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1 Introduction

Regard the following optimal stopping problem: Suppose a finite number n of
objects are presented sequentially and are identified by the numerical values
of independent random variables X, X,, ..., X,,. A gambler gets the true
values of these offers and pretends to select one according to a nonanticipating
stopping time S in order to maximize his payoff. If he rejects an offer it can
never be recalled. The payoff function f depends on the gambler’s choice
Xs and on the overall maximum Y, := X; V--- V X,,, which emerges in the
very end. Intuitively f should obey certain monotonicity criteria. Evidently
the overall maximum Y,, is not known in advance by the gambler, who 1is
uninformed about future values, but it would be chosen by a prophet, who
is equivalent to a gambler with complete foresight.

Regarding the abilities of the gambler this means to maximize the functional

E (f (X57 Yn))

with respect to nonanticipating stopping times S, where the approach is
based on the gambler’s mean payoff regarding repeated sequential selection.
The gambler is informed about n, f and the joint distribution of the offers.

This full information optimal stopping problem arises from subsequent cases:
In the discrete time full information best choice problem of Gilbert and
Mosteller [18] or Bojdecki [6] the payoff in every realization is either 0 for
failure or 1 for a win (i.e. 1 only if Xg = Y,,). Suppose for example that
as requirement for a win at least 80% of the overall maximum Y;, would be
sufficient. More general an offer x is called r—candidate if > r(Y},), where
the socalled relax function r lies below identity. The objective now is to
maximize the probability of selection of an r—candidate — a full information
good choice problem due to relaxed demands.

Another application of the presented functional is given by the ratio of gam-
bler’s choice and prophet’s value, i.e. maximization of E (Xgs/Y,,).

Finally an interesting problem in this setting is to maximize the duration
of owning an r—candidate. Here the payoff function additionally depends on
the time S of selection. This represents an extension of the full information
case of the duration problem given by Ferguson et al. [14].

Resumed in every realization a chosen offer is measured at the end by the
overall maximum, the gambler’s choice being assessed by the prophet’s value.
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Abstract

Reviewing first connections to the literature then in chapter 2 for a finite
number of stochastically independent offers a payoff function is considered,
depending on the chosen value Xg and on the overall maximum Y,, — subject
to conditions which ensure the regular case, including dependence on the time
S of selection. An optimal stopping time is indicated. As a main subproblem
optimal selection of an r—candidate is treated, which includes the asymptotic
value in special cases, the inspection of diverse suboptimal stopping times
and an extension to a Markov process. Particularly the asymptotic value of
sequences of concurrent threshold rules is derived, the myopic stopping time
is specified and the access of the gambler is restricted in a sense. Another
subproblem is presented by the mean of the ratio of the gambler’s choice and
the prophet’s value, where again threshold rules are studied also.
Subsequent in chapter 3 the environment is extended to a random number
of observations: Offers arrive at random times, the periods between arrivals
being iid, and the horizon up to which items can be accepted is fixed or
random. Concerning fixed horizon for the arrival times stress is layed on the
geometric distribution and the exponential distribution, where the problem
is verifed to be regular and an optimal stopping time is indicated. For the
latter resp. for the Poisson process, referring to selection of an r—candi-
date, the myopic stopping time is considered and asymptotic equivalence to
discrete time is displayed. For a random horizon, referring to selection of an
r—candidate, some small cases are worked out and an optimal stopping time
is described in the twice exponential as well as in the twice geometric case.
In situations where an optimal stopping time seems to be inaccessible due to
failure of the regular case the myopic stopping time is specified.

Finally in chapter 4 the concept of an r—candidate is applied to the dura-
tion problem, wherefore a distinction between an overall and a temporary
r—candidate makes sense. First the duration of owning an r—candidate is
investigated for a finite number of offers where with regard to recall the my-
opic stopping time is verified to be optimal and the asymptotic behaviour is
described. Then the duration problem with discounted epochs is resolved.
Farther the duration of owning an r—candidate is considered for the Poisson
process, where the horizon is taken to be fixed or exponentially distributed.
Concerning the former case three kinds of access are distinguished: No recall,
permanent recall and event time recall. Optimal stopping times are specified
if the problem proves to be regular, otherwise its borders are indicated.
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Connections to the Literature

The stochastic optimization problems treated in this thesis are optimal stop-
ping problems based on full information. Particularly for the case of selection
of an r—candidate relations to significant problems in the literature are illus-
trated below, where the order is full information problems first, then some
links to related no information cases are given and third topics related to
this thesis in the broader sense are mentioned. Finally survey literature is
given and some significant directions of variants of related sequential selec-
tion problems is listed.

The full information best choice problem for a finite number of offers is given
in Gilbert and Mosteller [18] (section 3), being based on heuristic arguments
and including several ramifications. An exact solution thereof is published by
Bojdecki [6], which also contains the corresponding problem for the Poisson
process with finite horizon, while the compact version of the latter case in
Gnedin and Sakaguchi [21] includes the specification of the value as a func-
tion of the arrival rate. The case of the Poisson process with random horizon
is available in Bojdecki [5]. The full information best choice problem with a
random number of offers in discrete time is given in Porosinski [24]. These
articles correspond with the case r = i¢d of optimal selection of an r—candi-
date of this thesis.

In the no information best choice problem, the classic secretary problem,
items only can be ranked by the gambler. The case with a finite number of
secretaries is for example presented in Shiryaev [32] and a random number
of offers in discrete time with island solutions is studied Presman and Sonin
[25]. The secretary problem in the situation of a Poisson process is given in
Cowan and Zabczyk [10].

The kind of assessment investigated in this thesis, particularly the case of
finite valued payoff, bears analogy to the no information problem of Yeo and
Yeo [38]: A finite number of secretaries, rankable without ties, are associated
with nonincreasing weights according to their ranks and presented in order
to select, without recall, a secretary for a single position with the aim of
maximization of the weighted probability. Explicit expressions are found for
main probabilities and numerical methods are required for optimization.
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Numerical methods for calculation of the value of maximizing the functional
f(S,Xs), where S denotes the stopping time, for a Markov chain without
restrictions are presented in Darling [12].

In Chen and Starr [8] selection without replacement from an urn, filled with
balls numbered serially, is treated: A gambler intends to select a number with
recall in order to maximize functional E (f(S,Ys)), where S is the stopping
time and Ys denotes the present maximum number. The payoft function,
nonincreasing resp. nondecreasing in the first resp. second component, obeys
conditions which ensure the myopic stopping time to be optimal.

In the field of prophet theory, see Harten et al. [22], the main approach
is to compare the mean of the gambler’s win and that of the prophet with
regard to specific sets of joint distributions of the offers, whereas in this
thesis and in the literature it is based on the gambler and the prophet are
compared directly for each realization, which may be called maximization
regarding (the mean of) repeated selection or maximization of a functional.
Particularly the payoff functional E (Xs/Y,,) treated in section 2.2 may be
an appendage for ratio prophet inequalities.

There is also a relation to the optimal multivariate stopping problem of
Assaf and Samuel-Cahn [2], where h(E(X(S))) with d-dimensional random
vectors X(1),...,X(n) is the functional (based on d cooperating partners
for each component). This value is compared with the socalled classical case
E(h(X(S))), the stopping time S referring to gamblers and to prophets.
Dependence structures of X (1),...,X(n) are mentioned there in remark 4.4
and in case of E(h(X(S))) this relates to the subject of this thesis.

Two player competitive situations are studied in game theory with zero sum
game interpretation, see Sakaguchi [29]. Players are provided with different
information referring to the values of the offers (e.g. complete foresight ver-
sus nonanticipation), the abilities of access is specified (e.g. recall and no
recall) and a dominance or decision rule for joint access is declared.

A survey concerning the secretary problem and its ramifications may be
found in chapter 16 of the handbook edited by Ghosh [16], in the reviews
of Freeman [15] and a discussion thereof in Ferguson [13]. In Sakaguchi [29]
there is a survey concerning game theory with two players. A more general
view to optimal stopping referring to choice theory is given in Gnedin [19].
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Subsequent significant variants of optimal stopping problems related to this
thesis are listed, including references to some exemplary articles:

The mode of sequential presentation of offers:
A fixed or a random number of offers in discrete time or continuous
time with random interarrival times and with fixed or random horizon.

Connection resp. joint distribution of the offers:
iid, independence, Markovian, correlation and dependencies.

Changes in the grade of information a gambler is provided with:

No, full and partial information (for the latter for instance imperfect
observation referring to excess of a specified level, Sakaguchi [28], or
knowledge of a subset of continuous distributions, Petruccelli [23], or
information about exchangeability, the game of gogool, Gnedin [19]).

Enlargement or reduction of access of a gambler to offers:

Allowance of recall, restricted recall or limited recall (i.e. memory,
Tamaki [37]), an object may be unavailable (Ano [1]) and the number
of available offers is restricted by random freeze (Samuel-Cahn [31]).

Comparability of offers:
Ordinal structure of presented variants (Gnedin [20]) and offers may
not possess a total order (Stadje [33]).

Variation of the functional:

Relaxations and variants of best choice problems: Maximizing the prob-
ability of choosing at least the k—th best (Sakaguchi and Szajowski
[30]), the best and second best (Tamaki [36]) or the k—th best offer
gets weight wy (nonincreasing, Yeo and Yeo [38]).

Maximizing the expected value (for instance Shiryaev [32]), minimiz-
ing the expected rank (Assaf and Samuel-Cahn [3]) and the payoff may
respect costs of observations (Stadje [35]). The duration of owning a
sufficiently good offer (no and full information in Ferguson et. al. [14]).

Several choices or gamblers:

Multiple choice (Stadje [34]), collective choice and payment for coop-
erative gamblers (Assaf and Samuel-Cahn [2]) and game theory with
competitive players, specific information structures and selection crite-

ria (Sakaguchi [29]).
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2 Optimal Selection in Discrete Time

In this chapter a finite number of objects is presented sequentially whereof a
gambler intends to choose one in order to maximize a given payoff function.
The gambler watches out for his profit regarding repeated selection, which is
equivalent to maximize the mean payoff referring to his strategy.

Mathematical Model

Based on a probability space (€, 4, P) let X1, X5, ... denote a sequence of iid
random variables with continuous distribution function. These are offers pre-
sented sequentially to a gambler. Let Y := max{Xy,..., Xi}, k € N, denote
relative maxima. Set additionally X := X :=0. Let Fy := o (Xo,...,Xk)
contain information unil time k& € Z, and let F := (Fk)keZJ, represent the
filtration. Let & denote the set of stopping times with respect to F, i.e.
random variables S with P (S € Zy) = 1 and [Sp < k] € Fy for k € Z,.
Let the horizon 1 < n € N for selection be fixed. The payoff function f
performs the assessment of the gambler’s choice by the value of the prophet:
Profit f(Xy,Y,) is payed to the gambler, if he selects the k—th object Xj
and if finally the overall maximum Y,, occurs. It is assumed that the joint
distribution of the offers, the number n of objects presented and the payoft
function f are familiar to the gambler. Furthermore from now on the values
X, Xs, ... of the offers are supposed to be uniformly distributed on [0, 1],
where an equivalence to other distributions is mentioned in the paragraph on
pages 17f. The payoff function f is assumed to be bounded and monotone
according to assumptions (1) below.

The corresponding optimal stopping problem P, = P, (f,U([0,1])) forn € N
(n =1 is allowed for convenience) is to find the value of the problem

sug) E(f(Xs,Y0))

SES,
and, if possible, find a stopping time in §,, attaining this value; here §,, C &
denotes the set of stopping times with respect to F which don’t exceed n.
The value chosen by the gambler is X5 := Xg,)(w) for w € Q and S € S.
For each stopping time S € S, let v,(S) = E(f(Xs,Y,)) denote the
mean payoff applying S, the value of 5. The value of P,, is abbreviated by

vy 1= supges, Un(S). The asymptotic value of (Pp), ey is v, 1= limy o0 v},

provided this limit exists.
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Suppose k offers are presented to a gambler, 1 < k < n. Then next to the
number k only the values of X and Yj;_; represent significant information
of the gambler. This information is covered by Markov process (time ho-
mogenous by the corresponding time space process) and thus problem P,
corresponds to optimal stopping of Z := (Zk)keZJ,: Initial state Zy := ay,
Zi = (k, Xy, Yy) for k= 1,...,n, and final state Zp := ay for k > n. Let
A:={(z,y) €[0,1]* : x <y} and let E:={1,...,n} x A. The state space
of Z then is EU{ap, o} and transition probabilities are evident. The payoff
function is g(k, x,y) := f(x,yV Xpy1 V- -V X,), where g(ap) := 0 =: g(aw).
The state space is A if the point in time is fixed. In this and in the subsequent
chapter the payoff function f is assumed to be bounded on A and

f(z,y) is nondecreasing in x

)
N
f(z, z) is nondecreasing in z,

) is nonincreasing in y (1)

where (2,y) € A and z € [0,1]. Thus f is measurable. Without loss of
generality the range of f is [0,1] and f(0,1) = 0. Intuitively the payoff
f(z,y) should be nondecreasing in the gambler’s choice « and nonincreasing
in the prophet’s value y. To motivate the third assumption suppose payoft
function x(1 — y), which only violates the monotonicity condition on the
diagonal. Then it might be advisible for the gambler to reject a big value
Xk (close to 1, the value maximal possible) only because it is a new present
maximum, i.e. because Xy > Yj;_1, which isn’t reasonable.

For the proof that P, is regular (definition see below) the payoff function
will additionally be allowed to depend on the time of selection.

For later reference an abstract of notations (put in italic) and facts concerning
optimal stopping of a discrete time stochastic process is given:

General Approach of Optimal Stopping and Notations

Let a stochastic process Z := (Zk)keZ+ be observed sequentially by a gambler.
The state space of Z is assumed to be E C R, j € N, equipped with Borel
sets and the corresponding filtration is denoted by F := (Fk)keZJ,v where
Fr:=0(Zo,...,Z) for k € Zy. Let h : E — [0, 1] denote a payoff function,
especially bounded. Set Z,, := aw and h(as) := 0. The objective is to find
the value v(e) := supges E(h(Zs) | Zo =€) for e € E, where § denotes the
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set of stopping times with respect to F, i.e. event [S < k| € Fy for k € Z,.
Particularly the aim is to specify, if possible, a stopping time 5* € § such
that v(e) = E(h(Zs«) | Zo =€) for e € E, then S* is called optimal. S € S
is called suboptimal if merely v(e) > E(h(Zs) | Zo = €) is ensured.

This approach is adapted to problem P,,, where a future maximum may affect
the payoff by setting Zy := (k, X, Yi, E(f( Xk, Vo) | Xk, Yi)) for k£ € N and
hZy) :=E(E(f(X,Y,) | Xk Yi)), the mean of the fourth component.
The optimal stopping problem is called monotone it T'o C Iy C Ty C ---
where I'y :={e € E : h(e) > E(MZks1) | Fr, Zi =€) for k € Z,, which is
a notation introduced by Chow et al. [9].

The principle of backward induction is displayed for the general case of an in-
finite sequence due to subsequent chapters: For k € Z let S* denote the set
of stopping times S with respect to F with & < 5. For k € Z, the random
variables Wy 1= ess supgegr E(h(Zs) | Fi) are integrable (due to bounded
payoff). They satisfy the relation Wy = max{h(Zy), E(Wiy1 | Fi)} for
any k € Z,. Furthermore the sequence (Wk)keZ+ yields a minimal su-
permartingale dominating (h(Zx))icz, (due to nonnegative payoff). Then
S*:=inf{k € Zy : h(Zy) = Wi}, where infy := oo yields payoff h(as) =0,
represents an optimal stopping time iff P (S* < o0) = 1. A proof is given in
section 1.5 of Gihman and Skorohod [17]. Randomization of stopping times
doesn’t increase the value, since in the finite case the initial step and there-
fore any step of the backward induction would yield the same and in the
general case the essential supremum doesn’t change (modulo the probability
measure) by regarding the specific realizations.

From now on suppose that Z is a discrete time Markov process.

Then Wj represents the value within S* given Z, = e for fixed ¢ € F
(specifying the significant information of Fy), which is denoted by vi(e) for
k € Z,. Now stopping sets Ay := {e € E : h(e) = vi(e)} for k € Z, are
defined whose first hitting time is optimal if it is finite almost surely. The
problem is called regular or the regular case is valid if Ag C Ay C Ay C - --.
The myopic stopping time or one step look—ahead rule compares stopping
versus proceeding one step, which formally represents the first hitting time
of Ty := {e € E : h(e) > (Prh)(e)} for k € Z, where (Pih)(e) :=
E(h(Zks1) | Zk =€) for e € E (take infinity if I'g, 'y, ... are never entered).
This myopic stopping time turns out to be optimal in several well-known
cases (eventual first suitable transformation). A sufficient criterion for opti-
mality of the myopic stopping time is that its stopping sets prove to be closed
and realizable: P(Z; € T; V) > k| Zy =€) =1for e € T} and k € Z, and
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P(3j€Zy: Z; €l;) =1 — ie. the stopping sets ['g,I'1,... are reached
sometime and then never left each with probability 1, in a sense a Markov
version of the monotone case. This notation is subject to Porosinski [24]
and a proof for sufficiency is given in Cowan and Zabczyk [11], where the
situation is an embedded, discrete time Markov process and sufficient for
realizability is that the myopic stopping time is finite or that h(Z;) vanishes
as k — oo, each with probability one.

In case of a homogenous Markov process Z, which is achievable by intro-
ducing the corrsponding time space process, the notation is as follows: The
first hitting time of the set {e € E : h(e) = v(e)} is optimal if it is finite
almost surely. The myopic stopping time is the first hitting time of the set
{e € E : h(e) > (Ph)(e)}, where P now is independent of time k € Z.

An Optimal Stopping Time

Referring to the preceding paragraph the existence of an optimal stopping
time for problem P, is ensured via backward induction. For state (x,y) € A
and time 1 < k& < n the mean payoft of stopping and that of proceeding
optimally depends on the number ¢ := n — k of draws remaining rather on
n and k, since ¢ specifies the distribution of X34y V ---V X,,. Thus given
(x,y) € A and { € Z subsequent functions apply for n and k with n—k = /.

Definition 2.1 Let state (z,y) € A be given and suppose { € Z, items

remain, referring to problem P, with n > (. The mean payoff of stopping in
this situation is denoted by

se(@y) = E(f(x,Yo) | Xoce =2, Yo =y).

The mean payoff of proceeding at least one step and then selecting optimally
s ¢ := 0 if £ =0 and otherwise

co(z,y) = E(f(XiS™Yo) | X =2, Yoo =y, S >n—1{ optimal ).
The mean payoff of an optimal decision or the value of (x,y) is denoted by
Ug(l', y) ‘= 1hax {Sg(l’, y)v C((l’, y)} :

The subsequent lemma is evident:
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Lemma 2.2 Let (x,y) € A be given and let { € Z. Then

i) se(x,y) is nonincreasing in {, nondecreasing in x and nonincreasing in
y and

sla,y) = / ey v Q) det = y fley) + / F,0) dct.

Particularly s¢(x,y) is increasing in x with « <y if f(x,y) is.

i) co(x,y) = c(y) s nonincreasing in y and for { € N the relation

cely) = [ veer(&y) A€+ [ vear(€,€) dE is valid.
wit) ve(w,y) = max {se(z,y), ct(y)}.

Evidently for fixed ¢ € N function ¢/(y) can’t increase in y since the de-
mands for future selection grow. On the other hand for fixed y in general the
sequence (c¢(y))yey isn’t monotone.

Lemma 2.3 The optimal stopping problem P,(f) is regular.

The proof is shifted to lemma 2.9, where independent offers with varying
continuous distribution function and time dependent payoff are treated.

The following observation proves to be crucial: If it is optimal to stop in
state (z,y) € A where ¢ € Z, items remain, then it is also optimal to stop
in any state (£,y V ¢) for € € (x,1] — due to f(x,y) < f(&,y VE), ie.
se(x,y) < se(€,y VE), and due to ¢(y) > ¢y V €). Therefore the following
rule specifies an optimal stopping time for problem P, (f): “For fixed k and y
stop if x exceeds a certain value b*, otherwise continue” — here * depends on
y and on £ := n—Fk (the number of draws left, which identifies the distribution
of X1 V-V X,). The following notation is used:

Notation 2.4 A boundary function b, : [0,1] — [0,1], combined for ¢ =
n—1,...,0, is an instruction to specify a stopping time S which considers
the present maximum: S :=inf{l <k <n : Xy > b,_(Ys)} (set infy := oo
with resulting payoff 0 almost surely due to X, = 0).

Thus for a number / € Z, of remaining offers and for present maximum
y € [0,1] there is a unique critical value b}(y) such that it is optimal to select
the topical item x if @ > bj(y) — b; is called optimal boundary function.
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Definition 2.5 Sequence of optimal boundary functions (b?(y))feer:
Let b5 :=0 on [0,1]. For { € N et

by(y) :=1inf{z € [0,1] : se(x,yV ) > cilyVa)}.
The corresponding optimal stopping sets A} for { € Zy are defined by
A7 = {(my) €A 1 2 2 Bi(y)}
In addition socalled lower boundary points (QZ)ZGZJ, are introduced:
by :=inf{x €[0,1] : se(x,2) > co(x)}.

Sets for infima in the definition above are nonempty, since s¢(1,1) > ¢,(1).
The lower boundary point b, represents a threshold for selection of a new
present maximum Y,,_, while applying optimal behaviour.

According to lemma 2.3 the regular case guarantees b < b7 < b5 < .- or

AFDAT DA D -,
Therefore ¢/(y) can be expressed by b}, (y),...,b5(y), at least for certain y:

Lemma 2.6 Let (v,y) € A and let { € N. Let b3(y) for j={—1,...,0 be
gwen. Then fory € [b,_,1] the following holds (set [, :=1):

cly) = y (1:[ bﬁ@))

=0 \j=i1+1

-/” si(Eay v ) de. (2)
b¥ (y)

Proof: Due to monotonicity of the optimal boundary functions b}(y)

b7_i (v) 1
) = [T eawaes [ siteove
— W)+ [ sealEyvede

by (v)
= ce2(Y)bi_o(y)bi_i(y) +
1

baxw-l SLA&yv®d§+/‘ se1(Ey V€ de

—2(¥) b1 (v)

::i(ﬁ@@)llmmv&%

j=itl i)

1=
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by iteration, respecting ¢y = 0. The smallest y this identity holds is b,_,,
since bj_,(z) > z for z € [0,b,_,). O

This lemma now permits a recursive representation of the optimal boundary
functions:

Theorem 2.7 Let { € N. For y € [0,1] suppose s¢(x,y) is continuous and
increasing in x and let s, (z,y) denote its unique inverse with respect to z,
both for x <y. Then

bi(y) = (Z(Hlb )/l(y)sz'(&y\/ﬁ)dﬁ ,y>

=0 1+
fory € (by, 1] and bj(y) = b, constant for y € [0,b,].

The optimal stopping sets A7 now are identified according to definition 2.5.
If s¢(+,y) isn’t continuous and increasing, the infimum of those values x such
that s¢(x,y) > ¢(y) has to be specified.

Sufficient criteria for increase of s¢(-,y): f(+,y) increasing on A (section 2.2)
or at least inside a subset of A (with boundary conditions, see section 2.1).
While b (y) equals constant b, for y < b,, for y > b, it may first increase or
decrease: As examples based on section 2.1 take r € R where r(b,) = b, resp.
r(by) < by. The behaviour of function b} concerning monotonicity is exposed
regarding finite valued payoff, see the corresponding paragraph on page 34.
Besides any stopping time using at each case b}(y) as boundary value, wether
applying « > b;(y) or « > bj(y), is optimal (more general modifying A} on
a nullset doesn’t affect optimality).

General Distribution Function

Regard problem P,,, where Xy,...,X,, are independent and distributed ac-
cording to a continuous distribution function F', which is familiar to the
gambler. Suppose F' is increasing on R :={x €¢ R : 0 < F(«) < 1}, other-
wise adapt ranges of F' and the payoff function accordingly (which doesn’t
affect monotonicity). Set Ag := {(z,y) € R* : « < y}. A payoff function f
with respect to F means f : Ar — [0,1] with monotonicity properties ana-
logue to assumptions (1). Let P,(f, F') denote the optimal stopping problem
with distribution function F with corresponding payoff function f. Let F~!
denote the unique continuous inverse of F': R — [0, 1].
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Theorem 2.8 Let1l < n € N and let random variables )?1, .. )N( be given,
which are iid with distribution function ' according to the descmptwn above.

Let Y := maX{Xl, . Xk} fork=1,....n. Let f denote a payoff function
with respect to F. Regard the optimal stoppmg problem P, (f F): Mazimize

E <f(XS, Yn)>, where § represents a nonanticipating stopping time with re-

spect to Xl,...,Xn. L B

Let S* :=inf{l <k <n : Xy >0 ,(Yi)} denote an optimal stopping time.
Let S* :=inf{l <k <n : Xy >b_,(Yr)} denote an optimal stopping time
of the optimal stopping problem Pn(f,U([0,1]) with related payoff function
fla,y) = f(F~H(x), F~Y(y)) for (x,y) € A

Then the values of either stopping problem coincide and

biily) = 7 (5ru(F(y)) (3)
where y € R fork=1,....n
Proof: Let Xj := F()N(k) ~ U(]0,1]) for k =1,...,n, which are iid. Payoff

function f evidently meets the monotonicity properties (1).

Let S denote a stopping time for P, (f F) with boundary functions by k(y)
where y € Rfor k=1,...,n: S .= nf{l <k<n: Xk > bn k(Yk)} Define
corresponding dual boundary functions b,_(y) = F(b k(F~(y))) where
y € [0, 1] for k =1,...,n, specifying a stopping time 5 for P, (f,U([0,1]).
Then S = S, because [Xk > bn k(Yk)] iff [F~Y(Xy) > F o, F(F~1(Y}))]
iff [Xg > bypg(Yy)] for k=1,...,n. Thus )Nfg = F(Xs).

Let Ep (+) denote the expectation corresponding to boundary functions b, —x(y),
kE=1,...,n,for P,(f,U([0,1])). E;(-) accordingly for P, (f F). Let Gg(z,y)
(resp Gk(:zj y)) denote the joint distribution function of (Xk,Yn) (resp. of
(Xk, Yn)) given S =k (resp. S = k). Then the value of S and S coincide:

E(f(XS,Yn)> - ZP<§:k> A Fla,y) dGi(z.y)
= Y5 =0 [ Flow) dGu(Fie). F)

= SRS =) [ FP @) P ) dGaley)

— By (f(Xs. V)
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according to the theorem “change of variable” in an integral. Since the values
vn(S) and v,(9) are equal for particular, related stopping times and since
an optimal stopping time is of the stated form, the values of the stopping
problems coincide and relation (3) applies. O

Now let Xi,..., X, be independent and let F}, denote the distribution func-
tion of X}, which is continuous and increasing on {x € R : 0 < Fj(x) < 1}
and which is familiar to the gambler, k = 1,....n. Let R denote the union
of these ranges, then a payoff function f is defined on Ap as indicated above.
The corresponding optimal stopping problem with payoft function f is called
Po(f, F1,..., F,). The formalization of the particular terms is omitted, but
the regularity of this problem, extending lemma 2.3, is verified. Moreover in
the subsequent proof the payoff function may depend on the time instant a
chosen value appeared in order to indicate the range the problem is regular.

Lemma 2.9 The optimal stopping problem P.(f, Fy,..., F,) is reqular.

Proof: In this proof it is permitted that the payoff function depends on the
numbers of remaining draws: Payoff g¢(x,yVY,,) is payed in state (z,y) € Ag
if ¢ < n items remain. The monotonicity assumption g, < g, (see definition
A1l in the appendix) for ¢ € N is made, which seems to be indispensable for
validity of the regular case as far as this approach is concerned.

