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Introduction

The problem of recovering a highly concentrated object from blurred image data arises in
many imaging applications. We abstract this as the computation of a discrete measure
given access to its low-pass version or equivalently to its first Fourier coefficients and this
task is then called super resolution. In other words, we assume access to measurements of

g(x) = (h ∗ µ)(x) =
∑︂
t∈Y

αth(x− t), x ∈ Rd (1)

for some (de facto) bandlimited point spread function (PSF) h modelling the imaging
device and a discrete measure µ =

∑︁
t∈Y αtδt with support Y in some compact domain.

Without loss of generality, we will consider Y ⊂ [−1
2 ,

1
2 ]

2. While this task of recovery of
µ given g and h is already interesting for exact data from a theoretical point of view, one
is confronted with noisy data in practice. Therefore, it is of great importance to control
errors in the reconstruction which were caused by the noise and there has been a lot of work
on the estimation of errors for specific algorithms, e.g. cf. [52, 22, 99, 101, 7, 135, 140, 49].
Beyond that, it is of equal importance to determine which amplification of the noise is
inherited by the problem itself such that even the best possible algorithm cannot perform
more stably than the problem allows. Even though there already exist many works in
this direction of analysing the condition of the super resolution problem (see for example
[53, 109, 103, 12, 37, 38, 28, 45, 44]), a major part of this dissertation is dedicated to our
own approach to condition analysis overcoming several drawbacks of previous works.

In particular, this analysis allows to deepen the mathematical understanding of the
various notions of a diffraction limit by improving a result by Chen and Moitra [28].
Historically, different diffraction limits for light microscopy were defined by physicists
in the 19th and 20th century and we display the most well-known ones in Figure 1.
There, we display the Airy disc, see Subsection 2.2.4 for its definition, as the prototypical
PSF with some spectral bandlimit n such that Abbe’s diffraction limit postulates that
no sources with separation less than n−1 can be resolved (cf. [1]). In contrast to this,
the Rayleigh limit [56] identifies the resolution limit at the first zero of the Airy disc
leading to approximately 1.22 · n−1 as a diffraction limit while the Sparrow limit, see
[147, 33], is defined as the distance such that the superposition of two translated PSFs
becomes unimodal, i.e. it has just one maximum value between the two sources. Hence,
this distance depends heavily on the exact knowledge of the PSF and can be numerically
estimated as approximately 0.94 · n−1 for the Airy disc. Finally, the Houston criterion
is an approach used in many imaging applications where the resolution is determined
by the full width at half maximum (FWHM) of the PSFs yielding roughly 1.03 · n−1,
cf. [27, p. 47].1 Even though these diffraction limits are well-established in different fields,
a mathematically rigid formulation going beyond a heuristic argumentation was missing
since one can argue that from a mathematical point of view two translates of h can
always be distinguished from a single translate if one is given perfect measurements of
g in (1). Following this reasoning, recent work of Chen and Moitra [27, 28] shows that

1For a more detailed description of diffraction limits see [33, 27].
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Introduction

the term “diffraction limit” can only be understood in the presence of noise and that
this diffraction limit should then rather be seen as the point of transition from well-
controllable (i.e. polynomial) to worse (i.e. exponential) noise amplification. Unfortunately,
their analysis leads to a transition between 1.15 · n−1 and 1.53 · n−1 such that one cannot
directly connect this to an already known and established diffraction limit.

(a)

0 1.22  n
-1

(b)

0 0.94  n
-1

(c)

0 1.03  n
-1

(d)

Figure 1: Various diffraction limits proposed in the literature. For a single Airy disc (a)
with some bandlimit n , the Abbe diffraction limit is n−1 whereas the Rayleigh
(b), Sparrow (c) and Houston criterion (d) provide a different reasoning yielding
to different constants for the diffraction limit. For Rayleigh, two translates
(black and blue) of the PSF can be separated if one is at least translated by the
first zero of the PSF (b). The sparrow distance is the distance such that the
superposition of the translates (red) has a single maximum instead of two local
maxima (c). The Houston criterion is based on the idea that the translates are
separated by the width of their main lobe measured by the full width at half
maximum (FWHM).

Apart from being interesting in theory, bounds on the resolution are also important
to guarantee the success of various algorithms solving the inverse problem of finding a
discrete measure fitting to the data model (1). Usually, these methods are divided into
variational methods, e.g. cf. [52, 22, 96], and subspace methods beginning with Prony [136].
More recently, machine learning approaches like [122, 121, 148] were used and implemented
without any assumption on the minimal distance between support points of the measure.
In [113], Mhaskar connects machine learning to the initial super resolution problem and
studies the idea to approximate a measure given its low-pass data or Fourier coefficients.
Because one is typically more interested in a visual representation of the support instead of
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a list of molecule positions, we want to follow a similar direction and study approximations
to µ in (1) by polynomials and rational functions.

Nevertheless, each approach to solve (1) has a limited resolution by the condition of
the problem itself such that there have been many attempts in microscopy to overcome
the diffraction limit by changing the measurement process. Many of these approaches rely
on the idea to use a non-uniform illumination of the fluorescent sample and to repeat the
measurements for various illuminations. Among others, one can mention Stochastic Optical
Reconstruction Microscopy (STORM) [139] and Structured Illumination Microscopy (SIM)
[65, 62] in this context. While the first is considered to achieve its resolution enhancement
through a repeated measurement of a random subset of the complete set of emitters,
the other approach is said to improve the resolution through repeated illumination of
the sample with patterned intensities. While these techniques are well-established from
a practical point of view, the theoretical question of how these approaches improve the
resolution is natural and its answer might allow to enhance the methods also in practice.

Outline After introducing main tools from linear algebra, Fourier analysis and optimal
transport in Chapter 1, the subsequent chapters present the main contributions of this
work. Chapter 2 deals with the analysis of the condition of sparse super resolution. After
explaining connections to known results from the literature (Section 2.1), we introduce
a special function in Subsection 2.2.1 that allows us to derive an inequality between the
data error and the error in the parameters of the measure in Subsection 2.2.2. Such an
inequality is frequently called Ingham-inequality in control theory, see [83, 86]. With this
machinery at hand, we are able to define a condition number for the inverse problem of
super resolution which leads to a diffraction limit by observing a transition in the size of
the condition number from polynomial to exponential and this transition happens around
the Rayleigh criterion 1.22·n−1. Interestingly, another statistical point of view leads to the
same diffraction limit. After studying this in a periodic setting with Fourier coefficients
of the measures as the data in Subsection 2.2.3, we show in Subsection 2.2.4 that the
situation is the same for spatial data as in (1) if the PSF h satisfies some reasonable
constraints. The chapter is completed by Section 2.3 where we use the Ingham inequality
to obtain a new result for the smallest singular value of a Vandermonde with pairwise
clustering nodes.

In Chapter 3, we study algorithmic approaches to find a measure that fits to the given
Fourier data. Here, we distinguish between approximation of the measure in a weak sense
(Section 3.1) and interpolation of its support by setting up a polynomial which peaks at
the discrete support points of the measure and converges pointwisely to zero outside of the
support as the number of moments goes to infinity, see Section 3.2. Following this idea of
pointwise convergence, we study an extension to rational functions namely given by the
Christoffel function in Section 3.3. In Section 3.4, we include the issue of noise into our
assumptions on the data and show how the error in the approximations of the measure
can be bounded by the size of the noise.

Finally, Chapter 4 discusses two approaches to overcome the diffraction limit found in
Chapter 2. For STORM, we justify the increased resolution by a statistical argument in
Section 4.1. Moreover, we apply the approaches from Chapter 3 to a large scale STORM
data set and obtain a result which is comparable with typical state of the art algorithms.
On the other hand, we discuss SIM and its influence to the resolution limit in Section 4.2.
Starting with limitations of the popular algorithms for SIM in the case of discrete measures,
we introduce an idea to circumvent these limitations by using the spatial instead of the
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Introduction

spectral, periodic setting where one is given shifted Fourier coefficients of the data. This
allows to define a resolution limit for SIM being smaller than the previous diffraction
limit from Chapter 2. Furthermore, we can rewrite the approximation algorithms from
Chapter 3 for SIM and obtain their success under a weakened separation condition.

Contributions This dissertation contains the content of the following publications or
preprints by the author in a linked and extended form:

[25] P. Catala, M. Hockmann, and S. Kunis. Sparse super resolution and its trigonometric
approximation in the p-Wasserstein distance. Proc. Appl. Math. Mech., 22(1), 2023

[26] P. Catala, M. Hockmann, S. Kunis, and M. Wageringel. Approximation and in-
terpolation of singular measures by trigonometric polynomials. arXiv: Numerical
Analysis, 2022

[67] M. Hockmann and S. Kunis. Sparse super resolution is Lipschitz continuous. arXiv:
Numerical Analysis, 2021

[68] M. Hockmann and S. Kunis. Short Communication: Weak Sparse Superresolution
is Well-Conditioned. SIAM J. Imaging Sci., 16(1):SC1–SC13, 2023

[69] M. Hockmann, S. Kunis, and R. Kurre. Towards a mathematical model for single
molecule structured illumination microscopy. Proc. Appl. Math. Mech., 20(1), 2021

[70] M. Hockmann, S. Kunis, and R. Kurre. Computational resolution in single molecule
localization – impact of noise level and emitter density. Biol. Chem., 404(5):427–431,
2023

The main contributions of this work can be summarised as follows.

• From the technical point of view, the most important contribution is the introduction
of a multivariate minorant function with specific properties, see Lemma 2.2.2, and
the Ingham-type inequality in Theorem 2.2.8 being a consequence of the existence of
the minorant function. Even though similar functions were known in the univariate
and bivariate setting, cf. Section 1.3, our radial admissible function is not just a
multivariate extension as its support in spatial domain is as small as possible, see
Remark 2.2.3. Only this optimality allows to shrink the interval for the transition
in the condition sufficiently in order to end up with the Rayleigh distance as a not
only well-known but also mathematically natural resolution limit.

• In Theorem 2.2.21, we apply our proper definition of the condition number of the
inverse problem and obtain a very sharp bounding on the diffraction limit which
we define as the transition from a polynomial to an exponential condition number.
This result might be seen as the most important contribution of this dissertation as
it connects our condition analysis to the Rayleigh resolution limit. The emphasis on
the Rayleigh limit is reinforced by an interpretation in a statistical context proving
a multivariate version of an univariate conjecture from [53], see Corollary 2.2.27.
As an important corollary, we provide a mathematical justification for the gain in
resolution obtained by SIM (cf. Corollary 4.2.4).
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• For Vandermonde matrices with pairwise clustering nodes, a lower bound on the
smallest singular value is presented in Proposition 2.3.2. This result is applicable
even if the cluster separation does not go to infinity as the separation within the
clusters goes to zero. While there are univariate results available with this behaviour,
see e.g. [11], we are not aware of any other multivariate formulation except the one
presented in Proposition 2.3.2.

• Another main contribution is that studying the connection between approximation
of measures and approximation of (Lipschitz) functions by polynomials leads to
Wasserstein convergence rates for approximations by convolutions with kernels. In a
very simple way, we can use this idea to derive an upper bound for the convergence
rate in Theorem 3.1.3 whereas the lower bound in Theorem 3.1.5 and the result on
the best approximation (e.g. Theorem 3.1.6) need more effort.

• We analyse how well nonlinear methods like the signal polynomial (Section 3.2) and
the rational Christoffel function (Section 3.3) allow to represent a discrete measure
given its moments. Main contributions in this context are the weak convergence
of p1,n, see Theorem 3.2.9, and the analysis of the Christoffel function for noisy
data (cf. Section 3.4). In particular, we highlight the a priori choice rule for the
regularisation parameter ε in Proposition 3.4.4 which guarantees that the resulting
function peaks around the support of the ground truth measure µ if the noise is
sufficiently small and the separation of suppµ is at least two times the Rayleigh
condition.
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1 Preliminaries

This thesis uses methods from numerical linear algebra, Fourier analysis and optimal
transport such that we spend a section for each of these areas to introduce basic notation
and mention the results that are later applied in the course of this work. In between, we
put a section on auxiliary functions including minorant functions utilised in Chapter 2.

1.1 Numerical linear algebra

We briefly introduce our notation for objects from linear algebra and introduce the sin-
gular value decomposition (SVD) as a standard tool used to extract important features of
matrices. Since all presented results are well-established in the area of numerical linear
algebra, there exists a wide range of literature on the topic. To give an example, we refer
to [15] or [73] for an overview of (numerical) methods in linear algebra.

Vectors, matrices and norms We always denote vectors or functions by lower-case letters
and matrices with upper-case letters. As it should be clear from the context whether
object are univariate or multidimensional, we omit to use bold-face letters for vectors and
matrices. The only exception is for polynomials and their coefficients where a plain letter
is used for the polynomial and the same letter in bold-face for its vector of coefficients, see
Section 1.3. For a complex number z ∈ C, ℜ(z) denotes its real and ℑ(z) its imaginary
part. A vector v from some finite dimensional complex vector space Cd is considered as
a column vector where we denote by v its complex conjugate, by v⊤ its transpose and
by v∗ its conjugate transpose. The inner product between two vectors u, v ∈ Cd with
components (uj)

d
j=1 and (vj)

d
j=1 respectively is defined as

⟨u, v⟩ := u∗v =
d∑︂
j=1

ujvj

leading to the Euclidean or 2-norm ∥u∥2 =
√︁

⟨u, u⟩ =
(︂∑︁

j |uj |2
)︂1/2

for u ∈ Cd. Less

formally, we keep the notation shorter sporadically by denoting u·v for the scalar product.2
Furthermore, we use the maximum norm and the p-norm given by

∥u∥∞ = max
j

|uj | and ∥u∥p =

⎛⎝∑︂
j

|uj |p
⎞⎠1/p

for p ∈ [1,∞).

Analogously, we denote A for the entry-wise complex conjugate of a matrix A ∈ Cm×n,
A⊤ for its transpose and A∗ for its conjugate transpose. The inverse of a regular square

2Additionally, we will sometimes write ∥ · ∥ instead of ∥ · ∥2 if it is clear which norm is meant. Similarly,
we occasionally omit the dot in the inner product and write just uv if it is clear that u, v are vectors of
the same size.
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1 Preliminaries

matrix A ∈ Cm×m is A−1 and A is called Hermitian if A∗ = A or unitary if A∗ = A−1.
Additionally, the eigenvalues of a square matrix A ∈ Cm×m are λj(A) ∈ C for j = 1, . . . ,m
and they satisfy λj(A) ∈ R for a Hermitian matrix A. In this case, λmin(A) is the smallest
and λmax(A) is the largest eigenvalue of A. Additionally, the range or image of the matrix
is denoted by imgA, whereas its kernel is kerA. The diagonal square matrix with a
vector v = (vj)

d
j=1 on its main diagonal is represented by diag(v) = diag(v1, . . . , vd). For

matrices, we use the following operator norms.

Definition 1.1.1. (Operator norms for matrices, e.g. cf. [73, Sec. 5.6]) For m,n ∈ N and
A ∈ Cm×n, one defines3

(i) the spectral or 2-norm

∥A∥2 := max
x∈Cn

∥Ax∥2
∥x∥2

= max
x∈Cn:∥x∥2=1

∥Ax∥2 =
√︁
λmax(A∗A),

(ii) the ∞-norm being the maximum ℓ1-norm of a row

∥A∥∞ := max
x∈Cn

∥Ax∥∞
∥x∥∞

= max
x∈Cn:∥x∥∞=1

∥Ax∥∞ = max
i

∑︂
j

|Aij |,

(iii) and the 1-norm being the maximum ℓ1-norm of a column

∥A∥1 := max
x∈Cn

∥Ax∥1
∥x∥1

= max
x∈Cn:∥x∥1=1

∥Ax∥1 = max
j

∑︂
i

|Aij |.

In contrast to this, the Froebenius norm

∥A∥F =

⎛⎝∑︂
i,j

|Ai,j |2
⎞⎠1/2

satisfies ∥I∥F ̸= 1 for a non-scalar identity matrix I and hence it is a matrix norm not
originating from an operator norm (e.g. cf.[73]). As all norms on finite spaces like Cd or
Cm×n are equivalent, one can bound every norm for m×n-matrices from above and below
by any other norm on the space of m× n-matrices. For example, we have the following:

Lemma 1.1.2. (cf. [58, Sec. 2.3]) For A ∈ Cm×n we have

(i) ∥A∥2 ≤ ∥A∥F ≤
√︁

rank(A)∥A∥2 where rank(A) is the rank of A,

(ii) m−1/2∥A∥1 ≤ ∥A∥2 ≤ n1/2∥A∥1,

(iii) n−1/2∥A∥∞ ≤ ∥A∥2 ≤ m1/2∥A∥∞ and

(iv) ∥A∥2 ≤
√︁

∥A∥1 · ∥A∥∞.

Matrix norms allow to study the condition of linear problems. More general, the con-
dition of a possibly nonlinear map ϕ : X → Y between normed spaces X,Y measures
how severely errors in the input x ∈ X are amplified in the output y = ϕ(x). In this
sense, conditioning describes the behaviour of a mathematical problem encoded by ϕ in

3The last equalities in (i)-(iii) can be derived from the definitions, see [73, Sec. 5.6].
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1.1 Numerical linear algebra

the presence of noise on the data. In contrast to that, the term stability characterises
the “perturbation behaviour of an algorithm to solve that problem on a computer” ([149,
p.89]). Hence, the condition of a problem is only a property of the problem itself whereas
the stability of an algorithm for the solution of the problem might be even worse. A quan-
tification of the condition is given by a condition number and the literature distinguishes
between the absolute condition number and the relative condition number.

Definition 1.1.3. (Condition number, e.g. cf. [149, p. 90]) LetX,Y be Banach spaces with
a map ϕ : X → Y . Then, the absolute condition number of ϕ at x ∈ X is

κabs = lim
δ→0

sup
x′:∥x−x′∥≤δ

∥ϕ(x)− ϕ(x′)∥
∥x− x′∥

whereas the relative condition number considers the ratio of the relative differences in
input and output space by defining

κrel = lim
δ→0

sup
x′:∥x−x′∥≤δ

∥ϕ(x)− ϕ(x′)∥∥x∥
∥x− x′∥∥ϕ(x)∥

.

Often, the limit process that defines the two types of condition numbers is approximated
by choosing a small δ > 0 (cf. [19, p. xix]). Whether to study the absolute or relative
condition number depends on the problem. Moreover, the nature of the problem itself
might lead to perturbations which have a certain structure and incorporating this leads
to a structured condition number (cf. [19, p. 119]).

Note that the definition of the absolute condition number does also make sense in metric
spaces which will be the reason to study an absolute condition number in Chapter 2. If ϕ

is differentiable, it is easy to see that κabs = ∥ϕ′(x)∥ and κrel =
∥ϕ′(x)∥∥x∥
∥ϕ(x)∥ (cf. [149, p. 90]).

Example 1.1.4. A fundamental condition number in numerical linear algebra arises from
considering the mapping ϕ : Rn → Rm, x ↦→ Ax, for some A ∈ Rm×n. Here we have

κabs = lim
δ→0

sup
x′:∥x−x′∥≤δ

∥A(x− x′)∥
∥x− x′∥

≤ ∥A∥

and for n = m also

κrel = lim
δ→0

sup
x′:∥x−x′∥≤δ

∥A(x− x′)∥∥A−1Ax∥
∥x− x′∥∥Ax∥

≤ ∥A∥∥A−1∥

if A is regular. For an operator norm ∥ · ∥ the vector x can be chosen such that equality
holds and hence the expression cond(A) := ∥A∥∥A−1∥ is called the condition number of the
matrix A (e.g. [149, pp. 93-94]). This definition can be extended to continuous, bijective
operators between Banach spaces ([5, Thm. 2.4.3]). For a rectangular, full rank matrix
A ∈ Rm×n, m ≥ n, the condition number is defined through the Moore-Penrose pseudo
inverse which is part of the next paragraph.

Singular value decomposition and its perturbation The concept of representing a Her-
mitian, positive definite matrix through its eigenvalue decomposition can be generalised
through the singular value decomposition.
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1 Preliminaries

Definition 1.1.5. (Singular value decomposition, e.g. cf. [15, Thm. 1.1.6]) A singular value
decomposition (SVD) of a matrix A ∈ Cm×n is

A = UΣV ∗ =
(︁
U1 U2

)︁(︃Σ1 0
0 0

)︃(︁
V1 V2

)︁∗
with a diagonal matrix Σ1 = diag(σ1, σ2, . . . , σr) ∈ Rr×r where r = rank(A) and the
monotony σ1 ≥ σ2 ≥ · · · ≥ σr > 0 holds. The matrices U ∈ Cm×m, V ∈ Cn×n are unitary.
While the nonnegative values σj , j = 1, . . . , r, are called singular values, the columns
of U, V are called left or right singular vectors respectively. Moreover, the compact or
truncated SVD A = U1Σ1V

∗
1 is obtained by just using the positive singular values.

One can easily observe a connection of the SVD and the eigenvalue decomposition of
A∗A by considering

A∗A = V Σ∗ΣV ∗

if A = UΣV ∗. Therefore, a SVD of any matrix always exists and the right singular vectors
are eigenvectors of A∗A while the singular values are the positive roots of eigenvalues of
A∗A. Moreover, we see due to the properties of eigendecompositions of Hermitian matrices
that the singular values are always unique and that the singular vectors are unique up to
scalar multiplication by λ ∈ C, |λ| = 1 if they correspond to a simple singular value ([15,
pp. 33-34]).

Similarly to the Courant-Fischer theorem for eigenvalues of Hermitian matrices, the
variational formulation of the singular values ranks the contribution of each of the singular
vectors in the representation of the matrix. We omit to present the variational formulation
of every singular value and focus on the smallest and largest singular value which we often
denote by σmin and σmax rather than σr and σ1 in order to prevent confusion whether σr
or σ1 is larger.

Lemma 1.1.6. (e.g. cf. [73, Thm. 7.3.8]) For A ∈ Cm×n with rank(A) = n ≤ m we have

σmax(A) = max
x∈Cn

∥Ax∥2
∥x∥2

= ∥A∥2 and σmin(A) = min
x∈Cn

∥Ax∥2
∥x∥2

where the characterisation of σmax remains valid without the assumption on the rank of
the matrix A.4

Proof. The proof follows directly by the min-max characterisation of singular vectors pre-
sented in [73, Thm. 7.3.8]. More precisely, studying [73, Eq. 7.3.9] for σ1 gives directly
the result for σmax while the characterisation of σmin is an immediate consequence of [73,
Eq. 7.3.10].

Remark 1.1.7. Among many others, one can use the SVD for the following:

(i) If A = UΣV ∗ ∈ Cm×n one defines the Moore-Penrose pseudo inverse by

A† = V Σ−1U∗ ∈ Cn×m where Σ−1 :=

(︃
Σ−1
1 0
0 0

)︃
∈ Cn×m

4As it should be clear from the context, we usually do not indicate explicitly from which matrix the
singular values stem from and write σj instead of σj(A).
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1.1 Numerical linear algebra

results of inverting all (non-zero) singular values. While it specialises to the usual
matrix inverse for regular square matrices, the pseudo inverse arises naturally in least
squares problems since x† := A†b is the minimal norm solution of a least squares
problem, i.e. ∥x†∥2 = minx∈argmin ∥Ax−b∥2 ∥x∥2 (cf. [15, Thm. 2.1.2]). Moreover, pro-
ceeding with Example 1.1.4 we can calculate for the case of the spectral norm

κrel = lim
δ→0

sup
x′:∥x−x′∥2≤δ

∥A(x− x′)∥2∥x∥2
∥x− x′∥2∥Ax∥2

≤ ∥A∥2
1

min ∥Ax∥2
∥x∥2

=
σmax

σmin

and thus the spectral condition number of A, cond2(A) := ∥A∥2 · ∥A†∥2 = σmax
σr

, can
be defined for any A with rank(A) = r > 0.

(ii) As the SVD of a matrix A contains information about the contribution of the sub-
spaces spanned by the singular vectors of the matrix A, it can also be used for low
rank approximation of A where one deals with the problem

min
B∈Cm×n, rank(B)=r0

∥A−B∥, r0 < min(m,n),

for a given matrix A ∈ Cm×n and a unitarily invariant norm ∥ · ∥, i.e. ∥PAQ∥ =
∥A∥ for any unitary matrices P,Q. According to the well-known Eckhart-Young-
Mirsky theorem (e.g. cf. [15, Thm. 2.2.11]), an optimal solution for the spectral or
the Froebenius norm is B = Ar0 =

∑︁r0
j=1 σjujv

∗
j where uj , vj are the j-columns of U

and V respectively. Moreover, the residual can be expressed in terms of the singular
values by

∥A−Ar0∥2 = σr0+1 and ∥A−Ar0∥F =

⌜⃓⃓⃓
⎷rank(A)∑︂

j=r0+1

σ2j .

Even though the pseudo inverse of a product is in general not equal to product of the
pseudo inverses, the following lemma about the pseudo inverse of a product with equal
rank gives a sufficient condition and it is used in Chapter 3.

Lemma 1.1.8. (cf. [15, p. 230]) Let A ∈ CN×r be a matrix of rank r and let W ∈ Cr×r
be a non-singular matrix. If T = AWA∗, then

T † = (A∗)†W−1A†.

Proof. The result can be obtained by applying [15, Thm. 2.2.3] twice in the computation

T † = (AWA∗)† = (WA∗)†A† = (A∗)†W−1A†

because all matrices in the factorisation have equal rank.

A classical result which can be used for perturbation analysis is the following.

Lemma 1.1.9. (Weyl’s inequality cf. [15, Thm. 2.2.10]) If A = B + C ∈ Cm×n, one has

σi+j−1(A) ≤ σi(B) + σj(C), 1 ≤ i+ j − 1, i, j ≤ n ≤ m

for the ordered singular values. Taking j = 1 yields

|σi(A)− σi(B)| ≤ σ1(A−B) = ∥A−B∥2.

15



1 Preliminaries

We remark that there are also results for the perturbation of singular vectors or more
precisely for the subspaces spanned by them, e.g. cf. [155]. However, we circumvent the
introduction of these subspaces by the following perturbation theorem for the pseudo
inverse.

Theorem 1.1.10. (Wedin, cf. [156]) If rankA = rankB, we have

∥A† −B†∥2 ≤
1 +

√
5

2
∥A†∥2∥B†∥2∥A−B∥2.

1.2 Fourier analysis

The theory of Fourier analysis provides many tools for signal and imaging applications.
Because of that and its long history, there exists a large variety of introductory literature
including [61, 80, 132]. We briefly summarise some Fourier analytic results and introduce
our notation for them.

Fourier transform and function spaces on the torus At first, we work on the 1-periodic
torus T := R/Z ∼= [0, 1) or its multivariate version Td, d ∈ N, and with the function spaces
of integrable and square integrable, 1-periodic functions,5

L1(Td) =
{︃
f : Td → C measurable and ∥f∥L1 :=

∫︂
Td

|f(x)|dx <∞
}︃

and

L2(Td) =

{︄
f : Td → C measurable and ∥f∥L2 :=

(︃∫︂
Td

|f(x)|2dx
)︃1/2

<∞

}︄
.

While both are Banach spaces, L2(Td) is even a Hilbert space with inner product ⟨f, g⟩ :=∫︁
Td f(x)g(x)dx. Moreover, Hölder’s inequality yields L2(Td) ⊂ L1(Td) on the compact
set Td. Additionally, the family of functions (e2πikx)k∈Zd forms an orthonormal system in
L2(Td) and this motivates to define the Fourier coefficients of any function f ∈ L1(Td) by

ck(f) := ⟨e2πik·, f⟩ =
∫︂
Td

f(x)e−2πikxdx, k ∈ Zd.

If f ∈ L2(Td), the sequence of Fourier coefficients c(f) satisfies c(f) ∈ ℓ2 where ℓp :=
{v : Zd → C : ∥v∥pp :=

∑︁
k∈Zd |vk|p < ∞}, p ∈ (1,∞), and the function f admits the

representation in terms of the Fourier series

f(x) =
∑︂
k∈Zd

ck(f)e
2πikx

with convergence of the series in the Hilbert space L2(Td). In particular, a function f ∈
L2(Td) and its sequence of Fourier coefficients fulfil the Parseval relation ∥f∥L2 = ∥c(f)∥2.
Beyond that, other types of convergence of the Fourier series like pointwise or uniform
convergence are well-studied subjects that we omit at this point.

5A good reference for this paragraph is for instance [132, Sec. 1.2 and Sec. 4.1].
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1.2 Fourier analysis

Fourier transform and function spaces on Rd For an integrable function on the real
line or more general on Rd, i.e. for f ∈ L1(Rd), we define the Fourier transform as the
function f̂ : Rd → C with

f̂(v) =

∫︂
Rd

f(x)e−2πiv·xdx.

While the Fourier transform of f ∈ L1(Rd) is not necessarily integrable,6 one can extend
the Fourier transform to L2(Rd) by a density argument (cf. [132, Sec. 2.2]). On this space
of square integrable functions, we have the Parseval relation ∥f∥L2 = ∥f̂∥L2 (cf. [132,
Thm. 2.22]) and thus the Fourier transform is an isometry of L2(Rd) onto itself. The fact
that the inner product is invariant under the Fourier transform, i.e. ⟨f, g⟩ = ⟨f̂ , ĝ⟩ for
f, g ∈ L2(Rd), is also called Plancherel’s theorem.

Another space that is preserved under the Fourier transform is the Schwartz space de-
noted by S(Rd). Its elements are called Schwartz functions which are defined as functions
f : Rd → C such that for all multi-indices α, β the Schwartz seminorm satisfies

∥f∥α,β := sup
x∈Rd

⃓⃓⃓
xα∂βf(x)

⃓⃓⃓
≤ Cα,β

for some Cα,β > 0 (e.g. cf. [61, Def. 2.2.1]).7 In other words, a function f ∈ S(Rd) has
infinitely many derivatives and not only the function but also its derivatives go to zero
faster than any polynomial.

Lemma 1.2.1. (Convolution, cf. [132, Thm. 2.1.3]) For f, g ∈ L1(Rd) their convolution

(f ∗ g)(x) =
∫︂
Rd

f(y)g(x− y)dy

exists for almost every x ∈ Rd and f ∗ g ∈ L1(Rd) holds.

We summarise the following properties of the Fourier transform.

Proposition 1.2.2. (e.g. cf. [132, Sec. 2.1 and Sec. 4.2]) Let f, g ∈ L1(Rd). The Fourier
transform satisfies

(i) the translation vs. modulation property: For x0, v0 ∈ Rd

(f(· − x0))̂ (v) = e−2πix0vf̂(v),

(e−2πiv0·f(·))̂ (v) = f̂(v + v0).

(ii) If for some α ∈ Nd the derivative ∂αf exists and ∂αf ∈ L1(Rd), one finds

(∂αf )̂ (v) = (2πiv)αf̂(v).

(iii) We have (f ∗ g)̂ (v) = f̂(v) · ĝ(v).

6For f ∈ L1(Td), we have f̂ ∈ C0(Rd) which is the space of continuous functions that vanish as ∥x∥ goes
to infinity.

7We use the multi-index notation xα := xα1
1 · · · · · xαd

d .
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1 Preliminaries

Moreover, the Fourier transform admits an inversion formula

f(x) =

∫︂
Rd

f̂(v)e2πivx dv for almost every x ∈ Rd

if f ∈ L1(Rd) with f̂ ∈ L1(Rd).

A connection of the Fourier series for periodic functions and the Fourier transform
defined for functions on Rd can be made through the Poisson summation formula.

Theorem 1.2.3. (Poisson summation formula, e.g. cf. [132, Thm. 4.27]) Let f ∈ C0(Rd)
be a function satisfying the decay conditions

|f(x)| ≤ c

1 + ∥x∥d+ϵ2

and |f̂(v)| ≤ c

1 + ∥v∥d+ϵ2

for some ϵ, c > 0. Then, the periodisation f̃ satisfies the Poisson summation formula

f̃(x) =
∑︂
l∈Zd

f(x+ l) =
∑︂
k∈Zd

f̂(k)e2πikx for all x ∈ Td,

i.e. the kth Fourier coefficient of f̃ agrees with the Fourier transform of f evaluated at
k. Moreover, both series from the Poisson summation formula converge absolutely and
uniformly.

While the Poisson summation formula connects Fourier theory on Td and Rd, the sam-
pling theorem establishes a method to recover a function f from (infinitely many) function
evaluations. But in order to make this possible, the function f ∈ L2(Rd) needs to be
bandlimited and this means that its Fourier transform has compact support, i.e. f̂(x) = 0
for almost every x outside of some compact set. Hence, we define

Bn(Rd) :=
{︂
f ∈ L2(Rd) : supp f̂ ⊂ [−n, n]d

}︂
as the space of bandlimited functions with bandwidth n (cf. [132, p. 86]).

Theorem 1.2.4.(Sampling theorem, Shannon–Whittaker–Kotelnikov, cf. [132,Thm. 2.29])
Let f ∈ L1(Rd)∩C0(Rd)∩Bn(Rd) and m ≥ n > 0. Then, f is uniquely determined by its
function evaluations f

(︁
k
2m

)︁
k∈Zd with the representation

f(x) =
∑︂
k∈Zd

f

(︃
k

2m

)︃
sinc(2mx− k),

converging in L2(Rd) as well as absolutely and uniformly on Rd. Here, the function sinc
denotes the sinus cardinalis,

sinc(x) =
sin(πx)

πx
for x ∈ R,

or the tensor products with itself in higher dimensions.

Proof. The univariate case is classic and for instance it is presented in [132]. Based on
this, the multivariate extension with the presented tensor product structure can be deduced
directly (cf. [61, Thm. 6.6.9]).
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1.2 Fourier analysis

The following lemma is a classical exercise in a course on Fourier analysis.

Lemma 1.2.5. The functions sk ∈ Bn(R), sk(x) := sinc(2nx−k), k ∈ Z, are orthogonal.
For f ∈ L1(Rd) ∩ C0(Rd) ∩ Bn(Rd), m ≥ n we have

∥f∥22 =
1

(2m)d

∑︂
k∈Zd

⃓⃓⃓⃓
f

(︃
k

2m

)︃⃓⃓⃓⃓2
.

