ln jxj � Ei(y) + ln jyj

= �Ein(�x) + Ein(�y) = R �y
�x

1�e��
�

d� =
R x
y

e��1
�

d�.
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Notations

b�`(y) optimal boundary function, see de�nition 2.5 and its preliminaries
C1(A) functions on A, continuous di�erentiable, derivative �1 allowed
�, ��

` f(x; y) 2 [0; 1]2 : x � yg resp. optimal stopping sets (de�nition 2.5)
"x point mass in x 2 R, with corresponding distribution function 1[x;1)

f represents the payo� function of chapter 2 and 3
 Euler constant, approximately 0:5772
id the identity function id(x) = x for x 2 R
N f1; 2; : : :g
Nt, N number of objects arriving in [0; t] resp. [0; T ], see page 60
o(�), O(�) little and big o{notation, Landau symbols
� distribution function of the standard normal distribution
P denotes the transition function applied to s, see equation (41)
r, % generally a function inside R resp. its inverse see pages 21f
R, R1

1 sets of speci�c functions r : [0; 1]! [0; 1], see page 21
�(� � �) smallest �{algebra containing � � �
S� notation for an optimal stopping time
Sm notation for the myopic stopping time, referring to r{candidates
Tn, T c

n set of threshold resp. concurrent threshold rules, see page 39
U([a; b]) the uniform distribution on interval [a; b] � R
v(�) the value of a state, stopping time or of the problem itself
v�n, v

�
�, v

�
1 the value of problem Pn and of problem P�, asymptotic value

Yk the maximum of X1; : : : ;Xk

Z+ f0g [ N
� indicates the distribution of a random variable
' asymptotic equivalence (xk ' c+ yk, k !1 means lim

k!1
(xk � yk) = c)

� approximative speci�cation of a number
D
= sign for equality in distribution
�,� signi�cantly or suÆciently lower resp. bigger than
_, ^ maximum and minimum sign
%,& monotone convergence (nondecreasing resp. nonincreasing)
�, � relations for real functions, see de�nition A.1, page 122
1A(x) indicator function of set A � R
dxe, bxc ceil resp. oor: inffn 2 Z : n � xg resp. supfn 2 Z : n � xg
[X � x] brackets for an event
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