Let state (z,y) € Ag and let £ < n denote the number of remaining draws,
then k& := n — { denotes the number of the present draw, x = Xj. Further
let FY! | = ?:k+1 F; denote the distribution function of Xz V.-V X,,.
Now with notation according to definition 2.1

selzry) = / " gy v Q) R (O)

= Fi'ha(y) gz, y) ‘|‘/ ge(, C) dE (C)

and with regard to lemma 2.2

coly) = / T ve(€y) AP () + / T ea(6.6) dFi (6)

[ee)

> Fryi(y) coi(y) + /OO se-1(&,€) dFi1()

IA

Frer1(y)eei(y) cly) — /OO s5-1(&,€) dFyy1(8).
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The regular case applies if inequality s¢(x,y) > e¢(y) implies validity of
se—1(x,y) > ¢—1(y). Sufficient for this implication is

Font(9)ses(e,y) > culy) — / T ar(6,6) APy ().

which proves to be valid since

cly) — /OO se-1(&,€) dFria(€)

< Faaden)+ [ ate.d) ar)
_ / ) (FM g (€.6) + /5 T (6.0 dF:+2<<>> AF (€)

(g ) + / gule, €) dFy, (C) - / TR (€001(6,6) i (6)
- ( / S (6.0) IFen(€)) dF(0

< Faiodr)+ [ a0 (O = [ FalO0c (.6 dFia(
[ (1) = Frasl g (9:0)) dFLalC)

<

o (y)ges (v ) + / " e (220) dFT (O)
- / ()i (2.€) dFi (6) — / " B (O (2.0) dFL(0)

+ Fry1(y) /OO ge—1 (2, ¢) dFy 4 (C)

= Fr(y)sei(z,y),

where in the last step the medial three terms cancel due to F} | = Fiq1- F},
and where in the second last step g, = g,_1 is applied. O

Evidently theorem 2.7 is valid for problem P,(f, Fi,..., F,) respectively. If
offers are iid where for instance P (X; € Z,) = 1, then the problem is regular:
Spread any mass on an interval of proper length and adapt the payoff function
from Z4 to R, accordingly, then the monotonicity assumptions persist.
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2.1 Optimal Selection of an r—Candidate

In this section maximization of the probability P (Xg > r(Y},)) is studied,
i.e. regard problem P,(f) with payoff function f(x,y) = 1j(y)(2), where
the gambler either wins one unit or he fails. The maximum Y, is reduced to
r(Y,), demands for a win are weakened by relax function r € R, where

R = {r :[0,1] — [0, 1] continuous, increasing, r(y) <y Yy € [0, 1]}

Let Ry :={r e R : r(1) =1}, let R' := RNC'([0,1]) and let R} := R, NR*
(one-sided derivatives in 0 and 1; in R' derivative oo is allowed; in R} then
r'(1—) € [1,00]). A relax functino for example is Jy € R' where 9 € (0, 1]
and y%,1 — /T —y € R} where d € [1, ).

From now on regard P,(r) where r € R, i.e. maximize P (Xg > r(Y})).
Evidently selection of the k—th offer X} only makes sense if X; might lead to
a win yet, i.e. if Xj > r(Y}), and finally for win Xy > r(Y},) has to be valid.
So the following term is appropriate:

Notation 2.10 For given relax function r € R an object « € [0,1] is called
an r—candidate with respect to y € [0,1] if > r(y) holds.

For P,(r) the succinct convention is: Xj is an r—candidate if X > r(Y,).
Retain the stopping sets A; = {(x,y) € A : & > bj(y)} except for { = 0:
For convenience of subsequent formulas and propositions set b5 := r on [0, 1],

then Aj is the set of r—candidates (equivalent to payoff according to by =
resp. A = A due to payoff 0 regarding the final state o).

Remark 2.11 Additional motivation for maximization of P (Xg > r(Y},)):

i) This approach means relaxing the demands of selecting the maximum
of a sequence, see the full information case of Gilbert and Mosteller [18].
In the following that article is referred to as r = id or r'(1—) = 1, the
asymptotic value is abbreviated v}, ~ 0.5802 and the asymptotic value
within the set of concurrent threshold rules is denoted by v, &~ 0.5174.

ii) Suppose f(z,y) = 1r (h(z,y)) is monotone according to assumptions
(1), where h : A — R. This fits maximization of E (1¢(Xs,Y,)) for a
set C C A. The function r(y) := inf{0 <z <y : h(z,y) > 0} is well
defined on [0,1], if (0,0) € C (consequently the diagonal must be part
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of C') and r is nondecreasing with regard to the monotonicity of h. Then
the curve v := {(r(y),y) : y € [0,1]} describes the lower boundary of
C (second coordinate). Maximizing the functional above corresponds
to a payoff function, which can be chosen to be equal to 1 above and
including v and 0 below it, i.e. the probability P (h(Xs, M,) > 0) =
P(Xs > r(Y,)) is to be maximized (points (r(y),y) of v with r(y) <y
establish a null set because of the continuous distribution U([0, 1])).

An Optimal Stopping Time

Suppose there are / € N draws left. Heuristically y = Y,,_¢ is equal to Y,, with
high probability if y is sufficiently close to 1 and then in this time instant
n — ¢ the only threshold an item should exceed is r(y), i.e. bj(y) = r(y)
for y sufficiently close to 1. Therefore a socalled upper boundary point by is
defined for ¢ € Z, in addition to b;(y) and b, of definition 2.5:

be = infly €[0,1] : se(r(y),y) > eely)}-

Again this set is nonempty, take y = 1, and by = 0. Below lemma 2.2 will be
specified, using the inverse function p of r € R:

o(x) = sup{y € [0,1] : r(y) <2}  Vael0,1]. (4)

Then o(x) =1 iff x € [r(1),1]. If r € R and y € [0,1) with r'(y) = 0, then
o' (r(y)) := oo is declared. In this sense r € R' implies o € C*([0,r(1)]). Con-
vention r*(y) := (r(y))* and o*(y) := (o(y))* for k € Z, is used throughout.

Lemma 2.12 Let r € R. Then for { € Z, the following holds:
i) For (v,y) € Af, se(w,y) = se(x) = o'(x) is continuous. s¢ = 1 on
[r(1),1] and on (0,7r(1)) it is increasing in x and decreasing in (.
i) ci(y) is continuous and decreasing in y € [0,1] for { € N and

£—1

aly) = > 7 7y) (/

Yy

wle)de+ [0 de). o
) y
while particularly for y € [be_y, 1]

av) = ) [ de e ©
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iii)

ve(x,y) = max{si(x),c(y)} for (z,y) € AF and it is continuous for
(x,y) €A \ {(T(Z),Z) RS (bfvl]}

Proof: For given ¢ € N regard problem P, with n > /.

i)

ii)

iii)

Since (z,y) € A}, payoff 1 (for selecting «) only can be destroyed by a
future value: s¢(z,y) =P (x> r(X;)for j=n—(+1,....n) = o'(2)
due to independence. s, = 0 on A\ Aj.

c(y) =P (Xs >r(Yn) | Xnot = 2,Yp =y, S > n — { optimal) accord-
ing to definition 2.1, which decreases if y increases (the demands for
subsequent objects grow). The representation (5) is obtained by first
decomposing values of X,,_,y1 while observing a change of Y,,_,y; which
vields ¢o(y) = cz_l(y)r(y)—l—ff(y) ve_1(€,y) d5_|_fy1 ve—1(€, €) d€ and then
by iterating. ¢¢(y) is continuous with regard to (5), since r and integrals
concerning v; are continuous (inductive on ¢). The representation (6)
holds due to lemma 2.6, regularity and due to b3(y) = r(y) if y > be_1
for j=0,...,0—1.

s¢(z,y) only is discontinuous at points (r(z),z), z € [0,1], and the
definition of b, above yields the continuity of v¢(x,y) except for the
specified curve. O

Suppose there is £ = 1 draw left. Then s;(x) = o(z) and ¢1(y) = 1 — r(y).
Thus b, solves y = r(1—r(y)) and b; solves y = 1—r(y) and b (y) = r(1—r(y))
for y € [b,,b1]. A characterization of the optimal boundary functions for
{ € N is given in the subsequent theorem, specifying theorem 2.7:

Theorem 2.13 Let r € R. Then for { € N the following holds:

i) The upper boundary point by is unique solution of equation

1

s o= S [ de g

be » ify €[0,b]
/b 0'(€) dﬁ] if y € (b, be)

r(y) if y € [be 1]
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i)
iv)

and b;(y) is decreasing in the medial case.

The lower boundary point b, is unique solution of equation bj(y) = y.

by /(1) for { — co.

1/2<b; /1 for N3/ — 0.

r(1/2) < bi(y) /r(l) for { — oo for each y € [0,1], or equivalently
NZo A7 =A{(z,y) € AT = w =2 r(1)}.

Proof: Regard theorem 2.7 for £ € N for a problem P,, with n > /. Unique-
ness in i), ii) and iii) is valid according to lemma 2.12: ¢,(y) is continuous and
decreasing in y € [0, 1] and s¢(x,y) is continuous inside A and independent

of y for fixed .

i)

ii)

iii)

iv)

be is the unique solution of s¢(r(y),y) = ci(y) or y* = c(y), regard
equation (6).

For y € [by, b] now b5(y) = z is the unique solution of s¢(z,y) = c((y)
while the remaining range is covered by the definition of the lower
resp. upper boundary points. Inside Af with respect to y first s¢(x,y)
is constant and second ¢,(y) is decreasing, thus bj(y) is decreasing in

y e (éévgf)

b, is the unique solution of s¢(y,y) = ¢i(y) or y = r([cz(y)]l/f).
Monotone convergence is valid because problem P, is regular. by solves
y=1—r(y) > 1—y, and the solution of y =1 — y is 1/2. Selecting
an item = > r(1) will lead to success resp. to payoff 1 regardless of
¢ and Y, € [0,1]. On the other hand suppose an item 0 < = < r(1)
is selected. Then Y;, € (o(x), 1] will prevent success. The probability
(1 — o(x))" of this event is o(1) for £ — oo. In addition c¢,(y) doesn’t
vanish for / — oo, not even for the strongest case r = id, see Gilbert
and Mosteller [18] and remark 2.18 i) below. O

Given r € R, the boundary function b;(y) is constant on [0, b,], decreasing
on [b,, b¢] and increasing on [by, 1], where the interpretation of these parts is:
The present maximum y is inessential, y becomes relevant and finally y is

representative with regard to the overall maximum Y,,. Here r = i1d appears

as a marginal case where b, = b, for { € Z_.
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Example 2.14 Suppose relax function r(y) = y* for y € [0,1]. Theorem
2.13 yields optimal stopping sets Ag D A7 D -+ D Af shown in the figure
below, particularly b} = r and bi(y) = (1 — y*)* for y € [b;,b1]. Proposition

2.15 below will reveal r(by) ~ 1 —4-0.3695/¢ as { — oo with a(4) ~ 0.3695.

1

bi(y) A/

4
bi(y) A%
b3(y)
= Aj
bz(y)
bi(y) A
Aj

oy) =r(y) =y

0

Figure 1: Maximization of P (Xs > ¥*): Optimal boundary func-
tions b5(y),...,bi(y) and the corresponding optimal stopping sets
Ay D AT D---D Az (with axes & and y reversed). See example 2.14.

The asymptotic behaviour of second order of the upper boundary points by
as { — oo can be specified (next to theorem 2.13 iv)), since they are based
directly on relax function r:

Proposition 2.15 Let r € R| with a := r'(1—) € [1,00). The asymptotic
behaviour of the upper boundary points (bf)feN is limy oo 0(1 —by) = o, where
a = a(a) denotes the unique solution inside (0, aq] of equation

ev(a=1) /O‘a ef —1
= dg, 8
a ala—1) 5 ( )

where ay 1= a(1) & 0.8044 solves 1 = [ eﬁgl dg.
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Proof: Assume that r(y) = ay —a + 1 for y close to 1 and the idea is that
be =1 — f(a)/l + o(1/l) as { — oo, where f(a) is nonnegative. Setting

g¢:= by — 1+ f(a)/l it proves to be justifiable that e, = o(1/f). For y = b
¢
the left side of equation (7) then is <1 - M) while the right side is

- (-t

— 141 e i1
_(y_ alfla) =)\ g _a 1 | _ Slaite
=) L\ ) ) |

1

With regard to lemma A.2 in the appendix the two bases with exponent ¢+ 1
now are changed to 1+ ¢/, where a¢ := a(f(a)—{ey) /<1 — M) and

ze = (a—1)(f(a)—"ley) / <1 - M) , respectively. Assuming ley = o(1)

then all terms yield a specific asymptotic behaviour as £ — oo and since by is
unique solution of equation (7) it is, aside from &4, specified by f(a) — now
the assumption e, = o(1/{) is justified if f(«a) is uniquely determined by

e~ gem/(@ {Ei(af(a)) —1In %@ —Ei((e¢ = 1) f(a)) + 1In (a=Dfa) Z;)f(a)}

unless ¢ = 1, where 1 ~ v+ Ei(f(1)) —In(f(1)/¢) —In(¢) — v results. In both
cases In/ cancels. In terms of remark A.4 this leads to equation (8) specify-
ing solution f(a) = «, which is existent and unique: Let g,(«) resp. hq(a)
denote the left resp. the right side of (8). Then ¢,(0) = 1/a and h,(0) = 0.
Since ¢/ (a) = (a — 1)gq(a) and bl (o) = e**(1 —e ) /a now ¢/, (0) =1—1/a
and A, (0) =1 and ¢/ (o) < b/ (), because (« — 1)/a < (e* —1)/a for a > 1
and a > 0. Compare g,(a) and h,(a) for & = 1: Estimating the integrand
(e —1)/€ > (e7¢ —1)/a yields g.(1) < ha(1) iff 1 4+2e*71 < €2, which is true
for @ > 1 —In(e — 2) & 1.3309, thus at least then « is unique. An upper
bound for the solution of equation (8) is specified: For a = In(a)/(a — 1)
the similar estimation by (e¢ — 1)(a — 1)/(alna) yields the corresponding
inequality (a4 1)Ina < a(a—1)(a'/*=Y —1), which is true at least for a > 4
(not verified here), i.e. In(a)/(a — 1) then is an upper bound for the solution
a(a) of equation (8). Thus o € (0, ay] seems coherent. O



2 OPTIMAL SELECTION IN DISCRETE TIME 27

By the boundary function r(y) V r(b) an offer isn’t rejected the optimal
stopping time of theorem 2.13 would select. According to proposition 2.15
above, for ¢ > aa the boundary function r(y) V r(1 — aa/l) represents a
good approximation. With regard to the behaviour of the curves bj(y) inside
A for r € R1, which seem to become a horizontal line by computations and
simulations, the following conjecture is made:

Conjecture 2.16 Regard problem P,(r) withr € R}, a :=r'(1-) € [1, 00).
Let stopping time S, apply boundary functions (r(y)V r(1 —aa/l)) .,
(for £ = 0 take r(y)). Then the sequence (S,),y of stopping times might
be asymptotically optimal: nh—>I£lo vn(Sn) = vi(a). For the value v,(S,) see

remark 2.32.

For figure 2 below the values a(a) of proposition 2.15 above are computed
for some values of ¢ = r'(1—) € [1,20] and an approximation from above is
plotted, too. The marginal case a(1) ~ 0.8044 is in accordance with Gilbert
and Mosteller [18] (there in addition the third order is indicated).

1 -

0.8044 +

0

1 2 3 20
Figure 2: The coeflicient o(a) of asymptotic behaviour of
second order (plus its approximation from above) of the up-

per boundary values by as { — oo: by ~ 1 — a(a)/l, where
a:=1'(1-) and r € Rq, see proposition 2.15 and its proof.
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Proposition 2.17 Approzimative considerations for stopping problem P, :

0)

Difference in probability of winning using contiguous stopping times:
Let stopping times S resp. S according to boundary functzons be(y) resp.
b(( ) be given. Let B := suPocic, SUDyepo1] | be(y) —be(y) | € [0,1]. Then
the probability that the payoff (applying S resp. §) differs is bounded
by 1 — (1 — B)". This probability vanishes as  — 0, leaving n fized.

L' approzimation concerning relax function: Let r : [0,1] — [0,1] be
nondecreasing with 0 < r(y) <y fory € (0,1] and r(0) = 0. There
are sequences (Iy)pcy (rk)keN C R with rk( ) = (1) = r(l) and
gkjrjrkcmqu.—fo Te(C) — 1 (C)) d¢ = o(1) as k — oo.

Letby < --- = b,_1 denote a sequence of provisional boundary functions:
be : [0,1] — [0,7(1)] is nonincreasing, adjust be(y) := ye for y € [0, y],
where yy represents the unique solution of by(y) =y, 0 <L < n. With
regard to payoff with respect to relax function r, rp and 7y, boundary
functions by V r, by V ry and by V Ty (for 0 < { < n) yield appropriate
stopping times, denoted by S, S, and Sy, respectively (k € N).

Let Dy denote the event that the payoff gained by applying stopping
time S, resp. Sy (or S) differs, k € N. Then P (Dy,) — 0 for k — co.

Proof:

i)

ii)

The probability that the payoff differs is bounded by the probability

p(s5#5) - ZP (X, 10) € C) Zﬁlﬁ L= 1-(1-p)n

since P (X, Yz) e ck) < B(1—p)FL, where Cp := (Bi\ Bi)U(Bi\ Bx),
= {(a, ) o > ()} and By = {(ey) € A ¢ o > hi(y))

for k =1,.

Let & € N. Formally Dy, := [11(v,)11(Xs,) # Lir(vn)11(Xz,)] and define

Cr:={(z,y) € A w2 Ti(y)} and Cp = {(l’ay) e A r 2 rp(y) P\ Cr
The diagonal is not part of C;. Now event Dy is partitioned:

On the one hand the payoff may differ if 5, is lower than Sk Let
G, denote the (continuous differentiable) distribution function of ¥;_;
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given S, = 7, for j = 2,...,n (case j = 1 is void and Gi(r(l)) =1).
Now P (Dk and S, < gk) is bounded by the probability (ignoring by)

P(S, <) = 3 P(S,=NP(X.Y)eC, | S =)

- LY RY) — )

< = AT AL

< Yris B[ i)
which proves to be o(1) for k& — oo: The integrand is bounded by 1, the
densities (finitely many) are uniformly bounded and in case of r(1) =1
the integration range is restricted to [0,d;] where é; ' 1 for k — oo
(the integral on [0k, 1] is o(1), which also holds for the corresponding
sum). Now use ¢ = o(1) for the sum with integral on [0, dx].

On the other hand the payoffs may differ if 5; and Sk coincide: Let
event Ej := [S;, = Si = j] and let Y1, := max{X,;,...,X,} for
j=1,...,n—1 (the payoffs don’t differ if event [S; = S = n] occurs,
event [S, = n < 5] refers to the first part). Let Gj denote the
(continuous differentiable) distribution function of Y;_; given E,’C and
let F,g’y denote the (continuous differentiable) distribution function of
X given Ej and Y;_; =y, where j =1,...,n —1 — except for j =1
where Yy := 0 and G}, = 1j0,0c) but Fkl’o 1s continuous differentiable.
Let 0, resp. 0; denote the inverse of r; resp. of 7; according to equation

(4) for y =1,...,n — 1. Then (respect Dy is impossible beyond r(1))

P (Dk and S; = ?k)

n—1
= ) P(B{and(X,,Y;) € Crand (X;,Y}1,) € C})
=1

B n—1 ; r(1) pr(1) (gk(x))n_]_(ﬁk(l'))n_] y j
) ;P(Ek)/o /my) 1 — (gy(z))"~ A (@) dGily),

which also is o(1) for k — oo, analogously to the first part: The inte-
grands are bounded by 1 and the densities (finitely many) are uniformly
bounded (for j = 1 then y = 0 and restrict to Fkl’o). Furthermore
QZ_j -9 7 = 0, — 0y on [0,0x] for 7 = 1,....,n — 1 for an existing
sequence 0 " r(1l) as k — oo. The sum with the innermost integral
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restricted to [dg, r(1)] yields o(1) and for the remaining sum referring to

the innermost integral on [0, d;] the relation for(l)(gk(o —2:(0)) d¢ =
qr = o(1) ensures that the entire expression is o(1) for k — co.
Since §;, < § < S, this yields P (Dy) = o(1) for k — co. O

Remark 2.18

i)

ii)

Monotonicity of values: v¥(rq) > vi(ry) if 1 < ry in R (also for proper
inequalities). Let ry,r, € R with oo > r{(1—) > rj(1—). Then
vi(ry) > vi(ry) holds finally for n — oo, while asymptotic inequality
v (r1) > v (ry) only may hold if vZ (r5(1—)) < 1 (remark 2.30 vi)).

The domain of any function r € R is extended from [0, 1] to R by
r(y) ;= 0fory <0 and r(y):=1fory>1.

Setting additionally r(1) := 1, so r represents a distribution function.
Relevant integrals (integrand containing ¢ and integration variable d¢)
then can be rewritten according to definition (4) of p by dr(¢). If inte-
gration variable dr({) appears, these extensions are meant implicitely.
For example frl(y) 0'(&) d¢ = fyl & dr(€), i € Z,, where for y = 0 this
represents the i—th uncentralized moment corresponding to r. If r € Ri
then 1’ represents a corresponding density (Lebesque almost surely).

General Distribution Function

Suppose Xy,..., X, are independent. Let F' denote the respective distribu-
tion function, continuous and increasing on R :={x € R : 0 < F(x) < 1}
with its unique continuous inverse F~! on this set — analogue to the prepa-

rations preceding theorem 2.8. Let r : R — R continuous, increasing and
r = id on R. Then P,(r,F) can be reduced to P,(7, U([0,1]) by taking
r.=FrFl¢c R, since I[T(F—l(y))J] (F_l(l')) = 1[;:(y)71] (l‘) for x € (0, 1).

Example 2.19

i)

Let F(z) = 7 + Larctan(z) for # € R and r(y) = y — 1 for y € R,
i.e. select an item at least one unit below the maximum. Then 7(y) =
1+ Larctan(tan(ry—2)—1)fory € [0,1). Thus 7 € Rj and 7(1—) = 1.
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ii) Let F(a) = (1 — e)1g,(2) for v € R. If r(y) = dy for y € Ry
where ¥ € (0,1] then 7(y) = 1 — (1 —y)? for y € [0,1] and 7 € R} with
7(1—) = oo unless ¥ = 1 where ¥ = id. If however r(y) = 0A (y — 1)

for y € R, (not increasing on R,), then 7(y) = 0 for y € [0,1 — ]

and 7(y) =1 —e +yer fory € (1 — e 1] and 7 ¢ R.

Particularly the relax function r remains unchanged if F(0) = 0, F(1) =1
and rF = Fr, For example FF = id, FF = r and F = p are related. The
case where F' is continuous but not increasing on R only can be included in
this section if r is selected having merged constant parts of ' — otherwise r
doesn’t remain continuous and only general assertions preceeding this section
apply. In case of a discrete distribution, for example P (X; € Z,) = 1 with
corresponding relax function r on Z,, then any point mass is spread on
a proper interval and the relax function r is extended from lattice Z, to
R4 by constant continuation. The monotonicity assumptions (1) persist
and optimal boundary functions, now consisting of a sequence of values, are
specified by an infimum, since concerning functions are not continuous.

Selection with Recall

Suppose problem P, (r) where r € R. If recall is allowed, it is optimal to
take the overall maximum Y,, in the last time instant. Suppose however
recall is allowed only if the present value turns out to be an r—candidate
(which doesn’t affect the case r = id). In this optimal stopping problem P,
with restricted recall, one tends to watch the end (to recall at best Y,,) while
arrivals of not—r—candidates has to be taken into account.

Now the myopic stopping time proposes to recall y € [0,7(1)) (evidently an
offer beyond r(1) is taken anyway) where ¢ € N items remain provided that
the present state (x,y) € Aj if

£—1

o'ly) >

) ((y —r(y))e'(y) + /y1 2'(¢) df) v (9)

=0

by comparing the mean payoff of stopping with that of the one step look—
ahead rule concerning epochs of r—candidates (for the latter the maximum
of the next r—candidate ¢ € [r(y), 1] and the past maximum y can be taken).

The stopping sets of the myopic stopping time are monotone.
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Verification: Fix past maximum y € [0,7(1)) and abbreviate r = r(y),
0 = o(y) and set I, := fyl 0'(€) d€ for i € Z,. Let £ € N and suppose of >

SiZor T =)o+ 1) = (y=r)e Hleatr i r T (v = et + 1)
which proves to be not lower than ng 2r271 ((y —r)o' 4+ I;) — then di-
viding by p the claim is verified — in other words the assertion is the in-
equality (y —r)o"™* +I,_1 > (o —7) Ef_g 21 ((y — r)o' + I;): On the one
hand o'~t > (o — r)(r™t — o) /(r — 0) = 0! — v’ (cancelling y — r
and using the truncated geometric series) and on the other hand inequal-
ity I > (g -r) Ef;g rt=2='[; holds (by induction on /): Let { = 2 then
f o(&) d¢ > (o —r)(1 —y) is obvious. Taking the inequality above as induc-
tion assumptlon then I, > (o — r) Ef L pt=1=1 T holds, since for the left side
I, > oI, is valid and the right side is not bigger than rly1+ (0 —r)li—y
(induction step). Cancelling I,y on both sides o > r 4+ p — r results. O

Now the conjecture is that the myopic stopping time can be specified by
unique thresholds, i.e. if inequality (9) is valid for y € [0, 1] then for z € (y, 1],
too. The presumed unique solution of inequality (9) as equality is called
threshold y, for ¢ € Z,. Evidently for / = 0 threshold yo = 0 results
(provided X, is an r—candidate) and particularly £ = 1 leads to a threshold
y1 € (0, r( )) the unique solution of o(y)+7(y) = 1. However h(y) := o'(y)—
Ef oI (y =)ot + 1) € CY([0,7(1)]) if r € R isn’t nondecreasing in
general, as examples verify, though they don’t exclude that there is a unique
flaw y,. Besides h(0) is negative and h(r(1)) = (r(r(1)))¢ is positive.

Under this hypothesis the stopping sets of the myopic stopping time are
closed and realizable and thus they would yield an optimal stopping time.
Then evidently y, * r(1) as { — oo, while the asymptotic behaviour of
second order would be as follows: Suppose r € R{ with a :=1/(1—) € [1,00):
Then yy ~ 1 — o/l as { — oo, where o = «o(a) denotes the unique solution of

aa ¢
L L et / 1 (10)
a+1l a’+a afa—1/a) &

Verification: Suppose r(y) = ay — a + 1 for y close to 1 and assume y, ~
1 — fla)/l 4+ o(1/¢) as { — oo (a more cautious inspection is omitted in
respect of assumption of the hypothesis). Now inequality (9) as an equation
yields

(1) = B2 ()

1=
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L—<1_,ﬂéva>ﬁ1>

(1_M>f N (1_af<a>>“ (a—1)f(a) § (Hf(a)(a—l/a))"

‘ ¢ t o (= af(a)
+ (1 _ aféa)yg : jl (1 . ij;(;()a)yﬂ
(- R ()

For @ > 1 the first sum is, due to the truncated geometric series, asymptoti-
cally equivalent to (ef(@@=1/9) —1)(¢ — af(a))/(f(a)(a —1/a)) and the last
two sums are covered by remark A.4 resp. by lemma A.2 in the appendix.
Then the following equation holds asymptotically:

_ flaa e
@ af(@ [ 21 @NMwuw_1)+a/‘ -1 e
a—1/a fa)a—-1/a) &

unless ¢ = 1, where 1 = v + Ei(f(1)) — In(f(1)/{) — In({) — v results from

lemma A.2. Rearrangements produce equation (10) where f(a) =a. O

Expression (9) for r = id corresponds to Gilbert and Mosteller [18], since

-1 1 -1 / 1
—1—; i1y —1—j j+1
1-— = S 1 —
§3i+1y (I—y") §:<.+1>j+1y (1-y)

1= 7=0

for ¢ € N and y € [0,1]. Here (on the left) a partition with respect to the
time instant of the appearance of the next r—candidate is applied, whereas in
[18] (on the right) the approach is to use the fact that the present maximum
(beyond a certain threshold) emerges as the overall maximum within the
number j of future values exceeding this threshold with probability 1/(j41).

The optimal boundary function bj(y) has one minimum with respect to y
(to specify: at most one strict local minimum in by; remind the case r = id
where b, = by). The question answered in the next paragraph is: For general
payoff function f, may the optimal boundary function b}(y) possess several
(local) minima with respect to y, i.e. may fluctuations occur?
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Finite Valued Payoff Function

Suppose that the payoff function may attain a finite number of values: Let
fla,y) =322, ¢i- 1¢,(x,y), where ig € N and ¢4, ..., ¢;, > 0 and where sets
ADC; DCy D D Cy are closed and contain (0,0) (related to remark
2.11 ii)). The monotonicity criteria (1) are valid. Set additionally ¢y := 0,
Co:= A and C; 4, := 0. f is bounded by 1 by scaling.