Proof. The orthogonality of the translated sinc functions sk is a direct consequence of
Plancherel’s theorem since (sinc)̂ = 1[−1/2,1/2] is the indicator function on [−1/2, 1/2] and

⟨sk, sj⟩ = ⟨ŝk, ŝj⟩ =
∫︂
R2

e−2πikv/(2n) 1

(2n)2
1[−n,n](v)e

2πijv/(2n)
1[n,n](v)dv

=

∫︂ n

−n

1

(2n)2
e2πi(j−k)v/(2n)dv

=
1

2n
δk,j

for k, j ∈ Z. Analogously, a similar result can be given for the multivariate version of
sinc functions. For the second statement, we can use the sampling theorem in L2(Rd) and
conclude ⃓⃓⃓⃓

⃓⃓∥f∥2 −
⃦⃦⃦⃦
⃦⃦ ∑︂
∥k∥∞≤l

f

(︃
k

2m

)︃
sk

⃦⃦⃦⃦
⃦⃦
2

⃓⃓⃓⃓
⃓⃓ ≤

⃦⃦⃦⃦
⃦⃦f −

∑︂
∥k∥∞≤l

f

(︃
k

2m

)︃
sk

⃦⃦⃦⃦
⃦⃦
2

l→∞→ 0.

This can be used to establish the statement

∥f∥22 = lim
l→∞

⃦⃦⃦⃦
⃦⃦ ∑︂
∥k∥∞≤l

f

(︃
k

2m

)︃
sk

⃦⃦⃦⃦
⃦⃦
2

2

= lim
l→∞

∑︂
∥k∥∞≤l

⃦⃦⃦⃦
f

(︃
k

2m

)︃
sk

⃦⃦⃦⃦2
2

=
∑︂
k∈Zd

⃓⃓⃓⃓
f

(︃
k

2m

)︃⃓⃓⃓⃓2
∥sk∥22 =

1

(2m)d

∑︂
k∈Zd

⃓⃓⃓⃓
f

(︃
k

2m

)︃⃓⃓⃓⃓2
,

where we used the orthogonality of sk, k ∈ Zd, in the second equality.

Discrete Fourier transform An obvious way to approximate the Fourier coefficients of a
1-periodic function from a finite number of evaluations is to compute the discrete Fourier
transform (DFT) f̂ ∈ CK , where

f̂j =

K−1∑︂
k=0

fke
−2πikj/K , j = 0, . . . ,K − 1

for some vector f ∈ CK , K ∈ N. One of the main advantages of the DFT is that it can be
implemented in a fast manner by the fast Fourier transform (FFT) just using O(K logK)
operations. The following lemma shows how accurate this approximation is.
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Lemma 1.2.6. (Alias lemma, e.g. cf. [132, Thm. 3.3]) Suppose that f ∈ C(T), i.e. the
function f is 1-periodic and continuous. Moreover, let the sequence of Fourier coefficients
c(f) be absolutely summable. If we then take a vector f̃ ∈ CK , f̃k = f

(︁
k
K

)︁
, k = 0, . . . ,K−

1, the discrete Fourier transform of f̃ satisfies the alias formula

1

K
ˆ̃
fk =

∑︂
ℓ∈Z

ck+ℓK(f), k ∈ Z.

We remark that this can be generalised to higher dimensions. Furthermore, the peri-
odisation of a bandlimited function has Fourier coefficients given by the Fourier transform
evaluated at integers due to the Poisson summation formula. By the limited support of
the Fourier transform and the alias formula, the DFT then computes the first Fourier
coefficients exactly in this case.

1.3 Some auxiliary functions

In this section, we introduce some auxiliary functions which are used throughout the thesis.

Bessel functions While Bessel functions are usually motivated through the analysis of
certain differential equations, they naturally appear in our work when we study radial
functions and their Fourier transform.8

Definition 1.3.1. (Radial function, e.g. cf.[132, Sec. 4.2.4]) A function f : Rd → C is
radial if there exists a function f̃ : [0,∞) → C such that f(x) = f̃(∥x∥2).

It is straightforward to show that a radial L1-function has also a radial Fourier transform
(cf. [132, Cor. 4.30]). Furthermore, the Fourier transform of a d-variate radial function f ,
d > 1, can be expressed as an one-dimensional integral

f̂(v) = 2π∥v∥−d/2+1
2

∫︂ ∞

0
f̃(r)Jd/2−1(2πr∥v∥2)rd/2dr, (1.1)

where for x ≥ 0

Jν(x) =
∞∑︂
k=0

(−1)k

k!Γ(k + ν + 1)

(︂x
2

)︂2k+ν
(1.2)

denotes the Bessel function (of the first kind) of order ν > −1, see [61, p. 577]. Therein,
Γ denotes the Gamma function. Due to its importance for computing radial Fourier
transforms, the integral on the right hand side of (1.1) is also called Hankel transform of
order d/2− 1 of f̃ . The graphs of Jν for a few values of ν presented in Figure 1.1 show an
oscillating behaviour of these Bessel functions on the positive real line. We include various
other properties of Bessel functions in the following lemma.

Lemma 1.3.2. Let jν,k be the kth smallest positive zero of Jν for ν > −1. Then, we have

(i) 0 < jν,1 < jν+1,1 < jν,2,

(ii) jν,1 = ν + 1.855757ν1/3 +O(ν−1/3) as ν → ∞ and

8A good reference for an overview over Bessel functions is [154].
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1 2 3 4 5 6 7 8 9

0.5

1

1.5

Figure 1.1: The graphs of some Bessel functions. We included a Bessel function with
negative order which is possible by extending (1.2) to ν ∈ C and x ∈ C where(︁
x
2

)︁ν
and Γ(ν+1) can be defined. The latter holds if ν > −1 and the real part

of x satisfies ℜ(x) > 0. Here, J−1/2 has a pole at x = 0.

(iii) j−1/2,1 =
π
2 , j0,1 ≈ 2.4048, j1/2,1 = π and j1,1 ≈ 3.8317.

Moreover, the Bessel functions satisfy the recurrence relation

Jν+1(x) =
2ν

x
Jν(x)− Jν−1(x), x > 0

and the asymptotic expansion

Jν(x) =

(︄(︃
2

πx

)︃1/2

cos

(︃
x− 1

2
νπ − 1

4
π

)︃)︄
+O(x−3/2) as x→ ∞.

Finally, Bessel functions can be expressed by trigonometric functions in the special cases

J−1/2(x) =

(︃
2

πx

)︃1/2

cos(x) and J1/2(x) =

(︃
2

πx

)︃1/2

sin(x).

Proof. For properties (i)-(iii) see [154, Chap.XV]. The representations of J±1/2 can be
found in [154, p. 54] while the recurrence formula is for instance given in [154, p. 45]. A
reference for the asymptotic formula is [154, p. 199].

Extremal minorants and localising functions Due to the uncertainty principle, it is not
possible to find functions which are compactly supported in spatial and frequency domain.
Here, we introduce functions that circumvent this issue by being localised in one domain
through a compact support while they are also localised in the other domain as a minorant
or majorant of a certain function. In [13] as cited in [150] or in [14] as quoted in [7, p. 116]
respectively, Beurling introduced the function9

B : R → R, x ↦→ B(x) =
sin2(πx)

π2

[︄∑︂
k∈Z

sgn(k)

(x− k)2
+

2

x

]︄
, (1.3)

9For l ∈ Z, the value of B should be understood in the sense of a limit, i.e.B(l) := limx→lB(x) = sgn(l).

21



1 Preliminaries

where the sign function is defined as

sgn : R → R, x ↦→ sgn(x) =

{︄
1, x ≥ 0

−1, x < 0.

While B is graphically displayed in Figure 1.2 (a), we summarise some of its properties.

Proposition 1.3.3. ([150, Thm. 8]) The Beurling function B

(i) majorises the sign function, i.e. sgn(x) ≤ B(x),

(ii) can be extended to an entire function of exponential type10 2π,

(iii) has a distributional11 Fourier transform B̂ with supp B̂ = [−1, 1] and

(iv) its difference to the sign function measured in L1 satisfies
∫︁
RB(x)− sgn(x)dx = 1.

Furthermore, all functions f satisfying (i)-(iii) automatically fulfil∫︂
R
f(x)− sgn(x)dx ≥ 1 (1.4)

with equality if and only if f = B.

The last part of Proposition 1.3.3 motivates to speak about B as an extremal majorant
of the sign function. On the other hand, one directly obtains an extremal minorant of sgn
by using −B(−x) (cf. [150]). As it is of particular interest to find minorant and majorants
for the indicator function 1[−1,1], e.g. for applications in control theory [83] or in order
to bound the smallest and largest singular values of Vandermonde matrices (cf. [117, 6]),
Selberg [146] as cited in [7, 6] introduced the functions

s+(x) =
1

2
(B(x+ 1) +B(1− x)) and

s−(x) = −1

2
(B(−1− x) +B(x− 1)) =

sin2(πx)

π2

(︃
2

1− x2
+

1

x2

)︃
.

As a consequence of Proposition 1.3.3 we know that s−, s+ fulfil variants of (i)-(iv)
in Proposition 1.3.3, i.e. they have exponential type 2π and admit s− ≤ 1[−1,1] ≤ s+,
supp ŝ− = supp ŝ+ = [−1, 1] as well as∫︂

R
1[−1,1](x)− s−(x)dx =

∫︂
R
s+(x)− 1[−1,1](x)dx = 1. (1.5)

Moreover, any function f with exponential type 2π being either a majorant with 1[−1,1] ≤ f
or a minorant with 1[−1,1] ≥ f has the property that∫︂

R
|f(x)− 1[−1,1](x)|dx ≥ 1,

10A function f : C → C is called entire if it is holomorphic everywhere. Additionally, having an entire
function f of exponential type σ > 0 means that for every ϵ > 0 there exists cϵ > 0 such that
|f(z)| ≤ cϵe

(σ+ϵ)|z| for all z ∈ C (cf. [150, p. 186]). Properties (ii) and (iii) in Proposition 1.3.3 are
connected through the Paley-Wiener-Schwartz theorem (e.g. cf. [138, Thm. 19.3] or [72, Sec. 7.3]).

11Even though B /∈ Lp(R) for all p ∈ [1,∞), one can define its Fourier transform as a distribution via
⟨B̂, ϕ⟩ := ⟨B, ϕ̂⟩ for all test functions ϕ ∈ S(R).
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Figure 1.2: Extremal Functions of Beurling and Selberg compared to construction of
Diederichs. The Beurling function B is an extremal majorant to the sign
function (a) where we used the first 200 summands in (1.3) for the visualisa-
tion. Due to Selberg, it can be used to establish a minorant and a majorant
to the characteristic function of the interval [−1, 1] (b). But the Fourier trans-
form of Selberg’s minorant is not maximal in zero (c) while a construction by
Diederichs fulfills this, see (b) and (d).

see [150, p. 186] or [37].12 Hence, s−, s+ are an extremal minorant and majorant of 1[−1,1].
However, they are not unique in contrast to the situation for the sign function where
the Beurling function is the only extremal majorant, see (1.4). This can be seen by a
construction of Diederichs [37, Prop. 2.13] who worked with

s̃−(x) =
sin2(πx)

π2

(︃
1

1− x2
+

1

x2

)︃
which is another extremal minorant of 1[−1,1].

13 Both minorants and the majorant of
Selberg are depicted in Figure 1.2 (b). Compared to the minorant s− of Selberg, the

12We remark that the case of a indicator function on a interval [a, b] with b − a /∈ Z behaves different,
e.g. see [102].

13One can see that easily by computing the Fourier transforms of s−, s̃− and observing that their values
in zero agree which means that

∫︁
R s−(x)dx =

∫︁
R s̃−(x)dx.
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minorant s̃− has the advantage that its Fourier transform ˆ̃s− is maximal in zero whereas
ŝ− has even a local minimum in zero. To see this, one can use [37, Lem. 2.21] in order to
obtain

ŝ−(v) =

(︃
sin(2π|v|)

π
+ 1− |v|

)︃
1[−1,1](v) and ˆ̃s−(v) =

(︃
sin(2π|v|)

2π
+ 1− |v|

)︃
1[−1,1](v).

Hence, it is trivial to analyse the extremum for v = 0. Additionally, the different types
of extrema can be seen in their graphs, see Figure 1.2 (c) and (d). We remark that in
[37, 38] Diederichs also coined the term localising function for minorants of the indicator
function of an interval with compactly supported Fourier transform.
For higher dimensions, one has to concretise the multivariate generalisation of 1[−1,1]

at first. An obvious choice is to consider the box function 1[−1,1]d and this was done in
[24, 23] where the authors construct minorants for small dimensions d ≤ 5 while they
remark that “in higher dimensions no extremal results for the box minorant problem are
known” (cf. [23, p. 2]). Compared to the box-minorant problem, the question whether there
are functions f−, f+ such that

f−(x) ≤ 1Bn(0) ≤ f+(x) and supp f̂−, supp f̂+ ⊂ Bq(0), (1.6)

where Bq(0) = {x ∈ Rd : ∥x∥2 ≤ q} is the Euclidean ball, was addressed in [71]. Since the
radial structure of the problem allows to transform it back to a univariate problem, the
problem (1.6) is simpler than the box problem and thus extremal minorants and majorants
can be found for any n, q, see [71]. However, the work by Goncalves [59] shows that a
localising function f− with f̂−(0) > 0 can only exist if n·q is larger than a certain dimension
dependent critical radius. Both works [71] and [59] have the drawback that the localising
functions are not given explicitly. An explicit construction for a function satisfying (1.6)
is given in [83] by taking

f−(x) = 4π2(n2 − x2)|φ̂(x)|2 or f̂−(v) =
(︁
4π2n2 +△

)︁
(φ ∗ φ)(v), (1.7)

where △ =
∑︁d

s=1
∂2

∂x2s
is the Laplace operator and φ a function with suppφ ⊂ Bq/2(0).

This idea was used in a modified form for instance in [86] to prove inequalities for singular
values of Vandermonde matrices. In Subsection 2.2.1 of this work, we tune the function
φ such that f̂− becomes maximal in zero as this will be an important ingredient in order
to derive Subsection 2.2.2. This need emerged already in [53] studying the problem in the
univariate case and in [37, 38] where not only the univariate but also the bivariate case
is addressed. Our approaches extend to arbitrary dimensions and allow to make n · q as
small as possible.

Trigonometric polynomials and kernels In Chapter 3, we approximate and interpolate
measures by trigonometric polynomials, i.e. functions p : Td → C,

x ↦→ p(x) =
∑︂
k∈K

pke
2πikx

for some finite set K ⊂ Zd and coefficients pk = ck(p) ∈ C, k ∈ Zd. In one dimension, we
typically have the symmetric case with K = {−n, . . . , n} for some n ∈ N called degree of p.
The latter is denoted by deg(p) = n. As already for minorants in the previous paragraph,
simple extensions to higher dimensions include the box case, i.e.K = {−n, . . . , n}d, or the
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radial case with K = {k ∈ Zd : ∥k∥22 ≤ n2}. In order to distinguish the two, we denote
the maximal degree n in the box case by deg∞(p) = n whereas the Euclidean degree
deg2(p) = n is used in the radial case. Moreover, we define the space of polynomials with
maximal degree n as

Pn,d,∞ =

⎧⎨⎩p : Td → C, x ↦→ p(x) =
∑︂

k∈{−n,...,n}d
pke

2πikx

⎫⎬⎭
and the space of radial polynomials with Euclidean degree n as

Pn,d,2 =

⎧⎨⎩p : Td → C, x ↦→ p(x) =
∑︂

k:∥k∥22≤n2

pke
2πikx

⎫⎬⎭ .

In the course of this work, we utilise some well-established trigonometric polynomials,
e.g. cf. [132]. Following the notation in [120], we introduce the Dirichlet kernel and its
modified version.

Definition 1.3.4 ((Modified) Dirichlet kernel). The Dirichlet kernel Dn ∈ Pn,d,∞ is the
trigonometric polynomial with

Dn(x) :=

n∑︂
k=−n

e2πikx =

{︄
sin((2n+1)πx)

sin(πx) , x ̸= 0,

2n+ 1, x = 0,
(1.8)

in the univariate case and its tensor product Dn(x1, . . . , xd) := Dn(x1) · · ·Dn(xd) for the
multivariate situation. The second equality in (1.8) follows directly by the geometric sum
formula. In contrast to that, the modified Dirichlet kernel

dn(x) :=
n∑︂
k=0

e2πikx =

{︄
eπinx sin((n+1)πx)

sin(πx) , x ̸= 0,

n+ 1, x = 0,

only includes the nonnegative frequencies. Again, we follow a tensor product approach by
setting dn(x1, . . . , xd) := dn(x1) · · · dn(xd) in higher dimensions.

The Dirichlet kernel appears naturally since every truncated Fourier series can be un-
derstood as a convolution of the original function f ∈ L2(Td) with the Dirichlet kernel.
Hence, convolutions with the Dirichlet kernel are well-studied in harmonic analysis in or-
der to describe convergence of Fourier series. Taking the squared absolute value of dn still
yields a polynomial from Pn,d,∞. Properly normalised, this polynomial is known as the
Fejér kernel, see [132, Exa. 1.15].

Definition 1.3.5 (Fejér kernel). The Fejér kernel Fn ∈ Pn,d,∞ is the trigonometric poly-
nomial defined as

Fn(x) :=
1

(n+ 1)d
|dn(x)|2 =

∑︂
k∈{−n,...,n}d

(︄
d∏︂
s=1

1− ks
n+ 1

)︄
e2πikx.

In contrast to the Dirichlet kernel, the Fejér kernel is a summation kernel yielding
uniform convergence of the convolution of the Fejér kernel with any continuous function
f ∈ C(Td) to this function f , see [132, Thm. 1.17]. However, convolution with the Fejér
kernel does not lead to the optimal convergence rate among all approximations through a
convolution. This is then achieved by the Jackson kernel, see [77, pp. 2 ff.].
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Definition 1.3.6 (Jackson kernel). The Jackson kernel

J2m−2(x) =
3

m(2m2 + 1)

sin4(mπx)

sin4(πx)
, m ∈ N,

has degree n = 2m−2 and is easily extended to higher dimensions by the product approach
with Jn(x1, . . . , xd) := Jn(x1) · · · Jn(xd) ∈ Pn,d,∞.

Finally, a natural element of Pn,d,2 is the radial Dirichlet kernel

Drad,n(x) :=
∑︂

k∈Zd:∥k∥2≤n

e2πikx.

For this kernel, we can derive a tail estimate analogously to the classical analysis of Dn.
We will use this bound in Chapter 3.

Lemma 1.3.7. For x ∈ Td \ {0} there is a constant cd > 0 such that

|Drad,n(x)| ≤
cdn

d−1

minj∈Zd |x+ j|∞
.

Proof. Assume without loss of generality |x1|T := minj1∈Z |x1+j1| = minj∈Zd |x+j|∞ and

set x = (x1, x
′) for x′ ∈ Td−1. Denoting e1 = (1, 0, . . . , 0)⊤ ∈ Nd, we have

(1− e2πix1)Drad,n(x)

=
∑︂

k∈Zd:∥k∥2≤n

e2πikx −
∑︂

k∈Zd:∥k∥2≤n

e2πi(k+e1)x

=
∑︂

k′∈Zd−1:∥k′∥2≤n

e2πik
′x′

⎛⎜⎜⎜⎜⎜⎝
∑︂

k1≥−
√

n2−∥k′∥22
k1<−

√
n2−∥k′∥22+1

e2πik1x1 −
∑︂

k1>
√

n2−∥k′∥22
k1≤

√
n2−∥k′∥22+1

e2πik1x1

⎞⎟⎟⎟⎟⎟⎠
=

∑︂
k′∈Zd−1:∥k′∥2≤n

e2πik
′x′
(︂
e−2πi⌊

√
n2−∥k′∥22⌋x1 − e2πi⌊

√
n2−∥k′∥22+1⌋x1

)︂
where we use the rounding operation ⌊y⌋ = k ∈ Z if y ∈ [k, k + 1). Taking the absolute
value on both sides gives

|Drad,n(x)| ≤
2
∑︁

k′∈Zd−1:∥k′∥2≤n 1

| sin(πx1)|
≤ cdn

d−1

minj∈Zd |x+ j|∞

for some constant cd > 0 which can be bounded by 2d−1 as {k′ ∈ Zd−1 : ∥k′∥2 ≤ n} is a
subset of [−n, n]d−1.

1.4 Wasserstein metric and optimal transport

The field of optimal transport allows to define the Wasserstein distance as a metric for
measures.14 Classically, the Wasserstein distance compares a measure µ on some space X
14For example, see [129, 151, 141] for an overview on optimal transport.
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to ν on Y where X ,Y are typically complete and separable metric spaces equipped with
their Borel σ-algebra.15 For any of these Borel measures µ on X , we can define the total
variation |µ| ∈ M+(X ) by

|µ|(A) = sup

{︄∑︂
i

|µ(Ai)| : A =
⋃︂
i

Ai, Ai ∩Aj = if i ̸= j

}︄

and say that µ ∈ M(X ) has finite total variation if ∥µ∥TV := |µ|(X ) <∞ (cf. [141, p. 117]).
The space of complex Borel measures with finite total variation on X is denoted by M(X )
but in the first part of this section we focus on probability measures µ ∈ M+,1(X ), ν ∈
M+,1(Y), i.e. nonnegative measures with µ(X ) = ν(Y) = 1.16 For a sequence (µk)k∈N ∈
M(X ), we say that it converges weakly to some µ ∈ M(X ) if∫︂

X
f(x)dµk(x) →

∫︂
X
f(x)dµ(x) (1.9)

as k → ∞ for all test functions f ∈ C(X ) ∩ L∞(X ), i.e. all continuous and bounded
functions f : X → R (cf. [151, p. 96]). We then write µk ⇀ µ.

Monge vs. Kantorovich formulation and Wasserstein distance for probability measures
Transforming one measure µ ∈ M+,1(X ) into another ν ∈ M+,1(Y) can be modelled by
the push-forward measure T#µ ∈ M+,1(Y) where T : X → Y is a measurable map and

T#µ(A) = µ(T−1(A)) = µ(x ∈ X : T (x) ∈ A)

for any Borel set A ⊂ Y. This allows to formulate the Monge problem.

Definition 1.4.1. (Monge formulation, cf.[129, Rem. 2.7]) For measures µ ∈ M+,1(X ),
ν ∈ M+,1(Y) and a cost function c : X × Y → R≥0 the Monge cost between µ and ν is

min
T

∫︂
X
c(x, T (x))dµ(x) s.t. ν = T#µ.

Every admissible push forward map T is called transport map.

As there are situations where the Monge problem is not solvable, e.g. if one considers
two discrete measures with not compatible number of support points (cf. [129, pp. 10-11]),
one typically considers the relaxation to the Kantorovich problem.

Definition 1.4.2. (Kantorovich, e.g. [129, Rem. 2.13]) Let Π(µ, ν) denote the space of all
coupling measures of µ and ν given by all measures π ∈ M+,1(X × Y) such that their
marginals are µ and ν respectively. The Kantorovich formulation of optimal transport is
then

min
π∈Π(µ,ν)

∫︂
X×Y

c(x, y)dπ(x, y).

15Spaces like X ,Y are called Polish spaces, see [151, p.XX]. We usually consider the torus Td or possibly
compact subsets of Rd for X ,Y.

16We denote the space of nonnegative measures on some Polish space X by M+(X ). Additionally, the
space of real valued but signed measures is denoted by MR(X ).

27



1 Preliminaries

In the literature, there exists a well-established theory about existence and uniqueness
of minimisers. Furthermore, there are results that present sufficient conditions for the
equivalence of both approaches, see [129, 141, 151] and the references therein. In special
cases, e.g. when both measures are discrete or univariate or one is discrete and the other
has a density with respect to the Lebesgue measure (semidiscrete optimal transport), a
richer theory is known, e.g. see [129, Sec. 2.6 and Chapter 5]. For probability measures on
a metric space X = Y one can then define the Wasserstein distance.

Definition 1.4.3. (Wasserstein distance on M+,1(X ), e.g. cf.[129, p. 21]) Let (X , d) be a
metric space and p ∈ [1,∞). Then, the p-Wasserstein distance of µ, ν ∈ M+,1(X ) is given
by

Wp(µ, ν) = min
π∈Π(µ,ν)

(︃∫︂
X×X

d(x, y)pdπ(x, y)

)︃1/p

as the Kantorovich cost between µ and ν with cost function d(·, ·)p defines a metric on
M+,1(X ).

Finally, we remark that weak convergence µk ⇀ µ is then equivalent to Wp(µk, µ) → 0
as k → ∞, see [151, Thm. 6.9]. This enables to quantify a convergence rate for weakly
convergent sequences.

Dual formulation and extension of Wasserstein to complex measures Extensions of the
Wasserstein distance to arbitrary complex measures can be made by the dual formulation
of the Kantorovich problem.

Theorem 1.4.4. (Kantorovich duality, [151, Thm. 5.10]) Let µ, ν ∈ M+,1(X ). If the cost
function is lower semi-continuous, one has the duality

min
π∈Π(µ,ν)

∫︂
X×Y

c(x, y)dπ(x, y) = sup
f∈C(X )∩L∞(X ),g∈C(Y)∩L∞(Y):

f(x)+g(y)≤c(x,y)

∫︂
X
f(x)dµ(x) +

∫︂
Y
g(y)dν(y)

where L∞(X ) denotes the set of bounded functions f : X → R and C(X ) contains all
those functions f which are continuous. In the case X = Y and c(x, y) = d(x, y) for some
metric d on X , the Kantorovich-Rubenstein formula, see [151, p. 60],

min
π∈Π(µ,ν)

∫︂
X×X

d(x, y)dπ(x, y) = sup
f :Lip(f)≤1

∫︂
X
f(x)(dµ(x)− dν(x))

holds where the supremum on the right hand side is over all Lipschitz continuous functions
f : X → R with Lip(f) := supx ̸=y

|f(x)−f(y)|
d(x,y) ≤ 1.

Hence, the 1-Wasserstein distance has a very simple dual formulation in terms of Lip-
schitz functions and we now use this to generalize the concept of Wasserstein distances to
complex valued measures from M(X ) which additionally need not to have equal mass if X
is bounded.17 Even if [129, p. 98] mentions that the Wasserstein distance can be extended
to signed measures with equal mass through the Kantorovich-Rubenstein representation
and [98, eq. (43)] generalises the set of transport plans π to complex measures, it is not
entirely clear if a generalisation of the Wasserstein distance to complex measures µ1, µ2

17If X is a bounded metric space, we define its diameter by diam(X ) = supx,y∈X d(x, y). The situation of
two measures with equal total mass is often called balanced optimal transport.
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has been considered before. However, p-Wasserstein distances for non-normalised, signed
measures have been introduced by modification of the primal problem in [130, 131]. Addi-
tionally, an approach similar to ours starting from the Kantorovich-Rubenstein formula is
studied in [96, Def. 8] and [97]. There, the unbalanced optimal transport distance between
signed measures µ, ν with finite total variation is defined as

sup
f :Lip(f)≤1
∥f∥∞≤τ

∫︂
X
f(x)(dµ(x)− dν(x)) (1.10)

for some τ > 0, see [96, Def. 8]. For τ → ∞ and two measures with equal mass this directly
yields the classical 1-Wasserstein distance. On the other hand, the supremum norm of an
optimiser for (1.10) can be bounded in terms of the diameter of X if the set X is bounded
and µ and ν have equal mass since the condition on the Lipschitz constant bounds the
possible growth of the function. Therefore, we can extend the Wasserstein distance as
follows.

Proposition 1.4.5 (Complex, unbalanced 1-Wasserstein distance). Let X be compact.
Then, the function W1 : M(X )×M(X ) → R≥0,

W1(µ, ν) := sup
f :Lip(f)≤1

∥f∥∞≤ 1
2 diam(X )

⃓⃓⃓⃓∫︂
X
f(x)(dµ(x)− dν(x))

⃓⃓⃓⃓
,

defines a metric called complex, unbalanced 1-Wasserstein distance on M(X ) that agrees
with the definition of a balanced 1-Wasserstein distance from Definition 1.4.3 on M+,1(X ).

Proof. Nonnegativity, symmetry and the triangle inequality are trivial. If one considers
probability measures µ, ν ∈ M+,1(X ), we can always add a constant c ∈ R to f without
changing the value of

∫︁
X f(x)(dµ(x) − dν(x)). The real valued, continuous function f

attains its minimum fmin and maximum fmax on the compact set X such that⃓⃓⃓⃓
f(x)− fmin + fmax

2

⃓⃓⃓⃓
≤ max

(︃⃓⃓⃓⃓
fmin −

fmin + fmax

2

⃓⃓⃓⃓
,

⃓⃓⃓⃓
fmax −

fmin + fmax

2

⃓⃓⃓⃓)︃
≤ 1

2
|fmin − fmax| ≤

diam(X )

2
.

Thus, the condition ∥f∥∞ ≤ diam(X )
2 can be neglected for µ, ν ∈ M+,1(X ) and the proposed

extension of W1 agrees with Definition 1.4.3 on M+,1(X ).

In order to show that W1 is definite, set µ̃ = µ − ν and let
∫︁
X f(x)dµ̃(x) = 0 for all

Lipschitz continuous functions f : X → R and assume that there is a measurable set
A ⊂ X with µ̃(A) ̸= 0. Since µ̃ is a Borel measure, we can consider A being closed.
Denoting the projection operator on A by projA(x) := argminy∈A ∥x− y∥X , we define for
any ϵ > 0 a function fϵ : X → R,

fϵ(x) =

⎧⎪⎨⎪⎩
1, x ∈ A,

1− 1
ϵ∥ projA(x)− x∥X , x ∈ ((A+Bϵ(0)) \A) ∩ X ,

0, else.

It is straightforward to show that Lip(fϵ) ≤ ϵ−1 and therefore 0 =
∫︁
X fϵdµ̃ leading to the

contradiction µ(A) = 0 by applying the dominated convergence theorem.
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Proposition 1.4.5 can immediately be applied to X = Td with the wrap around metric

∥t1 − t2∥Td = min
j∈Zd

∥t1 − t2 + j∥2

and we will use the resulting complex, unbalanced 1-Wasserstein distance for M(Td).
Therein, the diameter of X = Td is diam(Td) =

√
d
2 and this leads to

W1(µ, ν) := sup
f :Lip(f)≤1

∥f∥∞≤
√
d
4

⃓⃓⃓⃓∫︂
X
f(x)(dµ(x)− dν(x))

⃓⃓⃓⃓

for µ, ν ∈ M(Td).
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2 Condition of sparse super resolution

In many parts, this chapter is a summary and extension of the papers [67, 68]. In parti-
cular, Subsection 2.2.4 goes beyond the previously published work of the author.

As already mentioned in the introduction, super resolution is about the computation
of a measure from its noisy, low pass version or equivalently from its perturbed Fourier
coefficients. Instead of analysing the performance of specific algorithms in the case of
noise, we are interested in the nature of this inverse problem itself, i.e. we want to study
how badly even the “best” algorithm in some sense amplifies errors in the data. In this
work, we want to restrict ourselves to the case of a sparse ground truth measure consisting
of a linear combination of Dirac measures.18 Then, the task is to recover an underlying
measure µ =

∑︁
t∈Y αtδt with a node set Y ⊂ [0, 1)d, d ∈ N≥1, and weights (αt)t∈Y ∈ C|Y |

from noisy samples of its convolution with the point spread function (PSF) of the optical
system h ∈ L1(Rd) ∩ C0(Rd).19,20 In other words, one has access to perturbed values of

g(x) = (h ∗ µ)(x) =
∑︂
t∈Y

αth(x− t) (2.1)

for x evaluated on some pixel grid in [0, 1)d. By computing or more practically approx-
imating the Fourier transform using the samples, one obtains estimates for the Fourier
coefficients or moments of the measure given by

µ̂(k) =
∑︂
t∈Y

αte
−2πit·k

for discrete frequencies k ∈ Zd such that ĥ(k) ̸= 0. More realistically, the set of trustworthy
spectral information would contain all k ∈ Zd where ĥ(k) is large compared to the noise
level. As it is a widely used assumption to consider a radial PSF h and likewise a radial
optical transfer function (OTF) ĥ (e.g. cf. [75, 28]), we assume access to estimates

ˆ̃µ(k) = µ̂(k) + ρ̂(k) =
∑︂
t∈Y

αte
−2πit·k + ρ̂(k), k ∈ Zd, ∥k∥2 ≤ n, (2.2)

for some n > 0 and deterministic noise |ρ̂(k)| ≤ ϱ with noise level ϱ > 0 on the Fourier
coefficients. In Subsection 2.2.3 and Subsection 2.2.4, we will later assume also random
noise on the moments or deterministic noise in the spatial domain.

Now, we want to study how much this noise is amplified if we compare the noise level
in the data to the distance of the recovered parameters of the measure to the original
one. Therefore, we introduce a notion for distance in the data and the parameter space.

18This assumption does not only include many single molecule microscopy applications but sparse measures
might also be good approximations to measures with a more complicated support (e.g. cf. Section 4.1).

19For a set Y we denote its cardinality by |Y |.
20We have seen the bandlimited Airy function as a prototypical PSF in the introduction. Another popular

choice would be an appropriately chosen Gaussian function (e.g. cf. [122, 96]). Both types of choice fulfil
h ∈ L1(Rd) ∩ C0(Rd).

31



2 Condition of sparse super resolution

We call the measure M -sparse if µ has up to M nodes and we interpret the nodes as
elements of the d-dimensional torus Td since (2.2) allows for a 1-periodic ambiguity in
the nodes. Therefore, the distance between nodes should be the wrap around distance
∥t1 − t2∥Td = minj∈Zd ∥t1 − t2 + j∥2 and the Euclidean wrap-around separation of some
finite set Y is then defined as

sepY := min
t1,t2∈Y,t1 ̸=t2

∥t1 − t2∥Td = min
t1,t2∈Y,t1 ̸=t2

min
j∈Zd

∥t1 − t2 + j∥2.

0 1
Y

sepY

Figure 2.1: Definition of separation distance on T for some finite set Y .