Choosing value x while finally the overall maximum y occurs, leads to the
mean payoff 2321 ¢jif (z,y) € Ci\ Ciqq, where i = 0,... 40 (with ), :=0).
Let r; define the lower boundary of C; (confer remark 2.11ii)) for i = 0,..., 4
— obviously 0 = rg < ry < --- =<r,,, which are assumed to be increasing and
continuous, 1.e. in R. Set r; 41 := 1. Let p; denote the inverse of r; according
to equation (4), 2 =0,...,%. Then the mean payoff stopping with (z,y) € A
while £ = 0,...,n — 1 items remain is given by s¢(x,y) := 2321 cjgﬁ(:zj) if
ri(y) < @ < rip1(y) where i = 0,...,19. Now s¢(x,y) is increasing but not
continuous in z inside A.

Proposition 2.20 The optimal boundary function b(y), { € N, for payoff
function Y2 ¢; - 1¢,(x,y) may possess 1y local minima.

For a heuristic explanation imagine that the values ¢y, . .., ¢;, differ extremely,
0<e €ep K-+ K ¢y, and consider the behaviour of function b}(y) as y
increases from b, to 1:

Only ¢;, (resp. ri,) has to be respected first (i.e. for y close to b,, where either
lower boundary values resemble), because values ¢;, i < ig, are comparable to
0 (first decreasing, then meeting r;,). The optimal boundary function bj(y)
initially fits that of relax function r;,. As y grows, the magnitude of ¢; _;
(compared to 0) takes through, the curve bj(y) decreases and then fits the
curve r;,_1, and so on. At the end, if y becomes sufficiently close to 1, the
magnitude of ¢; in comparison to 0 steps forward.

Time Dependent Relaxation

Let time dependent relax functions r; € R, 1 = 1,...,n, be given and suppose
the problem of maximizing P (Xg > max{ri(X1),...,r.(X,)}), denoted by
Pu(riy...,rn). Additionally assume r;4q < r; for i = 1,...,n — 1, i.e. the
requirements for the chosen object (with regard to the reduced reference
values r(Xj) for k =1,...,n) weaken as time goes by — in fact they must
weaken to ensure the regular case, as the following proof shows:
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Lemma 2.21 The optimal stopping problem P,(r1,...,ry) is reqular.

Proof: Fix epoch k and let X; = x; for + = 1,...,k and let unusually
yr = max{ri(xy),...,re(xx)}. Assume v > yp and let sp(ay) denote the
mean payoff of stopping at time k with item x (now time index for clarity):

sk(ar) = Plar > repa(Xepn)soora(Xa)) =[] eslen),
j=k+1
where p; represents the inverse of r; according to equation (4). Analogously
cx(yx) denotes the mean payoff for proceeding optimally (at least one step,
at time k with yi) and finally vg(ag, yx) denotes the maximum.

Yi 1
ce(yr) = / i1 (Yx) dagg -I-/ Ukt (@kt1s Yk V Tt (Trg1)) dpr.
0

Yk

Here 741 = id is necessary, since otherwise the first integrand would be
1Yk V res1(2k41)). No direct generalization like P (Xg > ri(X;), 1 # 5).
For the following separation of the integral implication rg(zg) < yp =
(res1(2pe1) < yg for apyr < ay) is applied, which is valid due to rgy1 < ry.
Without loss of generality z; > 0 and analog to the proof of lemma 2.9

1
celye) > $k0k+1(yk)—|-/ Skt (Tpp1) dpgr

T

1
Trcrpr(yr) < Ck(yk)—/ Skt (Th1) dTpga.

T

Given si(xk) > cx(yk), it has to be shown sgi1(@k) > cpr1(yx). Sufficient is

1
TpSpy1(Tr) > Ck(yk)—/ Skt (Trg1) dTpgr

@y,
1 n n
IT eiterr) doeys = (onsa(ae) =) ] eilan),
Tk j=k4+2 7=k+2

which is obviously valid. Respect that the separation xy, of the integral can’t
be replaced by yi, since xg1q > yi doesn’t imply xpy1 > . O

Thus an assertion analogue to theorem 2.7 is valid. Besides this problem
with time dependent relax functions can be combined with the case of time
indexed distribution functions of lemma 2.9 and the regular case will persist.
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The Asymptotic Value for Special Cases

For given relax function r € R the limit performance of the sequence (v};), o
of values is studied, which depends on the behaviour of the relax function
r in the (lefthand side) neighbourhood of 1. Particularly for r € R} and in
case of convergence the asymptotic value is denoted by v’ (r'(1—)).
However the pathological case r(1) < 1 remains, where the concurrent thresh-
old rule T with threshold ¢ := r(1) (for strict description see notation 2.25
in the next subsection) proves to be asymptotically optimal, since its value
va(T) = P (Xr > r(Y,)) = 1—r"(1) converges to the maximum value v, =1
as n — 0o. Moreover, concerning asymptotic behaviour, no direct connection
exists between the optimal stopping problem P, (r) for relax function r € Ry
and problem P, (VUr) with decayed relax function dJr where ¥ € (0,1).

The asymptotic value of problem P, with r'(1—) = oo doesn’t differ from
the asymptotic value if (1) < 1 and an asymptotically optimal sequence of
stopping times again is to be found in (7,7), oy (see notation 2.25):

Theorem 2.22 Let r € R} with r'(1—) = oo. Then the asymptotic value

vy = lim v} attains its mazimum value 1, particularly
n—oo
v = lim sup v,(T) = 1. (11)
n—oo T€7;7,c

Proof: Let T denote the concurrent stopping rule with concurrent threshold
0<t<lie T:=inf{l <k<n: X €[t} and Xy ~ U([t,1]) unless
T = infy := oo (implies mean payoff 0: X, =0 and P(Y,, > 0) =1). Then

vo(T) = P(Xr >r(Y,)) > P(Y, €[t,o(t)]) = o"(t) —t".

Assertion (11) is implied by: For each ¢ > 0 and for each ng € N there exist
n > ng and threshold ¢ = ¢(n) such that the following last inequality holds:

L>w > 0,(T) > 0"(t)—t" > 1—e.

Now 7'(1—) = oo implies 1 — o(t) = o(1 — t) for t — 1, since 0 = o'(1—) =
G )
Expressed in terms of § := 1 — ¢ (consider 1 — o(1 — §) = o(9) for § — 0 and
d = d(n)) a sufficient formulation is as follows: For each ¢ > 0 and for each

no € N there exist n > ng and § = d(n) > 0 such that
h(n,d) == (1 —0(8))"—(1=86)" > 1—¢ (12)
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holds. With regard to n maxima of h only can be attained on the curve

v =) = () [ () =~ (59

for & — 0. These are points where the derivative of h with respect to n
equals 0. Though the second derivative might be negative, the subsequent
derivations show assertion (12) regardless of values representing maxima or
not. Now n(§) — oo for § — 0, thus a sufficient small § causes n > no.
Looking for the maximal values of h, i.e. regarding h(n(d),d), the assertion
sounds as follows: For each ¢ > 0 there exists a sufficient small § such that

C)]

(1= o(@) 50 — (=) b > e

0(5 —5In ﬂ&él) 1 —%ln(ﬂgl)
- — (1 — T) > 1—ec.
5 5

Now the upper term tends to 1 and the lower term on the lefthand side tends
to 0 as 6 — 0. This is valid due to the following equivalent formulation:
Given a sequence (dg), oy With 1 > di N\, 0 for & — oo the following holds:

‘ d, —klnd,,
pm (1) =

1 —klnd,
g (1-7) =

The first assertion is valid based on the relations (o(1) > 0 as k — o)
&
e~1-o(l) < (1 — df) % < e™! (for all k € N). This leads (for k¥ — oo) to

dk lndk

Analogously for the second assertion the relations (o(1) > 0 as k — o0)
e~1-o(l) < (1 — %)k < e ! (for all k € N) lead (for & — o) to

k —lndk

Thus assertion (12) is verified, which completes the proof. O



2 OPTIMAL SELECTION IN DISCRETE TIME 38

Example 2.23 Take r(y) :=1— /1 —y € R{ with r'(1-)

Q.

Conjecture 2.24 Under the hypothesis, that the asymptotic value v’ (d) is
strictly increasing in d = r’(1—) € [1,00) where r € R}, the following holds
(see remark 2.30 vi)): If the (lefthand sided) difference quotients of function
r € Ry in 1 vary (finally) in a nontrivial interval [a,b] C [1,00], say, then a
limit of the values v(r) as n — oo doesn’t exist.

To specify: Only estimations from below resp. from above (concerning «
resp. b) are possible, since the optimal probabilities v of winning will also
vary in a nontrivial interval as n tends to infinity.

Heuristic explanation of conjecture 2.24:

Suppose r € Ry where r’(1—) doesn’t exist — for simplicity and with regard
to the approximation in 2.17 ii) let fol |r(¢) — ()] d¢ < e for € > 0 where
7 is a zigzag curve from (0,0) to (1,1): As an example for 7 take the zigzag
polygon consisting of horizontal and vertical lines between linear functions
cy —c+ 1resp. dy —d+ 1 where 1 < ¢ < d (adjust r(y) > 0 for y € (0,1]
which for n — oo becomes unnecessary). Particularly 7'(1—) doesn’t exist.
Let p; for j € N denote the width of the horizontal lines and set m; := Y "7_, p;
for j € N and 7 := 0. For each j € N items inside interval [r,_;,7;) can
evidently be identified, since there is no prevention of a win inside these
classes (apart from terms depending on ¢). Now p; represents the probability
of an item inside the j—th interval, j € N.

According to Baryshnikov et al. [4] the probability of a tie of the maximal
value of offers converges iff p;/(1 — m;) — 0 as j — oo — scores in this
situation are called m; with respective probability p;, 7 € N. Particularly the
probability of a tie of the maximal value then converges to 0.

Here r'(1—) resp. 7(1—) doesn’t exist and therefore p;/(1 — ;) /4 0 as
J — oo (for 7 the corresponding limit is (d — ¢)/c > 0).

A tie of the maximal value in this situation means that, next to relaxed
demands due to function r, there are a couple of items which would lead to
a win and additionally this number varies significantly as n grows, which has
heavy impact on the value v}.
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2.1.1 Suboptimal Stopping Times

Some notations concerning subsets of stopping times are specified:

Notation 2.25 Stopping time T is called threshold rule (for X1, X,,...) if
thresholds t1,ts,... € [0,1] exist, such that T=inf{k € N : X} > ¢}, where
infy := oo (representing win 0 a.s.) and where for problem P, the convention
is that the payoft is 0 if 7' > n. If all tresholds are equal to the concurrent
threshold t then T is called concurrent threshold rule. For n € N let T, resp.
7.6 denote the set of these threshold rules resp. concurrent threshold rules.

Now regard optimal selection of an r—candidate, r € R, in 7, and in 7,°.
Optimal Threshold Rule

Let a nonincreasing sequence 1 > ¢; > --- > t,, = 0 of thresholds be given.
The value of the corresponding threshold rule T := inf{l < k < n : X} > t;}

0(T) = Y / (H min{wm)}) 0" M2 da (13)

(IIp := 1), verified by a vivid example: For n = 4 event [T = 3] occurs iff
(X1 < t1, Xg < to, X5 > max{ts, r(X1),r(X2), r(X4)}] iff, given X3 = a3,

[X1 < min{t1, o(x3)}, Xo < min{ty, o(@3)}, w5 > t5, Xy < o(x3)],

which leads to expression (13). If T' additionally is restricted to acceptance
of r—candidates then its value becomes significantly more complicated (in the
example above the restriction X, < t3 V r(X;) makes things more intricate)
— the value of this stopping time is specified in remark 2.32.

Optimal Concurrent Threshold Rule

In this paragraph the subsets 7,° of stopping times is studied for n € N:
Suppose a single threshold t,, € [0,1] is applied simultaneously to n items,
i.e. regard the concurrent threshold rule T, := inf{l < k <n : X} > t,}
— neglecting the case X < ¢, for any 1 < k < n, since asymptotic be-
haviour is the primal intention (formally infy := oo yields payoff 0 a.s.). The
corresponding probability of winning is given by (expression (13) simplifies)

va(T,) = P (X7, >r(Y,)) = zn: (tf;l /t: 0" k() d:z;). (14)

k=1
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For an optimal concurrent threshold rule T)* (by differentiation) the optimal
concurrent threshold #7 is solution of the following equation:

n

I Sl (e B O e ) RS

k=1

Otherwise, setting for example T,, := inf{l < k& < n : X; > t,} with
infy := n, the upper bound in equation (14) above should be replaced by

n — 1 and the extra term ¢"~! <for(t") o Ha)dr +1— r(tn)> occurs.

Example 2.26 Maximize P (XTn > Ynd) within 7, i.e. let r(y) = y¢ for
y € [0,1] where d € [1,00). The optimal concurrent threshold ¢ uniquely
solves

n

0 = Z ( d(k —1) k=2 n+ k(d— 1)t(n+k(d—1)—d)/d>

P n—k+d" n—k+d "

and the value v, (7)) of the optimal concurrent threshold rule T, whereof
some are given numerically in table 1 below for different d,

| | d=1] d=2] d=3[d=10[d=20[d=30]

n= 2 0.6667 | 0.7708 | 0.8223 | 0.9269 | 0.9591 | 0.9715
n= 3 | 0.6063 | 0.7196 | 0.7773 | 0.9007 | 0.9418 | 0.9581
n= 4 0.5808 | 0.6973 | 0.7575 | 0.8886 | 0.9334 | 0.9516

n= 5 | 0.5667 | 0.6849 | 0.7463 | 0.8816 | 0.9286 | 0.9478
n= 10 || 0.5407 | 0.6617 | 0.7255 | 0.8684 | 0.9193 | 0.9404
n= 100 || 0.5196 | 0.6427 | 0.7082 | 0.8574 | 0.9114 | 0.9341
n=1000 || 0.5176 | 0.6409 | 0.7066 | 0.8563 | 0.9107 | 0.9335

Table 1: The value P (XT;; > Ynd) of the concurrent
threshold rule T, which is optimal within 7,°.

is given by the formula

& d
P (X2 V) = D )T ()
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The first column of table 1 fits searching exactly the overall maximum and
its probability converges down to v} ~ 0.5174, see remark 2.11 i). How-
ever, to what extent does the last row represent the actual asymptotic value
with respect to (7,7),cn? To specify: Keeping r'(1—) fixed (taking r € R}
with r'(1—) < o0), how does t¥ converge to 1 for n — oo and what is the
corresponding asymptotic value (lower bound for v’ (r/(1—))? This will be

answered in the next paragraph.
Asymptotically Optimal Sequences of Concurrent Threshold Rules

Now the sets 7.¢ of concurrent threshold rules are investigated asymptotically.
For this purpose let r € R{ with d := r/(1—) € [1,00), excluding r'(1—) =
oo and dropping the case r(1) < 1, see theorem 2.22 and the preceding
considerations on page 36. It can be assumed that r(y) = dy — d + 1 for y
sufficiently close to 1, since the probability for the event [Y,, < yo] becomes
arbitrarily small for any yo < 1 as n becomes large — other relax functions
with derivative d at 1 will coincide in asymptotic behaviour.

The asymptotic probability of winning for the sequence of concurrent thresh-
old rules with concurrent thresholds (#, ),y is developed (threshold #, is ap-
plied simultaneously to Xi, ..., X, for each n € N): Evidently ¢, should tend
to 1 as n — oo. A concurrent threshold rule corresponds to a binomial ex-
periment (each time: exceeding the threshold or not) and therefore n(1 —t,)
represents the mean number of items exceeding t,,. If n(1 —t,) converges
to 0 resp. converges to a positive value resp. diverges to co, the number of
items exceeding concurrent threshold ¢,, will (heuristically with regard to the
probability of winning) be insufficient resp. is moderate resp. is oversized:

Lemma 2.27 Letr € Ry where d :=r'(1—) € [1,00). Let thresholds (ty), oy

specify the sequence (T,), o of concurrent threshold rules.

i) If lim n(1l —t,) =0, then nli)rglo va(T,) = 0.

n—oo

i) If lim n(l —t,) =: p € (0,00), then

n—oo

lim v, (T) = h(p,d) := de_“z e

n—oo

i) If lim n(1 —t,) = oo (divergence), then lim v,(T,) = 0.
n—oo

n—oo
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Proof: For n € Nlet K,, denote the number of objects exceeding concurrent
threshold t,,, K, ~ B (n,t,). The following inspections are meant for n — oo,
which is equivalent to ¢, — 1.

i)

ii)

iii)

It is sufficient to prove that event K, = 0 (which is equivalent to
win 0) occurs asymptotically almost surely: P (K, =0) =" — 1 iff
nln(t,) = n(l —t, 4+ o(1 —t,)) — 0, which is true since t,, — 1.

Decomposition with respect to the number K, = 0,...,n of items
exceeding threshold t,,: P (K, = k) = (:)(1 — t,)*#"=*. Using Poisson
approximation this probability asymptotically equals e #u* /k!, where
poi=1limy, 0o n(1 —t,) € (0,00) (especially exists). The probability of
winning given K, = k > 0 items exceed threshold ¢, is (for n sufficiently
big, arbitrarily accurate) given by

P(Xp, >r(Y,)| Kn=Fk) = /01 (é(m—l—d— 1)>k_1d:1;

_ d_dfd-1y
ok ok d
(by rescaling). Consider P (Xyp, > r(Y,,) and K, =0) = 0. Thus the

limit behaviour of these values is as follows:

P(Xp, >r(Yn) = zn:P (Xg, >r(Y,) | Kn=k)-P(K, =k)

The probability of failure tends to 1, since, heuristically, ¢, — 1 too
slowly: Choosing item x, the critical value o(x) will be surpassed, for
too much items above threshold ¢, will occur. For given d = r/(1—)
let ¢ > 0 and choose ¢ = ¢(¢) € N such that ¢ > 4 (1— (1—1)%).
Now fix 6 > 0. Due to n(l —¢,) — oo it is possible to choose
n = n(¢, ) such that P(K, >¢) > 1 — ¢ is valid (a big n will be
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sufficient, since with regard to the central limit theorem P (K, > ¢) ~

o <(n(1 1) —c)/m> ~ <1>< (1 —tn)/tn> "2 1), Now

X7, denotes the first (thus choosen) item exceeding concurrent thresh-
old t,, X7, ~ U([tn,1]). Subsequent with high probability (at least
1 — ) at least ¢ — 1 objects beyond ¢, (possibly preventing a win) will
occur (these random variables are iid). The probability of failure is
estimated from below (for estimation of p take d + ¢ and ( — 0):

P (X, <r(Y,)) > P(Xg, <r(Yy)| Ku>c)P(K, > c)

> (1= [rwa)a-g
(1—/01 (%)H d:z;) (1—6)
(s

> (1-¢)(1-9)

Since ¢ and § are arbitrary small, P (X7, < r(Y,)) tends to 1. O

%

Theorem 2.28 Let r € Ry where d :=1'(1—) € [1,00). A sequence (t,),cx
of concurrent thresholds is asymptotically optimal (with respect to (T,),cn)
iff imyyoo n(1 — t,) = p*, where p* = p*(d) € [u1,00) (for 1 see remark
2.50 ii) below) represents the unique solution of the implicit equation

/“ et —1 g = e“—e“(l_lﬁ) (16)
w11y € a 7 '

In addition the asymptotic value with respect to (T,0), oy 5
v (d):=lim sup v,(T)= h(p*,d) = de " f;:i*(l—l—) =1 g¢ (lemma 2.27 11)).
n d

o'}
— 00 T€7;7,c 13

Proof: With regard to lemma 2.27 sequences where lim,,_,o, n(1—%,) is equal
to 0 or oo can be neglected. Now suppose i := lim, o n(1 —t,) € (0,00) (if
there are several accumulation points, subsequences with different asymptotic
probability of winning can be chosen). The asymptotic probability of winning
h(p,d) of that lemma is to be maximized with respect to pu:

0 1 —en/d

%h(ﬂad) = Td—h(/«%d)-
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Using the necessary condition h(p*,d) = (1 — e_“*/d) d/u, the repeated
derivation proves to be negative in its solution p* = p*(d) (if existing):

0? 1—em/d  gmut/d
| p—— +
e F e PR DT AT

<0,

since this inequality is equivalent to (d + u*)e /% < d: For y = 0 equality
would apply and for & > 0 the derivative of the lefthand side aa_u ((d + M)e‘“/d)
= —Le1/d < (. Furthermore h(u,d) is continuous for p € (0,00) and
h(p,d) — 0 as pp — 0 and as g — oo. Thus a maximum of h(y, d) is existing

and unique, called p*(d) and represents the limit of n(l — ¢,) for n — oo
O

C

of (tn ),y in order to be asymptotically optimal with respect to (7,°), cy-

The behaviour of y*(d) and the corresponding value is illustrated in table
2 below for d = 1(1)5(5)20, including its approximation according to the
subsequent theorem 2.29. Heuristically the asymptotic mean number p*(d)
of offers beyond the threshold is evidently increasing in d, since due to the
decreasing demands it is advisible to consider an increasing number of offers.
Equation (16) can (even for d = 1) not be solved explicitly, however the
following theorem clarifies the asymptotic relation between d and p*(d):

Theorem 2.29 Let the assumptions and notations of theorem 2.28 be given.
Then

p(d) ~ In(2d+1) as d — oo. (17)
Proof: Setting ;1 = p* the equation h(y,d) = %(1 — e~#) is transformed

(rearrangements are valid since d is an upper bound for the absolute series):

(1-— e_“/d)

(1 — e/

(1-— e_“/d)

o

®

i
e
?S‘t
o

|

—

T :
N

o
N
| =
Il
Tl Bl T
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]+1 x© J+i d
p B s
= (1
Z( ;! dﬂlz;z’!(j+i)> (1= ™)

— M
I (=1
Swaig = Xy ()
= d’ = (J+ DI \d
i(—l)’ﬂi =0 (18)
: Tdi 7
7=0
where for j € Z abbreyiations a; = aj(p) = ]-I—l ery T, l“;::_ll and
B =pBi(p) = a;(p) — (}T are used. In the sg(jluel p > 0. |
Estimation oj(p) < (l;-|-1) em S (i) (l;-l—l) 1—; < (jil)! for y € N.
Particularly fBo(p) = —e™ and fi(p) = % and estimation §;(u) < 0

it

and if j > 2 and g > 2 then |3;(u)] < ]—l—l)

Dividing equation (18) by Sy and grouping with respect to powers of the new
variable © = a(y, d) := ég—; = —(e" — 1) € (0,00), the equivalent expression
1—:1;—|—Z’yj:1;jzﬂ (19)

with new coefficients v; = v;(u) = (=1)8;87" /8] = (=1)/|8;] ¢ (55)’
for j > 2 results. Set F,(x) := Ejoz’ijj, convergent for x € [0,00) and
pe (0,00) — gl + 1) < et () =i 6,0 Now Fufe) = ofl) for
p — oo uniformly in z € [a,b] with 0 < a < b < co: J,,; is nonnegative and
if ;1 € [2,00) then 4, ; is decreasing in j > 2. On the other hand if j > 2 then
duj =o0(1)as pp \(0oras py — oo (by the rule of de I'Hospital) and maxima of
§,.; with respect to u lie on the implicit curve j = p?(e** —1)/(1+e*(u—1)),
where the right side is positive, increasing in p and exceeds 2 for p = 2.

Therefore the maximumof ¢, ; for g > po and j > 2 is attained in d,, 2 = o(1)
as pop — oo. Thus d,; = o(1) for 4 — oo independent of j > 2 and thus
F.(z) <o(1)(e®—b—1)=o0(1) as pp — oo uniformly in z € [a, b].

Since according to theorem 2.28 the equation 1 — x4 F,(¢) = 0 has a unique
solution x for fixed p, it is given by « = (e — 1)/(2d) 4+ o(1) as pt — oo and
its limit is 1. Thus d ~ (e* —1)/2 or p ~1In(2d + 1) as p = p* = o0. O



2 OPTIMAL SELECTION IN DISCRETE TIME 46

(0 [ (@ [mEd 1) [ G (@.d) [ Fned + 1.4 |
1 1.5029 1.0986 0.5174 0.4974
2 1.9359 1.6094 0.6407 0.6324
3 2.2223 1.9459 0.7064 0.7019
4 2.4387 2.1972 0.7487 0.7460
5 2.6135 2.3979 0.7788 0.7770
10 || 3.1900 3.0445 0.8562 0.8557
15 || 3.5468 3.4340 0.8906 0.8904
20 || 3.8068 3.7136 0.9106 0.9105

Table 2: Optimal p*(d) and optimal asymptotic value
h(p*(d), d) within (7,7),,cy and approximations thereof,
referring to theorems 2.28 and 2.29 above.

Remark 2.30

i) The basic message of theorem 2.28 is the asymptotic behaviour of the
optimal concurrent threshold rule ¢ of P,: lim, o n(1 —t3) = p*(d),
with corresponding asymptotic value h(p*(d), d).

ii) In Gilbert and Mosteller [18] the case r = id resp. d = 1 is considered
and the corresponding term gy := p*(1) &~ 1.5029 is the solution of
equation g(p) == e * 3 ~, % = %(1 — e #). Here h(p,1) = g(p) and
hp,d) = dg(p) = de%g (451p).

As h(p*(1),1) = v ~ 0.5174 < 0.5802 ~ v}, = v’ (1) may indicate,
the inequality h(u*(d),d) < v% (d) may hold for any d € [1,00), see vi).

iii) Function h(p,d) solves the following partial differential equations (let
p € (0,00), d € (1,00)):

0 d _

%h(/«% d) = o (1—e/) = h(p,d)

3] 1 1

- - = = omwld _ —n
aal e d) = =hlpd) = —— (e e™).

iv) Regard function %(/,L) = h(p, (e* —1)/2), i.e. regard the value referring
to the approximation of p*(d). First h(u) is increasing in p € (0, 00),
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since it 1s the solution of the differential equation

d ~ 1 -~ 1 (e" =1) et — eMimmt L
@h(u) = hp) + 5 < > - :

et —1 2 et et —3

where the inhomogenous term turns out to be positive for p > 0.
Second h(y) — 1 as u — oo (in accordance with theorem 2.22 where
also only concurrent threshold rules were used), which is verified as fol-
lows (set d := (e#—1)/2): In expression de™* E;’;l(—l)j"'le“ozj_l(/,c)/dj
the leading factor converges to 1/2, the first term of the series, j = 1,
equals 2, whereas for j > 1 the j-th term is O (/,Lj_le_“(j_l)) = o(1)
for i — 0o, since efaj(p) = O (W ~ter).

1

h(p(d),d) > h(ln(2d +1),d)

123 45 6 7 8 9 10111213141516 171819 20

Figure 3: The value v% (d) = h(p*(d),d) for d =1,...,20
(dots) and the approximative curve h(In(2d 4+ 1),d) for
d € [1,20] where d := r'(1—), see remark 2.30 v) below.

v) In figure 3 values v7 (d), asymptotically optimal within (7,%),cy. are
plotted for different d := r/(1—) € [1,00): First for fix d exact values
p*(d) and probabilities of winning v’ (d) = h(u*(d),d) are computed
(according to theorem 2.28). Second the approximation h(ln(2d+1),d)
from below is plotted, according to theorem 2.29. Due to r < id the
relation v’ (d) > v (d) > vf; ~ 0.5174 is valid (dashed line in the fig-
ure above) and a rough estimation from below is h(In(3),1) ~ 0.4974
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(based on theorem 2.29 and indicated by the baseline in the figure).
Relation to the finite case: Fix d = r/(1—) € [1,00) and let 77 = T,5(r)
denote the optimal concurrent threshold rule, n € N. Varying func-
tion r € R} while preserving derivative d, then v, (T (r),r) € [05,1).
In case of r = id then v,(T) decreases in n whereas for r < id the
behaviour of v7(d) isn’t monotone in general. If d > 1 particularly
v (T(r)) may be bigger or lower than v’ (d) = h(u*(d), d), since func-
tion r might fit (for y € [0,1 — ¢] where ¢ > 0 is small) function 0
(maximal probability near 1) or ¢d (minimal probability close to 7).
In other words {v, (T:(r),r) : r € R{ with v'(1—) = d} = (v3,1),
where d € (1,00) and n € N are fixed.

vi) Besides v (1) = v ~ 0.5802 and v% (co) = 1 the interesting question
how v% (d) behaves for d € (0,00) must be left open. Particularly it
may be possible that v (d) = 1 for d € (1,00] and it may be possible
that v’ (d) is continuous on [1, 00| with v% (d) < 1 for d € [1, 00).

The Myopic Stopping Time

The myopic stopping time referring to selecting an r—candidate means the
one step look—ahead rule referring to the subsequence of r—candidates (see the
corresponding paragraph on page 81): Compare the mean payoft of stopping
with the mean payoff selecting the next r—candidate (if any).

If there is one draw remaining, ¢/ = 1, the optimal and the myopic stopping
time are identical for any r € R — there is maximal one r—candidate to
choose yet. This already implies that the myopic stopping time can be not
optimal if » < ¢d for / > 1: The myopic stopping time compares the mean
payoff for accepting the present item with the scenario for selecting the next
r—candidate — regardless wether this myopic stopping time would really
accept the next r—candidate (in the case of proceeding). This difference
in anticipation and actual selection is possible as the proper inequalities
r(y) < bi(y) = r(1 — r(y)) < y in a nontrivial interval (b,,b;) indicate (see
figure 1 on page 25). On the other hand e.g. b, = by is possible.

Thus in short the myopic stopping time isn’t optimal in general, since its
stopping sets may miss closedness, though they may be monotone.
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Proposition 2.31 The myopic stopping time Sy, for problem P,(r) where
r € R stops in (x,y) € A with 0 < { < n remaining offers if x > r(y) and

x> !ir“l_"(y)/

i=0 r(y)

1

1/¢
2'(¢) d§]
Proof: If (x,y) € A} then s¢(z) = o'(x). Set (Ps)(n,z,y) := 0 and for £ > 0

Bs)n—t) = Yo [ gt e

confer page 83: Decompose with respect to the arrival time of the next
r—candidate: ¢ — 1 — ¢ non—r—candidates pass and (the first) r—candidate ¢
wins with respect to ¢ future values. Similarity to ¢(x,y) of (2) and (6). O

r(y)

Y
Figure 4: The stopping sets of the myopic stopping time S,

(inside Aj, axes reversed) aren’t monotone: r(y) = y* on [0, 1]
and / =1,...,20 (for / =1 coincidence with figure 1).

The stopping sets of the myopic stopping time seem to be not monotone in
general, see figure 4 above. For computations the recursive relation (with

reversed time index) (Ps)({+1,y) = r(y)(Ps)({,y) + f:(y) o' (&) dE for [ € 7y
with (Ps)(0,y) := 0 is useful.
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A Random Index to Take Any r—Candidate

In this paragraph the approach of the myopic stopping only to respect, in
case of proceeding, selection of the next r—candidate (if any; regardless of
its magnitude) is extended to the decision of stopping. Given relax function
R 3 r < ud, regard stopping times based on the following comparison: Either
take any present r—candidate or choose the next r—candidate (if any). In the
context of stopping problem P, such a stopping time is called random index
and denoted by I,. The indicated restriction leads to a rule based on the
information: The present maximum Y; exceeds a threshold ¢; (or not) and the
present value X; is an r—candidate (or not), for each time instant ¢ = 1,...,n.
Thus 1, is specified by a sequence tq,...,t,, assumed to be nonincreasing,
via

L= inf{l <i<n:t; <Y <o(X))} (20)
where infy := co. In any case t,, := 0 is advisible. The stopping sets of a
random index [, inside Aj are specified by vertical lines.

In terms of threshold rules this type of restriction means to specify a random
time .J,, for thresholds u; = ... =wuy,-y =1l and uy, = ... = u, = r(¥Yy,-1)
with random height (Y, := 0). Here J, := 14+ sup{1<j5<n:Y, <t}

(where supy := 0) meets random index I,,.

For n = 2 the value P (X, > r(}3)) f o(z) dx + fotl 1 —r(x) de is
maximal if #; is the unique solution of r( ) —|— o(t ) = 1. For n € N the value

vn(l,) =P (X, > r(Y,)) of I, according to t; > -+ > t,,, see (20), is

wit) = Y[ [ o]

=1

+ i > !( ﬁ >/t:1 (/T:y) 0" () dw) dyj] (21)

1=2 k=741
by decomposing with respect to [[, = i|: The first sum covers the case
[Yio1 < t; and X; > ¢;] for ¢« = 1,...,n, whereas the second term covers

the events [Y; € [t;+1,¢;) and X]_H < t]_|_1,...,X,'_1 < ti—p and X; > r(Y))]
forj=1,...,i—1wherei =2,...,n (take Yy := =1, ) 4 :=0and [, :=1).
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Since maximization of expression (21) seems unaccessible, a more simple ap-
proach to a random index (in general suboptimal random index) with an in-
teresting performance is displayed next: Suppose to stop in state (i,z,y) € E
with (z,y) € Ag, if the mean payoff of choosing the next r—candidate,
(Ps)(i,y), is not bigger than the mean payoff of stopping with any present
r—candidate. The smallest value to stop with then is r(y) and this means
comparison (Ps)(i,y) < (o(r(y))"~". This, with regard to theorem 2.13 i),
specifies uniquely the upper boundary value b,_; and the corresponding ran-
dom index is called I, (for fixed n; then ¢, = b,_; for i = 1,...,n with

bo := 0). According to the regular case (bf>1er+ is nondecreasing and propo-

sition 2.15 treats asymptotic behaviour. This random index I,, may be a sub-
optimal random index: Heuristically, supposing a threshold lower than b,_;,
the loss while accepting smaller values (i.e. @ > r(y) with s(i, 2) < (Ps)(7,y))
may be prevailed by the other (big) values.

In table 3 below for relax function r(y) = y* and n = 2(1)5,10(10)50, 100, 500

the threshold b,_; (interpretation: n — 1 items remain) and the value v, (1,,)

n H gn—l ‘ bn—l H Un(Tn) ‘ Un(-[n) ‘
2] 0.7245 0.6305 0.9498 0.9611
3| 0.8427 0.8153 0.9389 0.9742
4
3
0

0.8897 | 0.8768 0.9401 0.9858
0.9151 0.9076 0.9449 0.9923
1 0.9605 | 0.9589 0.9631 0.9904
20 | 0.9809 | 0.9805 0.9679 0.9782
30 || 0.9874 | 0.9873 0.9680 0.9738
40 || 0.9906 | 0.9905 0.9678 0.9716
30 || 0.9925 | 0.9925 0.9676 0.9702
100 || 0.9963 | 0.9963 0.9670 0.9677
300 || 0.9993 | 0.9993 0.9662 0.9662

Table 3: Maximization of P (Xs > Xf) based on random indexes:
Threshold b,-; and the value v,([,), besides the value v,(I,)

based on (asymptotic) approximation b,_; of each threshold b,,_;.

are computed. For example if n = 5 t_hen t1 = by ~ 0.9151 and ¢, =
bs ~ 0.8897, and if n = 4 then t; = b3 =~ 0.8897. The approximation

bo_1 == 1—0.3695/(n — 1) of b,_; for n > 1 refers to a(4) ~ 0.3695 (see
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example 2.14 and proposition 2.15), the corresponding random index based

on thresholds b,_; > --- > by being called I,, (by := by := 0).

In table 3 the values prove to be not monotone in n and v,(I,) < v,([,)
is possible, the approximative thresholds may lead to a better performance.
Particularly for n = 2 the value of the optimal random index is approxi-
mately 0.9620, referring to the thresholds ¢; ~ 0.5920 and t; = 0, where t;
uniquely solves t] + /#; = 1.

In figure 5 below the value v,([,) is plotted for n = 1(1)10(5)50 where
r(y) = y2, %, y*. While lim,_,o n(1 — b,) = « is known (proposition 2.15),
an analytic description of the asymptotic value lim, . v,(I,) for r € R}
with r/(1—) € (1,00) via expression (21) seems to be unaccessible. The
question wether the values converge for n — oo as they suggest in the figure
below must be left open — if they do, then they may surpass the value of
optimal sequences of concurrent threshold rules and may improve their lower
bound for the value v’ (r/(1—)) with r'(1—) € (1, 00): See table 2 or figure 3,
where for example h(p*(4),4) ~ 0.7487 while here vso(I500) &~ 0.9662 results
for r'(1—) = 4.

1 e o000 hd ° . . . . . 09676
-:"""' . . . . . . . 08681
oo, . . . . . . R 0.7443
Va(ln)
n
0
1 10 20 30 40 50

Figure 5: The value v,(I,) of random index I, (based on
(b7)o<icn) for n = 1(1)10(5)50, where r(y) equals y*, 3> and
y* (corresponding sequences of dots from bottom to top).
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Remark 2.32 The approach of expression (21) can be adapted to specify
the value of the stopping time S, for problem P,(r) which uses the thresholds
ty > --- > t, and only accepts r—candidates, i.e. which applies boundary
functions t1 V r(y),...,t, Vr(y):

va(Sn) = zn:[t;i—l/t:g”—i(x) d:z;]

EE[ (I evw) [ o) ]

k=j+1

since the decomposition for the first sum remains unaffected, [Y;_; < ¢; and
X; >t fore=1,...,n with Yy := 0, while the decomposition for the second
sum is different: [Y; € [t;41,¢;) and X411 < tjp1 Vr(y),..., Xic1 < ticaVr(y)
and X; > t;Vr(Yj)] for j =1,...,i—1 where: =2,...,n (again set ), :=0
and ], :=1).
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2.1.2 The Markovian Case

Suppose to maximize the probability of choosing an r—candidate, r € R,
where the sequence of offers Xi,...,X, represents a Markov process. To
permit reasonable results in this Markovian case three minimal properties
are claimed:

1. The mean payoff doesn’t shrink if the chosen value grows.
2. Unique optimal boundaries exist (see preparation of definition 2.5).

3. The optimal stopping problem is regular.

Let a homogenous Markov process X = (Xj), o with state space [0,1] be
given. Homogeneity is assumed with regard to claim 3., see counterexample
2.35 ii), and [0, 1] is taken in order not to restate monotonicity criteria and
set R. Let conditional distribution function F,(¢) := P ( Xy < €| Xg = )
for ,£ € [0,1] and & € N be continuous and increasing in ¢ on the set
{z€R:0< Fy(z) <1} for € [0,1]. Let Y} := max{Xy,..., Xx} denote

the relative maxima, & € N.

Let P(r), where r € R and 1 < n € N, denote the corresponding opti-
mal stopping problem (see specification of the mathematical model in the
beginning of this chapter): The objective is optimal stopping of the Markov
process Z = (Zk)keZ+7 where Zy 1= ag, Zy = (k, Xi,Yi) for k. =1,...,n
and Zj := ao for k > n with payoff function is P (Xs > r(Y},)) according to
a nonanticipating stopping time S € §,,.

Suppose (x,y) € A and let { =n —1,...,0 denote the number of remaining
draws. Again let s¢(x,y) denote the mean payoff of stopping and let ¢/(x,y)
describe the mean payoff for proceeding at least one item and then choosing
optimally. Function p is again defined according to expression (4).

Suppose ¢ = 1: Stopping with the last but one item with @ > r(y) leads to
mean payoff s;(z) =P (x> r(X,) | Xno1 = 2) = Fo(o(2)), which should be
nondecreasing in x according to claim 1. A sufficient condition is F,(t) <
Fi(t) for t € [0,1] and (,€) € A: Then Fu(o(x) < Fu(o()) < Felo(€))
This suggests the following condition for the stochastic behaviour of X: As
X increases, Xy 1 should be stochastically nonincreasing, & € N:

P(Xepn Sa| Xp=¢) 2 P(Xp<a| Xp=() (22)
or Fe(z) < Fe(x) for x € [0,1] and (£,¢) € A.
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The subsequent lemma specifies the behaviour of function s¢(x, y) and ¢/(x, y).

Lemma 2.33 Regard problem P™(r) for a homogenous Markov process X
fulfilling condition (22). Let (x,y) € A be given and let { € 7.

i) If © > r(y), then s¢(x) is nonincreasing in { and nondecreasing in x.

i) ci(x,y) is nonincreasing both in x and y.

Proof:

i) Due to homogeneity the mean payoff s¢(x) doesn’t shrink as ¢ decreases,

ii)

since the requests for a win become easier to meet (not in a strong sense:
Take / =2 and X; = o = % implying Xy = X5 = 1, plus homogeneity).

Condition (22) implies s¢(x) is nondecreasing in x: The case { = 1 is
shown in the introduction above. For / > 1 resp. k < n — 1 fixed, let
Ge(x) =P (Yk’fl_z <z ‘ Xypy1 = f), where Y}, 1= max{Xy4o,..., X, }.
Then for (x,£) € A

g

se(x) = (:1; > r(Xpqr) and > r(Y)7,) ‘ X. = :1;)

ka+1 (Q(l’)) de(xk-I-l)
ka+1 (9(5)) de(xk-I-l)

o(¢)
< /_ G{90114+1 (Q(f)) de(xk-I-l)
= s(8),

where the last inequality is valid since the mass given by Fe — F) is
nonnegative.

As the present value = grows, future offers become stochastically smaller,
which implies less fortune for the selection in the future meeting the
claims demanded by y resp. « V y. On the other hand ¢,(x,y) is evi-
dently nonincreasing in y (since the requirements in order to select an
r—candidate grow), but it isn’t decreasing: Suppose @ <y < ( <1 and
take ¢ = 1, then possibly P (X, € [r(y),r(()) | Xpc1 =2)=0. O

This lemma provides regularity of problem P (r):
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Lemma 2.34 The optimal stopping problem P (r) for a homogenous Markov
process X obeying condition (22) is regular.

Proof: Let (z,y) € A with > r(y) and ¢ € N, Then decomposing with
respect to X,,_¢y1 = € and using monotonicity of lemma 2.33 ii) yields

(y) oo
c(rry) = [_ wq@w)ﬂ%@%+/ ver(E2y v €) dF(€)

0 r(y)

Zt[vqﬂdeﬂ@)‘/(wdﬁdE@)

[ee)

= Fy(x Cz1:1:y+/ se-1(&) dF,(8),
which leads to the estimation
Fx($)C(_1($,y) S C((l’,y) _/ S(—l(f) de(f)

Then, supposing s¢(x) > ¢(x,y) with £ € N, a sufficient criterion for the
desired inequality s,_1(2) > i1 (2, y) is

Fu(o)sen(z) > wuw»—/mwA@wﬁu@,

which proves to be true because the relation c(x,y) < si(x) < se1(x), see
lemma 2.33 i), leads to

[ sl dR© = 1 R seo)

verifying the regularity of the problem. O

Thus optimal boundary functions resp. optimal stopping sets for this Marko-
vian setting, in principle, are specified analogously to theorem 2.7.

Homogeneity of the Markov process X and condition (22) are in a sense nec-
essary to enable claims 1., 2. and 3., which is indicated by counterexamples,
chosen to be discrete to simplify matters:
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Counterexample 2.35 Indication and motivation for conditions posed:

i)

ii)

Dropping condition (22) may violate claim 1. and claim 2.:

Take n = 2. Suppose X; = 1 implies Xy = 0, thus choosing 1 would
be optimal. If now X; = 3 implies Xy = 4, then choosing 3, seeming
more useful than 1, could be not optimal: Take 3 < r(4). This effect
doesn’t even permit an increase of X, by the same amount X; does (for
example X; ~ U([0,1]) and X3 = 14 Xy), since at any rate function r
may dominate this increase.

Homogeneity of the Markov process X ensures regularity — claim 3.:
For a nonhomogenous Markov process X the optimal stopping problem
isn’t regular in general, since s¢(2) may be increasing in ¢ (see the last
argument in the proof of lemma 2.34, where the case X,,_¢y1 € (2, o(2)]
can’t be estimated nor circumvented):

Take n = 3 and suppose X; = 1 implies Xy = X3 = 2 where 1 > r(2)
would ensure a win of 1 unit. Besides suppose X3 = 1 implies X5 = 3
where 1 < r(3), which would lead to failure. Thus s;(1) < s2(1).
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2.2 The Ratio of Gambler’s Choice and Prophet’s Value

Suppose the payoff function f(x,y) = x/y (unless y = 0, where without
loss of generality payoff 0 is assumed), for which monotonicity criteria (1)
and boundedness in A apply. Thus P,(x/y) is regular. The mean payoft of
stopping in state (x,y) € A with y > 0 where ¢ € Z, draws remain is given
by

v, . z/y ifl=0
se(x,y) = / ;d(f—l—/ EdCf = ;1;:(1(— lnyf)l) ifl=1
0 y 0 —yt= if 0> 1.

7—1 y

Thus s¢(x,y) is increasing in x inside A for any ¢ € Z, (since x/y is) and
then optimal boundary functions resp. optimal stopping sets are in principle
specified according to theorem 2.7.

If one draw remains then it is optimal to stop if the present value x isn’t lower

than B (y) = (1 — Ly)/(1 — Iny), since e, (y) = f7 €]y d¢ + ['1dE =1 Ly.

Regard problem P, with respect to the set 7, of concurrent threshold rules:
Supposing the concurrent threshold ¢ € (0, 1] the value of the corresponding
concurrent threshold rule T is given by (declaring payoft 0 if ¥, < ¢)

E(X7/Yy)

- Zt”“/ (6.6 d
= "Nl =)+t 2/51—1n d§+2t”‘ 1/ <£flg—£i1§‘>d§

3—3t2 4+ 2t%Int
4

n—1
01— ¢ 1— ¢+t
_I_ Ztn—f 1 ( ( ) > ,
2(0—1) (ﬁ—l)(ﬁ—l—l)
to be maximized with respect to ¢ by numerical methods (set ), := 0).
Particularly for n = 2 then t ~ 0.2220 solving 1 = 3t — tInt is the optimal
concurrent threshold, which yields mean payoff 0.8487. For n = 2 the payoft

maximal possible, the value v} is approximately 0.9171. This results by
regarding bi(y) (setting @ = y) and since threshold rules will be mentioned
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next this value is now verified in terms of threshold rules: Suppose threshold
t1 € (0,1] and 3 = 0. Then the value of the corresponding threshold rule
is given by fotl 1— 26 dE+ fti £(1 —1n¢) dé = 2+, —t1 + 2t71Inty, which
maximally attains approximately 0.9171 for threshold ¢; /~ 0.4242, the unique
solution of 1 = 2¢ — ¢Int in (0,1] (if the first item is taken, i.e. concurrent
threshold ¢ = 0, then the value is 3/4).

Now the value of stopping times referring to the set 7, of threshold rules
is displayed: The value of threshold rule T' corresponding to nonincreasing
thresholds ¢; > --- > t,, leads to an expression analogue to (21) by applying
a similar decomposition:

n

E(X;/Y,) = Z{tf_l/tilsn_i(x,x) d:z;]

=1

n ii l( ﬁ tk> /tjtjl (/tilsn_z(x,y\/x) dx) dyila

=2 y=1 k=741

where the first sum is computed on the previous page (for addend with index
¢ replace t by t,—¢) and where the innermost integral of the second sum
(whose lower limit now is ¢; instead of r(y) regarding (21)) should be splitted
at value y: This innermost integral from ¢; to y is easy to calculate (since
s¢(x,y) is linear in x) and the integral from y to 1 yields the result of the
previous page (replacing ¢ by y and now the upper bound for ¢ is n — 2).
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3 Optimal Selection
with Random Arrival Times

In this chapter iid offers arrive at random times, where also the interarrival
times are iid. A gambler intends to elect one object in order to maximize
the mean of a payoff function, while the time of selection is terminated by a
socalled horizon, which is fixed or random.

Mathematical Model

Let X1, Xy, ... be U([0,1]) (theorem 2.8 is adaptable). Set Xy := X, :=0.
Let Yy := max{X;,..., Xi} denote relative maxima, k € N. Y5 :=Y, := 1.
The relative arrival time of Xy is denoted by Ay, k € N, where A, A,, ...
are identically distributed with distribution function G where G(0) = 0.
The time horizon is a nonnegative random variable 7" with distribution func-
tion H — then [0, T] is the period the gambler is allowed to select an offer.
Let random variables X7, X5, ... and Ay, Ay,... and T be independent.

Set Ag := 0 and let By denote the absolute arrival time of object Xi: By, :=
Ag+ -+ Ay for k € Z, its distribution function being denoted by G,
For t € Ry let N, denote the number of items arriving in time interval [0, ¢]:
N; := sup{k € Z, : By < t}. Then random variable Xy, represents the
value with arrival time By,. Besides N := Ny := NT(W)(w) denotes the total
number of items arriving in [0,7]. Then Yy represente the overall maximum
thereof and the last offer arrives at time instant By. Then P(Ny=10) =1
and P(N € Z,) =1 since G(0) = 0 and H(oo) = 1. Set Ny := cc.

A decision of a gambler is restricted to epochs of an arrival, i.e. he is confined
to the embedded discrete time parameter Markov process Z := (Zk)keZJ,: Let
Zy := ap and Zy := (B, Xy, Vi) for k € Nwith By <T (i.e. 1 <k < N)and
Zk i= 0o for k € N with By > T (i.e. kK > N), where ag resp. a. denotes
the initial state resp. the final absorbing state. Transition probabilities are
evident. Defining E := Ry X A the state space of Z is EU {ao, 0o }-

The profit of the gambler choosing an object = with present maximum y is
denoted by f(x,yV Yy), where the bounded payoff function f: A — [0,1] is
assumed to be monotone according to the assumptions (1). Without loss of
generality f(0,1) = 0. Additionally set f(ao):=0 =: f(ow).

Let F; i= 0 (X0, X1,..., Xn,; Ao, A1, ..., An,; Ny) gather the information rel-
evant for the gambler until time ¢ € R, and let F := (Ft)teRJ, contain the
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total history. In this notation let & denote the set of stopping times with
respect to F where P (S € {By,By,...,By,00}) = 1 for S € § with the
convention that payoff inside event [S = oo] is f(Xu, Y) = 0 almost surely.
Given payoff function f a gambler watches the objective to maximize his
mean payoff according to stopping times in S, where it is assumed that the
payoff function f, the joint distribution of the draws and the distribution
functions G and H are familiar to the gambler, i.e. full information.

Now the optimal stopping problem is to find a stopping time in S attaining

sup E (f(XN57 YN)) :

Ses
Let P = P(f,U([0,1]),G, H) denote this optimal stopping problem. Let
v(9) := E(f(Xng, Yn)) denote the corresponding value where stopping time
S € Sisapplied. The value of P is denoted by v* := supgg v(5). In principle
existence of an optimal stopping time S is ensured: The general approach
of optimal stopping on pages 12f is appliable for the embedded,discrete time
Markov process Z, since P(Ik € N : Z; = an) =1 due to P (N < o0) = 1.
The main subject in this chapter is again given by payoff function 1) (%)
where r € R, see section 2.1: An offer x is called r—candidate (with respect
to Yn) if @ > r(Yy). Then the objective is optimal sequential selection of
an r—candidate — maximization of the probability P (Xy, > r(Yy)). It is
advisible to stop only if x is a present r—candidate, i.e. if © > r(y) where y
denotes the present maximum — in other words if (x,y) € Ag.

3.1 Random Arrival Times and Fixed Horizon

Suppose selection is terminated by a fixed point in time A > 0. For a state
(b,x,y) € E of the Markov process Z throughout this section let ¢ := h — b
denote the remaining time. The mean payoff of stopping in state (x,y) € A
with remaining time ¢ € [0, ] is

s(t,a,y) = E (f(:z;,YN) | Foot, Xn,_, =2, YN, , = y) ) (23)

Let ¢(t,y) denote the mean payoff of proceeding and then choosing optimally
(evidently depending on x only through y): ¢(0,y) := 0 and for ¢ € (0, h]

ctyy) = E(f(Xng, YN) | Fcts Ya_, =4, S" > h—t). (24

Finally let v(¢, 2, y) := max{s(t, z,y), c(t,y)} denote the value of this state.
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3.1.1 Geometric Arrival Times

Let the arrival times be geometrically distributed: P (4; = j) = pg’~! for
J € N where p € (0,1] and ¢ := 1 — p. Let n € N denote the horizon. This
optimal stopping problem is denoted by P,.

Lemma 3.1 The optimal stopping problem P, is reqular.

Proof: Let (z,y) € A and let n > { € Z, denote the the number of draws
remaining, which is written as an index for functions s and ¢ and v. Asin the
last chapter again regularity of this problem is verifed for a payoft function
depending on /: Let g¢(x,yVY,,) denote the payment in the situation specified
above, with the additional assumption gy < ge_1 on A for £ € N, which seems
to be indispensable to ensure the regular case. Now

¢ 1
se(y) = ) <£.>qu“1/0 ge(z,y vV ¢) d¢?

=0
£
. £ ! (6_1)’ clg—=1_7 l—j3
= (yp+9) gz(xay)ir/y ;ﬁmﬂ P ge(, €) d¢
= (yp+Q)£gz($,y)+p€/ (Cp+q) " gelx, ) d. (25)

Besides ¢ = 0 and for ¢ € N by decomposition
) = e+ | o6y v E) de (26)
> aeilo) o [t ac o | (6.6 de
~ Gt i) o (6.6 de

(yp+ @)eei(y) < Ce(y)—p/lsz_l(ﬁ,ﬁ) d€.

Given s¢(x,y) > ¢(y)for ¢ € N, it has to be shown that s,_i(x,y) > c-1(y).
It is sufficient to show

(yp+ @)se—1(x,y) > ci(y) —p/lw_l(ﬁ,f) d€,
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which proves to be valid due to the following calculations and estimations:

sz(y) —p/lsz—l(faf) d§

IA

(yp+ @) gelz,y) + pﬁ/ (Cp+q) " gele, ) d¢

1

o 1 (16040 0mrl&6 +plt 1) JRCRRES ic) de
= (yp+9) gele,y) + M/y1 (Cp+9) ™ gelw,¢) dC

—p/yl(&o +q) g (6,6) de

- [ 1 ((cr+0) / (60 i€) ac

(yp+ @) geoi (2, y) + pﬁ/ (Cp+a) " ger(2,¢) dC

IA

—p/yl@p + ) g (2, €) d€
- [ (oo / gs(e,) i) ac

= (yp+q) ge-a(w,y) + p(f — 1) /yl(Cp +9) (Cp+ ) gea(w,¢) dC
=) [t a0

= (yp+ ) geor(z,y) + p({ — 1)(yp + q) /1 (Cp+q) 2 gemi (2, ) dC
= (yp+ @)se—1(z,y),

since g = go—1 on A and since x <y < ¢, (. O
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An Optimal Stopping Time

A recursion formula for ¢/(y), analogue to lemma 2.6, holds (y € [b,_;,1]):

ce(y)

b7, (v) 1
C]Cz—l(y)+p</0 c-1(&,y) df-l-/b* ()84—1(fay\/f) df)

-1
1

= (q+ iy (0))eer(v) + / S (Ey v ) dE

by, (v)

_— ( 11 <q+pb;<y>>) - / :( SlEy v de (27)

1=0 \j=i+1

i

Now analogously to the last chapter optimal stopping sets can be specified,
see theorem 2.7: Assuming that s,(z,y), given in (25), is increasing in «,
the inverse (with respect to x) together with expression (27) above yield a
recursive representation of optimal boundary functions bj(y), which describe
optimal stopping sets A}, { € Z.

Selection of an r—Candidate

Now the problem of optimal sequential selection of an r—candidate is consid-
ered, i.e. payoff function 1p,(, j(z) with » € R (confer section 2.1). Then
for (z,y) € A expression (25) simplifies, s¢(z,y) = Lpai(z) - (o(z)p + ¢)°,
which implies slight changes of the representation (27). The myopic stopping
time in this context is specified next (it is consistent with the case p = 1 of
proposition 2.31 and not optimal in general as indicated there):

Proposition 3.2 The myopic stopping time Sy, for P,(r) where r € R pro-
poses to stop in state (x,y) € A with { € N draws remaining if © > r(y)
and

1/¢

LIS S (9 s [ .
x>r ]; Zrl(y)z<i>pl+lq]_l/()(Q(f)p—l-q) I gel — g 7

where relax function r is extended according to remark 2.18 ii).
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Proof: si(x) = (o(x)p+ )Z if > r(y) and for ¢ > 0 (confer page 83)

1

-1 -1 .
i+l j—i (—1—j
) = Lot X (v [ ot o s
=0 71=1 r(y)
by decomposition: Waiting 7 4+ 1 time units for the next r—candidate, where
1 non—r—candidates pass, and respecting the remaining number / — 1 — j of
epochs resp. the corresponding mean reward choosing r—candidate £. O

3.1.2 Exponential Arrival Times — The Poisson Process

Suppose the offers Xy, Xy, ... arrive according to a Poisson process with ar-
rival rate A > 0, i.e. the interarrival times A;, A,, ... are 1id with distribution
function G(x) := (1 —e™*) 1g, (x). Without loss of generality horizon h = 1
is assumed (else rescaling would lead to rate Ah), which is equivalent to rate
1 and horizon A. Then N = N is Poisson distributed with parameter .
This optimal stopping problem is denoted by Pi.