For q > 0, we define the set of q-separated complex measures

M(q) :=

{︄∑︂
t∈Y

αtδt : αt ∈ C, Y ⊂ Td finite, sepY ≥ q

}︄

as a subset of the space M(Td). The corresponding truncated moment set or set of
exponential sums is

ˆ︂Mn(q) :=

⎧⎨⎩
(︄∑︂
t∈Y

αte
−2πit·k

)︄
k∈Zd:∥k∥2≤n

:
∑︂
t∈Y

αtδt ∈ M(q)

⎫⎬⎭,
where we again restrict ourselves to the sampling set {k ∈ Zd : ∥k∥2 ≤ n}. The standard
Euclidean norm ∥ · ∥2, where ∥µ̂∥22 :=

∑︁
k∈Zd:∥k∥2≤n |µ̂(k)|

2, always induces a metric onˆ︂Mn(q) and this manifold is sketched in Figure 2.2. The shape of ˆ︂Mn(q) determines how
large the ratio of the noise ρ̂ and the distance between ground truth µ and the best sparse

Exact data µ̂

Best approximation µ̂′

Noisy data ˆ̃µρ̂

ˆ︂Mn(q)

Figure 2.2: Sketch of the manifold ˆ︂Mn(q) and idea of noise amplification as the worst
ratio between the difference of µ and µ′ measured by difference of their pa-
rameters (red arrow) compared to noise level ρ̂ in ˆ︂Mn(q) (blue arrow). As
the condition on the separation is usually chosen such that |Y | is noticeably
smaller than the number of moments, the manifold is typically a proper subset
of C|{k∈Zd:∥k∥2≤n}|.
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2.1 Summary of related results

approximation µ′ might be.21 We study this question in this chapter by summarising
related results at first. Afterwards, we develop a framework in which the condition number
of the nonlinear mapping of Fourier coefficients to the closest measure is analysed. This
includes the construction of a new minorant function in Subsection 2.2.1 which is used to
prove an inequality for the difference of nodes and weights in Subsection 2.2.2. Based on
this, we study the diffraction limit as a transition of the condition number from polynomial
to exponential with respect to the bandlimit n in Subsection 2.2.3. Our findings can then
be applied to the condition of the full inverse problem starting with image data instead
of Fourier coefficients in Subsection 2.2.4. Finally, we conclude a result for the smallest
singular value of Vandermonde matrices with pair clusters in Section 2.3. This finding
comes with the advantage that it is applicable in a multivariate setting if the clusters are
separated by a term independent of the distance of the clustering pairs.

2.1 Summary of related results

As mentioned in Section 1.1, one has to distinguish the stability of an algorithm from the
condition of the underlying problem. Nevertheless, the stability of an algorithm can not
be better than the condition of the task such that results about stability of a particular
algorithm already yield an upper bound for the condition. For the sparse super resolution
problem, there exist a wide range of algorithms which can be divided into two types of
algorithms. On one hand, there are variational methods which analyse the problem by
finding a solution of certain optimisation schemes. For example, Candès and Fernandez-
Granda [52, 22] promoted the use of a ℓ1-regularised minimisation problem yielding sparse
reconstructions and established theory about it saying that this approach stably recovers
the ground truth measure in the univariate setting if qn ≥ 1.26 ([52]). Similarly, the
work by Duval and Peyré [43] has shown robust reconstruction with the Beurling-Lasso
(BLASSO) under the hypothesis of a “non-degenerate source condition” being itself linked
to an assumption on the minimal separation in relation to the cutoff frequency n, see [43,
p. 1331].22 The same authors together with Denoyelle [34] additionally obtained stability
independent of the separation distance under the prior information that one is confronted
with positive measures. More recently, there were also attempts to use variational methods
of deep learning but for methods like Deep STORM, see [122, 121], (almost) no theoretical
guarantees for the stability are known yet.

On the other hand, parametric methods commonly summarised by the term subspace
methods are also used for the super resolution problem and there exists a long list of
attempts to analyse stability of subspace methods including Li et al. [99], Liao et al. [101],
Aubel and Bölcskei [7], Potts und Tasche [135] and Sahnoun [140]. As an example, we
briefly describe the results of Fan and Li, cf. [49]. They present a variant of Prony’s method
that approximates the ground truth measure with an error proportional to MdϱO(1/M)

in the Wasserstein distance with high probability. Here, ϱ is the level of noise, M the
number of nodes satisfying n = 2M − 1 and d the dimension. This result can be seen as

21In particular, we will find by Theorem 3.1.5 that ˆ︂Mn(q) for q sufficiently large is not path-connected

in general because this theorem allows to conclude that elements in ˆ︂Mn(q) which are very close to

each other have the same number of parameters (t, αt)t∈Y . Therefore, elements of ˆ︂Mn(q) can only
be connected by a path if they have the same number of parameters such that different connected
components must exist. This non-connectedness is indicated in Figure 2.2.

22Here, the Beurling-Lasso describes a ℓ1-regularised optimisation scheme which is formulated on the space
of Radon measures and thus independent of any choice of discretisation of the domain.
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2 Condition of sparse super resolution

a stability estimate for a particular algorithm in the strong super resolution case as there
is no separation condition involved and the rate deteriorates with an increasing number
of nodes M . The latter was already observed by Donoho, see [39, Thm. 1.3], and can also
be observed for variational methods, see [43].

Another way to estimate the condition of sparse super resolution is given through the
analysis of the smallest singular value of Vandermonde matrices which was done among
others by Moitra [117], Aubel and Bölcskei [6], Nagel et al. [88, 120], Batenkov et al. [10],
and the references therein. The ratio behind this observation is that a simplification of
the super resolution problem would be that the nodes are already known. In that case,
it is natural to set up a Vandermonde matrix based on the given nodes and to recover
the weights by a least square approach. Then, the noise amplification is governed by the
condition number of the Vandermonde matrix and the latter depends heavily on the size
of the smallest singular value. If nodes of the Vandermonde matrix are very close, the
smallest singular value is very small whereas the condition number can be nicely bounded
if the node set is well separated. Thus this qualitative transition gives already an idea of a
diffraction limit distinguishing between strong and weak super resolution. Moreover, one
can use these estimates in order to study the stability of the node recovery using algorithms
like ESPRIT or matrix pencil, see [7, 120]. Nevertheless, considering the recovery of nodes
and weights separately is a simplification of the problem and the condition of a problem is
not the same as the stability of an algorithm.23 Our approach to analyse the condition of
the complete task is more general and allows to conclude a result for the smallest singular
values of Vandermonde matrices with pairwise clustering nodes, see Section 2.3.

An interesting statistical approach was presented by Ferreira Da Costa et al. [53] based
on the Cramér-Rao (CR) lower bound. There, the CR lower bound means the inequality
that the covariance matrix of any unbiased estimator θ̂ for a vector of parameters θ can
be bounded from below by the inverse of the so called Fisher information matrix J(θ), in
other words we have

E

[︂
(θ̂(y)− θ)(θ̂(y)− θ)⊤

]︂
⪰ J(θ)−1

where A ⪰ B for Hermitian matrices A,B ∈ Cm×m is meant in the sense that A − B
is positive semidefinite, e.g. cf. [126]. In the context of super resolution, it is obvious
that θ consists of all nodes and weights and the Fisher information matrix calculated
for the univariate problem in [53] has a structure similar to a confluent Vandermonde
matrix defined in [57]. Hence, lower bounds on the covariance of any unbiased estimator
for the parameters of the sparse measure can be derived through the smallest singular
value of the confluent Vandermonde matrices and the latter is done for the univariate
setting in [53] by using minorant and majorant functions derived from the Beurling-Selberg
extremal functions. This results in a theorem, see [53, Prop. 3], stating that the one-
dimensional super resolution problem is stable in the sense that the Fisher information
matrix is well conditioned if the separation q of the nodes satisfies (2n+1) · q > 3.54. It is
conjectured that the optimal lower bound for (2n+ 1) · q is two and we will prove this in
Subsection 2.2.3 together with a multivariate extension. Furthermore, this generalisation
to higher dimensions will be consistent with our notions for stability and the diffraction
limit.

23One might argue to close the gap between condition and stability by the Cramér-Rao lower bound
discussed in the next paragraph. This bound allows to control the minimal possible variance of an esti-
mator and can therefore be able to show optimal performance of an algorithm such that understanding
the stability of the best algorithm already explains the condition of the underlying problem.
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2.1 Summary of related results

A different approach discussing the correct identification of the number and position
of nodes was given by Liu et al. in [109, 103]. Working in the case d = 1 (cf. [109]) and
d ≥ 2 (cf. [108]) with an interval or a ball of sufficient size instead of Td, two different
kinds of resolution limits are defined. On one hand, the computational resolution limit
to the number detection problem is considered as the minimal separation qLiu, number de-
pending on cut-off-frequency n, smallest weight αmin, noise level ϱ and overall number of
nodes M such that for any M -sparse ground truth measure µ0 ∈ M(qLiu, number) and for
every perturbation by noise of size ϱ the resulting noisy Fourier coefficients of the ground
truth have the property that every sparse measure agreeing with the measured Fourier
coefficients up to this error ϱ has at least M nodes, see [108, Def. 2.2].24 In other words,
this resolution limit guarantees that every reconstruction, which is compatible with the
noise, consists of the correct number of parameters or more. This notion of a resolution
limit can then be estimated by

1

n

[︃
ϱ

αmin

]︃1/(2M−2)

≲ qLiu, number ≲d
M

n

[︃
ϱ

αmin

]︃1/(2M−2)

, (2.3)

see [108, Thm. 2.3 and Pro. 2.4].25 On the other hand, another resolution limit is suggested
in the same work by demanding a sparse recovery where each recovered node is close to
exactly one ground truth node. More formally, the computational resolution limit to the
support recovery problem is defined as the minimal separation qLiu, support such that for any
M -sparse ground truth measure µ0 ∈ M(qLiu, support) and for every perturbation by noise
of size ϱ the resulting noisy Fourier coefficients of the ground truth have the property that
there exists a neighbourhood size δ′ such that every M -sparse measure agreeing with the
measured Fourier coefficients up to error ϱ consists of nodes having exactly one ground
truth node in their neighbourhood of radius δ′, see [108, Def. 2.6]. In [108, Thm. 2.7 and
Pro. 2.8], this is then bounded as

1

n

[︃
δ

αmin

]︃1/(2M−1)

≲ qLiu, support ≲d
M

n

[︃
δ

αmin

]︃1/(2M−1)

(2.4)

where the upper bounds as shown in (2.3) and (2.4) are an improvement of Liu in [104]. If
only positive measure were considered, the linear dependency of the upper bounds on M
can be dropped and the orders match completely (cf. [106]). Furthermore, the influence of
multiple illuminations can also be analysed in this framework and a gain in resolution is
then obtained by incoherence of illumination matrix, see [107] and Section 4.1. As shown in
[108] for the multivariate cases d = 2, 3, the two computational resolution limits introduced
by Liu appear to govern the success or failure probability of parametric algorithms like the
matrix pencil method and projected matrix pencil method. Moreover, the results give an
insight into the condition of strong super resolution where the nodes might be very closely
spaced. However, the geometry of the nodes is not considered and thus the exponent for
the signal to noise ratio αmin

δ deteriorates for a large number of nodes M . Additionally,
the constants hided behind the “≲”-notation are not practically close to each other and
thus it is difficult to apply the results to describe the actual resolution limit of an imaging
system.

24The notions for distance and separation are similar to our setting even though this source does not work
on the torus but on a compact domain of Rd. Moreover, the weights of the sparse measures are real
whereas our construction is for complex weights in general.

25We write a ≲ b if ca ≤ b for some constant c > 0 and indicate dependency of c on some variable d by
a ≲d b.
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2 Condition of sparse super resolution

In order to circumvent the dependency of stability on M for strong super resolution,
information on the geometry of the nodes needs to be taken into account. More precisely,
one can see that the exponent M can be replaced by a smaller ℓ representing the largest
cluster size in the node set.26 In the univariate situation and for continuous measure-
ments, this was taken into account by the work of Batenkov et al. [12]. Recently, a
specialisation by Liu and Ammari in [105] to positive instead of complex measures was
made. Since the results are similar, we focus on [12]. The paper analyses the minmax
error for the recovery of parameters of sparse measures from noisy data depending not
only on noise level ϱ and frequency-sampling cutoff n but also on the question whether
the particular node is contained in a cluster of ℓ > 1 nodes. More precisely, the best
recovery algorithm recovers the non-clustered nodes and corresponding weights with error
O
(︁ ϱ
n

)︁
or O(ϱ) respectively whereas the nodes in a cluster with ℓ elements are computed

with error O
(︁ ϱ
n(nq)

−2ℓ+2
)︁
where q < n−1 is the minimal separation of the sparse ground

truth. Additionally, the error for the recovery of weights corresponding to clustering
nodes admits the order O

(︁
ϱ(nq)−2ℓ+1

)︁
, cf. [12, Thm. 2.8]. The proof uses some sort of

a “quantitative inverse function theorem” (cf. [12, Thm.B.1]) and seems to be limited to
the one-dimensional case. This drawback together with their remark that “it is of great
interest” to get control over the “problem condition number” [12, p. 2] was one of the main
motivations for this work since the term “problem condition number” was not explicitly
defined in [12].

On the theoretical side, our methods are based on the work by Diederichs [37, 38] where
minorant functions in d = 1, 2 are established in order to bound the difference in Fourier
data from below by differences in the parameters. Using minorants being maximal in the
origin in the spatial and in Fourier domain, Diederichs was able to derive the same orders
for the recovery error as [12] in d = 1 for well separated nodes and can extend them
to d = 2. We improve this by introducing minorant functions with optimal localisation
yielding a generalisation to arbitrary dimensions.

Another important contribution to the analysis of the condition of super resolution was
given by Chen and Moitra where the resolution limit was described as a transition of
the “sample complexity” for recovering sparse measures “from polynomial to exponential”
(cf. [28, p. 3]). They prove that this transition in the condition of the two-dimensional

problem happens at a separation distance q with 1.15 ≈
√︂

4
3 ≤ q · n ≤ 2j0,1

π ≈ 1.53. The

used method is again driven by a minorant function being radial in their analysis. Utilising
a different radial function, we are able to improve the upper bound for the location of the
transition point to approximately 1.22.

In contrast to the previous works describing super resolution as the recovery of a measure
from its low pass Fourier coefficients, the works of Eftekhari et al. [45, 44] for d = 1 or
d = 2 respectively and its multivariate extension by Kurmanbek et al. [90] consider the
recovery of a measure from its convolution with some point spread function (PSF). More
precisely, all papers assume access to (noisy) convolution measurements g with PSF h,
i.e. ∥h ∗ µ − g∥ ≤ ϱ for some noise level ϱ > 0 and a nonnegative ground truth measure
µ ∈ M+([0, 1]

d). This assumption motivates to study the convex feasibility problem of
finding

µ′ ∈ M+([0, 1]
d) s.t. ∥h ∗ µ′ − g∥ ≤ ϱ′ (2.5)

26Usually, nodes are said to form a cluster if they are separated by less than the Rayleigh limit meant in
the sense that nodes belong to a cluster if they are separated by less than cdn

−1 where cd > 0 depends
on the dimension d, e.g. see [12].
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2.2 Condition estimates

for some ϱ′ > ϱ. Here, the considered norm is the 2-norm in univariate case [45] or the
Frobenius norm for multivariate data sets ([44, 90]). The univariate analysis in [45] has
a special focus on h being a Gaussian kernel and generalises this setting to systems that
form a so called Chebychev system. This is used in the multivariate extensions [44, 90] by
considering a tensor product of Chebychev kernels for the PSF. All papers do not focus
on solving the feasability problem (2.5) numerically but they use the generalised Wasser-
stein distance dGW from [130, 131] in order to compare reconstructed measures with the
ground truth where both measures not necessarily have the same mass.27 The authors
especially emphasise that (2.5) needs no sparsity constraint but only the assumption of
nonnegativity. On one hand, all three papers consider the recovery of a sparse ground
truth measure µ with exact convolution measurements, i.e. ϱ = 0. Then, the feasibility
problem for ϱ′ = 0 recovers µ if h forms a Chebychev system and the number of mea-
surements in each dimension is larger than two times the sparsity of µ ([45, Prop. 8],
[44, Prop. 2] and [90, Thm. 2.2]). The proof bases on the construction of a dual certifi-
cate guaranteeing the success of (2.5). On the other hand, the more interesting case of
positive noise level ϱ > 0 and arbitrary ground truth measure µ is for example stud-
ied as follows in [44, Thm. 11]. If ∥h ∗ (µ1 − µ2)∥ ≤ LdGW (µ1, µ2), e.g.L ≈ ∥∇h∥, and
ϱ′ ≥ (1 + Lminν∈M(q),|Y ν |≤r dGW (µ, ν))ϱ, the solution to (2.5) recovers the ground truth
up to an error

dGW (µ, µ′) ≤ c1ϱ+ c2(q) + c3 min
ν∈M(q),|Y ν |≤M

dGW (µ, ν), (2.6)

where c1, c2, c3 are not completely explicit functions of q,M and the PSF h. Therefore,
µ′ approximates µ well if µ can be well-approximated by a q-sparse measure and ϱ is
small. However, one drawback of this result is the lack of an explicit presentation of c2.

28

The authors just highlight c2(0) = 0 but certainly c2(q) > 0 for some q > 0. Hence, the
estimate (2.6) does not allow to conclude that the reconstruction error for a sparse measure
µ with separation q > 0 does go to zero as ϱ tends to zero because the second term in the
upper bound remains. This behaviour might be seen as an additional disadvantage of this
stability result for super resolution.

2.2 Condition estimates

2.2.1 Admissible functions

We want to use a function ψ with various properties to apply Poisson’s summation formula
in order to relate Fourier coefficients of a discrete measure µ to its parameters in real space.
As we need a minorant in Fourier domain, we are interested in functions ψ such that their
Fourier transform ψ̂ is a minorant to the indicator function of the Euclidean unit ball.
Together with various other assumptions, we call such a function admissible. Beyond the
condition ψ(0) > 0 used in [86], we additionally require similar to [37, 38] that this is the
global maximum.

Definition 2.2.1 (Admissible function). Let d ∈ N and ψ : Rd → R be a function
ψ ∈ L1(Rd) which
27It is easy to show that W1(µ, ν) ≤ max(1, diam(X )/2)dGW (µ, ν) for µ, ν ∈ M+(X ). However, an

estimate in the other direction is not directly obvious and thus it not clear whether dGW and our
generalisation W1 are equivalent on M+(X ).

28It is explained that c2 depends on ∥µ∥TV and on q by some function α(q) and this function α is then
defined via a maximum over the dual certificate [44, p. 182 and p. 192].
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2 Condition of sparse super resolution

(i) is continuous with compact support, i.e.ψ ∈ Cc(Rd),

(ii) attains its global maximum ψ(0) > 0 in the origin allowing to find cd > 0 such that
the bound

ψ(0)− ψ(x) ≥ cd∥x∥22

for any x ∈ suppψ holds,

(iii) and satisfies ψ̂(v) ∈ R for all v ∈ Rd with sign

ψ̂(v)

{︄
≥ 0 ∥v∥2 ≤ 1,

≤ 0 ∥v∥2 ≥ 1.
(2.7)

Then, we call a function ψ fulfilling (i)-(iii) admissible.

We have summarised classical results for functions satisfying (i) and (iii) in Section 1.3.
Additionally, we included a univariate function from [37] that also meets condition (ii).
Based on the idea from [83] explained already in (1.7), we find admissible functions in the
general multivariate case. We mostly focus on the case where the support of an admissible
function ψ is an Euclidean ball such that it is natural by symmetry to consider a radial
function ψ.

Lemma 2.2.2 (Support on a ball). For d ≥ 1 we define φ : Rd → R≥0,

φ(x) =

⎧⎨⎩1−
(︂
jd/2,1
2π∥x∥2

)︂d/2−1 Jd/2−1(2π∥x∥2)
Jd/2−1(jd/2,1)

, ∥x∥2 <
jd/2,1
2π ,

0, otherwise.
(2.8)

Moreover, let △ =
∑︁d

s=1
∂2

∂x2s
be the Laplace operator and ψτ : Rd → R≥0, τ ≥ 0,

ψτ (x) =

(︃
1√
1 + τ

)︃d [︁
4π2(1 + τ) +△

]︁
(φ ∗ φ)

(︃
x√
1 + τ

)︃
.

Then, ψτ with τ > 0 is admissible, its support satisfies suppψτ = Bqτ (0) with

qτ :=
√
1 + τ

jd/2,1

π
,

and there is a constant cd > 0 depending only on d that allows the estimate

ψτ (0)− ψτ (x) ≥ cdτ(1 + τ)−d/2−1∥x∥22 (2.9)

for all x ∈ suppψτ .

Proof. We directly find suppψτ = {x ∈ Rd : ∥x∥2 ≤
√
1 + τ

jd/2,1
π } since supp(φ ∗ φ) =

supp(φ) + supp(φ) where the sum is interpreted as a Minkowski sum. Moreover, φ is
continuous by construction and we note that the window function φ in (2.8) admits

(4π2 +△)φ = γ · 1B jd/2,1
2π

(0) (2.10)

for some constant γ > 0, see [29]. Hence, ψ0 as a convolution of the integrable function
1Bq0 (0)

with the continuous function φ is again continuous and thus the same holds for ψτ .
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2.2 Condition estimates

Therefore, condition (i) for an admissible function is fulfilled. Using Proposition 1.2.2, the
Fourier transform ψ̂ can be expressed as

ψ̂τ (v) = 4π2(1 + τ)
[︁
1− ∥v∥22

]︁ [︁
φ̂
(︁√

1 + τv
)︁]︁2

(2.11)

and this gives (2.7) or condition (iii) respectively. Furthermore, one can directly deduce
Jd/2−1(jd/2,1) < 0, φ ≥ 0, and ∂φ

∂r ≤ 0 by Lemma 1.3.2 such that one observes

∂ψ0

∂r
= γ · 1B jd/2,1

2π

(0) ∗
∂φ

∂r
≤ 0

and thus ψ0(x) has a maximum at x = 0. Finally, Hölder’s inequality gives

(φ ∗ φ)(t) <
(︃∫︂

Rd

φ(s)2 ds

)︃1/2(︃∫︂
Rd

φ(t− s)2 ds

)︃1/2

= (φ ∗ φ)(0)

and the inequality is strict because φ(s) and φ(t − s) are not constant multiples of each
other if t ̸= 0. This means already that ψτ is maximal in zero. For the rate, we use the
inverse Fourier transform of the radial function φ̂ as presented in (1.1), i.e.,

(φ ∗ φ)(0)− (φ ∗ φ)(x) =
∫︂ ∞

0

|φ̂(ωe1)|2ωd/2

(2π)−1

{︄
(πω)d/2−1

Γ(d2)
−
Jd/2−1(2π∥x∥2ω)

∥x∥d/2−1
2

}︄
dω, (2.12)

where e1 = (1, 0, . . . , 0) ∈ Rd denotes the first unit vector. By applying the Fourier

transform on both sides of (2.10), we see that φ̂(ωe1) is proportional to
Jd/2(jd/2,1ω)

ωd/2(1−ω2)
.29

Consequently, the function φ̂ has sufficient decay such that we can conclude O(ω−6) as
the order of the integrand in (2.12).30 Then, the dominated convergence theorem and the
uniform convergence of the series defining the Bessel function allow for

lim
∥x∥2→0

(φ ∗ φ)(0)− (φ ∗ φ)(x)
∥x∥22

= 2π

∫︂ ∞

0
|φ̂(ωe1)|2

πd/2+1ωd+1

Γ(d2 + 1)
dω > 0.

By the regularity of φ∗φ, there exist c0, r0 > 0 such that (φ∗φ)(0)−(φ∗φ)(x) ≥ c0
4 ∥x∥

2
2 for

∥x∥2 ≤ r0. For r0 ≤ ∥x∥2 ≤
jd/2,1
π the function φ ∗ φ has a maximal value c′0 < (φ ∗ φ)(0).

Summing up, we then end with

ψτ (0)− ψτ (x) = ψ0(0)− ψ0(x) + 4π2τ

(︃
1√
1 + τ

)︃d [︂
φ ∗ φ)(0)− (φ ∗ φ)((1 + τ)−1/2x)

]︂
≥ 4π2τ

(︃
1√
1 + τ

)︃d
min

(︃
c0

4(1 + τ)
∥x∥22, (φ ∗ φ)(0)− c′0

)︃

≥ 4π2τ

(︃
1√
1 + τ

)︃d+2

min

⎛⎜⎝c0
4
,
(φ ∗ φ)(0)− c′0(︂

jd/2,1
2π

)︂2
⎞⎟⎠ ∥x∥22

and setting cd := 4π2min

(︃
c0
4 , [(φ ∗ φ)(0)− c′0]

4π2

j2
d/2,1

)︃
finishes the proof.

29The Fourier transform of the indicator function of a ball is well-known and dividing by 1−ω2 originating
from the differential operator 4π2 +△ needs to be understood in the limit sense as ω → 1.

30By the asymptotic expansion from Lemma 1.3.2, φ̂ has the order ω−d/2− 5
2 as ω → ∞. This implies

φ̂(ω)2 ∈ O(ω−d−5) yielding φ ∗ φ ∈ C4(Rd) by [61, Prop. 3.3.12 or Ex. 2.4.1]. From (2.11), we observe
ψ̂τ ∈ O(ω−d−3) and conclude ψτ ∈ C2(Rd) analogously.
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2 Condition of sparse super resolution

We remark that φ as in (2.8) was proposed in [29, 60] as a building block for ψτ with
τ = 0. However, ψ0 does not allow an estimate of the form (2.9) because one can see that
the second order terms vanish as τ → 0. In fact, one can show for some constant c̃d that

lim
x→0

ψ0(0)− ψ0(x)

∥x∥22
=

∫︂ ∞

0
(1− ω2)φ̂(ω)2

8πd/2+4ωd+1

Γ(d/2 + 1)
dω = c̃d

∫︂ ∞

0

ωJ2
d/2(jd/2,1ω)

1− ω2
dω = 0

where the last equality is an elegant and direct consequence of [154, p. 429, eq. (3)]. There-
fore ψ0 does not admit a quadratic lower bound for ψ0(0)−ψ0(x). We see in the following

remark that a support with radius larger than the critical radius
jd/2,1
π is indeed necessary

for this property.

(a) (b)

Figure 2.3: Admissible function ψτ (x) for τ = 0.1 and non-admissible ψ0(x) for d = 1, 2, 3
as a function of ∥x∥2 (a). One can at least imagine from its graph that the
second derivative of ψ0 at x = 0 vanishes such that it is not admissible accord-
ing to our definition. Additionally, we display ψ̂0.1 for d = 2 and highlight its
radial dependency as well as the change of the sign at ∥v∥2 = 1 (b).

Remark 2.2.3 (Optimality of the support). If a function ψ ∈ C2(Rd) is admissible and
suppψ ⊂ Bq(0), then the quadratic estimate (2.9) implies that the Hessian of ψ satisfies
Hessψ(0) ≺ 0 and thus we have by Proposition 1.2.2

−4π2
∫︂
Rd

∥v∥22ψ̂(v)dv = [△ψ] (0) = Tr(Hessψ(0)) < 0 (2.13)

where Tr(A) denotes the trace of a matrix A. We can restrict to radial functions ψ, see

[71, Lemmas 18 and 19], for which the latter condition (2.13) implies q >
jd/2,1
π , see [59,

Thm. 1]. Lemma 2.2.2 shows that this critical separation is also sufficient and describes
an admissible function with optimally small support in an explicit form.

For d ∈ {1, 2, 3}, we display the radial dependency of ψ0 and ψτ for τ = 0.1 in Figure 2.3

and note in passing that
jd/2,1
π ≈ 1, 1.22, 1.43 for d = 1, 2, 3. Beyond being admissible, the

function ψτ has the remarkable property that even if we evaluate ψ at any finite number
of points such that these points are separated by at least qτ , the sum of the evaluations
of ψτ is always smaller than the global maximum of ψτ . Moreover, the difference of the
global maximum and the sum of evaluations can even be bounded from below in terms of
the square of the smallest radius of any of the finite sampling points. We formulate this
in the following lemma.
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2.2 Condition estimates

Lemma 2.2.4. Let ψτ and qτ be defined as in Lemma 2.2.2. Then, there exists a constant
c′d > 0 such that for finite Y ⊂ Rd with sepY := mint,s∈Y,t ̸=s ∥t − s∥2 ≥ qτ and for any
t ∈ Rd the inequality

ψτ (0)−
∑︂
t′∈Y

ψτ (t− t′) ≥

{︄
c′dτ(1 + τ)−d/2−1 dist(t, Y )2, dist(t, Y ) ≤ qτ ,

ψτ (0), dist(t, Y ) ≥ qτ ,
(2.14)

holds. Here, dist(t, Y ) denotes the distance dist(t, Y ) := mins∈Y ∥t− s∥2.

Proof. Due to the compact support of ψτ , the inequality (2.14) is trivially fulfilled for t
with dist(t, Y ) = 0 or dist(t, Y ) ≥ qτ . Therefore, let t ∈ Rd be such that 0 < dist(t, Y ) < qτ

and define the set Yt = {s = (1 + τ)−1/2(t − t′), t′ ∈ Y }. We directly find sepYt ≥
jd/2,1
π

by the separation condition on Y and conclude that

(︄∑︂
t′∈Y

(φ ∗ φ)((1 + τ)−1/2(t− t′))

)︄2

=

⎛⎜⎝∫︂
B jd/2,1

2π

(0)

(︄∑︂
s∈Yt

φ(x− s)

)︄
φ(x) dx

⎞⎟⎠
2

< (φ ∗ φ)(0) ·
∫︂
B jd/2,1

2π

(0)
|
∑︂
s∈Yt

φ(x− s)|2 dx

= (φ ∗ φ)(0) ·
∫︂
B jd/2,1

2π

(0)

∑︂
s∈Yt

|φ(x− s)|2 dx

= (φ ∗ φ)(0) ·
∫︂
B jd/2,1

2π

(0)∩
(︄⋃︁

s∈Yt
B jd/2,1

2π

(s)

)︄ |φ(x)|2 dx

≤ (φ ∗ φ)(0) ·
∫︂
B jd/2,1

2π

(0)
|φ(x)|2 dx = (φ ∗ φ)(0)2

by means of Hölder’s inequality and the disjointedness of suppφ(·−s) = B jd/2,1
2π

(s), s ∈ Yt.

Analogously, one derives

∑︂
t′∈Y

[︄
1B jd/2,1

2π

(0) ∗ φ

]︄
((1 + τ)−1/2(t− t′)) =

∫︂
B jd/2,1

2π

(0)∩
(︄⋃︁

s∈Yt
B jd/2,1

2π

(s)

)︄ φ(x) dx

≤
∫︂
B jd/2,1

2π

(0)
φ(x) dx =

[︄
1B jd/2,1

2π

(0) ∗ φ

]︄
(0).

This yields
∑︁

t′∈Y ψτ (t − t′) < ψτ (0) for dist(t, Y ) > 0. As already explained in foot-
note 30, we have ψτ ∈ C2(Rd). Since dist(t, Y ) is realised for at least one t′ ∈ Y , we can
estimate the sum over evaluations of ψτ by bounding the remaining |Y | − 1 terms by ψτ
evaluated at the smallest admissible radius.31 This means∑︂

t′∈Y
ψτ (t− t′) ≤ ψτ (dist(t, Y )e1) + (|Y | − 1)ψτ ([qτ − dist(t, Y )] e1) =: F (dist(t, Y ))

31If ∥t− t′∥2 = dist(t, Y ) ∈ (0, qτ ) for some t′ ∈ Y , we have ∥t− s∥2 ≥ ∥s− t′∥ − ∥t− t′∥ ≥ qτ − dist(t, Y )
for any s ∈ Y with s ̸= t′.
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2 Condition of sparse super resolution

where F satisfies F (0) = ψτ (0), F
′(0) = 0 and F ′′(0) < 0 since ψτ ∈ C2(Rd). Now, we

proceed similar as for (2.9) and obtain the existence of c0, r0 > 0 such that

ψτ (0)−
∑︂
t′∈Y

ψτ (t− t′) ≥ F (0)− F (dist(t, Y )) ≥ F ′′(0)

4
dist(t, Y )2

=
4π2τ(1 + τ)−d/2−1c0

4
dist(t, Y )2

for all t with dist(t, Y ) ≤ r0. Setting

c1 = max
t∈Rd:dist(t,Y )≥r0

∑︂
t′∈Y

(φ ∗ φ)
(︂
(1 + τ)−1/2(t− t′)

)︂
implies c1 < (φ ∗ φ)(0). With this at hand, we bound

ψτ (0)−
∑︂
t′∈Y

ψτ (t− t′)

≥ 4π2τ(1 + τ)−d/2min

[︄
c0 dist(t, Y )2

4(1 + τ)
, (φ ∗ φ)(0)−

∑︂
t′∈Y

(φ ∗ φ)
(︂
(1 + τ)−1/2(t− t′)

)︂]︄

≥ 4π2τ

(︃
1√
1 + τ

)︃d+2

min

⎛⎜⎝c0
4
,
(φ ∗ φ)(0)− c1(︂

jd/2,1
2π

)︂2
⎞⎟⎠ dist(t, Y )2

and this was the proposed result.32

Example 2.2.5 (d = 1). In the univariate case, the definition (2.8) can be made more

explicit. Because of J−1/2(2πx) =
(︁

1
π2x

)︁1/2
cos(2πx) and j1/2,1 = π, see Lemma 1.3.2, one

can compute

φ(x) = 1 +
√
2x

(︃
1

π2x

)︃1/2

cos(2πx)

(︃
2

π2

)︃−1/2

= 1 + cos(2πx) = 2 cos2(πx).

This motivates the following tensor approach for an admissible function which we display
in Figure 2.4. By the product structure, we have a function ψ with support in a box. This
approach has the advantage to give explicit estimates on ψ(0) − ψ(x) without involving
special functions.

Lemma 2.2.6 (Support on a cube). Let d ≥ 1, φ : R → R, and ψ : Rd → R with

φ(x) =

{︄
cos2

(︂
πx
q

)︂
, |x| < q

2 ,

0, otherwise,
ψ =

(︁
4π2 +△

)︁ d⨂︂
ℓ=1

(φ ∗ φ).