An Optimal Stopping Time

Lemma 3.3 The optimal stopping problem Py is regular.

Proof: Let state (x,y) € A be given and let ¢ € [0,1] denote the remain-
ing time. Again this problem is verified to be regular for a payoff which
depends on t: Let g(t,x,y V Yy) denote the payoff in the situation specified
above, with additional assumption that it is continuous differentiable in ¢
and %g(t,x,y) < 0. Then

S(t,l‘,y) = E (g(t7x7YN) | Fl—thNl—t = x7YN1—t = y)
- ! At )k
- (/ g(t,x,yvoczc’“-e—”( ,>>
— \Jo k!
— —)\t k
k:O

+ e M 1( (t,2,() N _>d§

= e MIg(t, x,y) + M ‘At(l":)g(tal‘a@ d¢,  (28)

@\
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and using %g(t, x,() < 0 gives the estimation

1
%S(t,x,y) < —A(l—y)e‘”“‘y)g(t,x,y)iﬂ/ e M=g(t, 2, () d¢
Yy

1 1
—AZt/ e Mg (t, 2, ¢) dC + )‘zt/ (e M g(t, ) dC.
v v

Functions ¢(t,y) and v(¢,x,y) are defined in the beginning of this section
(see equation (24). The optimal stopping problem P, is regular if

s(tyx,y) > et y) — s(u,z,y) > cluyy) Yu € [0,1).

Now a differential equation for ¢(t,y) with respect to the (remaining—time)
variable t is developed by considering a small time interval of length ¢ and
d — 0. Arrivals in (b — 4,b] are decomposed into the cases of no, one and
more than one arrival and relations are given in terms of o(d) for 6 — 0
(respect for the last term that the payoff function is bounded):

c(t+d,y) = [1=2A540(d)] C(tay)+[A5+0(5)]/0 v(t, &y V&) dE + o(d).

Arranging terms with respect to a difference quotient yields

t+8,y) — ct !
WLV ZAED) — ett) 4 [ olt €V €) de +of1).
0
Letting 6 — 0 results in the differential equation resp. in the estimation
a 1
grett) = “delt) A [ ot ey de (29)
0

> ALl [ (66 de (30)

Since all functions involved are continuous differentiable with respect to ¢
problem Py is regular if the following implication is valid:

0 0
s(t,x,y) > ot y) = aS(t,x,y) < aC(t,y) (31)

for t € (0,1). Now assumption c(t,y) < s(t, z,y) is applied to inequality (30)
and the assertion (31) is verified as follows:
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0
ac(tv y)

—M1—y) (6‘”“‘”9(% z,y) + At /1 Mgt 2, () dC)
+A 1<e—”<1—5> t,E,6) + At 1e—”<1—0 t€, d) d
/y g(1.€.6) /5 glt.€.0) dc ) de
—M1 = y)e Mgt 2 y) — N1 - y)/ e Mgt 2, ¢) d¢
1 1 ¢
) / N0y (¢ 2 €) dE + Nt / ( / M=y (¢ () d£> &

1
M1 = y)e MOVt 2, y) — A1 - y)/ e M=g(t, 2, () d(
Yy

Y

Y

Y

1 1
) / N g(t 0 €) dE + Nt / (¢ — y)e ™ g(t, ., ¢) dC
Yy Yy
1
= —A(l—y)e_”(l‘y)g(t,x,y)—Azt/ e MI=Og(t 2, () dC
Yy
1 1
d [ e gftn, ¢y dg + Xt [ e M glt,n, ) g
Yy Yy

0
Z as(tv L, y)v
due to monotonicity of g and the estimation below equation (28). O

Since the regular case applies for problem Py now a family of optimal bound-
ary functions b7 (y) and optimal stopping sets A7 := {(x,y) € A : @ > b (y)}
for ¢t € [0,1] is, in principle, specified. The sets A} are nonincreasing in t.

The Inhomogeneous Poisson Process

Suppose items Xi, Xs,... arrive at absolute times By, By, ... (inside time
interval [0, 1]) according to an inhomogeneous Poisson process resp. intensity.
Since functions mainly depend on the remaining—time variable ¢, let A(t)
denote the intensity of the process at time b = 1 — ¢, where A(¢) : [0,1] —
(0, 00) is continuous, and let A(t) := fot Alu) du.



3 OPTIMAL SELECTION WITH RANDOM ARRIVAL TIMES 68

It is noted that P (N, = k) = e_A(t)% (by mass—theoretic induction) and
4P (By <t)= )\(t)e_A(t)% (by using equivalence [N; > k| iff [By, < t]),
where ¢t > 0 and k& € N. Then according to expression (28)

1
s(t,e,y) = e_A(t)“‘y)g(t,x,y)+A(t)/ e 0= (t, 2, () d¢
Yy

and decomposition similar to lemma 3.3 (in terms of 0(d) as § — 0) yields

a 1

ac(tv y) = _)‘(t)(l - y)C(t, y) + )‘(t) / U(tv 57 (Y% 5) dfv
y

since (A(t+0) — A(?))/d — A(t) as § — 0. The monotonicity of the optimal

stopping problem is preserved (imitating the arguments used in the proof of

lemma 3.3, where the result is that finally the term A\, At resp. A%t = X\ -\t

has to be replaced by A(t), A(t) resp. A(t)A(¢)).

In the remaining part of this subsection the subject is optimal selection of
an r—candidate, i.e. payoff function f(z,y) = 1(y),1(z):

r—Candidates: Specification of Main Terms

Take relax function r € R, section 2.1, and suppose to select an r—candidate,
i.e. select an item which exceeds r(Yy ). Then expression (28) simplifies,

S(tv €T, y) = l[r(y),l](x) ) e—)\t(l—g(x))7
and differential equation (29) of the mean payoff of proceeding optimally is

Dett) = A1 —rleltn) +3 [ oltyv e e

r(y)

Comparing s(t,z,y) and ¢(t,y) leads to a family of optimal boundary func-
tions b;(y) and family of stopping sets A} := {(x,y) € A : « > bf(y)} for
t € [0,1], with lower resp. upper boundary points b, resp. b; where b} (y) = b,
for y € [0,b,] and b5 (y) = r(y) for y € [b;,1]. Alternatively t < h if A =1
and horizon h € Ry is taken. Again Aj represents the set of r—candidates.
Function b7 (y) is decreasing on [b,, b;], since s(t,x,y) is constant in y inside
A} and ¢(t,y) is decreasing in y.
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The difference between the values applying contiguous stopping times, the
analogue of proposition 2.17 i), is treated next:

Proposition 3.4 Let two stopping times S and gfor stopping problem Px(r)
be given (r € R, horizon 1). Let their boundary functions be denoted by by(y)
resp. bt(yl, t € [0,1]. Let B = supyejoSUPyepo,1 10:(y) — bi(y)].  Then
[0(S) —v(S)] <1 — e,

Proof: Given N = 0, v(S5) — v(g) = 0. The probability that the payoff
differs given N =n € N is bounded by

P<S7é§‘ N:n> = zn:P((Xk,Yk)ECBk)

k=1

< Y Bt
k=1

= 1-({1-5)",

Vzhere Cy := (D \ IN)t) U~(l~)t \ D;) and Dy :={(z,y) € A : x> b(y)} and
Dy :={(x,y) € A : x> b(y)} where t € [0,1]. Weighted summation yields

= (e)‘ -1 (ek(l_ﬁ) — 1))
1 — e

P(s#8) < @YX Na-a-o

Y

bounding the absolute value of the difference of the payoffs from above. O

r—Candidates: The Myopic Stopping Time

Regarding problem Py(r) with r € R the myopic stopping time suggests to
stop if the mean payoft selecting a present item isn’t smaller than the mean
payoff choosing the next r—candidate (if any) — the one step look—ahead rule
referring to the embedded subsequence of r—candidates, see pages 811.
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Proposition 3.5 Let problem Px(r) with r € R be given. The myopic stop-
ping time S, proposes to stop in state (x,y) € A with y < r(1) and with
remaining time t > 0 if © > r(y) and (extend r according to remark 2.18 ii))

1 L pAt(e()=r(v) _ 1
v (“y) T (/m,) o6 —(y) dﬁ))’ (32)

Proof: For (b,x,y) € Eand t:=1—b, s(t,z) = e M1=2@) for (2, 4) € AF,
else 0. The mean payoff selecting the next r—candidate (if any): Partition
with respect to the arrival time of the next r—candidate, where k& — 1 non—r—

candidates pass and his interarrival time is Erlang distributed with parameter
E and A (k € N; no further r—candidate implies payoff 0), confer term (41):

OO k
/ / ( A1—u)(1—e(¢ —)\u b) Zrk 1 )'(u_b)k—1> df du
1
_ A/ Au=b)(1=r(y) (/ A=) d§>
b ()

i.e. the arrival rate of an r—candidate is A(u — b)(1 — r(y)) and the term

in parentheses divided by 1 — r(y) represents the corresponding mean payoff
choosing the next r—candidate given there is one. Rearranging yields

1 1
\ / (e-m—g(s)—b(l—r( v)) / e~ Mu(e(€)=r(y) du) d¢
b
—)\1 ¢
_ / ( ) [G—M(Q(é)—r(y))];> d¢
Ae(é) —r(y))

e 19(5

w 0(&) —r(y) (
- / A1=b)(e(&)=r(v) _ 1 "
B @( —r(y)

The integrand e~ *e&)="() equals 1 on set {z € [0,1] : r(z) = 2} and then
subsequent fractions are according to the rule of de I’'Hospital, particularly

e~ Me©)-r() | 6_)\5(9(5)_’"(?4))) d¢

the fraction in the last line there represents A(1 —b). These terms agree with
section 4 of Bojdecki [6], where integration with respect to £ can be solved
first, because r = id is given. Evidently the myopic stopping time accepts
any item x > r(1) and any item with remaining time ¢t =0. O
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Similar to the discrete case the myopic stopping time for Py isn’t optimal in
general, since the corresponding stopping sets may miss closedness though
they may be monotone, see pages 48f. Particularly for 7(y) = y* stopping
sets are similar to figure 4 — the diagonal seems disregarded.

Remark 3.6 i) The myopic stopping time for problem P,(r), r € R!,
selects X in any case, if A} > 1 — (1 A ¢/X), where ¢ = ¢(r) denotes
the unique solution of equation I(¢) := fol ECCT_I dr(¢) = 1 (see remark
2.18 ii); I(c) is increasing in ¢, I(0) = 0 and I(1) > 1 for any r € R*,
since the integrand exceeds 1 on (0,1]). Particularly ¢(id) ~ 0.8044
and ¢(ry) < ¢(rz) if r; < ro in R (changing from r; to 7, masses move
to the left and since the integrand of I(c) is increasing in ¢ for r; a
bigger ¢ is necessary for I(¢) = 1). Thus ¢(r) € (In2, ¢(¢d)] holds (since
¢(e1) = In2 is not attained inside R).

ii) Let F denote the distribution function of X, Xs,..., assumed to be
continuous on R and increasing on R := { € R : 0 < F(x) < 1}.
Let r : R — R be continuous and increasing with r < ¢d on R. Then
s(t,x) = e MU=Fel@)) provided & > r(y) (the rate of arrival of an item
exceeding o(x) is A(1 — F(po(x)))). According to the investigations

_ _F(r eM(F(e(§)—F(r(y)) _
above (Ps)(t,y) = e MUI-Fr®) frl(y) X;(Q(;)_J;(T(y)) L dF(£). For the

inhomogenous Poisson process the term At each time has to be replaced
by A(t), as the direct generalization of the proof of proposition 3.5
shows (notations according to the paragraph on page 67).

The approach of Gnedin and Sakaguchi [21] in order to specify the value
w(A) 1= v(Sm) of the myopic stopping time for Py(r) via w'(A) can’t be
adapted straightforward: If 6 € (0,1) and offers below ¢ are ignored, then
boundary functions remain unchanged for offers U([,1]) and rate A(1 — d)
(except for items below ). However the corresponding value isn’t w(A(1—4§))
but it is the value of Py with new relax function r(x) := r((z — d)/(1 — 9))
(rescaled U(]0,1]), particularly equal to 0 for € [0, d]). The difference of the
values referring to r and 7 (with regard to a difference quotient) doesn’t seem
to be o(d) as & — 0. Particularly in case of r(2) = 2 for @ € (1, 00) then 7 <
ron [0, 1] and regardless taking the difference quotient (w(A)—w(A(1—4)))/d
and letting & — 0 then the value w()) is underestimated, though then the
approach can be adapted and specifically this value doesn’t vanish as A — co.
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r—Candidates: Selection with Recall

If permanent recall in the continuous time interval [0, 1] is allowed, then
choosing Yy at time 1 is optimal. Suppose however that recall of the present
maximum is restricted to time instants where an r—candidate arrives, which
signifies a new problem only for a relax function R 3 r < 1d — analogously
to restricted recall in the case of discrete time. This means optimal stopping
of the subsequence of r—candidates of the Markov process Z with recall. The
relevant states now are contained in [0, 1]? since a new offer only is considered
if it is a new maximum. Now regard problem Py (r) with this kind of restricted
recall:

Theorem 3.7 Regard P(r) with restricted recall, where R' 5 r < id. Then
stopping time S* := inf{By : (B, Yr) € A* for1 < k < N} is optimal
(set infy := oo), where A* := {(b,y) € [0,1]* : y > y*(1 — b)} specifies an
optimal stopping set (which has to be restricted to epochs of arrivals). Here
y*(t) € [0,7(1)) depends on the remaining time t = 1 — b and denotes the
unique solution in (0,r(1)) of

L at(e(€)—r(y) — 1 eMtle(w)—r(v)) _ 1
/ d¢ = 1+ (ely) —v)
y

o(&) —r(y) o(y) —r(y)

if fol ekt:é))_l d¢ > 1 and y*(t) = 0 otherwise. Regarding remark 3.6 1) then

v () =0 gf t <e(r)/A

Proof: The myopic stopping time stops in (¢,y) with y € [0,7(1)) if s(¢,y)

isn’t lower than the mean payoff recalling the maximum in the time instant
the next r—candidate arrives (if any, else payoff 0), see proposition 3.5:

e~ M(1=o(v)) > e—At(l—r(y))/l Melwve)-rv) _ 1 dt
N v oy VE) —r(y)
eMleW—rv) 1 /1 Me&)-r(v) _ 1
Yy

o(&) —r(y)

> dg

o) —r(w) > (y —r(y))

and rearranging yields

/1 ertle(€)-r(v)) _ 1 etle(w)=r(v) _ 1
v 0§ —r(y) '
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Let h(t,y) == [ g(&y) d6 =1 = (o(y) — v)a(y,y) € C'([0,1] x [0,7(1)]),

thus stopping in (t,y) is optimal if h(¢,y) < 0, where g(£,y) := %

h(0,y) = —1 and 2h(t,y) = )\fyl M=) ¢ — No(y) — y)eMew)—rw),
which evidently is positive for any ¢t € [0,1] if y € [0,7(1)).

On the other hand there is a unique threshold y(¢) € [0,7(1)) such that it
is optimal to recall the present maximum if it exceeds y(¢): h(t r(l)) = -1
(terms involving ¢ vanish synced) and if A(¢,0) < 0, i.e. if fo (£,0) de <1,
then y(t) = 0 and else y(t) € (0,r(1)) uniquely, since h(t,y) decreases in y:

2h(ty) = —gly,9) + f, F(&y) dE = (@'(y) = Dgly,y) — (e(y) — v) 2 9(y,v)

where f(€,y) = r'(y) I AT EEmL Here g(y,y) cancels. Now

calculating aig(y, y) and then rearranging the final term of %h(t, y) yields

(o(y) = y)5y9(y,y) = (()) ¢ Waly.y) + (e(y) — y)f(y,y). Estimating
o(y)—y

)¢
< 1, the inequality 2 59 h(t,y) < 0 proves to be equivalent to inequality

Q(y)—r(y)
fy f&y) dé < (oly) —y)f(y,y), which in turn is verified as follows:
Substitution yields fg(y)g)(y) “ti& dr(z + r(y)) whose integrand is non-

positive and nonincreasing in z (deriving leads to e 7% < 1—Mz+(Mt2)?/2 =
(1 + (1 — M2)?)/2). Thus inserting £ = y yields the desired inequality:
S £(€y) dE < (1= y)f(y,y) < (oly) — ¥)F(y.y) (as indicated £(¢,y) < 0).
So h(t,y) is decreasing in y € [0,7(1)) and increasing in ¢t € [0,1]. Thus
the stopping sets of the myopic stopping time are closed and they specify an
optimal stopping time according to Cowan and Zabczyk [11]. O

r—Candidates: Asymptotic Characterization of the Value Function

In this paragraph the value function v(t,z,y) will be specified for t — oo,
where the horizon is enlarged and the rate is 1 according to the introductory
remarks of this subsection. For a function h let h; denote the partial deriva-
tive —h Let r € R'. For (t,z,y) € E where v # b}(y) (according to its
deﬁmtlon on page 61)

| stz y) i s(t ) > et y)
(t2,y) = { c(t,y) if s(t,x,y) < c(t,y).

Fixing (z,y) € A with y < 1, for ¢ sufficiently big the lower case applies
e~ M(1-e(®) vanishes as t — oo and ¢t doesn’t, since the asymptotic
) ) ymp
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value for r = id is positive, which is also true if y € (0,1) is given as default,
and since demands relax for r < id). Applying the representation (29) of

ci(t,y) gives

Yy

v@&@&+/vm&o&)

(v) y

ltirag) = A (== et + [
Differentiation with respect to y yields

Uty(tv L, y) = )‘< - Uy(tv L, y) + ry(y)v(t, Z, y) + r(y)vy(t, Z, y)
+ oty y) - L=t r(y), y)ryly) + ot 1,y) -0 —v(t,y,y) - 1)

which leads to the retarded partial differential equation

Uyt(tv T, y) = _)‘(1 - r(y))vy(tv T, y) + )‘ry(y) <U(t7 T, y) - U(tv r(y), y))v

characterizing the value function v(¢, z,y) for ¢ sufficiently big, at least the-
oretically (boundary conditions: v(t,z,y) = s(t,z,y) for fixed ¢ > 0 and
(x,y) € A (see page 68) and particularly continuity of v(¢,z,y) on the
curve {(y,0;(y)) : y € [b;, ]} and discontinuity on {(y,r(y)) : v € (b, 1]}
since s(t,x,y) = 0 unless (x,y) € Af).

r—Candidates: Asymptotic Equivalence to the Discrete Case

In this paragraph the values of the optimal stopping problems P,(r) and
Px(r) where r € R are compared asymptotically as n and A tend to infinity.
To ignore small items (which become asymptotically neglectable) let a se-
quence (¢n), ey C (0,1) of thresholds be given, such that ¢, — 1 for n — oo.
Let p, := 1 — ¢, for n € N. Conditions for the remaining items beyond ¢, to
stay representative will be summarized in assumption (34) below.

Let X1, X5,... ~ U([0,1]), iid, and regard P,, n € N. Extract items beyond
threshold g,: Consider the subsequence X (n),..., Xre () ~ U([gn,1]), iid,
where 75 := 0 and 7j(n) := inf{k > 7,_1(n) : Xx > ¢,} for j € N (set
infy := o0) and the number of items K,, := sup{k € Z; : mx(n) < n} for
n € N, then K, ~ B(n, p,) is Binomial distributed. Besides 7(n) < 7(n+1)

for k € N if (¢,), o is nondecreasing.
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Consider Py, , resp. the Poisson process on [0, A,] with rate 1, where A, :=
np, — oo as n — oo. Now analogously items beyond threshold ¢, are
extracted and an iid subsequence uniformly distributed on [g,, 1] results. Let
L,, denote the corresponding number thereof arriving within time interval
[0, An], being Poisson distributed with parameter A,. For j € Nlet T; := B,,
denote the arrival time of the j—th item beyond ¢, where, setting oy := 0,
oj(n) == inf{k > o;_1 : Xi > ¢n} indicates its number within X, Xy, ...
(where infy := o0). L, = sup{k € Z; : B, () < An}-

The sequence of offers presented in P,, and in Py, may be assumed to arise
from the same probability space and to be identical. Therefore 7, = oy
for k € N. Then implications concerning probabilities within those optimal
stopping problems apply where the random variables are not linked.

Using Poisson approximation now random variables K, and L,, resp. its bino-
mial distribution Px, and Poisson distribution Py can by maximal coupling
be constructed (becoming dependent), such that their original distributions
are preserved and simultaneously

P (I(n 7£ Ln) = dry (PK”, PLn) < pn forn € N, (33)

where drv (Pk,, Pr,) := sup{|Px,(A) — Pr,(A)| : A C Z,;} denotes the
total variation distance and the estimation is given in Ross [27], page 465 (in
this situation the upper bound (1A ﬁ) -np? simplifies since \,, = np, — o).
Once properties of P, and P,, inside event [K, = L,| for any n € N are
detected then an asymptotic statement whose probability converges to 1 as
n — oo can be inferred concerning the complete optimal stopping problems.

Assumptions and notations for subsequent considerations:
Let r € R} with d :=r'(1—) € [1,00), then r(y) ~ dy —d+1 for y sufficiently
close to 1. As indicated and illustrated in the introduction above let

(Pn)pen C (0,1)  where  p, — 0 and npl — oo asn — oo. (34)

For example take p, = In(n+8)/v/n + 8 or take p, = n=* where a € (0,1/2).
Let g, := 1 — p,, denote the corresponding thresholds. Let A, := np,, denote
the length of the time interval of the Poisson process with rate 1, where the
total number of arrivals is N, . The requirements p,, — 0 and A\, = np,, — oo
as n — oo aren’t sufficient as the proof of lemma 3.8 ii) shows. Without loss
of generality monotone convergence is assumed. Some notations (n € N):
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resp. U5 denotes an optimal stopping time of P, resp. of P,,,.

resp. ﬁf\n denotes an optimal stopping time of P,, resp. of Py,
where offers below ¢,, are ignored.

resp. wy denotes the value of P, resp. of Py, (rate 1 on [0, A,]).

resp. w) denotes the value of P, resp. of Py, disregarding offers

below ¢, — 1.e. the value of stopping time gr*l resp. of ﬁ;n

Ignoring items below ¢, leads to suboptimality but preserves e,—optimality:

Lemma 3.8 There is a nonnegative zero sequence (), cx Such that:

i) v —e, < U < vl forn €N,

i) wy —en < wy < wy forn €N

Proof: Both proper inequalities on the right side are evident (p, € (0,1)).

i) By decomposition

ii)

Tlriis

v = P(Xgy >r(Ya) | Ya <o(qn) - P(Yn < o(gn))
+ P (Xgy > r(Y,) and Y, > 0(gn)) ,

where the first addend is bounded by a nonnegative zero sequence since
P (Y. <o(gx)) = 0"(an) < ((gu+d—1)/d)" = (1 —ps/d)", which is
o(l) as n — oo (take d 4 ¢ and let § N\ 0 for estimation of r).

Now the value v} represents an upper bound for the second term, since

P(Xs >r(Yo) and Y, > 0(g.)) < P <X§* > r(Yn)> where the first

event implies the second one.

Analogously to i) (with Yy = 0), based on the relation P (YNM < g(qn))
< ey (An(l—kp'n/d))’“ — e~ MnAnll=pn/d) — —pn/d "Z° 0 O

indicates that the optimal boundary function b}, which lies beyond

r(by,), increases faster than ¢, but not too fast: n(1l — r(b,)) remains finite
as n — 0o, where this limit is aa according to proposition 2.15 — restricted

to [b,

,by], i.e. separate from the boundary condition induced by 7 in [b,, 1].

The nearly optimal values v and w} become closely related as n grows:
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Lemma 3.9 There is a nonnegative zero sequence (0,),, o such that
v —6n < wy < UL+ n forn e N. (35)

Proof: For n € N condition on event [K,, = L,], which is with regard to the
aim of an asymptotic statement justifiable due to relation (33).

Let random data vectors D,, resp. D), contain the essential arrival times
of P, resp. of Py,: D, := (m1,...,7x,) resp. Dy, := (T1,...,Ty,). For
simplicity it is assumed that D,,, Dy, € R", filled up by zeros.

A discretized version d( Dy, ) of the data vector Dy, is constructed: Subdivide
interval (0, A,] into n subintervals of length p,, each. Every instant 71, ...,T,
is shifted virtually to the right end point of the corresponding subinterval it
is situated. The idea is to identify time point 7 of P, and right end point
Jpn of the time interval ((j — 1)pn, jpn] of Py, for j =1,...,n.

Assertion: The probability that these arrival times differ becomes negligible:

P(D, # d(Dy,)) = o(l) as n — 00. (36)

Given K,, = k (where k = 1,...,n), the arrival times 71,...,7; of P, are
distributed just as allocating k balls uniformly into n urns, multiple occu-
pancies excluded. Given L,, = k, the right—shifted time points T4, ..., T} of
P, are distributed as allocating k balls uniformly into n urns with multiple
occupancies ((T4,...,Ty) itself is equal in distribution to the order statistic
of dimension k). The probability that any two balls arrive at the same urn
becomes arbitrarily small:

The restriction to event [K,, = L, < cenp,] for n € N for any ¢ € (1,00)
is possible (with regard to an asymptotic inspection) due to the relation

P(K, <cnp,) =~ ® <(c— 1)x/npn/qn> —1as n— oo.

Suppose allocating [enp, | balls uniformly into n urns with multiple occu-
pancies. Then the probability of the event that no urn is met more than
once, the left side of (36), is given by n(n — 1)---(n — [enp,]| + 1)/nleenl,
which tends to 1 as n — co: Let m :=n — [enp, |. Stirling’s formula yields:

’ n —n n
nl o fnn"e N o~ enpn]
m! mmme ™ mm ’

where y/n/m ~ 1/y/1 —cp, ~ 1 as n — oo. Taking logarithms the assertion
n!/m! ~ nle"n] proves to be equivalent to

nln(n) — mln(m) — [enp,| =~ [enp,|ln(n)
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In(n) — [enpn] ~ In(m)

m

n o~ m,

which is valid since [enp, | /m =~ p,/(c—p,) = o(1) and since n =~ n— [cnp, |
subject to p, = o(1) as n — oco. This proves assertion (36).

Let ©(S,,) resp. w(Uy, ) denote the value of stopping time S, resp. Uy, for P,
resp. Py, conditioned on [K,, = L,], i.e. where items below ¢, are ignored.
For stopping time S, of problem P, let p(S,,) denote the corresponding con-
tinuous time stopping rule for Py, which takes state (b,x,y) by the state
(pn [b/pn] ,x,y), i.e. which defers the decision until the right end point
Pn [0/pn] of the time interval containing b. Now relation (36) implies that
w(p(Sn)) > v(Sn) — dn for n € N for a nonnegative zero sequence (d,),, -
Referring to optimal stopping times disregarding offers below ¢, this yields
(U)\n) > w(p (S*)) > U(S*) — &, where the outer terms represent the first
inequality of assertion (35) and it remains to verify the second inequality.