Then, ψ is admissible if q ≥
√
d and d ≥ 2. For q =

√
d ≥ ∥x∥2, we have

ψ(0)− ψ(x) ≥

(︄
3
√
d

8

)︄d−1
π2∥x∥22
d3/2

.

32We stress that we do not state that c0, c1 in the proofs of Lemma 2.2.2 and Lemma 2.2.4 are equal.
Therefore, we use cd and c′d respectively for the dimension dependent constants in (2.9) and (2.14).
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2.2 Condition estimates

(a) (b)

Figure 2.4: Minorant function ψ and its Fourier transform ψ̂ for φ as chosen in Lemma 2.2.6
and q =

√
d =

√
2. The function ψ is nonnegative inside of the dashed, hatched

rectangle and zero outside (a) while ψ̂ is nonnegative inside the dash-dotted,
hatched circle and nonpositive outside (b). Both functions have maximal value
at zero.

Proof. We have suppφ = [−q/2, q/2]. Thus, tensorising and applying the differential
operator △ yields suppψ = [−q, q]d. Moreover, we have ˆ︁φ ∗ φ = (φ̂)2 ≥ 0 and thus
ψ̂(v) = 4π(1− ∥v∥22)

⨂︁d
ℓ=1 ˆ︁φ ∗ φ(v) has the desired sign. Direct calculation gives

φ ∗ φ(x) =

{︄
q−|x|
4

(︂
1 + 1

2 cos
(︂
2πx
q

)︂)︂
+ 3

8
q
2π sin

(︂
2π|x|
q

)︂
, |x| < q,

0, otherwise,

and (φ ∗ φ)′′(x) = −4π2

q2
φ ∗ φ(x) + π2

q2

(︂
q
2π sin

(︂
2π|x|
q

)︂
+ q − |x|

)︂
for |x| < q. This yields

ψ(x) =
d∑︂
s=1

⎡⎣4π2 [︃1− d

q2

]︃
(φ ∗ φ)(xs) +

π2

q2

⎛⎝sin(2π|xs|q )

2π/q
+ q − |xs|

⎞⎠⎤⎦∏︂
i ̸=s

(φ ∗ φ)(xi).

The global maximality of ψ in 0 for q ≥
√
d is proven by the inequality sin(x) ≤ x and

the maximality of φ ∗ φ in zero. More specifically, it is straightforward to show

(φ ∗ φ)(x) ≤ 3q

8

(︃
1− |x|2

q2

)︃
, |x| ≤ q, and

ψ(0)− ψ(x) ≥ ψ(0)− π2

q

d∑︂
s=1

[︃
3q

8

(︃
1− |xs|2

q2

)︃]︃d−1

≥
(︃
3q

8

)︃d−1 π2∥x∥22
q3

and this was the proposed estimate.

Remark 2.2.7 (Cubic lower bound at critical radius for d = 1). For d = 1 and q = 1
the function ψ from Lemma 2.2.6 (and from Lemma 2.2.2 with a different multiplicative
constant) reads as

ψ(x) = π2
(︃
sin(2π|x|)

2π
+ 1− |x|

)︃
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2 Condition of sparse super resolution

for |x| ≤ 1. The latter agrees up to the constant π2 with a minorant by Diederichs [37,
Lem. 2.2.1], see Section 1.3. For this minorant, he realised that it does just admit a sub-
optimal estimate of the form ψ(0)−ψ(x) ≥ Cx3 for some C > 0. We can know understand
this better by Remark 2.2.3 where we observed that q = 1 is the critical radius for d = 1
that does not allow the existence of an admissible function.

2.2.2 Ingham-type inequality for parameter difference

The following main result shows that two well-separated measures µ1 =
∑︁

t∈Y µ1 α
(1)
t δt

and µ2 =
∑︁

t∈Y µ2 α
(2)
t δt with similar moments have also similar weights and nodes. We

call it a Lipschitz result since its bounds the difference in parameters by the difference
of the moments and we add the term local since we think at first about measures having
similar moments. While main parts of the proof remain valid without the assumption
of a small distance of the moment sequences and therefore allow for a global result in
Subsection 2.2.3, the locality condition (2.15) ensures that the two measures have the same
number of parameters. Inequalities of this kind are sometimes called Ingham inequalities
(cf. [76, 83, 86]). The proof of our version works similar as in [37, 38] but with a completely
different minorant function allowing for generalisation to d > 2, radial sampling sets and
a smaller separation condition.

Theorem 2.2.8 (Local Lipschitz). Let d ≥ 1 and fix a bandlimit n > 0. We choose

τ > 0 such that q =
√
1+τjd/2,1
πn = min{sepY µ1 , sepY µ2} and µ̂1, µ̂2 ∈ ˆ︂Mn (q). Let αmin

be the minimal absolute value of any weight of µ1 or µ2. There exists a constant c
(1)
d,τ > 0

depending on d and τ such that for all µ̂1, µ̂2 with

∥µ̂1 − µ̂2∥22 < c
(1)
d,τ · n

dα2
min (2.15)

we find for every t ∈ Y µ1 exactly one t′ = η(t) ∈ Y µ2 with ∥t−η(t)∥Td < q
2 and vice versa.

Moreover, there are c
(2)
d,τ , c

(3)
d,τ > 0 such that (2.15) also implies

∥µ̂1 − µ̂2∥22 ≥
∑︂
t∈Y µ1

c
(2)
d,τn

d+2α2
min∥t− η(t)∥2Td + c

(3)
d,τn

d|α(1)
t − α

(2)
η(t)|

2. (2.16)

For d ≥ 2 and a larger separation min(sepY µ1 , sepY µ2) ≥ 2d
n one can take

c
(1)
d,τ =

(︃
3

2

)︃d−1

d−d/2, c
(2)
d,τ =

c
(1)
d,τ

2d2
, and c

(3)
d,τ =

c
(1)
d,τ

4
.

Proof. Due to the condition on the separation of µ̂1 and µ̂2, we know that for every t ∈ Y µ1

there is at most one η(t) ∈ Y µ2 with ∥t − η(t)∥Td < q
2 .

33 As visualised in Figure 2.5, we
decompose the joint node set Y := Y µ1∪Y µ2 into Y1 ⊂ Y µ1 , Y2 ⊂ Y µ2 and Y3 ⊂ Y µ1∪Y µ2 ,
see also [38, Thm. 3.6], with:

(i) Y3 :=
{︁
t ∈ Y : For all t′ ∈ Y with t ̸= t′ one has ∥t− t′∥Td ≥ q

2

}︁
(ii) For all t ∈ Y1 there is exactly one η(t) ∈ Y2 with ∥t− η(t)∥Td < q

2 .

33If there were t ∈ Y µ1 , t1, t2 ∈ Y µ2 , t1 ̸= t2 with ∥t−t1∥Td < q
2
and ∥t−t2∥Td < q

2
, we have ∥t1−t2∥Td < q

which is a contradiction to the assumption sepY µ2 ≥ q.
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x10

x2

1

1 q
2

t

η(t)

Y µ1

Y µ2

Y2
Y1

Y3

Figure 2.5: Visualisation of the sets Y µ1 (blue circles) and Y µ2 (green triangles) as well
as their subsets Y1 ⊂ Y µ1 (densely black circles) and Y2 ⊂ Y µ2 (dotted black
circles). Nodes without a neighbour closer than q

2 belong to Y3 (dashed red
circles).

The function ψτ,n(x) := ndψτ (n · x) with ψτ from Lemma 2.2.2 has compact support in

Bq(0) and its Fourier transform ψ̂τ,n decreases fast enough in order to apply the Poisson
summation formula.34 Together with the conventions

α̃t =

{︄
α
(1)
t , t ∈ Y µ1 ,

−α(2)
t , t ∈ Y µ2 ,

and Ỹt :=

{︄
Y µ2 , t ∈ Y µ1 ,

Y µ1 , t ∈ Y µ2 ,
(2.17)

this gives

ψ̂τ,n(0)
∑︂
k∈Zd

∥k∥2≤n

|µ̂1(k)− µ̂2(k)|2 ≥
∑︂
k∈Zd

|µ̂1(k)− µ̂2(k)|2ψ̂τ,n(k)

=
∑︂
t,t′∈Y

α̃tα̃t′
∑︂
ℓ∈Zd

ψτ,n(t− t′ + ℓ). (2.18)

For every t, t′ ∈ Y there is a unique ℓt,t′ ∈ Zd such that t− t′+ ℓt,t′ ∈ [−1
2 ,

1
2 ]
d and because

of suppψτ,n = Bq(0) we have
∑︁

ℓ∈Zd ψτ,n(t− t′ + ℓ) = ψτ,n(t− t′ + ℓt,t′). Defining for each

t ∈ Y µ1 the shifted node set by Y µ̂2
t := {t′ − ℓt,t′ : t

′ ∈ Y µ2} preserves the separation in

the wrap around distance, as Y µ̂2
t = Y µ2 on Td. For t′ ∈ Y µ2 we analogously define Y µ̂1

t′ .
By the q-separation of µ1, µ2, equation (2.18) rewrites as

ψτ,n(0)

(︄ ∑︂
t∈Y µ1

|α(1)
t |2 +

∑︂
t′∈Y µ2

|α(2)
t′ |2

)︄
−
∑︂
t∈Y µ1

∑︂
t′∈Y µ̂2

t

ψτ,n(t− t′)2ℜ
(︃
α
(1)
t α

(2)
t′

)︃

=
∑︂
t∈Y µ1

∑︂
t′∈Y µ̂2

t

ψτ,n(t− t′)|α(1)
t − α

(2)
t′ |2 +

∑︂
t∈Y µ1

|α(1)
t |2

⎡⎢⎣ψτ,n(0)−∑︂
t′∈Y µ̂2

t

ψτ,n(t− t′)

⎤⎥⎦
+
∑︂

t′∈Y µ2

|α(2)
t′ |2

⎡⎢⎣ψτ,n(0)− ∑︂
t∈Y µ̂1

t′

ψτ,n(t− t′)

⎤⎥⎦
34For the Poisson summation formula from Theorem 1.2.3 it is sufficient that both the function and its

Fourier transform decay with the rate O(∥x∥−d−ϵ
2 ) and O(∥v∥−d−ϵ

2 ) respectively. The decay of ψτ,n is
trivially fast enough by the compact support and for the decay of its Fourier transform see footnote 30.
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≥
∑︂
t∈Y1

ψτ,n(t− η(t))|α(1)
t − α

(2)
η(t)|

2 +
∑︂
t∈Y3

|α̃t|2
⎡⎣ψτ,n(0)− ∑︂

t′∈Ỹt

ψτ,n(t− t′)

⎤⎦
+
∑︂
t∈Y1

(︂
|α(1)
t |2 + |α(2)

η(t)|
2
)︂
c′dτ(1 + τ)−d/2−1nd+2∥t− η(t)∥2Td (2.19)

where the last inequality is due to (2.14). For t ∈ Y3 we have by definition of Y3 that
dist(t, Ỹt) ≥ q

2 . By Lemma 2.2.4, we therefore obtain

∑︂
k∈Zd

∥k∥2≤n

|µ̂1(k)− µ̂2(k)|2 ≥
∑︂
t∈Y3

ψτ,n(0)−
∑︁

t′∈Ỹt ψτ,n(t− t′)

ψ̂τ,n(0)
|α̃t|2

≥
∑︂
t∈Y3

min
(︂
c′dτ(1 + τ)−d/2−1

[︁
n q2
]︁2
, ψτ (0)

)︂
ψ̂τ (0)

ndα2
min

≥
min

(︃
c′dτ(1 + τ)−d/2−1

j2
d/2,1

4π2 , ψτ (0)

)︃
ψ̂τ (0)

ndα2
min|Y3|. (2.20)

If now (2.15) holds with c
(1)
d,τ := min

(︃
c′dτ(1 + τ)−d/2−1

j2
d/2,1

4π2 , ψτ (0)

)︃
/ψ̂τ (0) this yields

|Y3| < 1 meaning Y3 = ∅. So we know already that for all t ∈ Y1 = Y µ1 there is
t′ = η(t) ∈ Y2 = Y µ2 with ∥t − η(t)∥Td < q

2 . Our previous estimates can then be

summarised to (2.16) with c
(2)
d,τ := 2c′dτ(1 + τ)−d/2−1/ψ̂τ (0) and c

(3)
d,τ := ψτ (

nq
2 e1)/ψ̂τ (0).

For the last part of the statement, one can redo the proof with the function ndψ(n · x)
where ψ as in Lemma 2.2.6 in order to obtain these constants explicitly under a stronger
separation condition.

Remark 2.2.9 (Optimal orders). In the univariate case, Diederichs [37, Lemma 2.24]
gives simple examples that the orders in n, αmin, ∥t− η(t)∥Td , and |αt − αη(t)| are optimal
in (2.15) and (2.16). Since |Y µ1 | = |Y µ2 | = 1 in these examples, they directly carry over
to the d-variate case. In fact, one can choose any t, t′ ∈ Td and αmin > 0 to calculate

∥ˆ︂αminδt − ˆ︂αminδt′∥22 =
∑︂

k:∥k∥2≤n

α2
min|1− e2πi(t−t

′)k|2

= 4α2
min

∑︂
k:∥k∥2≤n

| sin(πk(t− t′))|2

≤ 4π2α2
min∥t− t′∥2Td

∑︂
k:∥k∥2≤n

∥k∥22

≤ 4π2α2
min∥t− t′∥2Td2

dnd+2

as well as

∥ˆ︃α1δt − ˆ︃α2δt∥22 =
∑︂

k:∥k∥2≤n

|α1 − α2|2 ≤ 2dnd|α1 − α2|2

for any α1, α2 ∈ C. This shows that the dependency in n, αmin, ∥t− η(t)∥, and |αt−αη(t)|
as presented in (2.16) is optimal in general. Moreover, taking t′ ∈ Td such that µ2 =
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µ1 + αminδt′ satisfies µ1, µ2 ∈ M(q) gives two measures with unequal cardinality of the
node set but with moments satisfying

∥µ̂1 − µ̂2∥22 = α2
min

∑︂
k:∥k∥2≤n

1 ≤ 2πd/2

Γ(d/2)
α2
min

∫︂ n+1

0
rd−1dr =

2πd/2

d · Γ(d/2)
(n+ 1)dα2

min.

This yields optimality of the orders of αmin and n in (2.15). We do not propose optimality

of the constants c
(1)
d,τ , c

(2)
d,τ and c

(3)
d,τ . However, we are interested in their dependency on

τ > 0. Therefore, we compute ψ̂τ (0) = 4π2(1 + τ)φ̂(0)2 and

ψτ (0) = 4π2(1 + τ)

∫︂
Rd

(1− ∥v∥22)
[︁
φ̂
(︁√

1 + τv
)︁]︁2

dv

≥ 4π2
∫︂
Rd

(1− ∥
√
1 + τv∥22)

[︁
φ̂
(︁√

1 + τv
)︁]︁2

dv

= (1 + τ)−d/24π2
∫︂
Rd

(1− ∥w∥22) [φ̂ (w)]2 dw.

Additionally, one finds

ψτ

(︂nq
2
e1

)︂
= (1 + τ)−d/2

[︃
ψ0

(︃
1

2
e1

)︃
+ τ(φ ∗ φ)

(︃
1

2
e1

)︃]︃
≥ (1 + τ)−d/2ψ0

(︃
1

2
e1

)︃
and this yields

c
(1)
d,τ = min

(︄
c′dτ(1 + τ)−d/2−1

j2d/2,1

4π2
, ψτ (0)

)︄
/ψ̂τ (0) ≳d τ(1 + τ)−d/2−2,

c
(2)
d,τ = 2c′dτ(1 + τ)−d/2−1/ψ̂τ (0) ≳d τ(1 + τ)−d/2−2 and

c
(3)
d,τ = ψτ (

nq

2
e1)/ψ̂τ (0) ≳d (1 + τ)−d/2−2.

This analysis shows that none of the three constants goes to zero faster than linear in τ if
one approaches the critical separation, i.e. in the limit τ → 0.

Remark 2.2.10 (Critical separation). For a statement like Theorem 2.2.8, one cannot

hope to reduce the need of separation below
jd/2,1
πn using the approach with a minorising

function as there is no admissible function in this case, see Remark 2.2.3. Note that
the univariate case d = 1 is not included in the second part of the theorem because
j1/2,1
πn = 1

n = d
n is equal and not larger than the critical radius. This explains why we

and also others before (cf.[37, 38]) have seen a cubic rate being worse than the optimal
quadratic rate in ∥t−η(t)∥Td .35 Moreover, we emphasise that both separation conditions in

Theorem 2.2.8 have the same order in d because we can compute
jd/2,1
π = d

2π+
1.855757
2−1/3π

d1/3+

O(d−1/3) as d → ∞ by Lemma 1.3.2. On the other hand, this linear dependency in d
cannot be considerably improved. This can be seen by analysing the simpler problem of a
uniformly bounded smallest singular value of the corresponding Vandermonde matrix. It
was observed in [88, last paragraph] that this smallest singular value scaled by n−d/2 goes
to zero as d→ ∞ if the separation q of the set satisfies nq = o(d). Consequently, a linear
rate in d for the separation meets our expectations.

35We have observed the cubic rate already in Remark 2.2.7.
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2 Condition of sparse super resolution

Remark 2.2.11 (Discrete and continuous data). Many publications including for example
[12] assume access to continuous Fourier data, i.e. µ̂(k) for k ∈ Bn(0). In contrast to
this, we think that in practical implementations using the FFT one obtains only discrete
moments µ̂(k) where k ∈ Bn(0) ∩ Zd. Hence, our considerations in Theorem 2.2.8 dealt
with vectors of Fourier moments. Despite of that, it should be mentioned at this point
that all computations in the proof of Theorem 2.2.8 can also be made by replacing the
discrete sums by integrals and then applying the inverse Fourier transform instead of the
Poisson summation formula. Therefore, assuming discrete data is no restriction and all
results following in this chapter can also be made for continuous inputs.

2.2.3 Condition number and diffraction limit

As an immediate consequence of Theorem 2.2.8 we can deduce that µ1, µ2 ∈ M(q) with

equal moments in ˆ︂Mn(q), n·q > jd/2,1
π , must be equal since the differences in the parameters

are bounded by the difference of the Fourier coefficients, see (2.16). Therefore, each

moment sequence µ̂ ∈ ˆ︂Mn(q) with n · q > jd/2,1
π can be mapped uniquely to µ ∈ M(q).

Definition 2.2.12 (Multivariate reconstruction map). Let n ∈ N, d ≥ 1. Assume we are
interested in the reconstruction of a measure µ with q-separated nodes given its moments

µ̂(k) for k in the sampling set {k ∈ Zd : ∥k∥2 ≤ n} and n·q > jd/2,1
π . Then, the multivariate

reconstruction map is

R : ˆ︂Mn (q) → M (q) ,

(︄∑︂
t∈Y

αte
−2πit·k

)︄
k∈Zd:∥k∥2≤n

↦→
∑︂
t∈Y

αtδt.

We want to study the condition of this mapping in order to quantify the condition of
super resolution and to understand the diffraction limit. This means that we need to
bound differences in the space of Fourier moments by differences in the parameter space
M(q) and without the local condition (2.15) we can view such a result as a global Lipschitz

result for the recovery map R. We fix the ℓ2-norm on the space of moments ˆ︂Mn(q) and
choose the Wasserstein norm from Section 1.4 for M(q). Considering this metric for the
parameter space has two main advantages. First, it links information about nodes and
weights in one term. Secondly, the Wasserstein distance allows to compare parameter sets
whose cardinality is not necessarily equal. Beyond that, we emphasise that Theorem 2.2.13
is completely independent of the minimal absolute value of the weights.

Theorem 2.2.13 (Global Lipschitz). There exist constants c
(4)
d,τ , c

(5)
d,τ > 0 such that the

reconstruction map R satisfies

W1(R(µ̂1),R(µ̂2)) ≤
c
(4)
d,τ

√
M

nd/2
∥µ̂1 − µ̂2∥2 ≤ c

(5)
d,τ∥µ̂1 − µ̂2∥2

for all µ̂1, µ̂2 ∈ ˆ︂Mn
(︂√

1 + τ
jd/2,1
πn

)︂
if we restrict the reconstruction map to node sets with

cardinality at most M . Under the stronger separation condition µ̂1, µ̂2 ∈ ˆ︂Mn
(︁
2d
n

)︁
, d ≥ 2,

we can explicitly derive c
(4)
d,τ = 1

2

√︂
3d
dd/2

(︁
2
3

)︁(d−1)/2
and c

(5)
d,τ = 1

2 , i.e.

W1(R(µ̂1),R(µ̂2)) ≤
1

2
∥µ̂1 − µ̂2∥2.
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2.2 Condition estimates

Proof. For t ∈ Y1 we define αt = (α
(1)
t , α

(2)
η(t))

⊤ ∈ C2 and bound

4√
dM

W1(µ1, µ2) =
4√
dM

sup
f :Lip(f)≤1,

∥f∥∞≤
√

d
4

⃓⃓⃓⃓∫︂
Td

f(x)d(µ1 − µ2)(x)

⃓⃓⃓⃓

=
4√
dM

sup
f :Lip(f)≤1,

∥f∥∞≤
√
d
4

⃓⃓⃓⃓
⃓⃓∑︂
t∈Y3

α̃tf(t) +
∑︂
t∈Y1

α
(1)
t f(t)− α

(2)
η(t)f(η(t))

⃓⃓⃓⃓
⃓⃓

≤ 4√
dM

sup
f :Lip(f)≤1,

∥f∥∞≤
√
d
4

⃓⃓⃓⃓
⃓⃓∑︂
t∈Y3

α̃tf(t)

⃓⃓⃓⃓
⃓⃓+
⃓⃓⃓⃓
⃓⃓∑︂
t∈Y1

α
(1)
t (f(t)− f(η(t))) + (α

(1)
t − α

(2)
η(t))f(η(t))

⃓⃓⃓⃓
⃓⃓

≤

⎡⎣∑︂
t∈Y3

|α̃t|2
⎤⎦1/2

+
4√
d

⎡⎣∑︂
t∈Y1

∥αt∥22 ∥t− η(t)∥2Td

⎤⎦1/2

+

⎡⎣∑︂
t∈Y1

|α(1)
t − α

(2)
η(t)|

2

⎤⎦1/2

using the notation of the proof of Theorem 2.2.8. Then, the inequality (a + b + c)2 ≤
3a2 + 3b2 + 3c2 for a, b, c ∈ R allows to derive

16W1(µ1, µ2)
2

3dM
≤
∑︂
t∈Y3

|α̃t|2 +
16

d

∑︂
t∈Y1

∥αt∥22∥t− η(t)∥2Td +
∑︂
t∈Y1

|α(1)
t − α

(2)
η(t)|

2. (2.21)

Using (2.19) and (2.20), we bound the difference in the moments from below by

∥µ̂1 − µ̂2∥22 ≥ c
(1)
d,τn

d

⎡⎣∑︂
t∈Y3

|α̃t|2 +
c
(2)
d,τn

2

2c
(1)
d,τ

∑︂
t∈Y1

∥t− η(t)∥2Td∥αt∥22 +
c
(3)
d,τ

c
(1)
d,τ

⃓⃓⃓
α
(1)
t − α

(2)
η(t)

⃓⃓⃓2⎤⎦
≥ c

(1)
d,τn

dmin

⎛⎝1,
c
(3)
d,τ

c
(1)
d,τ

,
dc

(2)
d,τn

2

32c
(1)
d,τ

⎞⎠ 16W1(µ1, µ2)
2

3dM

where we applied (2.21). If µ̂1, µ̂2 ∈ ˆ︂Mn
(︁
2d
n

)︁
we can use the constants from Theorem 2.2.8

to calculate

c
(3)
d,τ

c
(1)
d,τ

=
1

4
and

dc
(2)
d,τn

2

32c
(1)
d,τ

=
n2

64d
≥ 4d2

64d(sepY µ1)2
≥ d

4
≥ 1

2
.

This gives

c
(4)
d,τ =

√︄
3d

4c
(1)
d,τ

=
1

2

√︁
3ddd/2

(︃
2

3

)︃(d−1)/2

.

Finally, the global Lipschitz estimate is further simplified by noting thatM ≤
(︂
n/(2

√
d)
)︂d

through the separation condition of Y µ1 , Y µ2 ⊂ Td. We then end up with

c
(5)
d,τ =

c
(4)
d,τ

2d/2dd/4
=

3
√
d

2
√
2

(︃
1

3

)︃d/2
≤ 3

√
2

2
√
2

(︃
1

3

)︃2/2

=
1

2

as the latter expression in d ≥ 2 becomes maximal for d = 2.
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2 Condition of sparse super resolution

While the reconstruction map R is just defined on exact data from ˆ︂Mn
(︂√

1 + τ
jd/2,1
πn

)︂
,

we are more interested in perturbation results that hold also for perturbed inputs. As
already observed by Diederichs in [37], a Lipschitz result like Theorem 2.2.8 or The-
orem 2.2.13 allows to conclude a-posteriori error bounds. We formulate the following
perturbation result for the best sparse solution if we are given noisy measurements.

Corollary 2.2.14 (Perturbation result). Let ϱ > 0, τ > 0. Assume that the measure

µ0 ∈ M
(︂√

1 + τ
jd/2,1
πn

)︂
isM -sparse and that one has access to its noisy Fourier coefficients

(with frequencies k ∈ Zd, ∥k∥2 ≤ n)

µ̂ =ˆ︂µ0 + ρ̂, ∥ρ̂∥2 ≤ ϱ.

Then, one has W1(µ0, ν∗) ≤ 2c
(5)
d,τϱ for any at most M -sparse best approximation

ν∗ ∈ argmin
ν∈M( 2d

n )
|Y ν |≤M

∥µ̂− ν̂∥2. (2.22)

Proof. The existence of a best approximation defined by (2.22) follows from the fact that
we can parameterise the set

{︁
ν ∈ M

(︁
2d
n

)︁
: |Y ν | ≤M

}︁
as the image of a closed subset of

(Td × C)M under a continuous mapping. As any best approximation ν∗ which might not
necessarily be unique satisfies the conditions of Theorem 2.2.13, we get

W1(µ0, ν∗) ≤
c
(4)
d,τ

√
M

nd/2
∥ˆ︂µ0 − ˆ︁ν∗∥2 ≤ c

(4)
d,τ

√
M

nd/2
(ϱ+ ∥µ̂− ˆ︁ν∗∥2)

by the triangle inequality. The last inequality is due to the fact that µ0 is admissible to
the optimisation problem (2.22).

With this perturbation result at hand, we can now come to the definition of a condition
number for the super resolution problem. While we defined a structured absolute condition
number for R at µ̂ ∈ ˆ︂Mn (q) by

κstrabs(µ̂, q, n, d) = lim
ϱ→0

sup
∥ρ̂∥≤ϱ

µ̂+ρ̂∈ ˆ︂Mn(q)

W1(R(µ̂+ ρ̂),R(µ̂))

∥ρ̂∥2

in [68], a meaningful definition from the computational point of view would incorporate
unstructured perturbations ρ̂.36A generalisation to an unstructured absolute or relative
condition number requires an extension of the reconstruction map R to a neighbourhood
of ˆ︂Mn

(︁
2d
n

)︁
which is not straightforward as it is not obvious whether (2.22) is unique. We

circumvent this problem by allowing a set of possible reconstructions as outputs of the
reconstruction map. Any optimal black box algorithm can then just select the best out of
the set of possible reconstructions.37

36Note that the unstructured condition number satisfies due to Theorem 2.2.13 κstr
abs(µ̂, n, q, d) ≤ 1

2
if

q > 2d
n
. By the global Lipschitz result, the bound on the norm of ρ̂ in terms of ϱ is not necessary for

the existence of the supremum and can also be dropped. A small ϱ just assures that R(µ̂ + ρ̂) and
R(µ̂) have the same number of parameters by the locality condition in Theorem 2.2.8. Therefore, we
will omit to take a limit ϱ→ 0.

37The idea to study set-valued outcomes for the analysis of the condition of approximation problems can
also be found in [18, 40] and the references therein.
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2.2 Condition estimates

Definition 2.2.15 (Set-valued reconstruction map). Let n ∈ N, d ≥ 1 and q > 0. Then,
the reconstruction map R can be extended to perturbed moment sequences by

R : C|I| → P (M (q)) , µ̂ ↦→ argmin
ν∈M(q)

∥µ̂− ν̂∥2 (2.23)

where |I| = |{k ∈ Zd : ∥k∥2 ≤ n}| and P (M (q)) denotes the power set of M (q).

First minimiser ν̂1

Second minimiser ν̂2
Third minimiser ν̂3

Noisy data µ̂

ˆ︂Mn(q)

Figure 2.6: Sketch of the set-valued reconstruction map which allows to obtain multiple
minimisers having equal distance to the noisy data. In this example, we would
have R(µ̂) = {ν1, ν2, ν3}.

The definition through the argmin is well-defined as the selection of a separation q
bounds the number of possible parameters and thus M(q) is closed. Moreover, this defini-

tion extends R to q <
j1,1
πn where the mapping of measures to moments is not necessarily

injective. We sketch the extension of R to C|I| in Figure 2.6. Based on this, we define the
condition number of super resolution as the worst unstructured absolute condition at any
µ̂ ∈ ˆ︂Mn (q). The ratio behind this is to consider the difference between the worst possible
ground truth and its best reconstruction via the least square problem in the presence of
noise.38

Definition 2.2.16 (Condition number of super resolution). Take again d, n,M ∈ N and
q > 0. Then, we define the condition number of super resolution as

κabs(q, n, d,M) := sup
µ̂∈ ˆ︂Mn(q)
|Y µ|≤M

sup
ρ̂∈C|I|
ρ̸̂=0

inf
ν∈R(µ̂+ρ̂)

W1(ν, µ)

∥ρ̂∥2
.

Corollary 2.2.17 (Condition number for well-separated nodes). If the separation fulfils

nq =
√
1 + τ

jd/2,1
π with τ > 0, i.e. for well separated nodes, we have

κabs(q, n, d,M) ≤ 2c
(5)
d,τ

38We do not claim that this is the only possible way to define the condition number of super resolution.
For instance, Breiding and Vannieuwenhoven [18] study the condition of approximation problems like
(2.23) in a different way.
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2 Condition of sparse super resolution

with the constant c
(5)
d,τ as specified in the proof of Theorem 2.2.13. We remark that

c
(5)
d,τ ≲d

1 + τ√
τ

such that the bound does not increase to heavily if one approaches τ → 0.

Proof. As before, we set qτ =
√
1 + τ

jd/2,1
π and apply Theorem 2.2.13 in order to bound

κabs(q, n, d,M) ≤ sup
µ̂∈ ˆ︂Mn(q)
|Y µ|≤M

sup
ρ̂∈C|I|
ρ̂ ̸=0

inf
ν∈R(µ̂+ρ̂)

c
(5)
d,τ

∥ν̂ − µ̂∥2
∥ρ̂∥2

≤ sup
µ̂∈ ˆ︂Mn(q)
|Y µ|≤M

sup
ρ̂∈C|I|
ρ̂ ̸=0

inf
ν∈R(µ̂+ρ̂)

c
(5)
d,τ

∥ν̂ − µ̂− ρ̂∥2 + ∥ρ̂∥2
∥ρ̂∥2

≤ 2c
(5)
d,τ

where the last inequality is valid since µ is feasible for minν∈M(q) ∥ν̂ − µ̂ − ρ̂∥2. For

the scaling of c
(5)
d,τ we note at first that by the separation condition the maximal number

of nodes M is bounded by M ≤
(︂
n
qτ

)︂d
and thus c

(5)
d,τ := c

(4)
d,τq

−d/2
τ . From the proof of

Theorem 2.2.13, we can derive

c
(4)
d,τ ≤ 1

4

⌜⃓⃓⃓
⎷ 3d

min

(︃
c
(1)
d,τ , c

(3)
d,τ ,

dc
(2)
d,τ q

2
τ

32q2

)︃ ≤ 1

4

⌜⃓⃓⃓
⎷ 3d

min

(︃
c
(1)
d,τ , c

(3)
d,τ ,

dc
(2)
d,τ q

2
τ

8

)︃ ≲d τ
−1/2(1 + τ)d/4+1.

Together with q
−d/2
τ = (1 + τ)−d/4

(︂
π

jd/2,1

)︂d/2
this gives the proposed order of c

(5)
d,τ .

By the previous corollary we see that the condition number stays bounded if the sep-

aration parameter q fulfils q >
jd/2,1
πn . On the contrary, this does not remain valid if q is

slightly smaller as we will present in Theorem 2.2.21. Therefore, it is natural to define
a diffraction limit by means of the condition number that distinguishes the two cases of
a polynomial condition number and larger exponentially growing condition number for
more densely spaced nodes. While there are many definitions for a diffraction limit in
the special case d = 2 motivated from applications in optics (see the introduction of this
dissertation and [28] for an overview), this idea gives a mathematically rigid formulation.
As it seems to be widely accepted that the diffraction limit is anti proportional to the cut
off frequency n, we are interested to determine the constant depending on the dimension
d where the condition is no longer a polynomial. In other words, we set q = q̃

n and study
the optimal constant q̃ as n→ ∞.

Definition 2.2.18 (Diffraction limit). For n, d ∈ N we define the optimal transition
constant Ωd ≥ 0 as

Ωd = inf

⎧⎨⎩q̃ > 0 : ∃β ∈ N lim
n→∞

sup
M≤(

√
dn/q̃)d

κabs

(︂
q̃
n , n, d,M

)︂
Mβ

<∞

⎫⎬⎭ .

The diffraction limit for finite n is set to be Ωdn
−1.39

39Even though our aim was to present the diffraction limit as the transition between polynomial and
exponential growth of the condition, this transition can only be seen as n → ∞ and thus we can
just analyse the optimal transition constant Ωd. For finite n the “transition” heuristically happens at
Ωdn

−1 + o(n−1) and our definition of the diffraction limit omits the o-term.
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2.2 Condition estimates

We remark that the upper bound on the size of considered node sets M simply follows
from the packing argument that one can pack less ℓ2-balls with radius q/2 than ℓ∞-balls
with radius d−1/2q/2 into the torus Td while the latter problem can be solved easily. In
order to find a lower bound on the transition constant Ωd for d = 2, we use the following
construction by Chen and Moitra, see [28, Lem. 2.1]. In their paper, the diffraction limit
was already defined similar to Definition 2.2.18. Unfortunately, we believe that their proof
is not fully complete such that we add our own proof highlighting the previously missing
details. But before we fix these issues, we use their method in order to obtain a lower
bound on the transition constant in the univariate case. This lower bound was already
found by Moitra for the sub-problem of estimating condition numbers of Vandermonde
matrices, cf. [117, Thm. 3.1].

Lemma 2.2.19 (Univariate lower bound). Let ϵ ∈ (0, 1). Then, there exists a n0 ∈ N
such that for all n ≥ n0 there exist two univariate, nonnegative and n-sparse measures
µ1, µ2 ∈ M(q) where the separation q satisfies nq = 1− ϵ and W1(µ1, µ2) ≥ q

2 while

|µ̂1(v)− µ̂2(v)| ≤ 8 ·
(︃

1√
2

)︃ϵ(n−1)

for all v ∈ Z with |v| ≤ n.

Proof. Our proof technique is based on the proof of [28, Lem. 2.1]. We distinguish two

cases depending on the parity of n. If n ∈ N is even, we set xj = jq
2 = j(1−ϵ)

2n for
j = −n+1, . . . , n−1. Let Fn be the univariate Fejér kernel introduced in Definition 1.3.5,
⌊·⌋ the floor function and set

H(v) =
1

(l + 1)⌊(n−1)/l⌋F
⌊(n−1)/l⌋
l

(︃
(1− ϵ)v

2n
+

1

2

)︃
for some odd l ∈ N, l ≤ n − 1. By this definition, 1 ≤ ⌊n−1

l ⌋ ∈ N and thus H is a
trigonometric polynomial with degree at most n− 1. As

(n+ 1)−1Fn(x) =
n∑︂

k=−n

n+ 1− |k|
(n+ 1)2

e2πikx

is a trigonometric polynomial with nonnegative coefficients summing to one, one finds
by the relation between multiplication of functions and the convolution of their Fourier
coefficients

1

(l + 1)⌊(n−1)/l⌋F
⌊(n−1)/l⌋
l (x) =

n−1∑︂
k=−n+1

αke
2πikx

for some αk ≥ 0 with
∑︁

k αk = 1. Inserting this into the definition of H gives

H(v) =
n−1∑︂

k=−n+1

αk(−1)ke2πi(1−ϵ)kv/(2n) =
n−1∑︂

k=−n+1

αk(−1)ke2πivxk . (2.24)

Because n is even, we represent

H(v) =

n/2−1∑︂
j=−n/2+1

α2je
2πivx2j −

n/2−1∑︂
j=−n/2

α2j+1e
2πivx2j+1 = ν̂1(v)− ν̂2(v) (2.25)
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2 Condition of sparse super resolution

−1
2

1
2

Y2
Y1

dist(Y1, Y2) sep(Y1)

Figure 2.7: Definition of alternating node sets Y1, Y2 for n = 10. As n is even, |Y1| = n
and |Y2| = n− 1. The cardinality of Y1 and Y2 is interchanged for odd n.

as the difference of moments of two measures ν1, ν2 supported on Y1 = {xj : |j| even, |j| ≤
n − 1}, Y2 = {xj : |j| odd, |j| ≤ n − 1}. We display Y1 and Y2 in Figure 2.7. Since the
nonnegative weights αk sum to one and satisfy

n/2−1∑︂
j=−n/2+1

α2j −
n/2−1∑︂
j=−n/2

α2j+1 = H(0) =
sin((l + 1)12π)

2⌊n/l⌋

(l + 1)⌊n/l⌋ sin(12π)
2⌊n/l⌋

= 0

due to l being odd, we can multiply each weight of ν1, ν2 with⎛⎝ n/2−1∑︂
j=−n/2+1

α2j

⎞⎠−1

=

⎛⎝ n/2−1∑︂
j=−n/2

α2j+1

⎞⎠−1

= 2

in order to obtain nonnegative measures µ1, µ2 with coefficients summing to one. Each
of the measures has separation q = (1 − ϵ)n−1 by construction and up to M = n nodes.
Furthermore, all nodes of µ1 and µ2 are separated by at least q

2 leading to the proposed
lower bound on their Wasserstein distance. For all v with −n ≤ v ≤ n we can derive
ϵ
2 ≤ (1−ϵ)v

2n + 1
2 ≤ 1− ϵ

2 giving ∥ (1−ϵ)v
2n + 1

2∥T ≥ ϵ
2 . It is well known that

|Fn(x)| ≤
1

n+ 1

1

4∥x∥2T

by estimating the sine function, e.g. see [132, p. 25]. Therefore, we end up with

|µ̂1(v)− µ̂2(v)| = 2|ν̂1(v)− ν̂2(v)| = 2H(v) ≤ 2

((l + 1)ϵ)2⌊(n−1)/l⌋ .

For given ϵ > 0 we choose n′0 as the smallest integer such that n′0ϵ ≥ 2. Setting

l :=

{︄
n′0 + 1, n′0 even,

n′0, n′0 odd
(2.26)

gives an odd l as desired. Moreover, we have l + 1 ≤ 2
ϵ + 2 and l ≤ n′0 + 1 ≤ n− 1 for all

even n ≥ n0 := n′0 + 2. This gives then

|µ̂1(v)− µ̂2(v)| ≤ 2 · 2−2⌊n−1
l ⌋ ≤ 8 · 2−

2(n−1)
2/ϵ+2 = 8 · 2−ϵ(n−1)(1+ϵ)−1 ≤ 8 · 2−

1
2
ϵ(n−1)

by using ϵ < 1 in the last step. For the other case of n being odd, one just arranges
the terms for ν1, ν2 in (2.25) slightly different according to their sign whereas all other
calculations remain valid independent of the parity of n.

Analogously to this lemma, we can refine [28, Lem. 2.1].
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2.2 Condition estimates

Lemma 2.2.20. (Lower bound by Chen and Moitra, cf. [28, Lem. 2.1]) Let ϵ ∈ (0, 1).
Then, there exists a n0 ∈ N such that for all n ≥ n0 there exist two bivariate, nonnegative

and 2n2-sparse measures µ1, µ2 ∈ M(q) where the separation q satisfies nq =
√︂

4
3(1 − ϵ)

and W1(µ1, µ2) ≥ q
2 while

|µ̂1(k)− µ̂2(k)| ≤ 8 · 2−
1
2
ϵ(n−1)

for all k ∈ Z2 with ∥k∥2 ≤ n.

Proof. Again, two measures with small distance of their moments sequence need to be
constructed. In this bivariate setting, we generalise the equidistant nodes from the uni-
variate example, see the proof of Lemma 2.2.19, to nodes on a lattice such that each of
the two measures is supported on a hexagonal lattice. In our notation, we define

H(v1, v2) =
F

⌊(n−1)/l⌋
l

(︂
(1−ϵ)v1

2n + 1
2

)︂
F

⌊(n−1)/(
√
3l)⌋

l

(︂
(1−ϵ)

√
3v2

2n + 1
2

)︂
(l + 1)⌊(n−1)/l⌋+⌊(n−1)/(

√
3l)⌋

with the same choice of n′0, l, n0 and n ≥ n0 as in the proof of Lemma 2.2.19, cf. (2.26).40

Inserting the polynomial expansion as in (2.24), we derive

H(v1, v2) =
n−1∑︂

k1=−n+1

⌊(n−1)/
√
3⌋∑︂

k2=−⌊(n−1)/
√
3⌋

αk1αk2(−1)k1+k2e2πi
(1−ϵ)
2n

(v1k1+
√
3v2k2).

If we define a set of lattice points

Y :=

{︃
(1− ϵ)

2n

(︂
k1,

√
3k2

)︂⊤
, k1 = −n+ 1, . . . , n− 1 and k2 = −

⌊︃
n− 1√

3

⌋︃
, . . . ,

⌊︃
n− 1√

3

⌋︃}︃
,

one can rewrite H as the difference of moments corresponding to nonnegative measures
ν1, ν2 supported either on the elements of Y where k1 + k2 is even or odd respectively.
We display this in Figure 2.8 highlighting that the separation of each of the measures is
equal to q. Again, the weights can be multiplied by two in order to generate probability
measures µ1 and µ2. Moreover, the lattice points of the different lattices are separated
by at least q

2 . Hence, we can easily bound W1(µ1, µ2) ≥ q
2 . Each of the two measures is

by definition supported on up to M =
⌈︂
1
2(2n− 1)

(︂
2
⌊︂
n−1√

3

⌋︂
+ 1
)︂⌉︂

≤
√
3n2 nodes. Now,

we need a lower bound on the norm of the argument of the Fejér kernels in H in order
to estimate this H. Even if there are inconsistent statements,41 it was already discussed

in [28, Lem. 2.1] that the set {
(︂
(1−ϵ)v1

2n + 1
2 ,

(1−ϵ)
√
3v2

2n + 1
2

)︂⊤
: v ∈ R2 with ∥v∥2 ≤ n} is an

ellipsoid with axis lengths 1− ϵ and
√
3(1− ϵ) around (−1

2 ,−
1
2). By the symmetry of this

ellipsoid and its length in the first coordinate, we have that no integer vector is contained

40We remark that the mentioned problem of [28, Lem. 2.1] arises at this point. They take powers of
the Fejér kernel which are neither an integer nor larger than one. Hence, one cannot conclude by the
convolution theorem that H is a polynomial. We omit this by taking the floor function ⌊·⌋ and l ≤ n−1.
As we wanted to choose (l + 1)ϵ ≥ 2 in the later course of the proof, we need n to be large enough in
contrast to ϵ. So the statement of the theorem can be proven only for n ≥ n0 for some n0 ∈ N. The
latter condition was not included in [28, Lem. 2.1].

41The lower bound is claimed to be “ϵ/2
√
2” at first (cf. [28, p. 494]), while it is later said to be ϵ/2, see

[28, p. 495].
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−1
2

1
2

−1
2

1
2

Y2

Y1

dist(Y1, Y2) =
q
2sep(Y1) = q

Figure 2.8: Support of the measures ν1 and ν2 for n = 5. We remark that both sets Y1
and Y2 are regular hexagonal lattices.

in it. Due to periodicity, we can study the distance to the origin and look for the element
of this ellipsoid with the smallest ℓ∞-norm. Necessarily, this element is on the boundary
and parameterising this by some angle ϕ ∈ [0, 2π) gives

min
ϕ

min
m∈Z2

⃦⃦⃦⃦
⃦⃦
(︄
(1− ϵ) cosϕ

2
+

1

2
,
(1− ϵ)

√
3 sinϕ

2
+

1

2

)︄⊤

+m

⃦⃦⃦⃦
⃦⃦
∞

= min
ϕ

max

(︄
(1− ϵ) cosϕ

2
+

1

2
,

⃓⃓⃓⃓
⃓(1− ϵ)

√
3 sinϕ

2
+

1

2

⃓⃓⃓⃓
⃓
)︄

≥ min
ϕ

(1− ϵ) cosϕ

2
+

1

2

=
ϵ

2
.

Finally, this then allows us to bound

|µ̂1(v)− µ̂2(v)| = 2|ν̂1(v)− ν̂2(v)| = 2H(v) ≤ 2

((l + 1)ϵ)2⌊(n−1)/l⌋

for all v ∈ R2 with ∥v∥2 ≤ n. As we have chosen l and n0 as in the proof of Lemma 2.2.19,
we get the same estimate.

In [28], the upper bound for the bivariate diffraction limit is nΩ2 ≤ 2j0,1
π ≈ 1.53. By

Corollary 2.2.17, we improve this in the following theorem showing almost matching upper
and lower bounds for d = 2. The simpler univariate case can be analysed completely.

Theorem 2.2.21 (Bounds on the diffraction limit). In any dimension d ∈ N, the optimal
transition constant satisfies

Ωd ≤
jd/2,1

π
.
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2.2 Condition estimates

This bound is sharp in the univariate case, i.e. Ω1 = 1 for d = 1, and the bivariate
diffraction limit relevant in imaging applications can be estimated by

1.16 ≈
√︃

4

3
≤ Ω2 ≤

j1,1
π

≈ 1.22.

Proof. For nq >
jd/2,1
π we have shown in Corollary 2.2.17 that

κabs(q, n, d,M) ≲d
2(1 + τ)

τ
≤

2
(︂

π
jd/2,1

)︂2
n2q2(︂

π
jd/2,1

)︂2
n2q2 − 1

= 2 +
2(︂

π
jd/2,1

)︂2
n2q2 − 1

.

In other words, we can bound κabs(q, n, d,M) for nq >
jd/2,1
π polynomially in (nq)−1 and

thus we can take β = 0 in the definition of Ωd. Then, the infimum gives the first part
of the theorem. The lower bounds for d = 1, 2 can be derived from Lemma 2.2.19 or
Lemma 2.2.20 respectively because for n large enough we explicitly constructed µ1, µ2
such that

sup
M≤(

√
dn/q̃)d

κabs

(︂
q̃
n , n, d,M

)︂
Mβ

≥ W1(µ1, µ2)

∥µ̂1 − µ̂2∥2(
√
dn/q̃)dβ

≥ (1− ϵ)2
1
2
ϵ(n−1)

16(
√
dn/q̃)dβ

and the lower bound goes to infinity as n→ ∞ for any β ∈ N. Making ϵ arbitrarily small
yields equality in the univariate situation and the almost sharp estimate for d = 2.42

As remarked in the introduction, the bivariate upper bound
j1,1
π ≈ 1.22 on Ωd is known as

Rayleigh’s criterion in optics. Therefore, Theorem 2.2.21 gives a strong evidence that this
criterion is also mathematically meaningful.43 Another reason to promote the Rayleigh
criterion is the statistical approach given by the Cramér-Rao (CR) lower bound. As
described in Section 2.1, the CR bound estimates that the covariance of each unbiased
estimator θ̂ for a vector of parameters θ can be bounded from below by the inverse of the
Fisher information matrix J(θ). We summarise known results about the CR lower bound
and the Fisher information matrix in the following theorem.

Theorem 2.2.22. (CR and Fisher information, cf. [126, p. 6424]) Assume that a ran-
dom vector y ∈ Cm has probability density function f(y, θ) depending on some unknown,
deterministic parameter θ ∈ Rl for some l ∈ N. Then, the Fisher information matrix
defined as the covariance44

J(θ) = Ey

[︃(︃
∂ log f(y, θ)

∂θ

)︃(︃
∂ log f(y, θ)

∂θ

)︃∗]︃
∈ Cl×l

satisfies Ey

[︂
(θ̂(y)− θ)(θ̂(y)− θ)∗

]︂
⪰ J(θ)−1 for any unbiased estimator θ̂. If y follows a

multivariate complex normal distribution with mean x(θ) ∈ Cm and diagonal covariance

42One might consider to obtain lower bounds for d > 2 by the idea of Lemma 2.2.20 or Lemma 2.2.19
respectively but on one hand this might not be so interesting from the applied point of view while on
the other hand packing arguments needed for the generalisation to higher dimensions are not straight-
forward. Hence, it would not be realistic to hope for similarly sharp bounds.

43As there is at least with our proof technique no hope to reduce the upper bound below
jd/2,1

π
(see

Remark 2.2.10), one could conjecture Ω2 =
jd/2,1

π
. In order to prove this, one would need an example

of two less densely spaced measures with exponentially small ℓ2 distance of their moments.
44We emphasise that the expectation is computed with respect to the random y by the subscript Ey.
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2 Condition of sparse super resolution

matrix δ2I for some δ > 0, i.e. y ∼ CN (x(θ), δ2I), then the Fisher information matrix
can be calculated as

J(θ) = δ−2G∗G, where G =

[︃
∂x(θ)

∂θ1
, . . . ,

∂x(θ)

∂θl

]︃
∈ Cm×l.

From a theoretical point of view, this theorem allows to derive a minimal covariance
of any algorithm recovering the θ from measurements y. Hence, this can be seen as a
lower bound on the condition of the problem itself. This theory was therefore used in the
context of univariate super resolution in [53] by assuming that the measured moments are

µ̂(k) =
∑︂
t∈Y

αte
−2πit·k + ρ̂(k) (2.27)

for some normally distributed noise ρ̂ ∼ CN (0, δ2I) and this can be directly generalised
from the univariate case k ∈ {−n, . . . , n} to the higher dimensional case I := {k ∈ Zd :
∥k∥2 ≤ n}. Here, the vector of unknown parameters θ is

θ = (α, Y )⊤ :=
[︁
(αt)t∈Y , (t1)t∈Y · · · (td)t∈Y

]︁⊤ ∈ C|Y |(d+1)

and the measurements are y = (µ̂(k)){k∈Zd:∥k∥2≤n} ∈ C|I|. Based on this model, we can
compute the Fisher information matrix as follows.

Corollary 2.2.23. If the moments satisfy the noise model (2.27), we have the factorisa-
tion J(α, Y ) = δ−2G∗G of the Fisher information matrix where

G =
(︂
A , Ã1, · · · , Ãd

)︂
Dα

with a Vandermonde matrix

A =
(︂
e−2πitk

)︂
k∈{k∈Zd:∥k∥2≤n}, t∈Y

∈ C|I|×|Y |,

matrices Ãs, s = 1, . . . , d, with

Ãs = −2πi
(︂
kse

−2πitk
)︂
k∈{k∈Zd:∥k∥2≤n}, t∈Y

∈ C|I|×|Y |

and the diagonal matrix

Dα := diag(1, . . . , 1⏞ ⏟⏟ ⏞
|Y | times

, αt1 , . . . , αt|Y | , . . . , αt|1| , . . . , αt|Y |⏞ ⏟⏟ ⏞
repeat weight vector d times

) ∈ C|Y |(d+1)×|Y |(d+1).

The matrices Ãs can be seen as a variant of a confluent Vandermonde matrix (see [57]).

Proof. The univariate case d = 1 was given in [53] and the higher dimensional result
follows from Theorem 2.2.22 by differentiating (2.27) with respect to the parameters.
The derivative with respect to the weights gives the Vandermonde matrix A while the
partial derivatives with respect to the sth component of every node gives the confluent
Vandermonde matrix Ãs.
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As the inverse of Fisher information is then a lower bound for the covariance of each
unbiased estimator, it is then natural to define the condition of super resolution through
the size of J(θ)−1 and the problem is considered to be ill-conditioned if ∥J(θ)−1∥ becomes
large or equivalently λmin(J(θ)) is very small. Hence, one is interested to find lower bounds
on the minimal eigenvalue of J(θ) in order to establish well-conditionedness. This approach
was introduced in [53] by defining the transition between good and ill-conditionedness as
follows.45

Definition 2.2.24. (Condition via CR, generalisation of [53, Def. 1]) The super reso-
lution problem is said to be well-conditioned for some q̃ > 0 if for all n and parameter
configurations with separation n ·sepY ≥ q̃ and some minimal absolute value of all weights
αmin > 0 there exists a constant cq̃,αmin independent of n such that

n−dλmin(J(θ)) ≥ δ−2cq̃,αmin .

Due to Corollary 2.2.23, one directly finds

λmin(J(θ)) = δ−2σ2min(G) ≥
min(1, α2

min)

δ2
σ2min

(︂
A , Ã1, · · · , Ãd

)︂
(2.28)

with equality if all weights are equal to one.46 Consequently, the problems boils down
to an estimate on the smallest singular value of a block matrix where each block consists
of a Vandermonde matrix or of a confluent Vandermonde matrix. While there have been
many attempts to analyse the smallest singular value of Vandermonde matrices, see [120]
for an overview and Section 2.3 for a contribution in this work, Ferreira Da Costa and
Mitra [53] observed already for the one dimensional case that this can be done by an
admissible function as we defined it in Definition 2.2.1. Whereas they utilised a variant
of the Beurling-Selberg minorant for this, we can apply the function ψ from Lemma 2.2.2
having optimally small support.

Proposition 2.2.25. (Conditioning of partially confluent block Vandermonde matrix,

generalisation of [53, Prop. 6]) Assume that n and the separation q satisfy nq >
√
1 + τ

jd/2
π

for some τ > 0. As in the proof of Theorem 2.2.8, we set ψτ,n(x) := ndψτ (n · x) where ψτ
is the admissible function defined in Lemma 2.2.2. Then, we have

σ2min

(︂
A , Ã1, · · · , Ãd

)︂
≥ c

(6)
d,τn

d

for some constant c
(6)
d,τ > 0.

The proof uses the following lemma.

Lemma 2.2.26 (Evaluating derivatives at zero). Let ψ : Rd → R be a radial function,
i.e.ψ(x) = h(∥x∥2) for some univariate function h. Assume that ψ, h are twice continu-

ously differentiable and that ψ is maximal in zero. Then, we have
(︂
∂ψτ,n

∂xs

)︂
(0) = 0 for all

s = 1, . . . , d. Moreover, one can find

d ·
(︃
∂2ψτ,n
∂x2s

)︃
(0) = △ψ(0) and

(︃
∂2ψτ,n
∂xs∂xs′

)︃
(0) = 0

for any s, s′ ∈ {1, . . . , d}, s ̸= s′.
45In [53], the authors use the term stability instead of condition. Since we distinguish between the two

terms as explained in Section 1.1, we proceed by using the term condition.
46In particular, we remark at this point that this analysis again separates the dependency of the condition

on the weights from the influence of the nodes.
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2 Condition of sparse super resolution

Proof. The vanishing gradient follows directly from the extremum in zero. For the second
derivatives one can calculate(︃

∂2ψτ,n
∂xs∂xs′

)︃
(x) =

h′(∥x∥2)
∥x∥2

δs,s′ +

(︃
(h′′(∥x∥2)−

h′(∥x∥2)
∥x∥2

)︃
xsxs′

∥x∥22
.

Because h′(∥x∥2) = h′(0)+h′′(∥x∥2)∥x∥2+o(∥x∥2) as ∥x∥2 → 0 and
|xsxs′ |
∥x∥22

≤ 1, the second

part vanishes in zero. This yields that the mixed derivatives vanish in zero. Finally, the
first term is independent of s if s = s′. This gives the remaining part of the statement.

We can then return to the proof of Proposition 2.2.25.

Proof of Proposition 2.2.25. We follow the idea of the proof of [53, Prop. 6]. By the
variational representation from Lemma 1.1.6, we have to find a lower bound on the ex-

pression ∥
(︂
A , Ã1, · · · , Ãd

)︂
u∥2 for any normalised vector u with block structure u =(︁

u⊤0 , u
⊤
1 , . . . , u

⊤
d

)︁⊤ ∈ C|Y |(d+1) where us ∈ C|Y |, s = 1, . . . , d. We set

µ̂0(k) :=
∑︂
t∈Y

(u0)te
−2πitk and µ̂s(k) := −

∑︂
t∈Y

2πiks(us)te
−2πitk

for s = 1, . . . , d and k ∈ I. Now we can compute

ψ̂τ,n(0)
⃦⃦⃦(︂

A , Ã1, · · · , Ãd

)︂
u
⃦⃦⃦2
2
= ψ̂τ,n(0)

∑︂
k∈Zd,∥k∥2≤n

⃓⃓⃓⃓
⃓
d∑︂
s=0

µ̂s(k)

⃓⃓⃓⃓
⃓
2

≥
∑︂
k∈Zd

ψ̂τ,n(k)

⃓⃓⃓⃓
⃓
d∑︂
s=0

µ̂s(k)

⃓⃓⃓⃓
⃓
2

=

d∑︂
s,s′=0

∑︂
k∈Zd

ψ̂τ,n(k)µ̂s(k)µ̂s′(k)

= S1 + S2 + S3 + S4

where the decomposition consists of

S1 =
∑︂
k∈Zd

ψ̂τ,n(k)|µ̂0(k)|2,

S2 =
d∑︂
s=1

2ℜ

⎡⎣∑︂
k∈Zd

ψ̂τ,n(k)µ̂s(k)µ̂0(k)

⎤⎦ ,
S3 =

d∑︂
s=1

d∑︂
s′=1
s′<s

2ℜ

⎡⎣∑︂
k∈Zd

ψ̂τ,n(k)µ̂s(k)µ̂s′(k)

⎤⎦ and

S4 =

d∑︂
s=1

∑︂
k∈Zd

ψ̂τ,n(k)|µ̂s(k)|2.

By Poisson’s summation formula and the separation of Y together with the compact
support of ψτ,n we derive

S1 =
∑︂
t,t′∈Y

(u0)t(u0)t′
∑︂
k∈Zd

ψ̂τ,n(k)e
2πi(t′−t)k =

∑︂
t∈Y

|(u0)t|2ψτ,n(0)
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and analogously due to the relation between multiplication with monomials and derivatives
under the Fourier transform47

S4 = −
d∑︂
s=1

∑︂
t,t′∈Y

(us)t(us)t′
∑︂
k∈Zd

ψ̂τ,n(k)(2πiks)
2e2πi(t

′−t)k

= −
d∑︂
s=1

∑︂
t,t′∈Y

(us)t(us)t′
∑︂
k∈Zd

(︃
∂2ψτ,n
∂x2s

)︃
(̂k)e2πi(t

′−t)k

= −
d∑︂
s=1

∑︂
t∈Y

|(us)t|2
(︃
∂2ψτ,n
∂x2s

)︃
(0).

Moreover, one can evaluate the cross terms S2 and S3 by observing∑︂
k∈Zd

ψ̂τ,n(k)µ̂s(k)µ̂0(k) =
∑︂
t,t′

(us)t(u0)t′
∑︂
k∈Zd

(−2πiks)ψ̂τ,n(k)e
2πi(t′−t)k

=
∑︂
t

(us)t(u0)t

(︃
∂ψτ,n
∂xs

)︃
(0)

for s = 1, . . . , d and∑︂
k∈Zd

ψ̂τ,n(k)µ̂s(k)µ̂s′(k) =
∑︂
t,t′

(us)t(us′)t′
∑︂
k∈Zd

(−2πiks)(2πiks′)ψ̂τ,n(k)e
2πi(t′−t)k

= −
∑︂
t

(us)t(us′)t

(︃
∂2ψτ,n
∂xs∂xs′

)︃
(0)

for s, s′ ∈ {1, . . . , d}, s ̸= s′. By Lemma 2.2.26, we have S2 = S3 = 0 and

⃦⃦⃦(︂
A , Ã1, · · · , Ãd

)︂
u
⃦⃦⃦2
2
≥ min

⎛⎝ψτ,n(0)
ψ̂τ,n(0)

,−

(︂
∂2ψτ,n

∂x2s

)︂
(0)

ψ̂τ,n(0)

⎞⎠ ∥u∥22

≥ min

(︄
c
(1)
d,τ ,

cdτ(1 + τ)−d/2−1n2

4π2(1 + τ)φ̂(0)2

)︄
nd

where c
(1)
d,τ is the constant from the proof of Theorem 2.2.8. Defining the constant given

by the minimum as c
(6)
d,τ completes the proof.

As a corollary of Proposition 2.2.25, we obtain another argument for using the Rayleigh

limit
jd/2,1
πn in order to describe the stability of super resolution.

Corollary 2.2.27. Let d ∈ N. For all q̃ >
jd/2,1
π , the super resolution problem is well

conditioned in the sense of Definition 2.2.24.

Proof. This follows directly from Definition 2.2.24, Proposition 2.2.25 and (2.28).

47Note that we estimated ψ̂τ,n(k) ∈ O(∥k∥−d−3
2 ) in footnote 30. Hence, this function allows to apply

Poisson summation formula even to its second derivative.
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In the univariate case, the sufficient condition from Corollary 2.2.27 for well-conditioned-
ness reads qn = q̃ > 1 and this was already conjectured in [53] where this conjecture
was formulated in an asymptotically equivalent way as q(2n + 1) > 2. Moreover, [53,
Fig. 2] gives at least numerical evidence that q̃ > 1 is also necessary in the univariate
situation. An approach to make this more precise by estimating the smallest singular

value of
(︂
A , Ã1, · · · , Ãd

)︂
from above can be done by using results on σmin(A ). In fact,

choosing u =
(︁
u⊤0 , 0, . . . , 0

)︁⊤ ∈ C|Y |(d+1) where u0 is the normalised right singular vector

corresponding to the smallest singular value of A and α = (1, . . . , 1)⊤ ∈ C|Y | leads to

δ2λmin(J(α, Y )) = σ2min

(︂
A , Ã1, · · · , Ãd

)︂
≤ ∥

(︂
A , Ã1, · · · , Ãd

)︂
u∥22 = σ2min(A ). (2.29)

Even if the smallest singular values of Vandermonde matrices are well-studied, e.g. see
[120] and the references therein, upper bounds on the smallest singular value for the case
of ill-separated nodes in higher dimensions are difficult in general (cf. [120, Subsec. 3.4.4]).
Nevertheless, the analysis from (2.29) together with Lemma 2.2.19 and Lemma 2.2.20
shows that the super resolution problem cannot be well conditioned in the sense of Def-
inition 2.2.24 for q̃ < 1

2 and q̃ < 1√
3
in d = 1 or d = 2 respectively. Consequently,

the stochastic approach with the Cramer-Rao bound gives the same bounds as Theo-
rem 2.2.21 for the point where the condition of super resolution transitions from well- to
ill-conditionedness.
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Figure 2.9: Visualisation of the bivariate diffraction limit. We place the node set Y on (a
subset of) the two hexagonal lattices in T2 from Lemma 2.2.20 while varying
the separation sepY and the number of nodes |Y | for fixed n = 40. For each

selection of sepY and |Y | we compute n · σmin

(︂
A , Ã1, · · · , Ãd

)︂−1
as a proxy

for the condition of the super resolution problem.

Remark 2.2.28 (Condition for differentiable maps). We mentioned already in Chapter 1
that the absolute condition number of a differentiable map ϕ is given by the norm of its
Jacobian matrix ϕ′ (cf. [149, p. 90]). For our analysis of super resolution governed by the
condition of the reconstruction map R it might thus natural to study the moment map as
the mapping of parameters t, αt, t ∈ Y to µ̂(k) and to compute the norm of its inverse by
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2.2 Condition estimates

the inverse function theorem. This would again motivate to define

∥
(︂(︂

A , Ã1, · · · , Ãd

)︂
Dα

)︂+
∥2 ≤ max

(︁
1, α−1

min

)︁
· σmin

(︂
A , Ã1, · · · , Ãd

)︂−1

as the condition of the reconstruction map R. According to Corollary 2.2.27, this gives
another justification for the Rayleigh limit. Furthermore, the formulation of the con-
dition in terms of singular values of certain matrices allows to compute this condition
for visualisation in Figure 2.9. In this numerical example, we see that the proxy n ·
σmin

(︂
A , Ã1, · · · , Ãd

)︂−1
for the condition number of super resolution can become large

if sepY · n <
j1,1
π ≈ 1.22. However, the application of a variant of an inverse function

theorem would require more justification such that we adhere to our original definition of
a condition number given in Definition 2.2.16.

2.2.4 Condition of full inverse problem

In practice, one is typically not confronted with moments of a measure on the torus Td
but with a perturbed low-pass version of a compactly supported measure which can be
modelled as

g(x) = (h ∗ µ)(x) =
∑︂
t∈Y

αth(x− t), x ∈ Rd (2.30)

with a PSF h ∈ L1(Rd) ∩ C0(Rd) ∩ Bn(Rd) for some n > 0 and a discrete measure
µ =

∑︁
t∈Y αtδt ∈ M

(︁
[−1

2 ,
1
2 ]
d
)︁
. The assumption of a bandlimited PSF is not too restrictive

as many optical systems are usually bandlimited. Being interested in applications to
microscopy images, we additionally restrict ourselves to the analysis of d = 2 in this
subsection and remark that a higher dimensional analogue could be derived similarly.

We have to incorporate into the model (2.30) that digital images consist of pixels and
that at least in theory the values at the pixels are not exactly evaluations at a certain
point xj but an integral of g over the pixel xj , i.e. a local mean of g. For example, this was
mentioned in [75]. However, one could also circumvent this local mean by incorporating
the effect of the integration into the PSF, see [75, p. 8]. Therefore we assume access to

samples g(xj) + ρj for xj =
(︂
j1
2J ,

j2
2J

)︂
, j ∈ Z2, such that xj ∈ [−1/2 − ∆, 1/2 + ∆]2

originating from evaluation on some pixel grid in [−1/2 − ∆, 1/2 + ∆]2 with sampling
parameter J ∈ N, error ρj and field-of-view parameter ∆ > 0. Therein, the noise ρj is
assumed to be bounded by a deterministic constant ϱ or to be stochastic while a sufficiently
large field-of-view parameter ∆ is necessary in order to guarantee that no information on
the boundary is lost. Then, the full inverse problem of optical super resolution would be
to recover µ from the measurements

g̃ := (g(xj) + ρj)xj= j
2J

∈[−1/2−∆,1/2+∆]2

and we now want study the condition of this problem based on our findings from the
previous subsection. In contrast to the previous analysis, we do not assume a periodic
setting but are interested in results on the compact domain [−1

2 ,
1
2)

2 as a subset of R2.
The main question of this subsection is then whether this changes the condition of the
problem and the notion of our definition for a diffraction limit. We will see that this is not
the case and that the main results of the previous subsection carry over to the compact
domain setting. For the sake of simplicity, we make the following assumptions on the
bandlimited PSF h.
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2 Condition of sparse super resolution

Definition 2.2.29. We consider the PSF h ∈ L1(R2) ∩ C0(R2) ∩ Bn(R2)

1. to be a radial function with decay

0 ≤ h(x) ≤ c1n
2

(1 + n∥x∥2)3
for some c1 > 0, (2.31)

2. and to have radial derivative satisfying⃓⃓⃓⃓
∂h

∂r
(x)

⃓⃓⃓⃓
≤ c2n

3

(1 + n∥x∥2)3
for some c2 > 0, (2.32)

3. while its Fourier transform admits

1 ≥ max
∥v∥≤n

|ĥ(v)|2 > min
∥v∥≤n′

|ĥ(v)|2 ≥ c3(n− n′)4

n4
(2.33)

for some c3 > 0 and any 0 < n′ < n.