Construction of a Poissonian version p(D,,) of discrete arrival times of D,:
For discrete arrival time 7, = j define a virtual random arrival time Vj ~
U((j — 1)pn,jpa)) where k = 1,.... K, and j € {k,...,n}. Then V} 2 B,
for k=1,..., K, — provided there is an arrival 1ns1de ( — 1)pn, jpn), which
is true 1ns1de event [K, = L,] and [D,, = d(D,, )] due to the discrete arrival.
Resumed for & = 1,..., K, this means, conditioned on [K,, = L,]:

event [D, =d(Dy,)] implies Dy, 2 p(Dy). (37)

Let a stopping time Uy, of problem Py with the family of boundary functions
(b¢(¥))sepo,n, Pe given. This induces a randomized stopping time d(Uy,) for
Pn by applylng stopping time U, to the data vector p(D,,) in the following
sense: Suppose item X arrives at the time 7, = j resp. at the virtual instant
Vi(k=1,...,K,and j € {k,...,n}). Then select X; iff X; > by, _v,(Y])i.e.
suppose remaining time A, —Vj, for Py,. This is equivalent to: X; > r(Y;) and
an additional Bernoulli experiment with success probability £ succeeds, where
£:=g—inf{C € (1 —1,j] : br,—¢pn(y) < X,} with infy := j, particularly
accept resp. reject anyway if X; > by, —jp, (y) resp. if X; < by, _(j—1)p, (¥).
Now o(d(Uy,)) > w(U,,) — 0n, regarding relation (36) and (37). Referring
to optlmal stopplng times conditioned on event [K, = L,]| then relation

(S*) (d(UAn) > w(U)\ ) — 0, applies. This verifies the second inequality
of (35) and the proof is complete. O
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The preceding lemmas 3.8 and 3.9 result in:

Theorem 3.10 Let the assumptions and notations on page 76 be given.
Then the values of problem P,(r) and Py, (r) asymptotically coincide:

lim vy = i N 38

i (38)
An analogue assertion referring to accordance of the asymptotic value of
the myopic stopping time of problem P,, and P, depends on the behaviour
of its boundary functions, which isn’t evident regarding the corresponding
expressions of propositions 2.31 and 3.5 and regarding figure 4.
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3.2 Random Arrival Times and Random Horizon

In this section the arrival times of the offers and the horizon T are random,
the detailed mathematical model are given on pages 60f. Given relax function
r € R it is the objective to find a stopping time S € § maximizing

P (XNS Z T(YN)) .

Example 3.11 Suppose maximal two objects arrive: G = 1[; ) and p :=
P(T=1)=1-P(T'=2)€]0,1). The following threshold rule is optimal:

S*=1iX; >t :=(r+ g)_l <% \Y 0> and S* = 2 otherwise. The value
then is given by vf = p+ (1= 2p) + (1= p) ( f)2 o(€) d¢ — [} #(€) ).

Verification: Let X7 = x. sy(a) = p+(1—p)o(z) and ¢;(x) = (1—p)(1—r(x)),
with usual notation. Stopping is advisible if p+(1—p)o(z)—(1—p)(1—r(x)) >
0iff o(x)+r(x) > (1-2p)/(1—p). The latter term doesn’t exceed 1. Function
(o+r):1[0,1] — [0,2] is continuous and increasing and o(1) + (1) > 1. If
p =0, then # > r(1 — r(a)) results. For p € [1/2,1] it is optimal to choose
X; (which is evident if r = id and for r < id demands relax). O

Example 3.12 Let the number of items be uniformly distributed on {1, 2, 3},
1/3=P(T=1)=P(T'=2)=P(T =3), where G = 1}; o). The optimal

boundary functions and value functions (number ¢ of remaining draws):

(=1: by =r and vi(z,y) = { ig —_I_ gg;; i:i z :Eg; where (x,y) € A.

¢ = 2: On the one hand b3(y :—-+\/ —r2(y) + [\, 0&) dé for y € [b,. D]

(which is extended on [0,b,) by b, and on (bz, ] by r) and on the other hand
(1+9() ()) it @ > b3 (y)

vi(z,y) = { i <1 2 fr(y) df) o < b3(y) where (x,y) € A.

Verification: For £ = 1 take example 3.11 with p = 1/2. For { = 2 evidently
sa(x) = £ (1 + o(x) + ¢*(2)), recursion, straightforward since bj = r, gives

eay) = 3 (1= () + [}, 0(€) d€), which yield b3(y) and v3(z,y). C

For the case r = id where maximal three objects arrive see Porosinski [24].
A generalization of the uniform distribution of example 3.12 fails, see page 84.
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Since the remaining time is not known in advance, in this section s(b, x, y) and
c(b,x,y) (resp. si(x,y) and cx(x,y)) represent the mean payoff of stopping
and that of skipping the present item and then proceeding optimally in state
(b,x,y) € E (resp. (k,x,y) € E).

It is convenient to introduce the moment generating function of N,

m(t,z) = E (ZNt) = Z z"P(Ny =n), (39)

n=0

denoting the mean payoff in the moment of an arrival if the remaining time
is supposed to be t > 0 and where value z € [0,1] represents a boundary
subsequent values shouldn’t exceed (referring to U([0,1])).

The mean payoff of stopping in state (b, x,y) € E where x > r(y) is

s(ba) = E(m(T—bofx))| T =)

_ #(b_) /boo m(t —b, o)) dH(?). (40)

The Subsequence of r—Candidates

It is advisible only to select an item, which is an r—candidate referring to
previous offers. A transformation of the Markov process Z = (Zk)kez+ to
the subsequence concerning r—candidates is performed: Set 75 := 0 and for
k € N let, using infy := oo and Yy = 0,

7 = inf{n €N :my <n < Nand X, > r(Ys,_,)},

representing numbers of r—candidates. Now define for k € Z

(87 lfk:()
Rp:=1¢ (7%, B, X;,Y;) ifk>0and n < oo
Qoo if k>0 and 7, = oc.

Particularly 7 = 1 only if By < T. Setting £ := N x R} x A the state
space of the stochastic process R := (Rk)keZ+ is E U {ag, s}, where ag
resp. O denotes the initial resp. final state with f(ag) := 0 = f(aw).
Now R is a homogenous Markov process (due to Yo, =Y, VX, , the

definition of the 7, and due to independence of X1, Xs,..., A, Ay, ..., T). A

situation for a decision consists of a quadrupel (¢,b, z,y) € E. The transition
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probabilities result from the following expressions: P (Ry = ag) = 1 and
P(Rr41 = 0o | Rk = ) =1 for k € N (homogeneity) and

P(Ri=awx| Ro=ao) = P(B >T) = /00(1 _G(t) dH (1),
and for 5 € (0,00), £ € [0,1]
P(r=LB <BXi=Yi<| Ry=oq) = §/OOG(ﬁ/\t) dH(1),

and forz >k c N

P(Rk_|_1:Oéoo|Tk:i,Bi:b,Xi:J},}/;’:y)

1 /°°°° : o
= — r’'(y)P(Ny =1+ 7) dH(u
s ), AP ) dH(u)

and for ¢ >k €N, g€ (0,00), (£,() € A
P(Tk+1:ijj§67Xj§£71/;§§| Tk:lvBl:val:x7Y;:y)
= TN Y)(E—r(y))P(B; < (BA(T =) | T >0)

L L et _
= ) g [ GO A =) aH

1-H

if j>1,8>b,&>r(y) and ¢ > y and this probability equals 0 otherwise.
Here the fact is exploitet, that the joint distribution of X; and Y, given
X, > r(Y;) possesses virtually a one-dimensional density.

The natural filtration F := (Fk)keZJ, with Fi, := o (Xo, ..., Xg; Ao, ..., Ag).
Set Ry := (s. The set S of stopping times with respect to F is, without
loss, reduced

S ={5e€S:(S=k = Xy >r(Yy)) VE€N}
for any stopping time S € Sy define a related stopping time
{k if S=m < oo, for keN
So =

oo if §=cc.

So € Sp and 9y 1s a stopping time with respect to the filtration (ffk)kem.
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The transformed problem now consists of optimal stopping of the homoge-
nous Markov process R := (Rk)keZ+ with reward function fy, representing the
probability that the value x of state (i,b,x,y) € E remains an r—candidate:
foliybyz,y) = folb,x) = #(b_)fboo m(t,o(x)) dH(t) if H(b—) < 1 and
fo(b,z) := 0 otherwise, with additional convention fo(ao) := 0 =: fo(aw).
Then P (XS Z T(YN)) = fO(RSO) for S € 80.

The Myopic Stopping Time

The mean payoff of stopping in (b, x,y) € E in the general case is given by
expression (40). The mean payoff of proceeding until the next r—candidate
arrives is generally denoted formally by Ps and equals 0 if H(b—) = 1 and
otherwise, applying the transition probabilities of the preceeding paragraph,

(Ps)(b,y) . (41)

Here k — 1 non—r—candidates pass (k € N, payoff 0 if no r—candidate arrives).
Now s > Ps specifies the myopic stopping time or one step look—ahead rule
of epochs of arrivals, which in general proves to be not optimal, see page 48.

Subsequent the myopic stopping time is illustrated in situations where an
optimal stopping time seems intricate. Suppose deterministic arrival times:
G = 1] ). Then without loss of generality the horizon T is assumed to be
discrete: P(T € Z4) = 1. Let m := P (T = k) and let 7y, := E;’;k 7; denote
the tail probability where k € Z . Let state (k,z,y) € E with @ > r(y) be
given. Then the mean payoff of stopping is

l o
— _E Ik
S(k,l‘) - ﬁk 4 ;0 (l‘)
=k
while choosing the next r—candidate (if any) yields the mean payoff

Poka) = = 3 w3 ) [ st de

7=k+1 =1
_ = ﬁ]r]—k—l ! s(i
= >, = (y)/r(y) (5,€) d¢.
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In this situation for r = id and unrestricted distribution of T socalled stop-
ping islands may occur, see Porosinski [24] whose approach can’t be adapted
since the myopic stopping time isn’t optimal in general if r < id.
Particularly the problem of selection of an r—candidate where the number of
the draws is uniformly distributed on {1,...,n} seems to be not regular. In
case of r = i1d the myopic stopping time proves to be optimal, see the cited
article, and in the general case R 3 r < id already the proof that the problem
is regular (see section 2.1 or 3.1) fails. In addition there is a connection to
the problem of maximizing the duration of owning a temporary r—candidate
without recall, see the corresponding paragraph on page 97 of section 4.1.2.

Geometric Horizon

Let the arrival times and let the horizon be geometrically distributed: Let

P(A; = k) = p(1 —p)*! for k € N where p € (0, 1], including the case p =1
of deterministic arrivals G = 1 ), and let P (T' = k) = (1 —m)ffork € Z,
where 7 € (0,1) (the alternative geometric distribution is mentioned below).
Let this optimal stopping problem be denoted by P, .. Let ¢ := p(1 — ) /7.

Theorem 3.13 For optimal stopping problem P, (r) where r € R' the stop-
ping time S* = inf{l < k < T : Xy, > 2™} (with infy := co) is optimal —
take the first value above x*. Here x* € [0,7(1)) denotes the unique solution

n (0,7(1)) of

l+ql—2) _ /1 q g
1+ q(1 = o(z)) » 1+q(1—0(8))
if fol m dé¢ > i and x* = 0 otherwise (q:=p(l —m)/7).
The value of P,(r) — the probability of winning applying S* — then is

1
q 1
P XN ® Z r YN = / df
L B s § S e )

Proof: Suppose first that recall is allowed. The mean payoff of recalling
the value y € [0,7(1)) is independent of the time of recall since G and H is
memoryless (given the horizon hasn’t terminated the choosing yet; an offer
beyond r(1) ensures maximal payoff 1 anytime):

s(y) = WZ(l — W)kz <k>(1 _p)k_jpjgj(y)
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= 7Y (1-m)F(1—p+poly)"
k=0
m

T+ (I —m)p(1 —o(y))
1

14+ q(1—oly))

The one step look—ahead rule watches for the mean payoff of choosing the

maximum of y and the new offer in the moment of the next arrival (in
case of no further arrival payoff 0). The probability for another arrival is
P(A; <T)=¢q/(1+q) and thus the myopic stopping time stops if

1 q ! 1
TTql—oly) = ) Tral—oven ©

1
Ltal-y) / q .
1+ q(1 = o(y)) v 1+a(1—o(8))

Let h(y) := % fyl 1—|—q(1q— (5 df € CY[0,7(1)]). h(y) is increasing,
since H'(y) > 0 iff ¢'(y)(1 = 7)p ( + (1 =m)p(l —y)) > 0. h(r(1)) = 1.
h(0) > 0 is equivalent to fo 14—(17 d¢ < 1, i.e. take the first item if this
is true and else there is a unique solution inside (0,r7(1)) solving h(x) = 0.
Thus the stopping sets of the myopic stopping time are closed and realizable
(the mean payoff vanishes as time grows to infinity) and thus they specify
an optimal rule. If §* = oo then P (Xo > r(Yy)) = 0, including the case
N = 0 with resulting payoft 0 due to Y5 = 1.

The probability of winning applying S*: Since P (A4; <T) = ¢/(1 4 ¢) de-
composition with respect to the number & € N of arrivals and then with
respect to the number 7 = 1,...,k of the first value beyond x* yields

k k

P(Xs > r(Yy)) = Ly <JL> X}ﬂy*/qfﬁﬁwﬁ

l+ge=\1+4q = o

= <L>/ aCINE )k
B 1+q],:1 1+g¢ x*g pari 144
S d (1 e i1
B 1+C]1+C](1—x*);<1—l—q> /x*g (€) d¢

B q ' 1
= Tvgi—o / [T qd—2@) ©
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which in other words means: An offer beyond x*, called £, occurs with prob-
ability (1 —2*)/(1 + ¢(1 — 2*)) and the integral divided by 1 — 2* represents
the mean payoff choosing ¢ given there is one beyond z*. O

Evidently the optimal threshold is * = 0if ¢ < 1,ie. if p<7/(1—m). If
in theorem 3.13 alternatively P (T = k) = 7(1 — 7)1, k € N, is taken, the

Example 3.14 Suppose r(z) = dx for x € [0,1] where & € (0,1]. Then
fl — df =V1In(l + g(1 — x/9)) + ¢(1 — ). Therefore «* = 0 is the

z 14+q(l—g(¢
- . OtherWise
+49)—q

optimal threshold fdln(14+¢)+q(l—-0)<1iff J > m
x* € (0,9) uniquely solves equation % = J1n(l4q(1—a/9))+q(1-1).
Particularly @* = 0 if ¢ <1 and #* > 0 if ¢ > e — 1, whereas 2* € [0,9) in

case of ¢ € (1,e — 1]. The value of P, (V) is 1n(1+q(i+z(*1/§;);;q(l 9,

Taking p = 1 and ¢ = 1 this meets the geometric case of Porosinski [24]:
q¢=(1—m)/m yields 2* = 0 if 7 > 1/e and otherwise +* = =2, The optimal
probability of winning is —m In7 and 1/e, respectively.

Now for geometric horizon and general arrival times the myopic stopping
time is displayed: Let P (T = k) = m(1 — 7)*! for k € N and distribution
function G. Let (b, x,y) € E, where @ > r(y). Since [T > b] implies [T > [b]]
now P(T =i+ [b] | T > [b]) = n(1l —m)itlI=1 /(1 — m)t1=1 for i € Z,:

Sl + [b) — beofe) 71— 7y,

Due to (41) choosing the next r—candidate (if any) yields the mean payoff

(Ps)(b,y) = ZZT i /J+LbJ—b </1

7=1 =1 (y)

_ / §de- 33 i) GO + [b) = bye(1 — xp-!

S(6)d€ ) 46 )1 = 7

—_

(v) j=1 i=1
g Sl b))
S RGLC Z = (1-m)

= Loetrly)) / " () de. (42)
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where particularly the third equality sign is based on the following identities
(set z :=r(y) € [0,1) and let u > 0):

1 —m(u,z) 1 = = ; Iy
S - e (5 (o)

[ee)

- 1_2_22@(1\@9)
7=0

[ee)

—Z
7=0

— Z A (),

J=0

because events [N, < j] and [A; + -+ + Aj11 > u] are equivalent.
Exponential Horizon

Let the horizon be exponentially distributed, T' ~ exp(u) with p > 0, while
the distribution function of A; is G. Let (b, 2,y) € E where « > r(y). Then

(b = sta) = [ it gleppe ar (43)

independent of b due to memorylessness of T'. The myopic stopping time is
illustrated: Let y < r(1) and referring to expression (41) rearrange the order

of integrals (respect 1—;}1(6) L =t dG* P (u)dH(t) = I G (t) e rt dt):

0

(Ps)(y) = / ) (Zr’“*(y) / (6 de G*(k)(t)ue‘“t> it

k=1 r(y)
_ [ 5 Y R el LI C))
B /r(y) (©) dt 0 T—r(y) " !
1—s(r(r(y) [ .
R RGES

where the second equality sign is verified similar to the discrete case, see
below expression (42).
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Now the interarrival times and the horizon are assumed to be exponentially
distributed: Let A; ~ exp (A) and T ~ exp (i), where A, > 0 and v := p/A.
Let this optimal stopping problem be denoted by Py ,(r) for r € R.

By an appropiate limiting procedure problem Py , represents the limit of the
twice geometric case P, of theorem 3.13, in this sense the latter is more
general. However this problem P, , proves to be equivalent to the duration
problem Di,w see page 119, and therefore its solution is given in detail:

Theorem 3.15 For problem Py . (r) where r € R' with v := /X the stop-
ping time S* ;= inf{b € [0,T] : Xy, > a*} (with infy := oo is optimal —
take the first value above x*. Here x* € [0,7(1)) denotes the unique solution

n (0,7(1)) of

v+1—2a 1 1
L - 4
v+1—o(x) /xv+1—@(§) 3

if fol ;(5) d¢ > 1 and 2 = 0 otherwise.

v+l—p

The value of Py (r) — the probability of winning applying S* — is

v ! 1
P(XNs* ZT(YN)) = 7/‘|‘1—$*/*7/‘|‘1—Q(§) df

Proof: Suppose first that recall is allowed. Due to memoryless of G and H
the mean payoff of recalling y € [0, 1] is independent of the moment of recall:

_ [T ou—ew e gy, & _ v
) = e SE T ) RS =Ty

Regarding now event time recall, i.e. recall only in moments of an arrival, this
expresseion is compared with the mean payoff recalling the topical maximum
in the moment of the next arrival, which also is time independent. Since any
further arrival occurs with probability P (A; <T) = A/(p+A) =1/(v +1)

this means

v 1 1 v
Sl 2 u+1[;u+1—myvod5 (44)

v+1—y 1 1
Zr-=J -4
v+1-o(y) - /yV+1—@(§) )
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a condition verified to be consistent with selection in moments of an arrival
but without recall and with the infinitesimal look—ahead rule based on per-
manent recall in continuous time. This condition specifies when to choose an
offer independent of time and thus recall is redundant.

Let h(x) := Vfl’_"i;(”;) — fxl u-|—1 o df € CY([0,r(1)]). Now h is increasing,
since h’( ) proves to be nonnegatlve iff /() (v+1—2a)/(v+1—op(x))*>0.
If h(0 fo -|—1 df > 0 then take the first item, if any. Otherwise

the solutlon of h(x ) = 0 yields an unique threshold inside (0,r(1)), since
h(r(1)) = 1. Since the stopping sets of this myopic stopping time are closed
and realizable an optimal stopping time is specified. If $* = oo then the
mean payoff is P (X > r(Yn)) =0 (Xo = 0, including the case N =0 due
to Yo = 1).

The optimal probability of winning applying S*: Decomposition with respect
to the total number of offers and watching for the first one beyond z* yields

(dueto P(A; <T)=1/(r+1))
P(Xo 2 o)) = Y ((L) St [ e dg)
—|—V> )

- VL;((}/LY/;@H(&) dfé(l

v 1 - 1Nt
- V+1y+1_x*;<<y+1> /x*gj (g)d§>

1
_ 1 / v de.
v+l—a* Jv+1—0p(&)

in other words: Since the rate A of an arrival beyond a* is A(1 — 2*) (for each

arrival an additional and independent Bernoulli experiment), the probability
of an arrival beyond #* is A(1 — ™) /(g + A1 —2%)) = (1 —a*) /(v + 1 — a¥).
Besides the integral divided by 1 — x* represents the mean payoff choosing
an offer beyond x* given there is an offer beyond z*. O

Particularly z* = 0 is the optimal threshold if ¢ > A, since in mean the
process will end before an item occurs (in the proof the integrand then is
lower than 1 on [0,1)).
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Example 3.16 Suppose r(z) = Jx for @ € [0,1] where ¥ € (0,1]. The

condition for * = 0 is foﬁ m d¢ + % <lord> W If this is

not the case «* € (0,9) is specified by V”"H_x =In <M> + =2

+1-x/9 v
Particularly «* = 0 if v > 1 and 2* € (0,9) if v < eil ~ 0.5820, while
z* € [0,9) in case of v € [£5,1). The value of Py, (Jx), i.e. the optimal

1-9 ) v+l—z* /Y
v+l—x* —I_ v+l—x* 1 < v .

This is in accordance with the case ¥ =1 resp. r = id of Bojdecki [6]: Here
= 01if v > 1/(e — 1) and otherwise 2* = 1 — v(e — 1). The optimal
probability of winning is ;¥+In (”Vi) and 1/e, respectively.

Particularly take ¥ = 0.8. Then z* = 0 if v > 0.6959, approximately. For
example the value is 0.3773 if v = 1 and if v = 1/2, computing 2* &~ 0.2847,

the value is 0.4370.

probability of winning is
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4 The Duration Problem
Based on r—Candidates

In this chapter the full information case of the duration problem of Ferguson
et al. [14] (sections 3 and 4.2) is applied to r—candidates, where offers are
compared via relax function r € R (see section 2.1): On the one hand the
subject in this article is to select an item in order to maximize the upcoming
period until the end provided it proves to be best overall — here the item
finally has to emerge as an r—candidate (an overall r—candidate). On the
other hand it is the aim to select an item while proposing to own it as long
as possible until the moment where it is surpassed — here the criterion will
be the duration the selected item remains an r—candidate (a temporary r—
candidate). The concept of an r—candidate, notation 2.10, will be specified
in the corresponding subsections.

In this chapter the sequence X, X,, ... of offers is assumed to be independent
and U([0,1]) (see the final remark 4.20), relative maxima are denoted by
Yy := max{Xy,..., Xi} for & € N and stopping times refer to this sequence.
The corresponding optimal stopping problems are called duration of owning
an overall resp. temporary r—candidate and they are denoted by D°(r) resp.
D!(r) for given relax function r € R, where no recall as well as allowance of
recall is investigated.

Anytime the case r = id or r € R{ with 1/(1—) = 1 refers to the article [14].

4.1 The Duration Problem in Discrete Time

In this section let 1 < n € N be fixed and regard the specification of an
optimal, nonanticipating stopping time referring to the sequence Xy, ..., X,,.
This discrete optimal stopping problem, which is denoted by D2 resp. D!
corresponding to an overall and a temporary r—candidate, is investigated in
two subsections below, where the definition of an r—candidate will be specified
formally.

4.1.1 The Duration of Owning an Overall r—Candidate

For k =1,...,n the value X is called an overall r—candidate if Xy > r(Y},),
the corresponding duration then being n — k + 1. Selecting according to a
nonanticipating stopping time S, the duration of owning Xg concerning an

overall r—candidate is D := (n +1 =) - 1j(v,),1)(X5s).
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The prophet isn’t restricted to nonanticipating stopping times, but has com-
plete foresight. A gambler’s duration of owning an overall r—candidate is
bounded by that of the prophet, in every realization and thus also in mean:

The Prophet’s Choice

For any realization the prophet elects the maximum of the durations of any
overall r—candidate of Xy,..., X, which in mean leads to the payoff

/ 1 z (<y =) () [ (k> - <k : 1)]) e W

Verification: The prophet would choose the first overall r—candidate, i.e. the
first item a for which @ > r(y) holds, where ¥,, = y. Decomposing then
with respect to the number k of items fulfilling this property, the maximal
duration is n — 7, if there are ¢ not—r—candidates preceding the first of them
(where ¢+ = 0,...,n — k); the remaining k¥ — 1 r—candidates and n — k — ¢

not-r—candidates may be in any order: E:lz_ok(n — @)(n;_ll_’) = n(Z) — (kil)

(using > v, | (kil) = (m,;"l) repeatedly while telescoping Ef:k_l (kil) for
j=k—1,...,n—2, then (Z) occurs n times in place of k times). The factor
k reflects the number of positions the maximum y can take. O

_ 41

In the case r = id expression (45) corresponds with L3°" i = 2+ (there is

a single overall r—candidate, k = 1).

Example 4.1 For n € N the mean of the maximal duration of any overall
r—candidate of Xi,..., X, with r(z) = Jx for # € [0,1] where ¥ € [0,1) is
given by the concave function

v J(1—9m)

W) = = e

Verification: Reversing sum and integration in expression (45), the integral
vields 1/n (extracting factors), which gives

kzi; k(Z) L= - ”ii %(k Z 1) 91— 9)F!

k=1
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n—1
ko (n—1
— n- —<”k )ﬂ”—ka—ﬂ)k—l

k:lk—l_l
0 S /n—1 =1 /-1
_ T ﬂ”_l_kl—ﬂk - ﬂn—kl_ﬂ k—1
nl—ﬂz<k> (1=0)+ k+1<k> (1=9)
) 1 )
= — (1 —y! — 1—9" —n(l — 9yt
ne oyl ) (1 19)2( w1 =)0
) D (1 — 9"
_ ( )

11— T aa—ae

where the second sum in the third last line needs extra computation: Write
(1—-9)72(1— ﬂ)k+1/(k + 1) as an integral, and add and substract two terms
to get an expression according to the binomial theorem.

The case ¥ = 0 gives d,(0) = n (take the first item) and also the marginal
case  — 1 or r = ud is preserved: d,,(¥) — (n+1)/2 as J — 1 (applying
two times the rule of de "Hospital to the unified two last terms of d, (V)
altogether yields n 4+ (2n — n(n 4+ 1)9"71)/(2n) as ¥ — 1).

The concavity of d,(?), i.e. d/() <0, is equivalent to the nonpositivity of

4—2n+2n+ 1)) —n(n+ 19" +2(n—2)(n+ 19" — (n —2)(n — 1)9".

First dj = 0 and now let n > 2 and v € (0,1): d”(¥) < 0, since d’(1) = 0 and
d£l3)(19) < 0, where the latter in turn is true since dif)(l) =0 and d#)(ﬂ) <0
— in this last inequality only consecutive exponents of ¥ appear, with factors
which are integer multiples of the positive product (n — 2)(n — 1)n(n + 1).
Thus inequality d”(#) < 0 holds iff —1 429 — 9?2 = —(1—¥)2<0. O

Selection without Recall

The optimal stopping problem D¢ without recall seems not to be regular in
general. Let (x,y) € A. The mean payoff choosing = with « > r(y) is 1 if
¢ =0 and if / € N items remain 1t is given by

se(x) = ((+1)e'(x).
Alternatively proceeding at least one step and then choosing optimally yields

1

aly) = ry)e (v) + / ey v de
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which leads to the estimation yei—1(y) < ¢(y) — Efl o'71(¢) dé. Assuming

y
s¢(x) > ¢¢(y) this optimal stopping problem would be regular if

ylo™H(x) > (04 1)o(x) —5/1@“(@ dg

[ = (SBan-v) e

which in turn is valid if (£ + 1)/lo(x) < 1 iff @ < r({/({ + 1)) (for r € R}
with r/(1—) = «a this would require roughly + < ({ 4+ 1 —a)/({ +1)). Only
if the reverse inequality would imply that stopping is optimal, which doesn’t
seem to be evident, then problem D¢ without recall would be regular.

Selection with Recall

For problem D, with recall the duration is D := (n 4+ 1 —=5) - 1jv,)1)(Ys)
according to stopping time S. Heuristically the aim is to wait sufficiently
long in order to recall an item which will be an overall r—candidate and to
respect the simultaneous decrease of the (possibly) outstanding duration.

Theorem 4.2 An optimal stopping time for D°(r) with recall and r € R
— mazximizing the duration of owning an overall r—candidate with recall —
is given by S* :=inf{l <k <n : Y, >y ,}, whereyl =0 and y; for{ € N
is the unique solution inside [r(1/2),r(1)) of equation

(+1 _ b
(“Fen-) e = [ e (46)
y
The sequence (y?)fez+ of optimal thresholds is strictly increasing.

Proof: The mean of the duration choosing y € [0,1] where £ =0,...,n —1
items remain is s¢(y) = (£ + 1)0’(y). The one step look-ahead rule yields

cly) = yser(y)+ / Csen() de.

The myopic stopping time suggests to stop, if s,(y) > ci(y), i.e. if

) 2 e [ e de

(H%@(y) - y) oMy > /y1 o€ dt. )
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The corresponding stopping sets are monotone (let
ing si(y) > ciy), ie. inequality (47) and using (
(re(y) —y) o *(w)ely) and [] o1 (€) dE > oly) [, o~

inequality s¢—1(y) > cz 1( ) follows (leldlng by o(y ) > ), where 1 </ € N.