We count the number of pixels by J :=
⃓⃓⃓{︂
j ∈ Z2 : xj =

j
2J ∈ [−1

2 −∆, 12 +∆]2
}︂⃓⃓⃓
. In

analogy to Definition 2.2.15 and Definition 2.2.16 we define the following.

Definition 2.2.30 (Reconstruction from image data). For given PSF h as in Defini-
tion 2.2.29 and q,∆ > 0 the image data reconstruction map is

R̃ : CJ → P (M(q)) , g̃ ↦→ argmin
ν∈M(q)

∑︂
j∈{0,...,J−1}d

|g̃j − (h ∗ ν)(xj)|2

where we consider in this section M(q) as the set of non-periodic, discrete measures with
support Y ⊂ [−1

2 ,
1
2 ]

2 having Euclidean separation mint,t′∈Y ∥t− t′∥2 at least q.

Definition 2.2.31 (Condition for full inverse problem of SR). We define the condition
number of recovery from image data as48

κ̃abs(q,∆, J, h,M) := sup
µ∈M(q)
|Y µ|≤M

sup
ρ∈CJ
ρ̸=0

inf
ν∈R(((h∗µ)(xj))j+ρ)

W1(ν, µ)

∥ρ∥2
.

After defining the condition number for this type of problem, we are of course interested
to relate it to our results from the previous subsection in order to understand whether
the problem is different if we take a PSF-convolved image instead of truncated moments
into account. Similar to the previous approach, we then want to control the difference

∥g̃(1) − g̃(2)∥2 where g̃
(1)
j = (h ∗ µ1)(xj) for some µ1 ∈ M(q) and g̃(2) is analogously

constructed from some measure µ2 ∈ M(q). Hence, we calculate

∥g̃(1) − g̃(2)∥22∑︁
j′∈Z2

⃓⃓
(h ∗ (µ1 − µ2))(xj′)

⃓⃓2 =

∑︁
xj∈[− 1

2
−∆, 1

2
+∆]2 |(h ∗ µ1)(xj)− (h ∗ µ2)(xj)|2∑︁

j′∈Z2

⃓⃓
(h ∗ (µ1 − µ2))(xj′)

⃓⃓2
= 1−

∑︁
xj /∈[− 1

2
−∆, 1

2
+∆]2 |(h ∗ (µ1 − µ2))(xj)|2∑︁

j∈Z2 |(h ∗ (µ1 − µ2))(xj)|2
(2.34)

48In this section, we use the 1-Wasserstein distance according to Proposition 1.4.5 with X = [− 1
2
, 1
2
]2

equipped with the Euclidean distance.
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2.2 Condition estimates

where the sum over Zd can be estimated by Lemma 1.2.5. This gives then∑︂
j∈Z2

|(h ∗ (µ1 − µ2))(xj)|2 = 4J2

∫︂
R2

|(h ∗ (µ1 − µ2))(x)|2 dx

= 4J2

∫︂
R2

|ĥ(v)|2|µ̂1(v)− µ̂2(v)|2dv

≥ 4J2

(︃
min

∥v∥≤n′
|ĥ(v)|2

)︃∫︂
Bn′ (0)

|µ̂1(v)− µ̂2(v)|2dv

if J ≥ n > n′ for some n′ ∈ R. Thus, control over the denominator in (2.34) is possible by
using (2.33) and formulating an analogue to Theorem 2.2.8 for the low order L2-difference
of the Fourier transforms of µ1 and µ2.

Lemma 2.2.32 (Non-periodic Ingham inequality). Let J ≥ n > n′ for a spatial sampling
parameter J ∈ N and n, n′ > 0. For µ1, µ2 ∈ M(q) with

q =

√
1 + τj1,1
πn′

=

√
1 + τj1,1
πγn

(2.35)

for some τ > 0 and γ ∈ (0, 1) one defines a disjoint decomposition of Y := supp(µ1−µ2) =
Y µ1 ∪ Y µ2 into Y1 ⊂ Y µ1, Y2 ⊂ Y µ2 and Y3 ⊂ Y µ1 ∪ Y µ2, see also [38, Thm. 3.6] and the
proof of Theorem 2.2.8, with:

(i) Y3 :=
{︁
t ∈ Y : For all t′ ∈ Y with t ̸= t′ one has ∥t− t′∥2 ≥ q

2

}︁
(ii) For all t ∈ Y1 there is exactly one η(t) ∈ Y2 with ∥t− η(t)∥2 < q

2 .

Then, we can use the same constants c
(1)
d,τ , c

(2)
d,τ , c

(3)
d,τ > 0 and the notation α̃t from Theo-

rem 2.2.8 for the estimate∫︂
Bn′ (0)

|µ̂1(v)− µ̂2(v)|2dv ≥
∑︂
t∈Y3

c
(1)
d,τn

′d|α̃t|2

+
∑︂
t∈Y1

1

2
c
(2)
d,τn

′d+2
(︂
|α(1)
t |2 + |α(2)

t |2
)︂
∥t− η(t)∥22 + c

(3)
d,τn

′d|α(1)
t − α

(2)
η(t)|

2.

Proof. Beginning with the computation∫︂
Bn′ (0)

|µ̂1(v)− µ̂2(v)|2dv ≥ ψ̂τ,n′(0)−1

∫︂
R2

ψ̂τ,n′(v)|µ̂1(v)− µ̂2(v)|2dv

= ψ̂τ,n′(0)−1
∑︂
t,t′∈Y

α̃tα̃t′ψτ,n′(t− t′)

for ψτ,n′ as in the proof of Theorem 2.2.8, we observe that the inverse Fourier transfor-
mation can be used analogously to the Poisson summation formula in the periodic case.
Consequently, the argument of ψτ,n′ depends only on the Euclidean distance instead of
the wrap-around-metric on the torus. The rest of the proof is completely analogous to the
proof of Theorem 2.2.8.

We now turn to control over the numerator in (2.34).
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2 Condition of sparse super resolution

Lemma 2.2.33. Let h satisfy the assumptions of Definition 2.2.29. Under the assump-
tions and with the notation of Lemma 2.2.32 one can bound

|h ∗ (µ1 − µ2)(x)|≤
max(c1,

√
2c2)n

2
(︁∑︁

t∈Y3 |α̃t|+
∑︁

t∈Y1 |αt − αη(t)|+ n|αη(t)|∥t− η(t)∥2
)︁

(1 + n dist(x, Y ))3

for all x ∈ R2 with ∥x∥∞ ≥ 1
2 +∆. Additionally, we can estimate

max(c1,
√
2c2)

−2
∑︁

xj /∈[− 1
2
−∆, 1

2
+∆]2 |(h ∗ (µ1 − µ2))(xj)|2∑︁

t∈Y3 |α̃t|
2 +

∑︁
t∈Y1 |αt − αη(t)|2 + n2

(︁
|αt|2 + |αη(t)|2

)︁
∥t− η(t)∥22

≤
6(1 + 1

2∆)J2|Y |n2

(1 + ∆n)4
.

Proof. For the first inequality we compute

|h ∗ (µ1 − µ2)(x)|

=

⃓⃓⃓⃓
⃓⃓∑︂
t∈Y3

α̃th(x− t) +
∑︂
t∈Y1

(αt − αη(t))h(x− t) + αη(t)(h(x− t)− h(x− η(t)))

⃓⃓⃓⃓
⃓⃓

≤ c1n
2

(1 + n dist(x, Y ))3

⎛⎝∑︂
t∈Y3

|α̃t|+
∑︂
t∈Y1

|αt − αη(t)|

⎞⎠
+
∑︂
t∈Y1

|αη(t)|

⃓⃓⃓⃓
⃓
⟨︄∫︂ 1

0

(︃
∂h

∂x1
,
∂h

∂x2

)︃⊤
(x− t+ s(η(t)− t))ds, t− η(t)

⟩︄⃓⃓⃓⃓
⃓

through Taylor’s theorem. The Cauchy-Schwarz inequality, the chain rule, the mean value
theorem and the assumptions of Definition 2.2.29 allow then to bound the inner product
by ⃦⃦⃦⃦

⃦
∫︂ 1

0

(︃
∂h

∂x1
,
∂h

∂x2

)︃⊤
(x− t+ s(η(t)− t))ds

⃦⃦⃦⃦
⃦
2

∥t− η(t)∥2

≤
⃦⃦⃦⃦∫︂ 1

0

∂h

∂r
(x− t+ s(η(t)− t))

x− t+ s(η(t)− t)

∥x− t+ s(η(t)− t)∥2
ds

⃦⃦⃦⃦
1

∥t− η(t)∥2

≤
∫︂ 1

0

∂h

∂r
(x− t+ s(η(t)− t))

∥x− t+ s(η(t)− t)∥1
∥x− t+ s(η(t)− t)∥2

ds · ∥t− η(t)∥2

≤
√
2c2n

3

(1 + n dist(x, Y ))3
∥t− η(t)∥2

and this gives the first statement. Applying |a+ b+ c|2 ≤ 3(|a|2 + |b|2 + |c|2) gives∑︁
xj /∈[− 1

2
−∆, 1

2
+∆]2 |(h ∗ (µ1 − µ2))(xj)|2∑︁

t∈Y3 |α̃t|
2 +

∑︁
t∈Y1 |αt − αη(t)|2 + n2

(︁
|αt|2 + |αη(t)|2

)︁
∥t− η(t)∥22

≤ 3max(c1,
√
2c2)

2n4|Y |
∑︂

xj /∈[− 1
2
−∆, 1

2
+∆]2

1

(1 + n dist(xj , Y ))6
.

The remaining sum can be estimated as

∑︂
xj /∈[− 1

2
−∆, 1

2
+∆]2

1

(1 + n dist(xj , Y ))6
≤

∞∑︂
ℓ=⌈J( 1

2
+∆)⌉

∑︂
∥j∥∞=ℓ

1

(1 + n( ℓJ − 1
2))

6
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=

∞∑︂
ℓ=⌈J( 1

2
+∆)⌉

8ℓ

(1 + n( ℓJ − 1
2))

6

=
∞∑︂

ℓ=⌈J( 1
2
+∆)⌉

8J
n

(1 + n( ℓJ − 1
2))

5

(︄
1 +

n
2 − 1

1 + n( ℓJ − 1
2)

)︄

≤
8J(1 + 1

2∆)

n

∫︂ ∞

J( 1
2
+∆)

1

(1 + n( yJ − 1
2))

5
dy

=
8J2(1 + 1

2∆)

n2

∫︂ ∞

∆
n(1 + nw)−5dw

=
2J2(1 + 1

2∆)

n2
(1 + ∆n)−4

and this completes the proof.

Taking Lemma 2.2.32 and Lemma 2.2.33 together, we obtain the following result for the
condition number of the image recovery problem.

Theorem 2.2.34. Let q be as in (2.35), h as in Definition 2.2.29 and ∆ > 0. There is a
constant Cτ,γ,∆ > 0 such that

∥g̃(1) − g̃(2)∥22∑︁
j′∈Z2

⃓⃓
(h ∗ (µ1 − µ2))(xj′)

⃓⃓2 ≥ 1−
Cτ,γ,∆n

2

(1 + ∆n)4

and this lower bound is positive if n is sufficiently large. From this, we can conclude that

there is a constant c̃
(5)
2,τ,γ implying that for n large enough

κ̃abs

(︃
q̃

n
,∆, J, h,M

)︃
≤ c̃

(5)
2,τ,γ ·

(︃
1−

Cτ,γ,∆n
2

(1 + ∆n)4

)︃−1/2

if q̃ = nq =
√
1+τj1,1
πγ >

j1,1
π .

Proof. By (2.34), Lemma 2.2.32 and Lemma 2.2.33, we derive

∥g̃(1) − g̃(2)∥22∑︁
j′∈Z2

⃓⃓
(h ∗ (µ1 − µ2))(xj′)

⃓⃓2
≥ 1−

6(1+ 1
2∆

)J2|Y |n2

(1+∆n)4
∑︁

t∈Y3 |α̃t|
2 +

∑︁
t∈Y1 |αt − αη(t)|2 + n2

(︁
|αt|2 + |αη(t)|2

)︁
∥t− η(t)∥22

4J2max(c1,
√
2c2)−2

(︂
min∥v∥≤n′ |ĥ(v)|2

)︂ ∫︁
Bn′ (0)

|µ̂1(v)− µ̂2(v)|2dv

≥ 1−
3(1 + 1

2∆)max(c1,
√
2c2)

2)|Y |
2min(c

(1)
2,τ ,

1
2γ

2c
(2)
2,τ , c

(3)
2,τ )γ

2c23(1− γ)4(1 + ∆n)4

≥ 1−
Cτ,γ,∆n

2

(1 + ∆n)4

where we used n′ = γn for the second and |Y | ≤
(︂ √

2πγn√
1+τj1,1

)︂2
for the third inequality. For

the second part of the theorem, one can at first obtain

W1(µ1, µ2)
2 ≤

(︂
c̃
(5)
d,τ,γ

)︂2 ∑︂
j′∈Z2

⃓⃓
(h ∗ (µ1 − µ2))(xj′)

⃓⃓2
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2 Condition of sparse super resolution

for some c̃
(5)
2,τ,γ > 0 by proceeding analogously to the proof of Theorem 2.2.13. Together

with the first part of this theorem, one directly concludes the stated upper bound on the
condition.

After finding this upper bound on the condition of the image recovery problem in the
case of sufficiently well-separated sources, it is natural to study again the diffraction limit
as the transition point where the condition deteriorates.

Definition 2.2.35 (Diffraction limit of the imaging problem). We define the optimal
transition constant of the image recovery problem Ω̃2 ≥ 0 as

Ω̃2 = inf

⎧⎨⎩q̃ > 0 : ∃β ∈ N lim
n→∞

sup
M≤(

√
dn/q̃)d

κ̃abs

(︂
q̃
n ,∆, J, h,M

)︂
Mβ

<∞

⎫⎬⎭ .

Analogously to the periodic analysis, we obtain the same result on this transition con-
stant as in Theorem 2.2.21. This shows that the switch in the condition is independent of
the data being low order Fourier measurements arising in a periodic setting or bandlimited
low pass versions of a compactly supported measure.

Theorem 2.2.36 (Transition constant for the imaging problem). The transition constant
from Definition 2.2.35 satisfies

1.16 ≈
√︃

4

3
≤ Ω̃2 ≤

j1,1
π

≈ 1.22.

Proof. The upper bound is a direct consequence of Theorem 2.2.34. For the lower bound,
we can take the measures µ1, µ2 ∈ M+,1([−1

2 ,
1
2 ]

2) from Lemma 2.2.20 by identifying

[−1
2 ,

1
2 ]

2 with T2. Then, we have for q satisfying nq =
√︂

4
3(1− ϵ)

κ̃abs(q,∆, J, h,M) = sup
µ∈M(q)
|Y µ|≤M

sup
ρ∈CJ
ρ ̸=0

inf
ν∈R(((h∗µ)(xj))j+ρ)

W1(ν, µ)

∥ρ∥2

≥ W1(µ1, µ2)(︂∑︁
xj∈[− 1

2
−∆, 1

2
+∆]2 |(h ∗ µ1)(xj)− (h ∗ µ2)(xj)|2

)︂1/2
≥

q
2

4J2
∫︁
Bn(0)

|µ1(v)− µ2(v)|2dv

≥ 2ϵ(n−1) · q
128J2

and this grows faster in n than any polynomial.

Remark 2.2.37 (PSFs). (i) The prototypical example of a bandlimited PSF is the
Airy disc or Airy pattern, e.g. see [2, 16, 75, 28]. It is popularly chosen as it arises
naturally by the diffraction of light at a perfectly circular aperture, cf. [2]. Using the
bandlimit parameter n as before, it can be written as

h : R2 → R, x ↦→ h(x) = n2π

(︃
J1(nπ∥x∥2)
nπ∥x∥2

)︃2

.
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2.3 Application to Vandermonde matrices with pair clusters

Here, the parameter n is related to the wavelength λ of the light and the numerical
aperture NA by n−1 = λ

2NA such that the quantity n−1 is known as Abbe’s diffraction
limit typically being approximately 200nm for visible light (e.g. cf. [28]). We now
want to check the conditions from Definition 2.2.29 for this choice of PSF. As h(0) =
1
2πn

2 by the series representation of Bessel functions, we can validate assumption
(2.31) in Definition 2.2.29 by using the asymptotic expansion from Lemma 1.3.2.
Additionally, one can compute the radial derivative of the radial function as

∂h

∂r
(x) =

−2nJ1(nπ∥x∥2)J2(nπ∥x∥2)
∥x∥22

by using the recurrence relation from Lemma 1.3.2. Together with ∂h
∂r (0) = −1

4π
2n3

this gives (2.32). Finally, the Fourier transform of h which is also called optical
transfer function (OTF) in microscopy (see [75]) can be computed as

ĥ(v) =
2

π

(︃
arccos

(︃
∥v∥2
n

)︃
− n−1∥v∥2

√︂
1− n−2∥v∥22

)︃
for ∥v∥2 ≤ n and ĥ(v) = 0 outside of this ball with radius n, see [28, Fact 2].
This implies ĥ(0) = 1, i.e. convolution with h preserves the mass of the measure.
Moreover, one can find an integral representation of ĥ by differentiation leading to

ĥ(v) =
4

π

∫︂ 1

∥v∥2
n

√︁
1− s2ds ≥ 4

π

∫︂ 1

∥v∥2
n

1− sds =
2

π

(︃
1− ∥v∥2

n

)︃2

and this shows (2.33). Therefore, the Airy pattern satisfies the assumptions of
Definition 2.2.29.

(ii) Beyond the theoretical knowledge of bandlimited PSFs like the Airy pattern, ex-
perimentally measured PSFs are often acquired in applications where the PSF can
not be described in a closed form. For example, an approximation to the PSF is
then typically obtained by fitting a multivariate Gaussian into the measurements,
e.g. cf. [96, 121, 139]. In the course of the analysis, one discards the high order
trigonometric moments where the OTF is small such that the reconstruction of
them would be dominated by noise. One could extend the condition analysis of
this subsection to point spread functions of this kind if the sampling parameter J is
sufficiently large as the decay conditions from Definition 2.2.29 hold with possibly
even stronger decay conditions while the fact, that the PSF is bandlimited, is only
used in order to rewrite the sum over Z2 as an integral over R2 via Lemma 1.2.5.
But for this step one could also invoke the regularity of the PSF together with a
possibly large sampling parameter J in order to obtain a lower bound on the sum by
the integral. Apart from that, the analysis would not be different to the presented
discussion for bandlimited PSFs such that we omit further details at this point.

2.3 Application to Vandermonde matrices with pair clusters

As already observed by Diederichs in [38] for d = 1, the results from the previous subsection
yield an estimate for the smallest singular value of the Vandermonde matrix

A =
(︂
e−2πitk

)︂
k∈{k∈Zd:∥k∥2≤n},t∈Y

(2.36)

in the situation of a clustered node set Y where the maximal cluster size is two.
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2 Condition of sparse super resolution

Definition 2.3.1 (Cluster and their separation). Let Y ⊂ Td be a finite set and n ∈ N
fixed. We say that two nodes t1, t2 ∈ Y form a pair cluster Λ = {t1, t2} if ∥t1 − t2∥Td <
jd/2,1
πn . Additionally, a set containing only one node is called single cluster while we say

that Y admits a clustered node configuration if Y = Λ1 ∪Λ2 ∪ · · · ∪Λr for some r ∈ N and
distinct pair or single clusters Λj , j = 1, . . . , r. Finally, the minimal cluster separation of
a clustered node configuration is

clusepY := min
i ̸=j

min
t1∈Λi
t2∈Λj

∥t1 − t2∥Td .

We remark that there have been different definitions of a cluster including definitions
where nodes are said to form a cluster if they are contained in a box with side length n−1,

e.g. [120]. Our choice to introduce the factor
jd/2,1
π is of course due to our proof strategy

with the minorant function but it is not artificial to define a cluster with a dimension
dependent box side length. A clustered node configuration according to our definition for
d = 2 is displayed in Figure 2.10.

x10

x2

1

1

j1,1
πn

clusepY ≥ j1,1
πn

sepY

Λ1

Figure 2.10: Visualisation of pair-cluster configuration in d = 2 where nodes t ∈ Y (blue

circles) with distance less than
j1,1
πn form a cluster and points from different

clusters are at least clusepY ≥ j1,1
πn away from each other. The clusters are

highlighted by the green circles.

It is a natural assumption that the clusters need to be well-separated from each other
in order to bound the smallest singular value of A from below. We make the simple

assumption that the clusters are separated by at least the critical separation
jd/2,1
πn .

Proposition 2.3.2 (Pair clusters or well separated nodes). Assume d ∈ N. Let Y be a

node set with at most pairwise clustering points, sepY ∈ (0,
jd/2,1
πn ) and minimal cluster

separation

clusepY =
√
1 + τ

jd/2,1

πn

for τ > 0. Then, a lower bound for the smallest non-zero singular value of the correspond-
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2.3 Application to Vandermonde matrices with pair clusters

ing Vandermonde matrix A in (2.36) is given by

σmin(A ) ≥
c
(I)
d

√
τ

(1 + τ)d/4+1
· nd/2 · SRF−1

for some c
(I)
d > 0 and the super resolution factor49 given by SRF = (n · sepY )−1. On the

contrary, if sepY =
√
1 + τ

jd/2,1
πn for τ ≥ 0, i.e.Y is well separated, we have

σmin(A ) ≥ c
(II)
d (1 + τ)−d/4−1/2 · nd/2

for some dimension dependent constant c
(II)
d > 0.

Proof. Let α ∈ C|Y | be an arbitrary normalised vector. We set clusepY =
√
1 + τ

jd/2,1
πn for

some τ > 0 and follow the lines of the proof of Theorem 2.2.8. Next, we decompose the
node set into Y = Y4 ∪

⋃︁
t∈Y5{t, η(t)} where Y4 contains all single nodes and Y5 consists of

only one node t of each pairing node cluster, i.e. the corresponding pair node η(t) is not
included in Y5 in order to circumvent double counting. This allows to compute

∥A α∥22 =
∑︂

∥k∥2≤n

⃓⃓⃓⃓
⃓∑︂
t∈Y

αte
−2πitk

⃓⃓⃓⃓
⃓
2

≥ ψτ,n(0)

ψ̂τ,n(0)

∑︂
t∈Y4

|αt|2 +
∑︂
t∈Y5

1

ψ̂τ,n(0)

(︃
αt
αη(t)

)︃∗(︃
ψτ,n(0) ψτ,n(t− η(t))

ψτ,n(t− η(t)) ψτ,n(0)

)︃(︃
αt
αη(t)

)︃

≥ min

(︄
ψτ,n(0)

ψ̂τ,n(0)
,
ψτ,n(0)− ψτ,n(sepY · e1)

ψ̂τ,n(0)

)︄∑︂
t∈Y

|αt|2. (2.37)

In the clustering case, the second term in the minimum is smaller and the first part follows
from the variational formulation of singular values, Lemma 2.2.2 and

ψτ,n(0)− ψτ,n(sepY · e1)
ψ̂τ,n(0)

≥ cdτ(1 + τ)−d/2−1n2(sepY )2nd

4π2(1 + τ)φ̂(0)2
≥

(︂
c
(I)
d

)︂2
τ

(1 + τ)d/2+2
nd+2(sepY )2

for some c
(I)
d > 0. For well-separated nodes, both parts of the minimum in (2.37) are equal

and due to the computations in Remark 2.2.9 we obtain

ψτ,n(0)

ψ̂τ,n(0)
≥

(︂
c
(II)
d

)︂2
nd

(1 + τ)d/2+1

for some constant c
(II)
d > 0.

For a result with completely explicit constants for the lower bounds of singular values
of Vandermonde matrices which can be derived from Lemma 2.2.6 see [67]. We compare
Proposition 2.3.2 to a similar result by Nagel [120, Cor. 3.4.15] which we modified by a
frequency shift to fit into our setting.

49The term SRF for the super resolution factor is used in many related publications including [11, 100, 108].
The idea is that SRF being smaller or larger than one roughly determines whether one studies weak or
strong super resolution. Nevertheless, our analysis from the previous section shows that this distinction
should rather be made around π

jd/2,1
instead of one.
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2 Condition of sparse super resolution

Theorem 2.3.3 (Pair clustering, Nagel’s result). Let Y be a node set with at most pairwise
clustering points and

clusepY ≥ 6d

n

(︃
2

n · sepY

)︃ 1
d+1

.

Then, we have that the smallest non-zero singular value of the corresponding Vandermonde
matrix A =

(︁
e−2πitk

)︁
k∈{−n,...,n}d,t∈Y can be bounded from below by

σmin(A ) ≥ 1

6

√
2

dd/4
· nd/2 · SRF−1.

While contrasting these results for the smallest singular value, we have to remark the
following:

(i) The definition of a cluster is different in the two settings. Whereas in Nagel’s lan-
guage nodes form a cluster if they are contained in a cube of side length 1

n (indepen-
dently of the dimension), we considered two nodes as paired if their were separated

by less than
jd/2,1
πn .

(ii) The condition on the cluster separation is weaker in Proposition 2.3.2 than in Theo-
rem 2.3.3. Especially, we emphasise that our lower bound for the cluster separation
clusepY is independent of sepY , i.e. clusepY does not need to be adjusted for an
arbitrarily small sepY .

(iii) Our result for the smallest singular value has a exponentially better dimension-

dependent constant, see [67, Cor. 3.20] where we made the constant c
(II)
d explicit by

using the minorant from Lemma 2.2.6.

Consequently, we were able to prove improved lower bounds for the smallest singular values
of Vandermonde matrices in the special case of pairwise clustering nodes. Unfortunately,
our method does not provide reasonable results for larger clusters containing λ > 2 nodes.
The latter was done in [120, Sec. 3.4].
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3 Trigonometric polynomials and rational
functions

The first two sections of this chapter are based on the publications [25, 26] while the rest is
a previously unpublished extension to approximation by rational functions. Content from
[26] about measures with support on algebraic varieties is omitted in this thesis because
we focus on super resolution of discrete measures. Only in Section 3.1, the considered
measures are allowed to have an arbitrary support.

In this chapter, we present strategies how to use noisy moment information as in (2.2)
in order to represent the unknown sparse measure µ by a trigonometric polynomial or a
rational function which approximate the measure of interest or interpolate its support.
Again, the available data consist of trigonometric moments of low to moderate order, i.e.

µ̂(k) =

∫︂
Td

e−2πikxdµ(x) =
∑︂
t∈Y

αte
−2πit·k, k ∈ {−n, . . . , n}d or k ∈ Zd ∩Bn(0) (3.1)

for some n ∈ N, and one asks for the reconstruction or approximation of µ ∈ M(q)
from this partial information. For the approximation using convolutions with kernels in
Section 3.1, it is easier to assume knowledge of moments for k ∈ {−n, . . . , n}d as we did in
[26], while we deal with the radial setting k ∈ Zd ∩Bn(0) in the rest of this chapter. This
radial setting is more reasonable in applications as we have explained in Chapter 2 and
allows to use the condition estimates from this previous chapter. As the full recovery of
all parameters of µ is often beyond the scope of the application due to the large number
of parameters or because one just wants a good visualisation of the measure, we propose
trigonometric proxies qn based on the knowledge of (3.1) and distinguish between pointwise
convergence to the indicator function of suppµ, i.e.

lim
n→∞

qn(x) =

{︄
1, x ∈ suppµ,

0, else,
(3.2)

and weak convergence qn ⇀ µ as introduced in Section 1.4. We quantify convergence rates
for the latter by the Wasserstein distance of µ and qn.

Related work and contributions We have already described in the context of the analysis
of the condition of (3.1) that there is a wide range of algorithms which compute the pa-
rameters of µ ∈ M(q) given the trigonometric moments. Beginning with Prony’s method
[79, 89, 133, 136, 142] one could mention other subspace methods such as matrix pencil
[47, 74, 117], ESPRIT [4, 99, 137, 140] or MUSIC [101, 144]. Among them, MUSIC as well
as the variational methods [22, 31, 32, 134] set up intermediate trigonometric polynomials
which peak around the support points and have smaller value apart from the support.
Beyond the consideration of polynomials, rational functions with this property are stud-
ied as well, for instance Christoffel functions offer interesting guarantees both in terms
of support identification [93] or approximation on the support [84, 111, 128]. Hence, it is
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3 Trigonometric polynomials and rational functions

natural to ask whether these different polynomial or rational proxys interpolate the sup-
port of a discrete measure and fulfil a pointwise convergence similar to (3.2). In contrast
to this approximation of the support by interpolation, weak convergence of polynomial
approximations to the measure itself is studied in particular in Mhaskar’s paper [113].
Given the moments up to order n, we follow a similar approach by addressing two types
of questions:

(QA) Which simply computable, trigonometric approximation schemes for general mea-
sures are available and how well do they approximate the measure?

(QB) How close are these schemes to the actual best polynomial approximation?

In contrast to [113], the discrepancy between the measure and its polynomial proxy is esti-
mated in the 1-Wasserstein distance which gives rise to tight bounds on the approximation
error. One of the main contributions of our work lies in the simple connection between
approximation in the 1-Wasserstein distance and known results from approximation the-
ory for Lipschitz functions. For example, we relate questions on the best approximation of
measures by polynomials to best approximation results in L1(Td) and C(Td). Additionally,
we show analogously to classical approximation theory that near best approximations can
be derived through convolution with certain kernels. As far as we know, these connections
formulated in Section 3.1 where not considered before.

For the pointwise convergence (3.2), we analyse in Section 3.2 the interpolation be-
haviour of a sum of squares polynomial, p1,n, similarly suggested in [89, Thm. 3.5] and
[124, Prop. 5.3] (and indeed closely related to the rational function in the MUSIC algo-
rithm, see [144, Eq. (6)]). The main contribution of this section is not the invention of
this polynomial p1,n but the analysis of its pointwise convergence to the indicator function
of the support of the measure. For instance, this can be used in Section 4.1 to represent
sparse objects in single molecule microscopy.

Organisation of this chapter Section 3.1 presents our answers towards (QA) and (QB).
Similar to classical approximation theory for functions, the simplest approximation meth-
ods are given by convolution of the measure with polynomial kernels and we derive upper
bounds in the 1-Wasserstein distance in Subsection 3.1.1. Comparing these results for
question (QA) with the analysis of best approximations in Subsection 3.1.3, we observe
for question (QB) that the Fejér kernel provides a sub-optimal order whereas the Jackson
kernel achieves the optimal rate of O(n−1). Furthermore, the subsequent characterisa-
tion of the best approximation in the univariate case in Subsection 3.1.4 shows that the
achieved constant in the convergence rate for the best approximation is sharp.

In Section 3.2, we start by studying the so-called signal polynomial p1,n which identifies
the support of a discrete measure in the sense of (3.2). As common to all subspace
methods, this involves technical assumptions on the support of the measure and the degree
n to be finite but large enough. For discrete measures with separation larger than the
Rayleigh limit, see Subsection 2.2.3, we can apply results from Chapter 2 and prove in
Subsection 3.2.2, Theorem 3.2.6, the pointwise convergence to the indicator function of
suppµ with a pointwise convergence rate of order O(n−2) outside of the support.

Beyond studying representations by polynomials, we propose to use rational approx-
imations in Section 3.3. Naturally, the situation becomes more involved if we include
noise into our data model (3.1) and an approach how to adjust the rational approximation
approach in this setting is presented in Section 3.4.
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3.1 Approximation by polynomials

3.1 Approximation by polynomials

We study in this section weakly convergent polynomial approximations of measures, i.e.
approximations satisfying the property (1.9). While general p-Wasserstein distances allow
to quantify this weak convergence with a convergence rate, see [151], we restrict ourselves
to the 1-Wasserstein distance. Some bounds in the setting of Wp, p > 1, were derived in
[25] but are not included in this thesis completely in order to avoid redundancies.50

While our focus is principally on actually computable approximations, based on convo-
lution with known kernels, we also turn in the last part of this section (Subsection 3.1.3
below) to more theoretical considerations on the best polynomial approximations with
respect to the 1-Wasserstein distance, which, additionally to giving new perspectives on
polynomial approximations of measures, also highlights the near-optimality of our con-
structions.

3.1.1 Approximation by convolution and upper bounds

Similarly to standard approaches in approximation theory, one may derive easy-to-compute
polynomial estimates for a measure µ, by considering the convolution of the latter with
adequate kernels. As highlighted in the beginning of this chapter, we simplify the setting
in contrast to Chapter 2 by considering tensor product kernels for trigonometric moments
from the box {−n, . . . , n}d instead of a radial problem with moments corresponding to
frequencies from the Euclidean ball Bn(0) because the latter would enforce to study kernels
from Pn,d,2 which is less straightforward even though the results can only differ by a
dimension dependent constant due to Pd−1/2n,d,∞ ⊂ Pn,d,2 ⊂ Pn,d,∞.

Given the first trigonometric moments (µ̂(k))k∈{−n,...,n}d of µ, a first natural choice of
a kernel would be to take the Fourier partial sums

Snµ(x) = (Dn ∗ µ)(x) =
∑︂

k∈Zd,∥k∥∞≤n

µ̂(k)e2πikx,

which correspond to convolution with Dirichlet kernels, cf. Section 1.3. We focus in this
section on yet another classical sequence of approximations, given by convolution with
Fejér kernels Fn : Td → R (by slight abuse of notation, we use the same notation for both
the multivariate and univariate kernels). We recall that its definition, see Definition 1.3.5,
allows to write

Fn(x) =

n∑︂
k=−n

(︃
1− |k|

n+ 1

)︃
e2πikx =

1

n+ 1

(︃
sin(n+ 1)πx

sinπx

)︃2

=
1

n+ 1

⃓⃓⃓⃓
⃓
n∑︂
k=0

e2πikx

⃓⃓⃓⃓
⃓
2

(3.3)

for any x ∈ T. The main object of study in this section is the trigonometric polynomial

pn(x) = (Fn ∗ µ) (x) =
∫︂
Td

Fn(x− y)dµ(y). (3.4)

We start by giving two illustrative examples in Example 3.1.1.