Let ¢ € Nand let A(y f o' 1 (“’1 (y) — )g ~Hy) € CH[0,r(1)]).
Now h(y) is decreasmg, because [(ﬁ— Dy — ((+1)o(y)] o 2(y)o'(y) < 0 iff
h'(y) is nonpositive. Besides h(0) = 01 HE) dE > 0 and h(r(1)) = —1/1.
Particularly for £ = 1 an optimal decision is given via threshold y7 := r(1/2).
Therefore a unique threshold y; € [r(1/2),r(1)) is specified by equation (46).
Thus the stopping sets of the myopic stopping time are closed and realizable
(since Y} is nondecreasing). Besides monotonicity y; < y3 < --- holds. O

y € [0 r(1)): Suppos-
Sro(y) —y) o y) <
£) d¢, the desired

While evidently y; tends to r(1) as { — oo the asymptotic behaviour of
second order is as follows:

Proposition 4.3 Let r € R} and a := r'(1-) € [1,00). The asymptotic
behaviour of optimal thresholds of theorem 4.2 is lim ((1 — y;) = ac, where
a = a(a) represents the unique solution inside (O,Tllzzxé)] of equation
a—1
atl—e

Proof: Assume r(y) = a(ly —1)+1or o(y) = (y +a — 1)/a in the neigh-
bourhood of 1. Then equation (46) yields an asymptotic relation as ¢ — oo:

1
(4+1y; +a—1 Ny Ha—1 g f—l—a—lf
)\ =S [{—
i a a i a .
Yo
yila+l4+1—al)+(a+l+1)(a—1)y; +a—1 Z_INQ
al a A

In order to get a second order specification of y; set e, := y;—1+f(a)/l for { €
N, where f : [1,00) — [0,00) with f(1) = In2 (heuristically and finally the
optimal threshold y; should decrease as a increases, 1.e. as the demands relax,
thus f(a) should be increasing and its range being contained in [In 2, 00), see
below). This produces, applying (y; + a —1)/a ~ 1 — f(a)/(al) + ¢/ a, the

following relation:

(fla)—te) (a—1 - ) +a* +a (1 _ fla) +m>“1 N

@
al al A
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Cancel 1/¢, drop term f(a)(a + 1)/¢ = o(1) and suppose &, = o(1/() as
! — oo, then this leads to a transcendental equation, which specifies f(a)
(its uniqueness, i.e. that of y;, will justify the assumption concerning &;):

fla)

a

(a—1)4+a+1 = ael@/e

preserving the case f(1) = In(2). Define g(a) := f(a)/a for a € [1,00). Now
g is positive and ¢ is differentiable if f is supposed to be. Then

gla)a—1)+a+1 = aed®

or G(a,g(a)):=g(a)(a—1)+a+1—ae?' =0, which by derivation reveals
d(a) = (1 +g(a) — e9@D) /(1 — a + ae??)). Since this term is negative, ¢ is
decreasing with range contained in (0,1n(2)]. Substituting its inverse — take
g(a) = o and a = h(a) — yields the expression

a—1
a+1—e’

h(a) =

where h : (0,1n(2)] — [1,00) is decreasing with A(In(2)) = 1 and ~(04) = oo
(see figure 6 on page 100). Thus the assumption ¢, = o(1//) is justified.
Resumed this means: Given «, specify « solving equation h(a) = a. Then
h(a)a = ag(a) = f(a) is the desired value to build y; ~ 1 — aa/?.

Besides f proves to be increasing: f'(a) = g(a) + ag'(a), which is positive iff
(14g(a)/a)/(1—g(a)) > 9@ (valid by estimating g(a)/a > 0). Particularly
F)y=9g(1)+4¢(1)=mn2+1/M(In2) = (3In(2) —1)/2~ 0.5397. O

Example 4.4 Let r(y) = y° for y € [0,1], i.e. let a = 7/(1—) = 5. The
following optimal thresholds y; (based on theorem 4.2) and approximating
thresholds y, := 1 — aa/{ (based on «(5) ~ 0.4391, proposition 4.3) result:

l 10 20 30 40 30 100
y; | 0.7952 | 0.8939 | 0.9285 | 0.9460 | 0.9567 | 0.9782
ye | 0.7805 | 0.8902 | 0.9268 | 0.9451 | 0.9561 | 0.9781
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4.1.2 The Duration of Owning a Temporary r—Candidate

The duration of owning a temporary r—candidate for a & = 1,...,n means
the period object X with Xj > r(Y}) stays an r—candidate with regard to
the remaining sequence Yi41,...,Y,. Selecting according to a nonanticipat-
ing stopping time S the duration D of owning a temporary r—candidate is
given by the number of time units the present r—candidate X remains an

r—candidate: D := E?:_g l[r(Y5+j),1](XS)'

The prophet’s choice in this context and the corresponding mean of the max-
imal duration of a temporary r—candidate seems awkward and inaccessible.

Selection without Recall

The optimal stopping problem D (r) without recall doesn’t seem to be reg-
ular in general. It is related to the problem P(r) of selecting an r—candidate
where the number of values presented is uniformly distributed on {1,...,n}:
The mean payoff of stopping in state (x,y) € A with ¢ € Z, remaining items
is evidently H—Ll Eﬁ:o o’(z) provided x > r(y). Apart from factor H—Ll this
coincides with the mean payoff of D!, given in expression (49) below (replace
y by « and presume x > r(y)).

Selection with Recall

For D! (r) with recall the number of time units Yy stays an r—candidate
matters, formally the mean of D := E?:_g I[T(YS*) 1](Y5) is the relevant
J )

functional.

Theorem 4.5 An optimal stopping time for D' (r) with recall where r € R
— maximizing the duration of owning a temporary r—candidate with recall
—is given by S* :=inf{l <k <n : Y, >y .}, whereyl =y; =0 and y;
for 1 < { €N is the unique solution inside (0,r(1)) of equation

-1
o)+ (1—y)) )
J=0

The sequence (y;),en of optimal thresholds is strictly increasing.

/ (6 de. (43)
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Proof: Suppose present maximum y € [0,1] where ¢ € Z, offers remain,
then the mean duration of owning y as an overall r—candidate is

sily) = (5+1)@f(y)+(1—@(y))z_:(J+1)@j(y) = Z@j(y)a (49)

by decomposing with respect to the number j + 1 of the item finishing the
beginning duration. For ¢ € N now let ¢,(y) represent the mean payoff of the
one step look—ahead rule, i.e. the mean duration choosing Y,,_s11:

cly) = yser(y)+ / Csen() de.

The myopic stopping time suggests to stop if s¢(y) > c(y), i.e. if

Yo = Y S+ [ oo
A0y o) = Y [ e 50)

The corresponding stopping sets are monotone: Let 1 </ € N, y € [0,7(1))
and suppose s¢(y) > ¢(y) (evidently for y > r(1) stopping anytime). Using
both of(y) < 0*(y) and o(£) > o(y) then inequality (50) leads to

)Y 0w > Y [ e der -,

which is equivalent to s¢_1(y) > co_i(y) (substracting (1 — y)o*~1(y)).

Let h(y) == Yi2o [, 0(€) d€ — o'(y) + (1 — y) Lizg @'(y) € C*([0,r(1)])
where ¢ € N. Now h(y) is decreasing, since h'(y) proves to be nonpositive iff
— [ﬁgf_l(y) +(1—vy) Eﬁ;i jgj_l(y)] o'(y) < 0. Moreover h(r(1)) = —1 and
h(0) = Eﬁ;i 0'(§) d€ > 0if £ > 1 and h(0) = 0 if / = 1 (in the latter case

even y = 0 could be chosen to stay optimal). Therefore a unique threshold
y; € (0,7(1)) is specified by equation (48).

Thus the myopic stopping sets are closed and realizable (Y} is nondecreasing)
and monotonicity y5 = y5 < y; < --- holds. O

Obviously y; * r(1) as { — oo while the second order behaviour is as follows:
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Proposition 4.6 Let r € R and a := r'(1-) € [1,00). The asymptotic
behaviour of optimal thresholds of theorem 4.5 s Zlim U1 —y}) = aa, where
— 00

a = a(a) represents the unique solution of equation

1_@—1 _ /Oef—ldg (51)

ae £

inside (0, o], where ay := a(1) ~ 1.3450 is the solution of 1 = ffa eﬁgl d€.

Proof: Regard equation (48) and suppose o(y) = (y — 1 + a)/a for y close
to 1. Then the asymptotic behaviour of y; as { — oo is given by

* 14 -1 % j {—1 y 1
yz‘|’a_1> « <y(—|-a—1> a (yg—l-a—l)
L/ L L/ RVVI N (e oy ),

J

Assuming y; ~ 1 — f(a)/l this yields (setting y; = 1 — f(a)/l + ¢ as in
proposition 4.3 again justifies ¢, = o(1//) by exactly the same arguments)

(1—%>Z+@§<1—%>j ~ gj%(l— (1—%>j+1).

J

The asymptotic behaviour as { — oo of either leftmost term is evident,

Zlﬁ_l (1— f(a)/(aﬁ))j o~ (1 — e/l /“) aﬁ/f( ) according to the truncated

7=0

geometric series and S 71 - <1 — M>] ~ Ei(—f(a)/a) — In(f(a)/(al))

J=0 j+1 al
according to lemma A.2 in the appendix (set 2y := —f(a)/a). This yields

@/ g (1— el @)~ g <1n(£) +v+1n (%) — Ei (—@)) :

Cancel In(?), introduce g(a) := f(a)/a (for a € [1,00) with range contained
n (0,00)) and respect remark A.4, then equation (51) results from

gla) 1 _ ¢
a+(a—1) 9 = a/ ; d€,
0

where f(a) = ag(a). Now analogously to the case of an overall r—candi-

date the inverse of g is displayed (g is differentiable if f is supposed to be):
Gla,g(a)) = 1— a—1,—g(a fg 1= g_ﬁ d¢ = 0, which by derivation reveals
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_e__ag;“) +4'(a) <“a;1@—9(a) — 1—;(;9)(“)> =0org(a)= 1/<a2 —a— azeg;z)_1> ,
which is negative since g is positive. Thus ¢ is decreasing and the inverse of
g(a) = o denoted by h(a) = a exists (also decreasing, with h(0+) = o0):

h(a) = 1/(1—&“(1—/:1_;_é d§>>.

Thus, given a, specify « solving h(a) = a. Then h(a)a = ag(a) = f(a)
yields the desired coefficient of the term y; ~ 1 — aa/l as { — oo.

Besides f(a) may be increasing: f'(a) = g(a)+ag'(a) proves to be positive iff
1+g(a)+(1—g(a))/a < 99 which is evident only if g(a) > 1. Particularly
F()y=g(1)+¢(1)=ar+1/h(a1) = ar(e* —2)/(e** — 1) ~ 0.8711.
Finally [° (€6 —1)/€dE = [° (em® —1)/€ dE = [j(1— e ™€)/¢dE. O

30 -

1
0

0 In2 ~ 0.6932 o & 1.3450

Figure 6: Function h(a) for D¢ resp. D! with recall (dashed resp. solid
line) reveals limy,o /(1 — y;) = f(a) via f(a) = ah(a) and a = h(a).
Particularly f(1) ~ 0.6932 resp. 1.3450 and besides f'(1) ~ 0.5397 resp.
0.8711. See the proof of proposition 4.3 resp. 4.6.

Example 4.7 Take r(y) = y° for y € [0,1], i.e. take a = r/(1—) = 5. For
some { the optimal thresholds y; according to theorem 4.5 and approxima-
tions y; := 1 — aa/l where a(5) ~ 0.7261, see proposition 4.6, are given:

l 10 20 30 40 30 100
y; | 0.6731 | 0.8275 | 0.8830 | 0.9115 | 0.9288 | 0.9641
ye | 0.6370 | 0.8185 | 0.8790 | 0.9092 | 0.9274 | 0.9640
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4.2 The Discounted Duration of Owning an r—Candidate

Suppose to maximize the duration of owning an r—candidate where future
epochs are discounted by an amount of § € (0,1) per period. For relax
function r € R' this socalled discounted duration problem is denoted by
Ds(r). Heuristically it is advisible to watch for a big item whose quality as
an r—candidate will last but on the other hand not to hesitate too long, since
the valence of periods decrease.

Suppose first that recall is allowed such that formally it is the objective to
maximize random variable D := (1 —4§) >, 5j1[r(Y5+j),1] (Ys), where selec-
tion according to stopping time S is applied (factor 1 — ¢ for standardization;
set payoff 0 if S = 00). The mean duration selecting resp. recalling object
Y. = y in epoch k € N then is given by

Sk(y) = (1 - 5)5k (1 + Z 5]P (y Z T(Xk-l-l)v RS T(Xk+j))>
7=1
1 —6)*
= 7( ) (52)
1 —doly)
(which simplifies if y € [r(1),1]). According to the statements on page 13
(and boundedness of the payoff by 1) the following stopping time is optimal:

S* = inf {Sk(Yk) > ess sup E(ss(Ys) | Xl,...,Xk)}. (53)
keN Sesk

Let w(y) denote the value of the duration with discounting, if stopping be-

low y € [0,1] is avoided. w(y) is nonincreasing in y since the set of stopping

times allowed shrinks. Now time invariance holds in the following sense:

ess supgest E(ss(Ys) | Xi,...,Xy) = w0(Yr). Applying this to the in-

equality given in (53), using (52) and setting Y; = y this leads to the relation

1-6
1 —do(y)

Since the left side is increasing in y and the right side is nonincreasing in
y and since this relation is independent of the epoch y occurs, a concurrent

w(y).

threshold rule proves to be optimal — this in turn is based on the X} and
therefore this concurrent threshold rule will also be optimal for the discounted
duration problem without recall.
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Theorem 4.8 For the discounted duration problem Ds(r) with or without
recall, where r € R and § € (0,1) is the discount factor, the stopping time
S*:=inf{k € N : Xy > «*} (with infy := oo) is optimal — take the first
value above x*. Here x* € [0,r(1)) denotes the unique solution inside (0,7(1))

of

1—55:1; = —%b(/xlﬁg(g)df) (54)

(or of equation (56) below) if u(d) := fol 1/(1/6 —0(&)) d¢ > 1 and 2* =0
(choose the first item) if u(6) < 1.

The value of Ds(r) — the mean E (D*) of the optimal discounted duration D*
applying S* — is given by (1 —8)/(1 — do(x*)) and (1 — §)u(), respectively.

Proof: The optimality of a concurrent threshold rule S is verified in the in-
troduction. Supposing concurrent threshold a € [0,r(1)) first Xg ~ U([x,1])
holds and second E (6%) = (1 — z) > §ai7t = (1 — 2)6/(1 — §z), leading
to the mean duration E (D) according to S (using expression (52)):

o - £ ()

1—46 ! 1
- 1—xE(5S)/x T da0) ©

(1—&5/1 1
= d¢.
o ), Tose) © (55)
Supposing = > 0, a necessary condition for maximal payoff is that its deriva-
tive
u—éwz/l 1 2 (1-6)§ 1
(1 —=106x)2 J, 1—1050(&) 1 —dx 1—14p(x)
with respect to x vanishes, which proves to be equivalent to
ol 1 1-6x
—df = = —. 56
[ ww® - i o0
Let h(z) := fxl #Q(é) df—%ligs(z) € C'([0,r(1)]). Now h is decreasing, since

B (z) = —o'(2)(1—6z)/(1=bp(x))*. Ifh(0) < 0, then x = 0 (selecting the first

item) is an optimal threshold, since positive thresholds lead to minor payoff.
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If 2(0) > 0, then h(r(l)) = —1/6 combined with continuity of h ensures
uniqueness of an optimal threshold in (0,r(1)) and A'(x) < 0 is sufficient for
the existence of a maximum. Altogether this shows, that a unique optimal
threshold inside [0, (1)) exists.

The mean E (D) for «* > 0 is computed by applying identity (56) to ex-
pression (55) and for x* = 0 it is given directly by expression (55). O

Remark 4.9

i) For fixed § an optimal threshold a* is invariant inside the set of func-

tions r € R', where o varies on (0,2") and remains unchanged on
[27,1].

ii) Given relax function r € R, there is a crucial 6o = do(r) € (1/2,1—1/¢]
such that @*(§) = 0 for § € (0,do]: Since function 1/;—_90 is increasing in
z € [0,1], the relation &, < r < id yields

| | | §
w0y = [ s [ wie < [ o =17

where the leftmost term doesn’t exceed 1 for § < §o(ud) =1 —1/e ~
0.6321 and the rightmost term remains lower or equal to 1if § € (0,1/2].
Besides do(r1) < 8o(r2) holds generally if ry < 7y in R

iii) Given relax function r € R!, the optimal threshold x*(¢) is nonde-
creasing in § (with regard to ii) above increasing only on [dg,1]) —
heuristically: Weaker discounting (growing §) allows upgrading the
requirements, i.e. z*. Furthermore it is heuristically evident, that
*(8) — r(1) as & — 1. Besides r; < 7y in R' doesn’t imply 2*(ry) <
x*(ry), as figure 7 indicates.

iv) The mean E (D*) of the optimal discounted duration D* particularly
for § = & simplifies to 1 — &g (since p(dg) = 1). For r = id in the case
0<a*=(1l—¢e(l—-245))/é the mean reduces to 1/e independent of 4.

Example 4.10 Some special cases treated here correspond to figure 7 below.

i) Let r(z) = da for « € [0,1] where ¥ € (0,1]. Then & = f~'(v) where
f~! is the unique inverse function of f : (1/2,1 — 1/e] — (0,1] setting
f(8)=(20—1)/(64+(1=06)In(1—¢)) —here f(1/2) =0, f(1—-1/e) =1
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and f € C'Y([1/2,1 —1/e]) and f/(6) > 0 for § € (1/2,1 — 1/€].
Particularly for ¢ = 1/2, where §o(2/2) &~ 0.5471 results, the optimal
threshold x*(d) for § € (dg,1) is determined uniquely by equation

9 — é J - —dzx
S 1—515/19 g + % = g [hl( - f)]x + % = §115i/19
The case ¥ = 1: do(id) = 1—1/e and «*(6) = 0V M (dashed line).

i) Let r(z) =1 —+/1—a, 2 € [0,1]. Then §p(1 — /1 — x) ~ 0.5747 and

I

the optimal threshold a*(§) for § € (50, ) is determined by equation
1-x x

fo 71 e d¢ = arctan <(1 :1;)1/ >/\/ (1-9) 51 5i651 -

iii) Suppose relax function r(z) = z*, x € [0,1], which leads to do(2?) ~
0.5610 and the optimal threshold x*(d) for 6 € (50, ) is determined by

[} e de = 2 [-356(2 + 6¢) — 61n(1 — 5¢)]., = L
1
x*(9)
0 : LA 'I
0 05 1-—1/e 1

Figure 7: The optimal threshold 2*(J) as a function of the discount
factor §, where relax function r(z) equals = (dashed line) or /2
resp. 1 — /1 — a resp. 23 (solid lines, see example 4.10 1), ii) and
iii), in the lower part of the figure from left to right, respectively).
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4.3 The Duration Problem
Referring to the Poisson Process

In this section offers arrive according to a Poisson process and the time
horizon up to which a gambler may select an offer is constant or exponentially
distributed. For relax function r € R, analogously to the discrete case in
section 4.1, the objective is to maximize the duration of owning an overall
r—candidate resp. a temporary r—candidate, specified and treated in two
subsections below — see figure 8 for an illustration of the difference.

An abstract of notations, analogue to chapter 3: A random number N of
offers Xi,..., Xy arrive at times By,..., By and T denotes the time hori-
zon. Xip,Xs,... are assumed to be U([0,1]), Vi = Xy V ---V X} and
By := A1+ -+ A for k£ € N, where Ay, Ay, ... are iid and exponentially
distributed with parameter A > 0. The time horizon T is assumed to be
constant (without loss of generality equal to 1) or exponentially distributed
with rate p > 0. Xy, Xs, ..., A1, Ay, ..., T are assumed to be independent.
N, denotes the number of items arriving during time interval [0,¢] for ¢t € R
while N := Ny denotes the total number of items offered, P (N € Z,) = 1.
The history is F := (Ft)teRJ,v where F; := 0 (Xo,..., Xn,; Ao, ..., ANy Ny)
for t € Ry. Let S denote the set of stopping times with respect to F with
the possible restriction to times of arrivals, as specified below. For marginal
cases set Xg := X =0, ¥Y5:=2, Y, :=1, By :=0, N := oo and set
r(2) :=1 for any r € R.

In this situation for r € R the problem of maximizing the duration of own-
ing an overall resp. temporary r—candidate is denoted by D§ resp. D} if
the horizon is equal to 1. If the horizon is exponentially distributed with
parameter y > 0 it is called D, resp. Di,u'

Three kinds of access are considered for problem D and D): No recall
(concerning the discrete time Markov process (B, Xi, Yz )1<k<n ), event time
recall (concerning the discrete time Markov process (B, Yi)1<k<n) and per-
manent recall (concerning the continuous time Markov process (¢, Y, )icfo,17)-
Recall proves to be unessential for problem D5 , and Di,u‘ Any process is
equipped with an initial state oy and an absorbing final state o, and payoft
of stopping in oy or a is defined to be 0. Stopping times for discrete time
processes are restricted to the times of arrivals, while for continuous time
they aren’t restricted.
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According to the sketch of optimal stopping on pages 12f the myopic stopping
time which refers to a sequence of offers is optimal if its stopping sets prove
to be closed and realizable. The latter is valid because the final state is
reached with probability 1, due to the final state and P (N < o) = 1. For
the continuous time process the infinitesimal look—ahead rule is considered.
Now for later reference some main terms for fixed horizon are resumed:

Lemma 4.11 Let r € R and let problem D3(r) or Di(r) be given. Let
s(t,x,y) resp. s(t,y) represent, dependent on no recall or recall, the corre-
sponding mean duration of stopping with (x,y) € A resp. y € [0,1] with
remaining time t € [0,1]. Three kinds of access of a gambler are considered:

i) If recall is not allowed then the problem is reqular if
a 1
geltey) £ M-ty e [ e (60
y

ii) If event time recall is allowed (concerning the discrete time Markov
process) then the one step look—ahead rule suggests to stop if

st 2 2 [ (ystu 4 / e de) a5

and s optimal if the corresponding stopping sets prove to be closed.

iii) If permanent recall is allowed (concerning the continuous time Markov
process) then the infinitesimal look—ahead rule proposes to stop if

0

Settn) = -+ [ 6)

and it 1s optimal provided the corresponding stopping sets are closed.

Proof: In this section function s(¢,x,y) resp. s(¢,y) proves to be differen-
tiable in ¢, bounded and continuous. For problem D and D} in case of event
[S > 1] the declaration S :=1 can be made with resulting duration 0.

i) The development is presented in the proof of lemma 3.3 of section 3.1.2.
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ii)

iii)

Compare the mean duration recalling y € [0, 1] and the mean payoff of
proceeding one item (if any) and then recalling the topical maximum:

1 1
s(ty) > A / ( / s(1—w,y Vv e A =0=0) d£> dw,
1-t 0

where the arrival time of the next offer ¢ is called w, the rate of an
arrival being AM(w — (1 — t)), and the maximum of y and the present
offer £ can be selected. This results in inequality (58). Through this an
optimal stopping time is specified according to the general approach of
optimal stopping on pages 12f (based on Cowan and Zabczyk [11]), if
the corresponding stopping sets prove to be closed.

Suppose present maximum y € [0,1]. Then the mean payoff of the §—
look-ahead rule is, supposing remaining time ¢t 4 ¢ and waiting a period

of length 6 € (0,1 — 1),
(=54 of8))s(t) + (46 0(6) (us(t) + [ s(4.9) de) + 006

= Sl AL sl 0 [ (0. dE ol

Hereafter it seems advisible to choose y with time ¢ + § to go if this
expression doesn’t exceed s(t + d,y), i.e. if

s(t+5,y()s—s(t,y) > _A(l_y)s(t,y)—l-)\/ls(t,f) d€ + o(3).

Letting § — 0 this yields the condition (59). If the corresponding
stopping sets additionally prove to be closed then this infinitesimal
look—ahead rule is optimal according to Ross [26] — in other words
stop as early as the infinitesimal operator (which is equal to the right
minus the left side) becomes nonpositive. In the cited article take
A = 0 and take ¢ = 0 then the set By is closed and specifies an optimal
stopping time (stopping times here are bounded by 1). O
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In figure 8 below the difference between the subjects of the next two subsec-
tions, i.e. between problem DY and D (referring to no recall), is illustrated.

1
Xy 1 ~— - LY =Y
X3 T o— T+ Y;

O T(Yg,)
Xl T O——------- T Yl = Y2
©)
X, 1 -
O
X5 *————
@)
O
0
A1 = Bl 32 Bg B4 BS 1

Figure 8: A sample path of (Xy, )iejo,1] with N = 5 where X}, resp. r(Xj)
is indicated by filled resp. empty dots, k£ = 1,...,5. For example X3 is
an overall r—candidate (with duration 1 — Bs, chosen in Bs) and X is
not (duration as temporary r—candidate is By — By, chosen in By).

4.3.1 The Duration of Owning an Overall r—Candidate

Maximizing the duration of owning an overall r—candidate without recall
means maximizing the mean of random variable

D = (T = 9) 1wy Xns),

which represents the remaining time choosing value Xy, provided he finally
proves to be an r—candidate with respect to Y. The horizon T is equal to 1
or exponentially distributed and selection takes place according to a nonan-
ticipating stopping time S with convention S = T in case of event [S > T
with resulting duration 0. If recall is permitted Xy, is replaced by Yy..
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Duration of Owning an Overall r—Candidate with Permanent Recall

Theorem 4.12 Let the duration problem D with r € R* be given. Then an
optimal stopping time is given by S* := inf{b € [0,1] : (b,Yn,) € A*} (set
infy := 1) with optimal stopping set A* := {(b,y) € [0,1]* : y > y*(1 — b)}.
Here y*(t), where t := 1—>b denotes the remaining time, is the unique solution

n (0,7(1)) of
/1 Ae(€) e = ()%t +oly) — y) eMe(v)

if At fol eMeE) d€ > 1 and y*(t) = 0 otherwise.
Proof: Recalling the value y with time ¢ > 0 to go yields the mean duration
s(tyy) = teM07eW), (60)

where the rate of an arrival of an item beyond po(y) is A(1 — o(y)). Now
9 _ (1= . .. . . .

5s(ty) = <1 — At(1 — g(y)))e t-e®) je. s(t,y) is increasing in ¢ iff
At(1 — o(y)) < 1 and therefore an optimal stopping doesn’t stop inside the

set {(1—t,y) : M(1—p(y)) > 1} since waiting is profitable, see remark 4.14.
The infinitesimal look—ahead rule of inequality (59) states the condition

1

(1—At(1— g(y)))e_)‘t(l_g(y)) > —At(1 — y)e—kt(l—g(y)) + )\/te—kt(l—g(é)) d¢

y
1
/ Med) g < (1 + oly) — y> eMoly)
v At

Let h(t,y) := f eMel&) q¢ — <%—|—Q(y)—y>e)‘t9 e C'((0,1] x
Now 5h(t, y) proves to be positive iff fyl 0(6)eMe&) de > (o(y)—y)o
which is true if y € [0,7(1)), and on the other hand

ih( y) = —o' (Y)W (2 + At(o(y) — y)) Thus h(t,y) is increasing in ¢

and decreasing in y. If h(¢,0) fl Ate(€) ¢ — 1/(At) is nonpositive, then
y*(t) = 0 is optimal (for t = 0, t00), else there is a unique solution y*(¢)
inside (0,7(1)), because h(t,r(l)) = —1/(At). Since y*(0) = 0 the set for the
infimum of S* isn’t empty unless N =0. O

[0,(1)])-

Y
(y)ee,



4 THE DURATION PROBLEM BASED ON R-CANDIDATES 110

Example 4.13 Let r(y) = dy for y € [0,1] where ¥ € (0,1]. Then regard
theorem 4.12: fol eMeld) d¢ = % (e” — 1) + (1 —d)eM < % is equivalent to
Y > h(At) where h(u) := eul__lu_e:eu for v > 0. Now h(u) < 0 for u € (0, up),
h(u) € (0,1) for u € (ug,In(2)) and ~(uw) > 1 for u > In(2) where vy /2 0.5671
solves 1 = ue® (h(ug) =0, h(In(2)) = 1 and h is increasing at least on (0,1)).
Thus y*(t) = 0if t < wup/A and y*(¢) € (0,9) if t > In(2)/A, regardless of ¥. If
however t € (uo/A,1n(2)/]], then y*(¢) = 0if ¥ > h(At) and otherwise y*(t) €
(0,9) is the unique solution of (At(l—ﬂ)—l—ﬂ)e” = (1—|—19—|—)\ty(1/19—1))e)‘ty/’9.
An instance (where ¢ = 0.8 and rate A = 9) is plotted in figure 9 on page
116, along with the corresponding problem D} with permanent recall.

Duration of Owning an Overall r—Candidate, Event Time Recall

Regard problem D} where recall is restricted to time instants of arrivals.
The myopic stopping time suggests to stop if the mean payoff recalling y €
(0,7(1)], expression (60), isn’t lower than the payoff recalling the maximum
in the time instant of the next arrival of an item (if any), inequality (58):

1 1
peM—ew) > / (Ae—w—b) / (1 — )= 1-00-2vo) dg) .
b 0

and since fbl(l —u)e " du=[—(1 —u)e~/c+ e_C“/cz]; this gives
1 1
te~M-ev) > )\e—k(l—b)/ (ekg(yvé) (1— u)e—kug(yvf) du) d¢
0 b
1 —\b -A —\b
teMelv) > )\/ (eAQ(yVS) (te g(yvé; 4 c v e Q(yV€)>> d§
0

Ao(y V¢ (Ao(y v €))?
3

1 A1—b)o(yVveE) _ A(1-b)o(yVvé)
v > [ (f pii= >d§
0 olyveE A 2*yVi)

Mo(y) 11 — eMely) Lyoextel€) 11 _ gMtel€)
teMtew) > yte 4= _|_/ (t 4+ = ) d¢
— 7 oly) A eA(y) v \el) A ()

and thus the myopic stopping time proposes to stop if (respect y € (0,7(1)])

_ JAto(y) 1 Ato(€) _ JAte(é)
(1 _ L) Nertelw) ylzei > / ()\te + 1 26 ) d€.
o(y) 2*(y) v o(é) 0*(¢)
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e(v) @*(v) () ()
which is in C'([0,1] x (0,7(1)]), so it is suggested to stop if A(t,y) > 0.

ektg y)
Now g—yh(t,y) = 0'(y) <)\2t29( () )y eMe) ¢ Qy)\t#(y)e)‘tg( Y) 4 2yl= I >, where

the first term in parantheses is nonnegative and the sum of the last two

Let h(t,y) = (1 - L) NtMew) =gttt <)\tew + 1= e““f)) dé

addends, too, since rearrangement yields e €W > 1 — Mtp(y). This repre-
sentation implies that h(¢,y) is increasing in y € (0,r(1)] for any ¢t € (0,1].
Besides h(t,r(1)) = r(1)(e* — 1) is positive if ¢ € (0,1]. Thus, given ¢, the
myopic stopping time accepts the present maximum y if y > y*(¢) with a
unique threshold y*(¢) € [0,7(1)).

But the stopping sets of the myopic stopping time don’t seem to be mono-

tone in general: %h(t,y) = A <(1 + M(o(y) — y))eMe®) — xt fl Ato(¢
proven to be negative only if M (1 — o(y)) > 1: Whlle Mo(y) — y)e Ato(y ) <

At fyg(y) eMel®) d¢ holds generally, for a universal conclusion the first inequality

of eMeW) < M1 — o(y))ere < At fgl(y) eMel®) ¢ seems to be necessary.
Thus the stopping sets of the myopic stopping time for D§ with event time

recall can be verified to be closed in general only if M(1 — o(y)) > 1, see
remark 4.14 below.

Duration of Owning an Overall r—Candidate — No Recall
Problem D{ without recall doesn’t prove to be regular in general: The mean
duration of stopping in (x,y) € A with @ > r(y) and time ¢ to go is, according

to expression (60), s(t,z) = te~1=e(@) This problem is regular if inequality
(57) holds, which in this case is

1
<1 ~ (1 _Q(x))>e—xt<1—g<x>> < (1 _y)e—xt<1—g<x>>+At/ M=) ¢
y
where rearrangement yields
1
<1 + At(o(x) — y)> eMelr) < )\t/ eMeld) ge.
y

This is verified to be true by partition of the integral in p(a) if M(1—p(x)) > 1
holds. Thus problem D{ without recall is verified to be regular at most in
the beginning of the process or in C), see the subsequent remark 4.14.
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Remark 4.14 For problem DY, regardless of the kind of access, the set
Cy :={(b,y) € [0,1]* : A1 —b)(1 — o(y)) > 1} plays an essential role for
regularity. C) represents the beginning of the process, where b and Yy, is
small. C\ =0 for A € (0,1), C; = {(0,0)} and C\ 7 [0,1) x [0,7(1)) as
A — 0.

Duration of Owning an Overall r—Candidate, Exponential Horizon

Inspect problem D , i.e. the Poisson process with arrival rate A > 0 and
exponentially distributed horizon T" with parameter p > 0.

Theorem 4.15 For problem DS ,(r) where r € R' with v := p/X the stop-
ping time S* := T Ainf{b > 0 : Xy, > a*} is optimal (set infy := c0) —
take the first value above x*. Here x* € [0,7(1)) denotes the unique solution

n (0,7(1)) of

v+1—=x B 1 1
o) é vri-e0r ©

if fol 1/(v+1-— Q(f))z d¢ > 1/(v+ 1) and ¥ = 0 otherwise.
The value of DY, ,(r) — the mean duration applying S* — then is

11 ' 1
E((T -5 Lo Xng)) = Av+1—a / (r+1—0())? o

Proof: Supposing first that permanent recall is allowed, the mean payoft
recalling y € [0,7(1)] is

e 1 1
_ “M1=e(w)u, ~Hu gy, — H S
) ﬁ“e pe e = LN e A T el

independent of the elapsed time and being proportional to 1/A while keeping
the rescaled rate v = /X fixed. Now compare s(y) and the mean payoff

of proceeding one item (if any), similarly to inequality (44) in the proof of
theorem 3.15 (any further arrival occurs with probability A/(p 4+ A)):

p A p
AL © it /0 M —ewvene ©

v+1—y 1 1
= ay)] = A v ri—e@r ©
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Let h(y) := (u:f_—lg(Z)P —fyl (u-l—l o df € Cl([() r( )]). Then h is increasing,
since 1'(y) = 20'(y)/(v +1 = Q(y))- If 1(0) = A7 — Jy e 9 2 0.

then taking the first item is optimal, otherwise there is a unique solutlon of
h(0) = 0 in (0,7(1)) representing an optimal threshold, since h(r(1)) = 1/v
— thus recall is superfluous/redundant.

The optimal mean duration applying S* is evident analogously to the in-
terpretation indicated at the end of the proof of theorem 3.15: An item
exceeding «* arrives with probability (1 —2*)/(v +1 — 2*) and then take the
mean payoff choosing him given there is one (1 — 2* cancels).

In case of an empty set of the infimum then $* = T with corresponding
payoff 0 (event [T' = oo] is irrelevant as a nullset). O

Example 4.16 Suppose r(y) = 19y for y € [0,1] where v € (0,1]. Then
the equation ﬁ = g — m 4+ 1 = unlquely determines an optimal
threshold z* € (0,9) unless ¥ > 1 + v — v*, where z* = 0 is optimal.
Particularly «* € (0,9) if v < 1, on the 0pp0$1te side the optimal threshold
s =0if v > % ~ 1.6180 and in remaining cases x* € [0,7(1)) may

occur. The value of D§  (Jx) is Xu+11 — <% - m + 11,_—219>
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4.3.2 The Duration of Owning a Temporary r—Candidate

Maximizing the duration of owning a temporary r—candidate without recall
means maximizing the mean of

N-Ng—1

D := (T = By) - Ly n(Xns) + D <AN5+]‘+1 : 1[T(YNS+j),1](XNs)>7
=0

representing the epoch a value Xy, which is an r—-candidate with respect
to Yy, stays an r—candidate with respect to Yngi1,..., Yy (set > 4 := 0).
Here Aj denotes the relative arrival time of object X, & = 1,...,N. If
recall 1s permitted Xy, has to be replaced by Yy,. Here S represents a
nonanticipating stopping time and for simplicity, to cover all cases, set D := 0
in case of event [S < A;] or event [S > T.

Duration of Owning a Temporary r—Candidate, Permanent Recall

Regard problem DY with permanent recall, i.e. take horizon T = 1.
Theorem 4.17 Let the duration problem D} with r € R* be given. Then an
optimal stopping time is given by S* := inf{b € [0,1] : (b,Yn,) € A*} (set
infy := 1) with optimal stopping set A* := {(b,y) € [0,1]* : y > y*(1 —b)}.
Here y*(t), where t := 1—>b denotes the remaining time, is the unique solution
w (0,7(1)) of
1] _ o—M(1—e()) 1 — e~ M-e¥)
d¢ = 1+ (ely) -y
e W =TT )
if t > c¢/X and y*(t) = 0 if t < ¢/, where constant ¢ = ¢(r) is specified in
lemma 4.18 below.
Proof: If the present state is (¢, y) where y € [0,7(1)), then the distribution

of the arrival time of the next y—beating r—candidate is exp (A(1 — o(y))) and
the probability that no such arrives is e~ *(1=¢®)) Therefore the correspond-

ing mean duration of stopping is given by

t
s(tyy) = te-w-g(y)ur/ WAL — ofy))e= =2 g
0

t
— /G—M(l—g(y)) du
0

1 — e—A(1-e(y)
M1 —o(y)
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which consistently for y € [r(1),1] yields ¢ by the rule of de I'Hospital. It is
suggested to stop by the infinitesimal look—ahead rule, inequality (59), if

e M=) > =M1 —y)s(t,y) + )\/1 s(t,€) d¢

/1 1 — e~ M(1-e(8) & < 14 (oly) )1 — e~ M(l-e(y))
> + (o) —y .
o 108 1 —o(y)

1 1_e—2(1—0(8)) —e—M(1—o(y))
Let h(t,y) == [, B5m— —1—(e(y)—y) =55 — € C'([0,1]x[0,r(1)])
and it is advisible to stop if A(f,y) < 0. %h(t,y) is positive iff inequal-
ity fyl eMeE) de > (o(y) — y)eMeW) holds, which is true if y € [0,r(1)).

Thus this stopping problem is monotone. On the other hand g—yh(t,y) =
T2 [(oly) = y)(1 — o(y)Mte M=) — (1 — y) (1 — e M=) ] where
the term in brackets is negative for y € [0,7(1)), because this is based on
14+ Mt (1—p(y)) < M2 (estimating % < 1). Thus h(t,y) decreases in
y € [0,r(1)) for ¢t € [0,1] and the following holds: If A(¢,0) is nonpositive, or,
with regard to lemma 4.18, if t < ¢/, then y*(¢) = 0 is an optimal threshold.
Otherwise, if t > ¢/, there is a unique solution y*(¢) inside (0,7(1)), such
that stopping is optimal if y > y*(¢), since h(t,r(1)) = —1. The set the
infimum is specified by isn’t empty unless N = 0 (payoff 0). O

Lemma 4.18 Forr € R let ¢ = ¢(r) € (1, 1] denote the unique solution of

/1 1ot )
0 1-— Q(f) -
where ¢; ~ 1.3450 solves fol 1_‘?64 d¢. Besides ¢(r1) < c(rq) if 11 < re in R.

Proof: Let I(c) denote the left side of the following equivalent equation:

Ll — e
/0 : dg(§) =1

with distribution function ¢(¢) :=1 —r(1 — &) for £ € R (using remark 2.18
ii); mass 1 — (1) in 0) and where the integrand will be called f.(£). Since
I(¢) is continuous and increasing in ¢ (because the integrand is), I(0) = 0
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and 1(2) > 1, a value ¢(r) exists and is unique — I(0) = 0 holds because the
integrand vanishes due to the rule of de I'Hospital and also I(2) > 1 holds for
any r € R: For ¢ > 0 a proper lower bound of the integral I(c) is given by
the area of the triangle with the edges (0,0), (0,¢) and (1 A (¢?/2),0), whose
area is, for ¢ > /2, given by ¢/2: First f.(0) = ¢ and f/(0) = —¢?/2. Second
(&) <0 and f/(€) > 0 (for £ € (0,1] leading to the series expansion of e
to first and second order, respectively). f/(£) < 0 and i¢d < ¢ now imply that
the Lebesgue—measure on [0, 1] minimizes the area of the triangle for r € R.
For the supplement let r1,7y € R. Now r; < ro implies g(r2) < ¢(ry). Thus
e(r1) < e(rz), since f.(€) is decreasing in € (fi(¢) < 0, see above). Particu-
larly the maximal value is ¢; := ¢(id) ~ 1.3450, and the minimal value (not
attained inside R) is ¢(e;) =1. O

Example 4.19 Let r(y) = Jy for y € [0,1] where ¢ € (0,1]. The constant

c(vy) is determined by fl & d¢ = 19]1 1= e—cc d¢ + (1 = 9)e = 1.
Then y*(t) =0if t < ¢/ and 0therw1se y*(t) € (0, 19) is the unique solution
of equation ¢ fol_y/ﬁ % A+ (1 =M =14+ (y/v—1y) 1e” 2U-/)

1-y/9
y*(1-10)

0.8-

b=1—1t

Figure 9: The optimal stopping set A* (the area beyond curve y*(¢))
of problem DY resp. D} (dashed resp. solid line) each with permanent
recall where r(y) = 0.8y and A = 9, see example 4.13 resp. 4.19. The
area beyond 0.8 evidently is contained in A*. For Df it is advisible
not to stop inside set Cy indicated by the dotted line r(1 — 1/(9¢)),
since waiting is profitable (remark 4.14 and proof of theorem 4.12).
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Duration of Owning a Temporary r—Candidate, Event Time Recall

Regard problem D} where recall is restricted to time instants of arrivals. The
myopic stopping time recalls y € (0,7(1)) according to inequality (58) if

1 — o M1-b)(1-e(v)) y t/1<} _Mw$)/“1-eﬂu—mu—mmfnck> ]
€ U
M1 —o(y)) — o AMl—=o(yVi))

1 — e~ M1-b)(1—0(v)) 1 L oA1-u) _ A(l-u)e(yvé)
> e_)‘t/ (/ du) de¢, (63)
A1 = o(y)) o \Jp 1—olyVve)

respecting that the integrand is bounded. Now the innermost integral is
(using abbreviation o = o(y V £))

' (AL —w)H(1 - oY)
A‘Z; k(1 =) .
1

1 [_ = (A1 — w)HI(1 — w]l
A £ .

= (F+Di(1-0)
1L M=oY
— !
Al —p) P (k4 1)!
= b (—1 — M4 eM— ! (—1 — Mo + e)‘tg)>
A1 - o) 0
1_ Q_I_Qe)\t_ e}\tg
Ae(l—p)
which is identical to the formal integration of the corresponding fraction.
Resumed inequality (63) is equivalent to (resolve o(y V £) by partition of

the integration range with respect to &, apply the rule of de 1’'Hospital for
£ € [r(l),1] resp. for p = 1)

_ o= At(1-o(y)) =Mt —At(1-e(y)
1—e > Yy (1 oMy e e )
1 —o(y) 1 —o(y) o(y)
r(1) 1 — e—)\t e—)\t o e—)\t(l—g(f))
-I-/ +
v  L1—=0() o1 - o))

ra = (- 155,

dg
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which by rearrangement yields

(1 —yoly) —y(1 = o(y))e™ — (oly) — y)e M~
o(y)(1 — oly))
"W o(€) + (1 = o(§))e — M) ] — e
/ €)1~ o(8)) des (= rh) (1= )

Now let h(t,y) denote the difference of the left side minus the right one,
h € C(]0,1] x (0,7(1)). Thus the myopic stopping time proposes to stop if
h(t,y) > 0. Now on the one hand %h(t, y) =

e~ A _y)e—At(l—e(y)) r(1) e=At_e—xt(1—0(¢)) -
\Y (Q(y)gé’,; + A [ e dE— (1= (1) (1 — )
not nonpositive in general, as examples suggest. On the other hand g—yh(t, y) =

o'(y) [ (1 =y +ye™ = (1+ Moly) — y))eM0eW) o(y)(1 - o(y)) —
(1= y)oly) — y(1 = o(y))e™ = (oly) — y)e M=) (1 = 20(y))] /

[0*(y)(1 — o(y))?], where the nominator seems to be nonnegative, but seems
to be not easy to verify.

>

Y

Thus, analogously to problem D§ with event time recall, here the stopping
sets of the myopic stopping time don’t seem to be closed in general and an
optimal stopping time isn’t specified through this.

Duration of Owning a Temporary r—Candidate — No Recall

Problem D% without recall isn’t resolved, but the main terms are given,
regarding the regular case: According to expression (61) the mean payoff of
stopping in (z,y) € A with « > r(y) and time ¢ to go is

| e-A(1-e(e)
A1 = ofx))
Now inequality (57) in this setting yields

1 _ e—M(i-o(x)) L] _ e=(1—e(6)
eMO=e@) < _\(1 = y) + A/ de,
- M1 —o(x)) v M1 —0(8))

s(tyx) =

where rearrangements yield

1 — e-M(1—e(@)) /1 1 — e~ M(1-e(€))
1 - Q(l’) y 1-— Q(f)

1+ (o(z) —y) de.
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This inequality proves to be true if

1 1_6_)‘t(1_9(€))
1 < / d

by partitioning the integral in o(x) and respecting that the integrand is non-
decreasing in ¢ and £ > y > «.

If however the reverse inequality would be true, then at least the following
can be concluded: The mean duration choosing x exceeds the mean duration
for choosing the next r—candidate beyond p(x) (if there is none then payoff
is 0, if there is one then pretend he is as early as possible, i.e. time ¢ to go):

1 — e—M(1-e(x) 1 — e—M(l-o(z)) /1 1 — e~ M(1-e(€)) 2.
@

>
AL = o)) 1 — o(x) () AML—o(f))
where however arrivals with value inside [r(y), o(x)) aren’t considered.

Duration of Owning a Temporary r—Candidate,
Exponential Horizon

The optimal stopping problem Dﬁw(r) is equivalent to problem Py ,(r) of
theorem 3.15, since the mean payoff recalling y € [0,7(1)) is given by

1 _ = Aull=e(y)) g
W = [ Sy e

T —M@(y)) ({_%e—uu}:} - L(l - @ty)) +/~L€_(A(1_Q(y))+muf>

which differs from the mean payoff of selecting an r—candidate by factor Av,
see theorem 3.15. The factor 1/X again covers proportionality to time keep-
ing v := pu/X fixed. For an instance see example 3.16, where, next to v, A
has to be specified and then the values must be divided by Av.
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Lastly the duration problems of this whole chapter are considered for a more
general distribution function of the offers:

Remark 4.20 Suppose X7, X, ... areiid with distribution function F', where
F is increasing on R := { € R : 0 < F(x) < 1} and absolute continuous
with a density nonvanishing almost everywhere on R. As relax function take
r: R — R continuous and increasing with r < id on R. The duration prob-
lems of theorems in this chapter where the myopic stopping time proves to
be optimal are resolved in the same manner, where now the density of F
appears and the argumentation is the same. The results are as follows:
Regard the main equations in theorems of this chapter, which specify a so-
lution y depending on the remaining time ¢ or ¢: A term p(y) resp. y has to
be replaced by F(o(y)) resp. F(y) and integration is with respect to dF(¢).
Exemplary for the discrete setting take equation (48), which changes to
(Flo(y)) + (1= F(y) Zo(Fley)) = L2y J, (F(el€))Y dF(€), with a
unique solution y, inside (0,r(sup{z € R : F(z) < 1})) for 1 </ € N.

Regarding problem D2 and D! with recall the optimal thresholds of the
former seem to be bigger than those of the latter. Particularly this is true
asymptotically as figure 6 suggests. This may reflect the phenomenon that
the chosen offer in one case must represent an overall r—candidate, while
in the other case an intermediate r—candidate is worthwhile. Consistently
this relation seems to persist for problem D compared with D each with
permanent recall, see figure 9.
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Concluding Remarks

In this thesis an optimal stopping problem with full information and mainly
with iid offers has been investigated in discrete and continuous time. The
dedicated functional is given by the mean of a payoft function, which depends
in its most general form on the stopping time S, the value of the chosen of-
fer X5 and the overall maximum Yy, where N denotes the total number of
presented offers. In chapter 2 and 3 this payoff function obeys monotonicity
assumptions which seem to be indispensable in order to ensure in general
that the problem is regular. In this case optimal stopping sets are, in princi-
ple, specified. Optimal selection of an r—candidate has been the main task,
a generalization of the full information best choice problem. Threshold rules
have been considered and the myopic stopping time has been specified and
verified to be optimal or indicated to be not optimal. In the last chapter the
socalled duration problem has been investigated based on r—candidates.

In the case of optimal selection of an r—candidate it would be interesting
to specify the value of the myopic stopping time, particularly in the case
of the Poisson process, though the performance seems to be not promising
regarding its stopping sets.

A main question is the behaviour of the asymptotic value referring to optimal
selection of an r—candidate as a function of (1—). For this purpose the
indicated threshold rules restricted to r—candidates may be helpful.

As an extension for optimal selection of an r—candidate observation costs
can be taken into account, which seems to be accessible only for selection
with recall due to the regular case. Further offers may supposed to be un-
available with a certain probability or the period of accepting offers may be
terminated by a freezing random variable, while the total number of offers
remains unaffected.

Regarding the duration problem based on r—candidates investigation of thresh-
old rules would be interesting in the case of no recall in discrete and in
continuous time in order to get access to the problem.
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A Appendix

Definition A.1 Let two real functions g1, go with identic domain G be given.
The relation g1 = go is defined to be valid, if g1(x) < ga2(x) for x € G.
The relation g1 < g2 holds if g1 = go and if there is an v € G such that
g1(x) < g2(2) is valid.

An application of this notation: Let two distribution functions F and G
with F' < G be given and let h : [0,1] — (0,00) be nonincreasing. Then
fol h(x) dF(x) < fol h(x) dG(x) or E(R(V)) < E(h(W)), where F resp. G is
the distribution function of random variable V resp. W, i.e. V is stochasti-
cally lower than W. This can be verified by mass theoretical induction based
on nonincreasing functions.

Lemma A.2 Let (2¢),c; C R denote a convergent sequence with x := (lim xy.
— 00

¢ k +1In/ ifz=0
Zl<1+ﬁ> ~ { ‘ K f as { — oo, (64)
— k l Ei(x) —In|z|+Inl difax#0

where the exponential integral function Ei is defined below.

Proof: Let ¢y := 2y — a2 = o(1) as { — oo. Taking = 0 the relation
Ei:l % (1 + %")k ~ v+ In/, known if ¢, = 0 ¥/ € N, is valid for e, = o(1):
The left side is equal to Eizl % (1 + 0(%)) = o(l) + Eizl %, using the

binomial theorem (o($) depends on k). The assertion is, as { — oo,

¢ ¢ k/e 1 ut
1 T\ F 1 T\t k e
—1—): —(1 —) o~ /—d. 65
Sree)= S [H(02)) ] = S o
k=1 k=1
Now fix ¢ = 0(1) as { — oo and restrict @ on interval [a,b] C R. Then define
ge(x) == Zi:l x (1 + x—;s")k — 11“ % dé. Now g, is uniformly convergent
£ 1 i Z— z z
to 0 on [a,b]: g)(z) = > % (1_|_ x—l;#)k—l B [%] / _ (Hxi;) L. e /z7
k=1 1/¢
according to lemma A.3 below (pathological terms are understood accord-

ing to the rule of de I'Hospital). Due to limy,o ¢¢(0) = ~ the following
holds on [a,b] (with fixed ¢ = o(1)): ¢¢ is uniformly convergent, the limit
limeeo ge(x) =: g(x) exists, g is differentiable and ¢'(z) = limyo g)(2).
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Then ¢ = 0 or ¢ = v on this interval, because ¢(0) = v. Thus relation
(65) is verified for any » € R and ¢/ = o(1) as { — oo. Besides the lower
integration limit 1/¢ in (65) can’t be replaced by o(1) due to the case x = 0.
The right side of (65) equals v+ Ei(z) — Ei (2/(), where Ei(z) = [*_ % d¢
denotes the exponential integral function (for a # 0; for « > 0 the principal
value is taken). The relation Ei(x/l) — ln|x/l] — v as { — oo results for
example from the identity v = — fooo e~¢1n ¢ df via integration by parts. O

Treg Z— x x
(1+ " - =< s uniformly convergent to 0 on
interval [a,b] CR as { — oo (see the proof of lemma A.2).

Lemma A.3 Function

Proof: Set ¢ := max{|al|, |b|} + supyey|ee] < oo, then |z|, |z + ¢/ < ¢ for

4
1+m) -1 €z+af—1

{ € N. Telescope (4

e*tee—1 e | T e*—1 e —ez/z then

_|_

xtep xtep xtep x x
all three differences are uniformly Convergent to 0 on [a,b] as { — oo
The last difference is |<=% — #‘ =1 s |]j_/l_fl| <efl =o(1).
The medial difference yields ‘ zx:;z 1 et ‘Ek , M

|5Z|Ek 2]:'2 (k 2)|$—|—€g|k 2— ]|$|] < |€Z|Ek zﬁck 22k 2 < |€ |€20
which is again 0(1)

ey
The first difference: Function h(y) := % 1s nonincreasing resp. non-

decreasing in ¢ for { > ¢ on [—¢,0] resp. on [0, ¢] and its limit is 0 for each
y € [—e¢,¢] (he(0) =0 for £ € N, applying the rule of de 'Hospital). Accord-
ing to the theorem of Dini the convergence then is uniform on [—e¢, 0] resp.
n [0,¢] and thus on [—e¢, ¢|. Regarding h(x + £/) the uniform convergence
is preserved: If x < 0 then = 4+ &4 < 0 finally, if * > 0 then = + ¢, > 0 finally
and if x = 0 then the sign of x + ¢ may alternate but negative and positive
values are covered concerning a uniform bound on [—¢, ¢] and h(0) = 0.
All three differences prove to be uniformly convergent to 0 on [a,b] and thus
their sum is, too. O

Remark A.4 The entire exponential integral function is defined for x € R:
Ein(z):= f7 1555 de = — Y0, G2 = y+1In |2 ~Bi(—2) (with Ein(0) = 0).

0
Let lim z, = :1; # (0 and Zlim ye = y # 0. Then, regarding lemma A.2:
— 00

{— oo

lim ZZ: % <(1 + %)k— (1 + y_f)k> = Ei(z) — In|z| — Ei(y) + ln |y|

{— oo k=1

= —Ein(—z) + Bin(—y) = [/ =50 dE = [Tt e
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Notations

b (y) optimal boundary function, see definition 2.5 and its preliminaries
C'(A) functions on A, continuous differentiable, derivative +o0o allowed

A, AT {(z,y) € [0,1]* : @ < y} resp. optimal stopping sets (definition 2.5)
o point mass in x € R, with corresponding distribution function 1 .
f represents the payoff function of chapter 2 and 3

~ Euler constant, approximately 0.5772

id the identity function ¢d(z) = x for + € R

N {1,2,...}

N¢y, N number of objects arriving in [0, ¢] resp. [0,T], see page 60

o(-), O()

little and big o—notation, Landau symbols

distribution function of the standard normal distribution
denotes the transition function applied to s, see equation (41)
generally a function inside R resp. its inverse see pages 21f

sets of specific functions r : [0,1] — [0, 1], see page 21

smallest o—algebra containing - - -

notation for an optimal stopping time

notation for the myopic stopping time, referring to r—candidates
set of threshold resp. concurrent threshold rules, see page 39
the uniform distribution on interval [a,b] C R

the value of a state, stopping time or of the problem itself

the value of problem P, and of problem Py, asymptotic value
the maximum of Xy,..., X}

{0} UN

indicates the distribution of a random variable

asymptotic equivalence (xy >~ ¢+ yx, k — 0o means ,}HEO(” —yk) =¢)

approximative specification of a number

sign for equality in distribution

significantly or sufficiently lower resp. bigger than

maximum and minimum sign

monotone convergence (nondecreasing resp. nonincreasing)
relations for real functions, see definition A.1, page 122
indicator function of set A C R

ceil resp. floor: inf{n € Z : n > x} resp. sup{n € Z : n < x}
brackets for an event
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