Example 3.1.1. Our first example for d = 1 is the measure

µ =
1

3
δ 1

8
+ ν ∈ M+(T),

dν

dλ
(x) =

8

9
1[ 14 ,

5
8 ]
(x) +

√
2

3

⎛⎝ 1√︂⃓⃓
x− 7

8

⃓⃓ −√
8

⎞⎠1[ 34 ,1](x), (3.5)

50At some points we will remark about the behaviour of certain bounds for general p as presented in [25].
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3 Trigonometric polynomials and rational functions

where λ denotes the Lebesgue measure. Obviously, the measure µ has singular and ab-
solutely continuous parts including an integrable pole at x = 7

8 . Both the Fourier partial
sums and the Fejér approximations for n = 19 are shown in the left and right panel of
Figure 3.1, respectively.
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Figure 3.1: The example measure (3.5), its approximations by the Fourier partial sum
(left) and the convolution with the Fejér kernel (right). The weight 1

3 of the
Dirac measure in 1

8 is displayed by an arrow of height n/3 for visibility.

Our second example is a singular continuous measure for d = 2. We take the measure
µ = (2πr0)

−1δC ∈ M+(T2) as the uniform measure on the circle

C = {x ∈ T2 : |x|2 = r0}

for some radius 0 < r0 <
1
2 . The total variation of this measure is

∥µ∥TV = µ̂(0) =

∫︂
T2

dµ(x) =
1

2πr0

∫︂
C
dx = 1.

As we have suppµ ⊂ [−1
2 ,

1
2 ]

2, we find with (1.1) the explicit formula

µ̂(k) =

∫︂
T2

e−2πikxdµ(x) =
1

r0

∫︂ ∞

0
rJ0(2πr∥k∥2)dδr0(r) = J0(2πr0∥k∥2) (3.6)

for the trigonometric moments of µ. The Fourier partial sum as well as the convolution
with the Fejér kernel for n = 29 are shown with maximal contrast in the left and right panel
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Figure 3.2: Uniform measure on a circle of radius r0 = 1
3 and its approximations by the

Fourier partial sum (left) and the convolution with the Fejér kernel (right) for
n = 29.

76



3.1 Approximation by polynomials

of Figure 3.2, respectively. We observe that both approximators peak around the support
of the measures and the approximation by convolution with the Fejér kernel produces less
ringing than the Dirichlet kernel at the cost of a slightly thicker main lobe. Especially the
convolution with the Fejér kernel can be seen as a visually appealing proxy for µ.

Of course, the construction and efficient evaluation of this approximation relies on the
convolution theorem and the fast Fourier transform (FFT). Given the trigonometric mo-
ments µ̂(k), k ∈ {−n, . . . , n}d, we multiply these with the Fourier coefficients of the Fejér
kernel (3.3) in each dimension and use an inverse FFT to evaluate pn on the equispaced
grid (2n + 1)−1{−n, . . . , n}d. Our next goal is a quantitative approximation result, for
which we need the following preparatory lemma. This result can be found in qualitative
form e.g. in [20, Lemma 1.6.4]. Here, we let |x − y|p = mink∈Zd ∥x− y + k∥p for p ≥ 1

denote the wrap-around p-norm on Td = [0, 1)d such that we can rewrite the metric on Td
as ∥x− y∥Td = |x− y|2.

Lemma 3.1.2. Let n, d ∈ N≥1, then we have

d

π2

(︃
log(n+ 1)

n+ 1
+

1

n+ 2

)︃
≤
∫︂
Td

Fn(x)|x|1dx ≤ d

π2
log(n) + 4

n+ 1
.

Proof. First note that∫︂
Td

d∏︂
s=1

Fn(xs)

d∑︂
ℓ=1

|xℓ|1dx =

d∑︂
ℓ=1

∫︂
Td

d∏︂
s=1

Fn(xs)|xℓ|1dx = d

∫︂
T
Fn(x)|x|1dx,

where the second equality holds since
∫︁
Fn(xs)dxs = 1. Thus it is sufficient to consider

the univariate case. The representation Fn(x) = 1 + 2
∑︁n

k=1

(︂
1− k

n+1

)︂
cos(2πkx) gives

∫︂
T
Fn(x)|x|1dx = 2

∫︂ 1/2

0

(︄
x+ 2

n∑︂
k=1

(︃
1− k

n+ 1

)︃
cos(2πkx)x

)︄
dx

= 2

[︄
1

8
+

n∑︂
k=1

(−1)k − 1

2π2k2
−

n∑︂
k=1

(−1)k − 1

2(n+ 1)π2k

]︄

= 2

⎡⎣1
8
−

⌊n−1
2

⌋∑︂
j=0

1

π2(2j + 1)2
+

⌊n−1
2

⌋∑︂
j=0

1

(n+ 1)π2(2j + 1)

⎤⎦

since
∫︁ 1/2
0 cos(2πkx)xdx = ((−1)k − 1)/(4π2k2). Using that

∑︁∞
j=0

1
(2j+1)2

= π2

8 , we obtain

∫︂
T
Fn(x)|x|1dx = 2

⎡⎢⎣ 1

π2

∞∑︂
j=⌊n+1

2
⌋

1

(2j + 1)2
+

1

(n+ 1)π2

⌊n−1
2

⌋∑︂
j=0

1

2j + 1

⎤⎥⎦
≤ 2

π2

⎡⎣ 1

(2⌊n+1
2 ⌋+ 1)2

+

∫︂ ∞

⌊n+1
2

⌋

1

(2y + 1)2
dy +

1 +
∫︁ ⌊n−1

2
⌋

0
1

2y+1dy

n+ 1

⎤⎦
≤

2
(2⌊n+1

2
⌋+1)

+ 1

(2⌊n+1
2 ⌋+ 1)π2

+
2 + log(n)

(n+ 1)π2
≤ log(n) + 4

π2(n+ 1)
.
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3 Trigonometric polynomials and rational functions

The lower bound follows similarly by bounding the series from the previous calculation by
integrals from below.

Theorem 3.1.3. Let d, n ∈ N and µ ∈ M(Td), then the measure with density pn from
(3.4) converges weakly to µ with

W1(pn, µ) ≤
d

π2
log(n) + 4

n+ 1
· ∥µ∥TV,

which is almost sharp51 since we have

sup
µ∈M(Td)\{0}

W1(pn, µ)

∥µ∥TV
≥ d−1/2 d

π2

(︃
log(n+ 1)

n+ 1
+

1

n+ 2

)︃
.

Proof. We compute

W1(pn, µ) = sup
Lip(f)≤1

|⟨Fn ∗ µ, f⟩ − ⟨µ, f⟩|

= sup
Lip(f)≤1

|⟨µ, Fn ∗ f − f⟩|

≤ sup
Lip(f)≤1

∫︂
Td

∫︂
Td

Fn(x) |f(y − x)− f(y)|dxd|µ|(y)

≤ ∥µ∥TV

∫︂
Td

Fn(x)|x|2dx,

and note that both inequalities become equalities when choosing µ = δ0 and f(x) = |x|2.
Applying | · |2 ≤ | · |1 and Lemma 3.1.2 gives the first part of the result. In particular, we
remark in passing that W1(Fn, δ0) =

∫︁
Td Fn(x)|x|2dx ≥ d−1/2

∫︁
Td Fn(x)|x|1dx yields the

second part.

Remark 3.1.4. In [25], we have analysed that the above weak convergence is only of
order O(n−1/p) if we measure in Wp for p > 1. Similar to classical results from ap-
proximation theory, the log-factor in Theorem 3.1.3 can be removed by choosing another
convolution kernel, which then however does not allow for the representation later found
in Lemma 3.2.1. For example, the Jackson kernel Jn as introduced in Definition 1.3.6 has
degree n = 2m− 2 and satisfies∫︂

T
Jn(x)|x|1dx ≤ 6

m(2m2 + 1)

[︄∫︂ 1/2m

0
m4xdx+

∫︂ ∞

1/2m

1

16x3
dx

]︄
≤ 3m

4m2 + 2)
≤ 3

2(n+ 2)
.

Analogously to Theorem 3.1.3, we get

W1(Jn ∗ µ, µ) ≤
3

2

d · ∥µ∥TV

n+ 2
, (3.7)

which still is an approximate factor 6 worse than the lower bound in the univariate case
(see Theorem 3.1.6 in Subsection 3.1.3). By numerical analysis or more detailed analysis
of the above estimate, one can deduce that a factor 3 is due to the above estimate and a
remaining factor 2 seems to indicate that the Jackson kernel is not optimal.

51In [26], we defined the Wasserstein distance with respect to | · |1 on Td such that we can get rid of the
factor d−1/2 in the lower bound and obtain an actually sharp bound. In order to be consistent with the
rest of this thesis, we stick to our original definition of W1 which gives this almost sharp lower bound.
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3.1 Approximation by polynomials

3.1.2 Saturation

Theorem 3.1.3 gives a worst case lower bound while, on the other hand, the Lebesgue
measure is approximated by Fn ∗ λ = λ without any error. We may thus ask how well
a measure dµ = w(x)dx with smooth (nonnegative) density might be approximated. For
an introductory example, consider the univariate analytical density w(x) = 1 + cos(2πx).
Since Fn ∗w(x)−w(x) = cos(2πx)/(n+1), by testing with the Lipschitz function f(x) =
cos(2πx)/(2π), we achieve

W1(Fn ∗ w,w) ≥
1

2π(n+ 1)

∫︂
T
cos2(2πx)dx =

1

4π(n+ 1)
.

This effect is called saturation (e.g. cf. [20]). In greater generality, such a lower bound
holds for each measure individually and can be inferred by a nice relationship between the
Wasserstein distance and a discrepancy, cf. [46].

Theorem 3.1.5. For each individual measure µ ∈ M(Td) different from the Lebesgue
measure, there is a constant c > 0 such that

W1(pn, µ) ≥
c

n+ 1

holds for all n ∈ N.

Proof. Let ĥ ∈ ℓ2(Zd), ĥ(k) ∈ R \ {0}, ĥ(k) = ĥ(−k), and consider the reproducing kernel
Hilbert space

H = {f ∈ L2(Td) :
∑︂
k∈Zd

|ĥ(k)|−2|f̂(k)|2 <∞}, ∥f∥2H =
∑︂
k∈Zd

|ĥ(k)|−2|f̂(k)|2.

Given measures µ, ν, their discrepancy (which also depends on the space H) is defined by

D(µ, ν) = sup
∥f∥H≤1

⃓⃓⃓⃓∫︂
Td

f d(µ− ν)

⃓⃓⃓⃓
= sup

∥f∥H≤1

⃓⃓⃓⃓
⃓⃓∑︂
k∈Zd

ˆ︁f(k)ˆ︁h(k)ˆ︁h(k)ˆ︂µ− ν(k)

⃓⃓⃓⃓
⃓⃓ = ∥ˆ︁h ·ˆ︂µ− ν∥ℓ2 ,

and fulfils by the geometric-arithmetic inequality

D(pn, µ)
2 =

∑︂
∥k∥∞≤n

|ĥ(k)|2
⃓⃓⃓⃓
⃓1−

d∏︂
ℓ=1

(︃
1− |kℓ|

n+ 1

)︃⃓⃓⃓⃓
⃓
2

|µ̂(k)|2 +
∑︂

∥k∥∞>n

|ĥ(k)|2|µ̂(k)|2

≥
∑︂

∥k∥∞≤n

|ĥ(k)|2
⃓⃓⃓⃓

∥k∥1
d(n+ 1)

⃓⃓⃓⃓2
|µ̂(k)|2 +

∑︂
∥k∥∞>n

|ĥ(k)|2|µ̂(k)|2

=
∑︂

∥k∥∞≤n

|ĥ(k)|2
⃓⃓⃓⃓

∥k∥1
d(n+ 1)

⃓⃓⃓⃓2
|µ̂(k)− λ̂(k)|2 +

∑︂
∥k∥∞>n

|ĥ(k)|2|µ̂(k)− λ̂(k)|2

≥ 1

d2(n+ 1)2
∥h ∗ (µ− λ)∥2L2(Td)

where h(x) =
∑︁

k∈Zd ĥ(k)e2πikx and λ denotes the Lebesgue measure with λ̂(0) = 1 and

λ̂(k) = 0 for k ∈ Zd \ {0}. Our second ingredient is a Lipschitz estimate that quantifies
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3 Trigonometric polynomials and rational functions

the Lipschitz constant of any f ∈ H with ∥f∥H ≤ 1. For such a function f , the Cauchy-

Schwarz inequality together with
⃓⃓
e2πiky − e2πik(y+x)

⃓⃓2
= 2(1− cos(2πkx)) gives

|f(y)− f(y + x)|2 =

⃓⃓⃓⃓
⃓⃓∑︂
k∈Zd

f̂(k)
(︂
e2πiky − e2πik(y+x)

)︂⃓⃓⃓⃓⃓⃓
2

≤ ∥f∥2H
∑︂
k∈Zd

⃓⃓⃓
e2πiky − e2πik(y+x)

⃓⃓⃓2
|ĥ(k)|2

= ∥f∥2H
∑︂
k∈Zd

(2− 2 cos(2πkx))|ĥ(k)|2

≤ 2 (K(x, x)−K(x, 0)) ,

where K(x, y) =
∑︁

k∈Zd |ĥ(k)|2e2πik(x−y) = (h∗h)(x−y) denotes the so-called reproducing

kernel of the space H.52 If this kernel is K(x, y) = h[4](x1 − y1) · . . . · h[4](xd − yd)
for some nonnegative univariate function h[4] ∈ C2(T) being maximal in zero (and thus(︁
h[4]
)︁′
(0) = 0), we find by a telescoping sum and the Taylor expansion

K(x, x)−K(x, 0) =

d∏︂
ℓ=1

h[4](0)−
d∏︂
ℓ=1

h[4](xℓ)

=
d∑︂
ℓ=1

(︄
h[4](0)ℓ

d−ℓ∏︂
k=1

h[4](xk)− h[4](0)ℓ−1
d−ℓ+1∏︂
k=1

h[4](xk)

)︄

=
d∑︂
ℓ=1

(︄
h[4](0)ℓ−1

(︂
h[4](0)− h[4](xd−ℓ+1)

)︂ d−ℓ∏︂
k=1

h[4](xk)

)︄

≤
d∑︂
ℓ=1

∥h[4]∥d−1
∞

[︂
h[4](0)− h[4](xd−ℓ+1)

]︂
≤ 1

2
∥h[4]∥d−1

∞

⃦⃦⃦⃦(︂
h[4]
)︂′′ ⃦⃦⃦⃦

∞
|x|22.

To make a specific choice, let a ∈ (0, 18) be some irrational number and set

h[2](x) =
∑︂
k∈Z

(1[−a,a] ∗ 1[−a,a])(x+ k), x ∈ T

as the periodisation of the convolution of the indicator function on [−a, a] with itself. Based
on this, we set h[4] = h[2] ∗ h[2], and h(x1, . . . , xd) = h[2](x1) · . . . · h[2](xd).53 Consequently,

52Note that the assumptions ĥ(k) ∈ R\{0} and ĥ(k) = ĥ(−k) lead to K(x, y) =
∑︁

k∈Zd |ĥ(k)|2e2πik(x−y) =∑︁
k∈Zd |ĥ(k)|2 cos(2πk(x− y)) and in particular K is real valued.

53Note that the Fourier coefficients of h[2] agree with the Fourier transform of 1[−a,a] ∗ 1[−a,a] evaluated

at integers by the Poisson summation formula, and analogously this holds for h[4] and the higher order
spline obtained by threefold convolution of 1[−a,a] with itself. By choosing a < 1

8
, h[2] and h[4] agree

with these compactly supported convolutions on [− 1
2
, 1
2
]. One immediately gets ˆ︃h[4](k) ∈ O(k−4) by the

convolution theorem of the Fourier transform and this indeed yields h[4] ∈ C2(T) by [61, Prop. 3.3.12 or
Ex. 2.4.1] meaning that the choice of h[4] is compatible with our previous assumptions on it. Moreover,
we directly have summability of |ĥ(k)|2 for k ∈ Zd such that K is a valid kernel.
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3.1 Approximation by polynomials

we derive that f ∈ H with ∥f∥H ≤ 1 satisfies Lip(f) ≤ c′d,a for some constant c′d,a > 0
depending on the dimension d and the parameter a. This allows to conclude that

W1(pn, µ) ≥ c′
−1
d,aD(pn, µ) ≥

c′−1
d,a

d(n+ 1)
∥h ∗ (µ− λ)∥L2(Td) =:

c

n+ 1

for some c ∈ R. Since a is irrational, we can see by Parseval’s theorem that ∥h ∗ (µ −
λ)∥L2(Td) = 0 if and only if µ = λ.54 For µ ̸= λ, we obtain the statement with a positive
constant c depending on the measure µ, the constant a, and the spatial dimension d.

3.1.3 Best approximation and lower bounds

After observing upper (Subsection 3.1.1) and lower bounds on the approximation by
pn = Fn∗µ for individual measures µ (Subsection 3.1.2), one might ask whether an approx-
imation rate faster than O(n−1) is possible by some general polynomial approximation, see
(QB) from the beginning of this chapter. The following theorem shows that the answer to
this question is negative as the best approximation by a normalised polynomial only yields
a O(n−1) worst-case rate. In order to simplify the problem, we will assume in this and the
following subsection that µ and its polynomial proxy p with p(x) =

∑︁
k∈{−n,...,n}d pke

2πikx

are normalised, i.e. µ̂(0) = p0 = 1.

Theorem 3.1.6. For any d, n ∈ N, n ≥ 1 and for every µ ∈ M(Td) there exists a
polynomial with degree n of best approximation in the 1-Wasserstein distance among all
polynomials with degree n. Moreover, we have

sup
µ∈M(Td)
µ(Td)=1

min
p∈Pn,d,∞

p0=1

W1(p, µ)

∥µ∥TV
≥ d−1/2

4(n+ 1)
.

Proof. We directly have existence of a best approximation by polynomials in the Banach
space of Borel measures with finite total variation (e.g. cf. [36, Thm. 3.1.1]). For the lower
bound, we compute

sup
µ∈M(Td)
µ(Td)=1

min
p∈Pn,d,∞

p0=1

W1(p, µ)

∥µ∥TV
≥ min

p∈Pn,d,∞
p0=1

W1(p, δ0)

= min
p∈Pn,d,∞

p0=1

sup
f :∥f∥∞≤

√
d
4

Lip(f)≤1

⃓⃓⃓⃓
f(0)−

∫︂
Td

f(x)p(x)dx

⃓⃓⃓⃓

= min
p∈Pn,d,∞

p0=1

sup
f :∥f∥∞≤

√
d
4

Lip(f)≤1

∥f − p̌ ∗ f∥∞

≥ sup
f :∥f∥∞≤

√
d
4

Lip(f)≤1

min
p∈Pn,d,∞

∥f − p∥∞,

where p̌ denotes the reflection of p, i.e. p̌(x) = p(−x) for all x ∈ Td. It remains to find
the worst case error for the best approximation of a Lipschitz function by a trigonometric
polynomial of degree n. While this is well-understood for d = 1 (cf. [3, 51]), we did not

54We remark that ĥ(k) =
∏︁d

ℓ=1
sin2(πkℓa)

π2k2
ℓ

̸= 0 for a irrational. Hence, ∥h ∗ (µ − λ)∥L2(Td) = 0 implies by

Parseval’s theorem that µ̂(k) = λ̂(k) for any k ∈ Zd. The latter is equivalent to µ = λ.
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3 Trigonometric polynomials and rational functions

find a reference mentioning whether and how d > 1 is possible as well. Therefore, we show
that the idea by [55] for the case d = 1 works also for d > 1 in our situation. A main
ingredient of Fishers proof is the duality relation

inf
x∈Y⊂X

∥x0 − x∥ = sup
ℓ∈X∗

ℓ|Y =0,∥ℓ∥X∗≤1

|ℓ(x0)|

for a Banach space X, x0 ∈ X, with a subspace Y and dual space X∗. A second ingredient
is given by the 1-periodic Bernoulli spline of degree 1

B1(x) =
∑︂

k∈Z\{0}

e2πikx

2πik
=

∞∑︂
k=1

sin(2πkx)

πk
=

{︄
1
2 − x, x ∈ (0, 1),

0, x ∈ {0, 1}
(3.8)

for x ∈ [0, 1].55 A Lipschitz continuous and 1-periodic function f : T → R with Lip(f) ≤ 1
has a derivative f ′ almost everywhere56 and this derivative satisfies

∫︁
T f

′(s) = 0 by the
periodicity of f . Therefore, it follows that(︁

f ′ ∗ B1

)︁
(t) =

∫︂
T
f ′(s)B1(t− s)ds

= −
∫︂ t

0
(t− s)f ′(s)ds−

∫︂ 1

t
(t− s+ 1)f ′(s)ds

= f(t)−
∫︂ 1

0
f(s)ds (3.9)

for 0 < t, s ≤ 1. The dual space of the space of continuous periodic functions is the space
of periodic finite regular Borel measures equipped with the total variation norm and the
duality formulation gives

sup
f :∥f∥∞≤

√
d
4

Lip(f)≤1

min
p∈Pn,d,∞

∥f − p∥∞ = sup
f :∥f∥∞≤

√
d
4

Lip(f)≤1

sup
µ̂(k)=0,∥k∥∞≤n

∥µ∥TV≤1

⃓⃓⃓⃓∫︂
Td

f(x)dµ(x)

⃓⃓⃓⃓
.

Our main contribution to this result is the observation how to transfer the multivariate
setting back to the univariate one. It is easy to verify that f(x) = 1

d3/2

∑︁d
ℓ=1 f0(xℓ) for

a univariate Lipschitz function f0, Lip(f0) ≤ d, ∥f0∥∞ ≤ d
4 fulfils the conditions for the

Lipschitz function f . Additionally, µ∗ = 1
d

∑︁d
s=1 µs with µs =

(︂⨂︁
ℓ̸=s λ(xℓ)

)︂
⊗ µ∗0(xs),

µ∗0(xs) =
1

2(n+ 1)

2n+1∑︂
j=0

(−1)jδj/(2n+2)(xs)

and λ being the Lebesgue measure on T is admissible57. Since this choice of µs integrates∫︁
gdµs = 0 if g is constant with respect to xs (and the same holds for constant univariate

55One can easily see that the Fourier series of g(x) = 1
2
− x, x ∈ [0, 1), is given by the series in (3.8). By

the Dirichlet-Jordan test, one directly obtains the convergence of the Fourier series towards g(x) at
x ∈ (0, 1) and towards zero at the discontinuity point x = 0.

56This result is well-known as Rademacher’s theorem, see for instance [141, Box 1.9].
57Note that ∥µ∗∥TV ≤ 1

d

∑︁d
s=1 ∥λ∥

d−1
TV ∥µ∗

0∥TV = 1 and

d · µ̂∗(k) =

d∑︂
s=1

µ̂∗
0(ks)

∏︂
ℓ̸=s

δks,0 =

d∑︂
s=1

2n+1∑︂
j=0

e−2πij n+1+ks
2n+2

2(n+ 1)

∏︂
ℓ ̸=s

δkℓ,0 =

d∑︂
s=1

δks,n+1+(2n+2)Z
∏︂
ℓ̸=s

δkℓ,0 = 0

for ∥k∥∞ ≤ n. Within this calculation δi,j for indices i, j ∈ Z denotes the usual Kronecker delta being
one if i = j and zero if i ̸= j.
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3.1 Approximation by polynomials

functions integrated against µ∗0), we obtain with (3.9)

sup
f :Td→R

∥f∥∞≤
√
d
4 ,Lip(f)≤1

min
p∈Pn,d,∞

p̂(0)=1

∥f − p∥∞ ≥ sup
f0:T→R

∥f0∥∞≤ d
4 ,Lip(f0)≤d

⃓⃓⃓⃓
⃓⃓ 1

d5/2

d∑︂
s,ℓ=1

∫︂
Td

f0(xℓ)dµs(x)

⃓⃓⃓⃓
⃓⃓

= sup
f0:T→R

∥f0∥∞≤ d
4 ,Lip(f0)≤d

⃓⃓⃓⃓
⃓ 1

d5/2

d∑︂
ℓ=1

∫︂
T
f0(xℓ)dµ

∗
0(xℓ)

⃓⃓⃓⃓
⃓

= sup
f0:T→R

∥f0∥∞≤ d
4 ,Lip(f0)≤d

⃓⃓⃓⃓∫︂
T

f ′0(s)

d3/2

(︃∫︂
T
B1(t− s)dµ∗0(t)

)︃
ds

⃓⃓⃓⃓
.

We denote Bµ∗(s) =
∫︁
T B1(t − s)dµ∗0(t) and observe

∫︁
T Bµ∗(s)ds = 0. Moreover, µ∗0 has

moments µ̂∗0(k) = 1 for k ∈ (n + 1) (2Z+ 1) and µ̂∗0(k) = 0 otherwise. Together with
the Fourier representation (3.8) of B1 where one rewrites the sum over odd integers as
the difference between the sum over all nonzero integers and the sum of all nonzero even
integers, this gives

Bµ∗(s) =
∑︂

k∈Z\{0}

e2πik(n+1)s

2πik(n+ 1)
−

∑︂
k∈Z\{0}

e2πi2k(n+1)s

2πi2k(n+ 1)

=
1

n+ 1
B1((n+ 1)s)− 1

2n+ 2
B1((2n+ 2)s)

=

⎧⎪⎨⎪⎩
1
4

1
n+1 , (n+ 1)s− ⌊(n+ 1)s⌋ ∈ (0, 12),

−1
4

1
n+1 , (n+ 1)s− ⌊(n+ 1)s⌋ ∈ (12 , 1),

0, (2n+ 2)s ∈ {0, . . . , 2n+ 1}.

Here, the last equality is a direct consequence of (3.8). Now, we choose f0 by taking
f ′0(s) = d · sgn(Bµ∗(s)) and f0(0) = 0 which is possible as it yields

∥f0∥∞ =
d

2n+ 2
≤ d

4
and

∫︂
T
f ′0(s)ds = 0

for n ≥ 1. Finally, we end up with

sup
f :Td→R

∥f∥∞≤
√
d
4 ,Lip(f)≤1

min
p∈Pn,d,∞

p̂(0)=1

∥f − p∥∞ ≥ d−1/2

∫︂
T
|Bµ∗(s)|ds

=
d−1/2

n+ 1

∫︂
T

⃓⃓⃓⃓
B1((n+ 1)s)− 1

2
B1((2n+ 2)s)

⃓⃓⃓⃓
ds

=
d−1/2

n+ 1

∫︂
T

⃓⃓⃓⃓
B1(s)−

1

2
B1(2s)

⃓⃓⃓⃓
ds =

d−1/2

4(n+ 1)
.

We remark at this point that our lower bound on the best approximation differs from
the one described in [26] by a factor d−1/2 due to the different definition of W1 which is
based on | · |1 as the underlying metric on Td in [26]. However, this does not change the
statement too much as the lower bound is still sharp in the univariate case. The latter
will be a consequence of the next subsection.
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3 Trigonometric polynomials and rational functions

Remark 3.1.7 (Information theoretic point of view). One should distinguish the above
result on the best approximation by a polynomial with given degree n from the question of
how well one can recover any measure given its low order trigonometric moments. While
the polynomial approximation calculated in the framework of Theorem 3.1.6 is based
on the knowledge of all moments, the latter information theoretic question would only
consider the moments µ̂(k) for k ∈ {−n, . . . , n}d. A lower bound can be reformulated as
the largest difference

sup
{︂
W1(µ, ν) : µ, ν ∈ M(Td), ν̂(k) = µ̂(k) for k ∈ {−n, . . . , n}d

}︂
(3.10)

between two measures, which have equal low order moments and cannot be distinguished
by a recovery algorithm if no additional prior is known. If µ̂ and ν̂ are equal up to order
n, then convolution with the Jackson kernel yields Jn ∗ µ = Jn ∗ ν, so that the triangle
inequality for W1 and Remark 3.1.4 give

W1(µ, ν) ≤W1(µ, Jn ∗ µ) +W1(ν, Jn ∗ ν) ≤
3d

2

∥µ∥TV + ∥ν∥TV

n+ 2
,

and thus (3.10) is at most of order O(n−1). This order is also optimal which can be seen by
choosing µ as the Lebesgue measure λ, ν being absolutely continuous with dν(x1, . . . , xd) =
[1 + cos(2π(n+ 1)x1)] dλ(x1, . . . , xd), and f(x) = cos(2π(n+ 1)x1)/(2π(n+ 1)) in

W1 (µ, ν)= sup
f : Lip(f)≤1

∫︂
Td

f(x) cos(2π(n+ 1)x1)dx ≥
∫︂
Td

cos2(2π(n+ 1)x1)

2π(n+ 1)
dx =

1

4π(n+ 1)
.

This shows that the knowledge of the Fourier coefficients of a measure up to order n
without any prior assumption on the measure only allows to approximate the measure
with worst case error of order n−1. This worst case error rate can be decreased if prior
knowledge on the ground truth measure, e.g. sparsity as in Chapter 2, is assumed. There,
we have even seen that µ = ν if two sufficiently nicely separated measures have equal
moments ν̂(k) = µ̂(k) for k ∈ {−n, . . . , n}d, see Theorem 2.2.8.

3.1.4 Univariate situation and uniqueness of best approximation

On the univariate torus T, the Wasserstein distance of two probability measures can be
rewritten as a L1 distance of their cumulative density functions (CDF) shifted by some
constant depending on the measures, see [21]. We extend this to real signed measures.

Lemma 3.1.8 (Wasserstein via CDF). For any univariate µ, ν ∈ MR(T) with normali-
sation µ(T) = ν(T) = 1, we have

W1(µ, ν) =

∫︂ 1

0
|µ([0, x])− ν([0, x])− c∗(µ, ν)|dx,

and c∗(µ, ν) ∈ R depends on µ, ν.

Proof. For µ, ν ∈ M+,1(T) this is [21, Thm. 3.7]. For signed µ, ν ∈ MR(T), we can use the
Jordan decomposition of any signed measure as a difference of nonnegative measures. In
other words, we write µ = µ+ − µ−, ν = ν+ − ν− for µ+, µ−, ν+, ν− ∈ M+(T) and rewrite

W1(µ, ν) = sup
f :Lip(f)≤1

⃓⃓⃓⃓∫︂
T
f(x) [dν+(x) + dµ−(x)− (dν−(x) + dµ+(x))]

⃓⃓⃓⃓
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= (ν+ + µ−)(T) · supf :Lip(f)≤1

⃓⃓⃓∫︁
T f(x)

[︂
dν+(x)+dµ−(x)
(ν++µ−)(T) − dν−(x)+dµ+(x)

(ν++µ−)(T)

]︂⃓⃓⃓
(3.11)

and this allows to apply [21, Thm. 3.7].58 This then gives∫︂ 1

0

⃓⃓⃓⃓(︃
ν+ + µ− − (ν− + µ+)

(ν+ + µ−)(T)

)︃
([0, x])− c∗

(︃
ν+ + µ−

(ν+ + µ−)(T)
,

ν− + µ+
(ν+ + µ−)(T)

)︃⃓⃓⃓⃓
dx

=(ν+ + µ−)(T)−1

∫︂ 1

0
|(ν − µ) ([0, x])− c∗(ν, µ)| dx

for the Wasserstein distance of µ and ν where the constant c∗(ν, µ) depends again only on
the two measures.

As W1 is not strictly convex, the question of uniqueness of the best approximation with
respect to this norm is not trivial. However, it can be equivalently characterised by the
uniqueness of the best approximation in L1(T) and thus allows for the following theorem.

Theorem 3.1.9 (Best approximation in the univariate case). If µ, ν ∈ MR(T) with nor-
malisation µ(T) = ν(T) = 1 are absolutely continuous or give mass only to countably many
atoms, we have

W1(ν, µ) = inf
c∈R

∫︂
T
|(B1 ∗ ν)(t)− (B1 ∗ µ)(t)− c| dt. (3.12)

This allows to conclude that for any n ∈ N, any real measure being normalised and abso-
lutely continuous with respect to the Lebesgue measure admits a unique best approximation
by a normalised polynomial of degree n ∈ N with respect to the 1-Wasserstein distance.

Proof. Let µ, ν ∈ MR(T) and B1 denote the Bernoulli spline of degree 1 from the proof of
Theorem 3.1.6, then we have

W1(ν, µ) = sup
f :Lip(f)≤1

⃓⃓⃓⃓∫︂
T
f(x) [dν(x)− dµ(x)]

⃓⃓⃓⃓
= sup

f :Lip(f)≤1

⃓⃓⃓⃓∫︂
T

∫︂
T
f ′(t)B1(x− t) [dν(x)− dµ(x)] dt

⃓⃓⃓⃓
= sup

f :Lip(f)≤1

⃓⃓⃓⃓∫︂
T
f ′(t) [(B1 ∗ ν)(t)− (B1 ∗ µ)(t)] dt

⃓⃓⃓⃓
.

Since the integral over f ′ is zero by the periodicity of f , any c ∈ R yields⃓⃓⃓⃓∫︂
T
f ′(t) [(B1 ∗ ν)(t)− (B1 ∗ µ)(t)] dt

⃓⃓⃓⃓
=

⃓⃓⃓⃓∫︂
T
f ′(t) [(B1 ∗ ν)(t)− (B1 ∗ µ)(t)− c] dt

⃓⃓⃓⃓
≤ inf

c∈R

∫︂
T
|(B1 ∗ ν)(t)− (B1 ∗ µ)(t)− c|dt.

We proceed by computing explicitly

(B1 ∗ µ)(t) =
∫︂
[0,t)∪(t,1)

B1(t− x)dµ(x)

58Note that by 0 = ν(T) − µ(T) = (ν+ + µ−)(T) − (µ+ + ν−)(T) both measures in the integral in (3.11)
are probability measures. Moreover, observe that (ν++µ−)(T) ≥ ν(T) = 1 > 0 and hence it is possible
to normalise as stated.
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=

∫︂
[0,t)

1

2
− (t− x)dµ(x) +

∫︂
(t,1)

1

2
− (t− x+ 1)dµ(x)

=

(︃
1

2
− t

)︃
(µ([0, 1))− µ({t})) +

∫︂
[0,1)

xdµ(x)− tµ({t})− µ([0, 1)) + µ([0, t])

=
µ([0, t)) + µ([0, t])

2
− µ([0, 1))

(︃
t+

1

2

)︃
+

∫︂
[0,1)

xdµ(x) (3.13)

for t ∈ (0, 1) and

(B1 ∗ µ)(0) =
∫︂
[0,1)

xdµ(x)− 1

2
µ([0, 1)) +

1

2
µ({0}).

On the other hand, Lemma 3.1.8 and (3.13) yield∫︂ 1

0
|(ν − µ) ([0, x])− c∗(ν, µ)|dx =W1(ν, µ)

≤ inf
c∈R

∫︂ 1

0

⃓⃓⃓⃓
(ν − µ) ([0, x])− (ν − µ) ({x})

2
− c

⃓⃓⃓⃓
dx

and thus equality (3.12) for absolutely continuous measures, or more generally for measures
that give mass to at most countably many atoms, and such that the set of x where the
integrands (in the equation above) from the upper and lower bounds disagree has Lebesgue
measure zero.
With this knowledge, the question of approximation of µ by p with degree n and p0 = 1

can be rewritten as

min
p∈Pn,d,∞
p0=µ̂(0)=1

W1(p, µ) = min
p∈Pn,d,∞

p0=1

inf
c∈R

∫︂
T
|(B1 ∗ p)(t)− (B1 ∗ µ)(t)− c| dt

if µ does not give mass to single points. In this case, we have that B1 ∗ µ is continuous
by (3.13), and hence there exists a unique best L1-approximation p̃ = B1 ∗ p∗ − c (see
e.g. [36, Thm. 3.10.9]) which defines the unique best approximation p∗ to µ uniquely by
p̃ = B1 ∗ p∗ − c and the normalisation condition p∗

0 = 1.

Example 3.1.10. Uniqueness and non-uniqueness of L1 approximation is discussed in
some detail in [118, 41] and we note the following:

(i) For µ = 1
2δ0 −

1
2δ1/2 + λ ∈ MR(T) where λ is again the Lebesgue measure, one finds

(B1 ∗ µ)(t) =
1

2

(︃
B1(t)− B1

(︂
t− 1

2

)︂)︃
=

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
0, t = 0,
1
4 , t ∈

(︁
0, 12
)︁
,

0, t = 1
2 ,

−1
4 , t ∈

(︁
1
2 , 1
)︁
.

For any normalised polynomial p, we have that the difference B1 ∗ p(t) − B1 ∗ µ(t)
differs from

∫︁ t
0 p(x)dx − µ([0, t]) by a constant except at the discontinuity points

t = 0, 12 . But as they have Lebesgue measure zero, we can derive from Theorem 3.1.9

min
p∈Pn,d,∞

p0=1

W1(p, µ) = inf
c∈R

∫︂
T
|(B1 ∗ p)(t)− (B1 ∗ µ)(t)− c| dt. (3.14)

As proven in [118, Thm. 5.1], the function B1 ∗ µ does not have a unique L1 approx-
imation for even n. Thus, µ does not admit a unique best approximation either.
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(ii) For µ = δ0 one has B1 ∗ µ = B1 such that again (3.14) holds for this choice of µ.
According to [118, Lem. 2.2], this function B1 with only one jump has a unique best
L1-approximation given by the interpolation polynomial

p̃(x) =

n∑︂
j=1

1

2n+ 2
cot

(︃
jπ

2n+ 2

)︃
sin(2πjx).

Deconvolving p̃ = B1 ∗ p∗ gives

p∗(x) = 1 +

n∑︂
j=1

jπ

n+ 1
cot

(︃
jπ

2n+ 2

)︃
cos(2πjx)

as the unique best approximation to δ0. Since the error of the best L
1 approximation

of B1 is known from a theorem by Favard [51] (e.g. this is mentioned in [36, p. 213]),
we can compute

W1(δ0, p
∗) = inf

c∈R

∫︂
T
|(B1 ∗ p∗)(t)− (B1 ∗ δ0)(t)− c|dt

≤ ∥B1 ∗ p∗ − B1∥L1(T) =
1

4(n+ 1)
.

By comparison with Theorem 3.1.6, we notice that equality holds in this calculation
and that the bound from Theorem 3.1.6 is sharp.

Figure 3.3 and Table 3.1 summarise our findings on the approximation of δ0. The
best approximation p∗ as well as the Dirichlet kernel Dn(x) = sin((2n + 1)πx)/ sin(πx)
are signed with small full width at half maximum (FWHM) but positive and negative
oscillations at the sides. The latter might be seen as an unwanted artifact in applications.
The approximations given by the Fejér and the Jackson kernel are nonnegative. For
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Figure 3.3: Interpolation of B1 (left) and comparison of different polynomial approxima-
tions of degree n = 10 to δ0 (right).

completeness, we note that the Dirichlet kernel is the Fourier partial sum of δ0 and allows
for the estimate

W1(δ0, Dn) ≤W1(δ0, p
∗) +W1(p

∗, Dn) ≤ (1 + ∥Dn∥1)W1(δ0, p
∗) ≤

4
π2 log(n) +O(1)

4(n+ 1)
(3.15)
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which relies on W1(p
∗, Dn) = W1(Dn ∗ p∗, Dn ∗ δ0) ≤ ∥Dn∥1W1(δ0, p

∗), the well known
bound on the Lebesgue constant [20, Prop. 1.2.3], and Example 3.1.10 (ii).59

Trig. polynomial Sign of polynomial W1(δ0,Kn)

Dirichlet Dn signed ≤
4
π2 log(n)+O(1)

4(n+1) (Inequality (3.15))

Fejér Fn nonnegative ≤ 1
π2

log(n)+4
n+1 (Theorem 3.1.3)

Jackson Jn, n even nonnegative ≤ 3
2

1
n+2 (Remark 3.1.4)

Best approximation p∗ signed = 1
4(n+1) (Example 3.1.10 (ii))

Table 3.1: Convergence rates of different trigonometric polynomials approximating the
Dirac delta δ0.

Remark 3.1.11. We close by some remarks which are specific for the univariate setting:

(i) We stress that Theorem 3.1.9 allows to compute the Wasserstein distance as an
L1-distance for real signed univariate measures. Similarly, this allows to compute
the so-called star discrepancy ∥ν([0, ·))∥∞ as suggested in [113, eq. (2.1) and (2.2)].
However note that (3.13) has some additional term such that ν = 1

2δ0 −
1
2δ1/2 with

ν(T) = 0 gives

∥ν([0, ·))∥∞ =
1

2
̸= 1

4
= ∥B1 ∗ ν∥∞

and thus [113, eq. (2.1) and (2.2)] needs some adjustment. More precisely, it seems
that in the publication [113] a factor 1

2 was lost since the kth Fourier coefficient of

ν([0, ·)) is ν̂(k)
ik whereas B̂1(k) · ν̂(k) = 1

2
ν̂(k)
ik .

(ii) In the univariate case, one can relate our work to a main result in [113]. As Theo-
rem 3.1.9 reformulates the Wasserstein distance of two univariate measures in terms
of the L1-distance of their convolution with the Bernoulli spline, one can view this
Bernoulli spline as a kernel of type β = 1 following the notation of [113]. Thus, one
can take p = 1, p′ = ∞ in [113, Thm. 4.1] yielding that the Wasserstein distance
between a measure µ and its trigonometric approximation is bounded from above by
c/n. The latter agrees with our Remark 3.1.4 which additionally gives an explicit
and small constant.

(iii) The observation that the construction of p∗ for δ0 is possible via FFTs might lead
to the idea to construct near-best approximations to any measure µ by interpolating
B1 ∗ µ by some p̃ and to obtain the polynomial p of near best approximation which
satisfies p̃ = B1 ∗ p by dividing with the Fourier coefficients of the Bernoulli spline
B1. A first problem would be that the limited knowledge of moments only allows
to interpolate the partial Fourier sum Sn(B1 ∗ µ), which does not converge to B1 ∗
µ uniformly as n → ∞ for discrete µ. Secondly, the near-best approximation p
cannot be expected to be nonnegative for a nonnegative measure µ which is another
drawback compared to convolution with nonnegative kernels like the Fejér or Jackson
kernel.

59Going through the lines of the proof of [20, Prop. 1.2.3], one could also find an explicit upper bound for
the term hidden by O(1) in (3.15).
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3.2 Interpolation and approximation by the signal polynomial

While Section 3.1 focuses on weak approximations of a general measure µ, in particular via
convolution with smooth kernels, we consider in this section another type of polynomial
estimator, denoted by p1,n (3.19), which depends non-linearly on µ and is able to identify
at a finite degree its support, under some assumptions on the latter. More precisely, we
restrict ourselves to discrete measures µ ∈ M(q) as in Chapter 2 and the main result
of this section, stated in Theorem 3.2.6 below, is a quantitative rate for the pointwise
convergence

p1,n(x)
n→∞−−−→ 1suppµ(x) =

{︄
1, x ∈ suppµ,

0, otherwise
(3.16)

to the indicator function of the support. After discussing algebraic properties of this
estimator (Subsection 3.2.1), we consider the case of discrete measures (Subsection 3.2.2)
whereas measures with support on an algebraic variety were included in our publication
[26]. For those, we could show a convergence similar to (3.16) but we do not describe this
in detail at this point because this work focuses on sparse super resolution for discrete
measures.

In contrast to [26] and Section 3.1, we come back to the radial setting where we take
moments on a ball into account and which we studied already in Chapter 2 as well as in
the introduction to this chapter. Therefore, let [n] := Bn/2(0) ∩ Zd and N := |[n]|.60 We

use bold type to designate vectors (resp. matrices) of CN (resp. CN×N ) only (vectors of
Td or Nd are left in normal type). We write

e(n)x :=
(︁
e−2πikx

)︁
k∈[n] ∈ CN

for the vector containing all d-variate trigonometric monomials up to Euclidean degree
n/2. We often identify a polynomial p ∈ ⟨e−2πik·; k ∈ [n]⟩ with its vector of coefficients
p ∈ CN , i.e.

p(x) = e(n)x

∗
p ∀x ∈ Td.

Note that from Parseval’s theorem, ∥p∥L2 = ∥p∥2. Moreover, we highlight that |p|2 ∈
Pn,d,2. The key object of this section is the (truncated) moment matrix associated with
the unknown measure µ, defined as

Tn := (µ̂(k − ℓ))k,ℓ∈[n] ∈ CN×N , (3.17)

where µ̂(k) uses the trigonometric moments of µ from (3.1). In this and the following
section, we assume that these moments are exact whereas the last section of this chapter
extends our analysis to noisy data.

3.2.1 Algebraic considerations

It is well-known that the range and kernel of the matrix (3.17) reveal some of the structure
of the measure hidden behind the moments, and methods that aim at recovering µ using
purely algebraic manipulations on Tn are often referred to as subspace methods, e.g.MUSIC

60Asymptotically, we thus have N ≈ Vold(B1(0))2
−dnd where Vold(B1(0)) is the volume of the d-

dimensional unit ball.
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[144], ESPRIT [137] or matrix pencil [74]. The starting point for these methods is often
the singular value decomposition of Tn, see Section 1.1, which we denote by

Tn = UnΣnV
∗
n =

N∑︂
j=1

σ
(n)
j u

(n)
j v

(n)
j

∗
,

where all matrices are of size N × N , u
(n)
j and v

(n)
j are the j-th columns of Un and Vn

respectively (left and right singular vectors), and σ
(n)
1 ≥ σ

(n)
2 ≥ . . . ≥ σ

(n)
n are the diagonal

entries of the diagonal matrix Σn (singular values). This decomposition is sometimes
explicitly used to design estimators for the support of µ, such as MUSICs frequency
estimation function [144], or Christoffel polynomials [111]. In fact, it is interesting as a
motivating remark to see that the construction of pn = Fn ∗ µ from the previous section
can also be expressed in terms of this singular value decomposition. As we changed
our setting towards the radial data, one has to highlight that the classical Fejér kernel

Fn(x) = |dn(x)|2
(n+1)d

is replaced by its radial analogue Frad,n(x) :=
|Drad,n/2(x)|2

N compared to

[26, Lem. 4.1]. Here, Drad,n/2 is the radial Dirichlet kernel defined in Section 1.3.

Lemma 3.2.1. The moment matrix Tn fulfils

(Frad,n ∗ µ)(x) =
1

N
e(n)x

∗
Tne

(n)
x =

1

N

N∑︂
j=1

σ
(n)
j u

(n)
j (x)v

(n)
j (x), (3.18)

where, as explained above, u
(n)
j (x) = e

(n)
x

∗
u
(n)
j and v

(n)
j (x) = e

(n)
x

∗
v
(n)
j .

Proof. We have for any x ∈ Td

1

N
e(n)x

∗
Tne

(n)
x =

1

N

∑︂
k∈[n]

∑︂
l∈[n]

µ̂(k − l)e2πikxe−2πilx

=
1

N

∫︂
Td

∑︂
k∈[n]

∑︂
l∈[n]

e−2πi(k−l)ye2πikxe−2πilxdµ(y)

=

∫︂
Td

1

N

⃓⃓⃓⃓
⃓⃓∑︂
k∈[n]

e−2πik(y−x)

⃓⃓⃓⃓
⃓⃓
2

dµ(y) =

∫︂
Td

Frad,n(x− y)dµ(y),

where the last equality is by definition of Frad,n as a generalisation of (3.3). Plugging in
the singular value decomposition of Tn yields the second equality of the statement.

Note that if µ ∈ MR(Td) (the set of real-valued measures), then the moment matrix
Tn is Hermitian. If µ ∈ M+(Td) (the set of nonnegative measures), then Tn is positive
semi-definite, and we have in particular the sum of squares representation

(Frad,n ∗ µ)(x) =
1

N

N∑︂
j=1

σ
(n)
j

⃓⃓⃓
v
(n)
j (x)

⃓⃓⃓2
.

We now introduce polynomial estimators for the measure, which can be understood as the
unweighted counterparts of pn. Let rn := rankTn and define signal- and noise-polynomials
p1,n, p0,n : Td → [0, 1] respectively, by

p1,n(x) =
1

N

rn∑︂
j=1

⃓⃓⃓
v
(n)
j (x)

⃓⃓⃓2
and p0,n(x) =

1

N

N∑︂
j=rn+1

⃓⃓⃓
v
(n)
j (x)

⃓⃓⃓2
. (3.19)
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This signal/noise terminology comes from the notions of signal and noise subspaces,
which were initially introduced in [144] and are at the core of the aforementioned sub-
space methods in signal processing (we refer the interested reader to [110, Section 9.6] for
an overview). Schematically speaking, they correspond to the spaces spanned by the vec-

tors (v
(n)
1 , . . . ,v

(n)
rn ) (the signal space) and (v

(n)
rn+1, . . . ,v

(n)
N ) (the noise space) respectively.

They are actually independent of the singular value decomposition itself, which ensures in
particular that p1,n and p0,n are indeed well-defined.

The key idea of subspace methods, relating these spaces to the underlying measure µ, is
that, given a polynomial p ∈ ⟨e−2πikx; k ∈ [n]⟩ that vanishes on suppµ, one obtains using
(3.17) that the k-th entry (k ∈ [n]) of Tnp is given by∑︂

l∈[n]

pl ·
∫︂
Td

e−2πi(k−l)xdµ(x) =

∫︂
Td

e−2πikxp(x)dµ(x) = 0, (3.20)

and thus p ∈ kerTn. Hence, finding the common roots of all polynomials contained in the
kernel of the matrix Tn may allow to identify the support of µ. In what follows, we denote
by V (kerTn) the variety consisting of the common roots of all the polynomials in kerTn,
i.e.

V (kerTn) := {x ∈ Td : p(x) = e(n)x

∗
p = 0 for all p ∈ kerTn}.

We begin in this section with qualitative, purely algebraic considerations about the polyno-
mials (3.19). The next theorem shows that, under the condition that suppµ = V (kerTn),
p0,n and p1,n actually identify the support of µ ∈ M(q) for finite n.

Theorem 3.2.2. Let d, n ∈ N, q > 0, µ ∈ M(q), and suppose V (kerTn) = suppµ ⊆ Td.
Then p0,n(x) + p1,n(x) = 1 for all x ∈ Td. In particular, we have

p1,n(x)

{︄
= 1, if x ∈ suppµ,

< 1, otherwise.
(3.21)

Proof. We have

p1,n(x) + p0,n(x) =
1

N

N∑︂
j=1

⃓⃓⃓
v
(n)
j (x)

⃓⃓⃓2
=

1

N
e(n)x

∗
VnV

∗
n e

(n)
x =

1

N
e(n)x

∗
e(n)x = 1, (3.22)

so in particular p1,n(x) ∈ [0, 1]. Since V (kerTn) = suppµ and kerTn = ⟨v(n)
rn+1, . . . ,v

(n)
N ⟩,

it follows that the polynomials v
(n)
rn+1, . . . , v

(n)
N vanish on suppµ, so p1,n(x) = 1 for all

x ∈ suppµ. Conversely, if x ∈ Td such that p1,n(x) = 1, we claim that x ∈ suppµ. Indeed,

we have 1− p1,n(x) =
∑︁N

j=rn+1

⃓⃓⃓
v
(n)
j (x)

⃓⃓⃓2
= 0, so it follows that x lies in the vanishing set

of v
(n)
rn+1, . . . , v

(n)
N , so x ∈ V (kerTn) = suppµ.

Remark 3.2.3. For more general measures µ with support on an algebraic variety we have
extended Theorem 3.2.2 in [26]. Variants of this result are known for discrete measures
and for measures with support on curves or surfaces, e.g. in [86] and [124, Propositions 5.2,
5.3], respectively. The hypothesis V (kerTn) = suppµ in Theorem 3.2.2 is well-known in
the theory of super resolution [89, 142] or polynomial system solving [94], and is hard
to check in practice. For discrete measures, this sufficient condition can be guaranteed if
the geometry of the support behaves sufficiently nicely, i.e. if the support points are well
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separated from each other. Interestingly, we derive in Theorem 3.2.6 that a separation of
the nodes slightly larger than the Rayleigh condition which we introduced in Chapter 2
as a necessary condition for a small condition number of the problem is also sufficient in
order to guarantee V (kerTn) = suppµ.

Example 3.2.4. For µ = δ0, we have p1,n(x) = N−1 · Frad,n(x) by Lemma 3.2.1 and the
proofs of the Theorems 3.2.6 and 3.2.9 will also show that p1,n is generally close to a sum
of normalised Fejér kernels for well-separated discrete measures.

We conclude this subsection by stating a variational characterisation of p0,n, which will
be a useful tool in proofs within the next subsections.

Lemma 3.2.5. If kerTn ̸= {0}, we have that

p0,n(x) = max

{︃
1

N

|p(x)|2

∥p∥22
: p ∈ kerTn \ {0}

}︃
. (3.23)

Proof. As we assume kerTn ̸= {0}, we have rn := rankTn < N and find a rectangular

matrix V0 = (v
(n)
rn+1, . . . ,v

(n)
N ) ∈ CN×(N−rn) whose columns form an orthonormal basis of

kerTn. For fixed x ∈ Td, let qx := V0V
∗
0 e

(n)
x ∈ kerTn such that we identify this vector of

coefficients with the polynomial satisfying

qx(x) = e(n)x

∗
qx =

N∑︂
j=rn+1

⃓⃓⃓
v
(n)
j (x)

⃓⃓⃓2
= Np0,n(x).

For all p ∈ kerTn, we have

q∗xp = e(n)x

∗
V0V

∗
0 p = e(n)x

∗
p = p(x).

In particular, note that

∥qx∥22 = q∗xqx = e(n)x

∗
V0V

∗
0 e

(n)
x = Np0,n(x). (3.24)

Therefore, by the Cauchy–Schwarz inequality, it follows that

|p(x)|2 = |q∗xp|
2 ≤ ∥qx∥22 · ∥p∥

2
2 = Np0,n(x) · ∥p∥22 .

Hence, we have

p0,n(x) ≥ max
p∈kerTn\{0}

|p(x)|2

N ∥p∥22
≥ |qx(x)|2

N ∥qx∥22
= p0,n(x),

if qx ̸= 0. The first inequality also holds when qx = 0, in which case the result follows
due to (3.24).

3.2.2 The signal polynomial for discrete measures

We now come to the first main result of this section, stated in Theorem 3.2.6 below,
which gives quantitative rates for the pointwise convergence (3.16) in the case where µ is
a discrete measure. If the measure is given by

µ =
∑︂
t∈Y

αtδt

with support suppµ = Y ⊂ Td and complex, nonzero weights αt forming the matrix
W = diag((αt)t∈Y ), then the moment matrix allows for the Vandermonde factorisation

Tn = A∗
nWAn, An = (e2πikt) t∈Y

k∈[n]
∈ C|Y |×N .
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Theorem 3.2.6 (Pointwise convergence). Let µ =
∑︁

t∈Y αtδt, αt ∈ C, Y ⊂ Td, and let
x ∈ Td such that x ̸= t for all t ∈ Y . Let αmin and αmax be the minimal and maximal

weights in absolute value. If (n−1) ·sepY =
2
√
1+τjd/2−1,1

π for some τ > 0, there is c
(8)
d,τ > 0

such that

p1,n(x) ≤
αmax

αmin
·
c
(8)
d,τ

n2

∑︂
t∈Y

1

∥x− t∥2Td

for x /∈ Y . In particular, this implies the pointwise convergence (3.16). Under the stronger

assumption (n− 1) · sepY =
2
√
1+τjd/2,1
π for some τ > 0, one additionally finds a constant

c
(9)
d,τ > 0 such that for x ∈ Td with mint∈Y ∥x− t∥Td ≤ 2

√
1+τjd/2,1
πn we have

p1,n(x) ≤ 1− c
(9)
d,τn

2min
t∈Y

∥x− t∥2Td .

Proof. The condition (n − 1) · sepY =
2
√
1+τjd/2−1,1

π implies rankAn−1 = |Y | < N due
to work on minorant functions in [59].61 Since the weights are nonzero and rankAn−1 ≤
rankAn ≤ |Y |, this yields rankTn = rankAn = |Y |. Based on this, [86, Thm. 2.8]
gives suppµ = V (kerAn) = V (kerTn) such that this separation condition allows to
apply Theorem 3.2.2.62 We have p1,n = 1 − pn,0 by Theorem 3.2.2 and because of
⟨v|Y |+1, . . . ,vN ⟩ = kerTn = kerAn, it follows that the space ⟨v1, . . . ,v|Y |⟩ does not depend
on the weights αt. Thus, we can consider the absolute value measure |µ| =

∑︁
t∈Y |αt|δt

and know that the range of the moment matrix ˜︂Tn = ṼnΣ̃nṼ
∗
n corresponding to |µ| agrees

with the range of Tn. Therefore, one has for any x ∈ Td

p1,n(x) =
1

N

|Y |∑︂
j=1

⃓⃓⃓
v
(n)
j (x)

⃓⃓⃓2
=

1

N

|Y |∑︂
j=1

⃓⃓⃓
ṽj

(n)(x)
⃓⃓⃓2

≤ 1

N

|Y |∑︂
j=1

σ̃j
(n)

σmin(˜︂Tn)
⃓⃓⃓
ṽj

(n)(x)
⃓⃓⃓2

and the application of (3.18) together with Lemma 1.3.7 gives

p1,n(x) ≤
(Frad,n ∗ |µ|)(x)

σmin(˜︂Tn) =

∑︁
t∈Y |αt|Frad,n(x− t)

σmin(˜︂Tn) ≤
√
dc2dαmax(n/2)

2d−2

Nσmin(˜︂Tn)
∑︂
t∈Y

4

∥x− t∥2Td

.

Then, the first statement follows by observing that N ∈ O(nd) and63

σmin(˜︂Tn) = min
u ̸=0

u∗A∗
n|W |Anu

∥u∥22
≥ αminσmin(An)

2 ≥ αminc
(7)
d,τn

d

for some c
(7)
d,τ > 0 by Proposition 2.3.2.

For the second part, we denote the (|Y | + 1)-th standard basis vector by e|Y |+1 =

(0, . . . , 0, 1)⊤ ∈ C|Y |+1 and consider the Vandermonde matrix

Ãn,x =
[︂
A∗
n e

(n)
x

]︂
∈ CN×(|Y |+1).

61The work by Goncalves [59] shows that there exists a minorant function ψ̂ for 1B(n−1)/2(0)
whose inverse

Fourier transform ψ is supported in B 2
√

1+τjd/2−1,1
π(n−1)

(0) and admits ψ(0) > 0. This implies rankAn−1 =

min(|Y |, N) = |Y |, see [86, Thm. 2.4 and Cor. 2.5].
62Even though [86, Thm. 2.8] is formulated for the case of max-degree frequencies k ∈ {0, . . . , n}d instead

of the radial frequency sampling considered in this section, one can directly translate their proof for
suppµ = V (kerAn) if rankAn−1 = |Y | to the radial setting.

63We write |W | if we apply the absolute value entrywise to W .
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3 Trigonometric polynomials and rational functions

We want to obtain a bound on p0,n by plugging an admissible test polynomial into (3.23).
The pseudo-inverse of Ãn,x gives rise to a candidate given by the Lagrange polynomial

ℓ|Y |+1(y) = e∗|Y |+1Ã
†
n,xe

(n)
y ,

satisfying ℓ|Y |+1(t) = 0 for t ∈ Y and ℓ|Y |+1(x) = 1.64 We compute

∥ℓ|Y |+1∥2L2 =

∫︂
Td

|e∗|Y |+1Ã
†
n,xe

(n)
y |2 dy

=

∫︂
Td

|⟨Ã†∗
n,xe|Y |+1, e

(n)
y ⟩|2 dy = ∥Ã†∗

n,xe|Y |+1∥22 ≤ σmin(Ãn,x)
−2

and use Lemma 3.2.5 to bound

1− p1,n(x) = p0,n(x) = max
p

|p(x)|2

N∥p∥2
L2

≥
|ℓ|Y |+1(x)|2

N∥ℓ|Y |+1∥2L2

≥ σmin(Ãn,x)
2

N
.

Finally, this allows to conclude the assertion by using Theorem 2.2.8.65

The above theorem shows that p1,n converges pointwisely to the indicator function of
the support of the measure which we want to recover if the support points are separated

by more than
2jd/2−1,1

π(n−1) . On the contrary, we have seen in Chapter 2 that a separation of

at least
jd/2,1
πn is sufficient for the possible existence of a stable algorithm. For d = 1, the

sufficient condition for the algorithm and the necessary condition for well-conditionedness
are asymptotically equal to n−1 as n → ∞ whereas in the bivariate case the sufficient
condition

2j0,1
π(n−1) ≈ 1.53(n − 1)−1 is only slightly larger than the Rayleigh length being

approximately 1.22n−1 and the necessary condition
√︂

4
3n

−1.

Remark 3.2.7. Actually, Theorem 3.2.6 shows the correct orders in n and mint∈Y |x−t|2∞
in the upper bound of p1,n(x). First note that 1 − p1,n and all its partial derivatives of
order 1 vanish on Y . For fixed x ∈ Td, and t′ = argmint∈Y |x− t|∞, the Taylor expansion
at t′ thus gives ξ ∈ Td such that

1− p1,n(x) =
1

2
(x− t′)⊤Hx(ξ)(x− t′),

where Hx(ξ) := (−∂s∂tp1,n (ξ))1≤s,t≤d is the Hessian of 1− p1,n at ξ. Thus,

1− p1,n(x) ≤
1

2
∥Hx(ξ)∥F ·

⃓⃓
x− t′

⃓⃓2
2
≤ d

2
max
r,s

∥∂r∂sp1,n∥L∞ · d
⃓⃓
x− t′

⃓⃓2
∞.

64Recall that Ãn,x has full rank due to the separation of the nodes, see Theorem 2.2.8 or Footnote

65. Hence, we have ℓ|Y |+1(t) = e∗|Y |+1Ã
†
n,xe

(n)
t = e∗|Y |+1Ã

†
n,xÃn,xet = e∗|Y |+1et = 0 for t ∈ Y and

analogously ℓ|Y |+1(x) = e∗|Y |+1e|Y |+1 = 1.
65The variational formulation of the smallest singular value gives

σmin(Ãn,x)
2 = min

(v,v′)⊤∈C|Y |+1

∥(v,v′)⊤∥2=1

∥A∗
nv + e(n)

x v′∥22

and the latter can be analysed easily by the lower bound on the distance of two moments vectors
corresponding to well-separated measures which we presented in Theorem 2.2.8.
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3.2 Interpolation and approximation by the signal polynomial

One may apply Bernstein’s inequality (see e.g. [36, Chapter 4]) to ys ↦→ p1,n(y1, . . . , yd)
and yr ↦→ ∂sp1,n(y1, . . . , yd) successively (both univariate trigonometric polynomials of
degree n), and obtain

1− p1,n(x) ≤ 2π2d2n2 ·min
t∈Y

|x− t|2∞

since ∥p1,n∥L∞ = 1. A bivariate visualisation of the bounds on p1,n is shown in Figure 3.4.
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Figure 3.4: Summary of the bounds on p1,n from Theorem 3.2.6 and Remark 3.2.7 for
d = 2, n = 20, and a discrete measure µ supported on four points. The
polynomial p1,20 was evaluated on a grid in T2 and interpolated on the magenta
cross section (left), while the bounds on p1,20 on this cross section are displayed
(right). We see that specifically the bound 1− σmin(Ãn,x)

2/N from the proof
of Theorem 3.2.6 reproduces the behaviour of p1,n.

In fact, normalising p1,n differently even leads to a weak convergence result towards the
empirical measure associated with the support points. This result, stated in Theorem 3.2.9
below, uses the following technical lemma.

Lemma 3.2.8 (Convergence of singular values). For Y = {tj : j = 1, . . . , |Y |} ⊂ Td let

µ =
∑︁|Y |

j=1 αtjδtj be a discrete complex measure whose weights are ordered non-increasingly

with respect to their absolute value. Assume that n · sepY >
2
√
1+τjd/2−1,1

π , then there is a

constant c
(10)
d,τ > 0 such that the singular values σ

(n)
j , j = 1, . . . , N, of the moment matrix

Tn fulfil ⃓⃓⃓⃓
⃓|αtj | − σ

(n)
j

N

⃓⃓⃓⃓
⃓ ≤ c

(10)
d,τ

n
· αmax|Y |

sepY
, j = 1, . . . , |Y |.

Proof. With the polar decomposition 1√
N
A∗
n = PH, where P ∈ CN×|Y | is unitary and

H ∈ C|Y |×|Y | is positive-definite, we have that |αt1 | ≥ · · · ≥
⃓⃓⃓
αt|Y |

⃓⃓⃓
are the singular values

of the matrix PWP ∗. Therefore, we obtain for the singular values of Tn = A∗
nWAn

max
1≤j≤|Y |

⃓⃓⃓⃓
⃓σ

(n)
j

N
−
⃓⃓
αtj
⃓⃓⃓⃓⃓⃓⃓ ≤

⃦⃦⃦⃦
1

N
Tn − PWP ∗

⃦⃦⃦⃦
2

= ∥HWH∗ −W∥2

≤
⃦⃦
HW

(︁
H − I|Y |

)︁⃦⃦
2
+
⃦⃦(︁

H − I|Y |
)︁
W
⃦⃦
2
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≤ |αmax| (∥H∥2 + 1)
⃦⃦
H − I|Y |

⃦⃦
2

≤ |αmax| (∥H∥2 + 1)
⃦⃦
(H + I|Y |)

−1
⃦⃦
2

⃦⃦
H2 − I|Y |

⃦⃦
2

≤ |αmax|
1√
N
σmax(An) + 1

1√
N
σmin(An) + 1

⃦⃦⃦⃦
1

N
AnA

∗
n − I|Y |

⃦⃦⃦⃦
2

,

where the first inequality is due to [15, Theorem 2.2.8] and the last inequality is a conse-
quence of H = P ∗PH = 1√

N
P ∗A∗

n and

H2 = H∗H =
1

N
AnPP ∗A∗

n =
1√
N

AnPP ∗PH = An
1√
N

PH =
1

N
AnA

∗
n.

Each entry of the matrix 1
NAnA

∗
n − I|Y | except for the main diagonal is a radial Dirichlet

kernel such that Lemma 1.3.7 together with Gerschgorin’s theorem give the uniform bound⃦⃦⃦⃦
1

N
AnA

∗
n − I|Y |

⃦⃦⃦⃦
2

=
1

N
max

j=1,...,|Y |

∑︂
l ̸=j

⃓⃓⃓⃓
⃓⃓∑︂
k∈[n]

e2πik(tl−tj)

⃓⃓⃓⃓
⃓⃓ ≤ |Y | − 1

N
· cd

√
d(n/2)d−1

sepY
.

Since we can note that σmin(An) > 0 and

1√
N
σmax(An) =

√︄⃦⃦⃦⃦
1

N
AnA∗

n

⃦⃦⃦⃦
2

≤ 1 +

√︄⃦⃦⃦⃦
1

N
AnA∗

n − I|Y |

⃦⃦⃦⃦
2

,

we obtain the proposed result for some constant c
(10)
d,τ .

Theorem 3.2.9. We have

p1,n
∥p1,n∥L1

⇀ µ̃ =
1

|Y |
∑︂
t∈Y

δt

as n→ ∞.

Proof. First note that ∥p1,n∥L1 = |Y |
N if n is sufficiently large such that An has full rank

|Y |. Our idea is to estimate the 1-Wasserstein distance between
p1,n

∥p1,n∥L1
and µ̃. For this,

we define p̃n = Frad,n ∗ µ̃ and observe that for any Lipschitz continuous function f on Td

with Lip(f) ≤ 1, ∥f∥∞ ≤
√
d
4 , we have⃓⃓⃓⃓

⃓
∫︂
Td

p1,n(x)

∥p1,n∥L1

f(x) dx− 1

|Y |
∑︂
t∈Y

f(t)

⃓⃓⃓⃓
⃓

≤
⃓⃓⃓⃓∫︂

Td

(︃
p1,n(x)

∥p1,n∥L1

− p̃n(x)

)︃
f(x) dx

⃓⃓⃓⃓
+

⃓⃓⃓⃓
⃓
∫︂
Td

p̃n(x)f(x) dx− 1

|Y |
∑︂
t∈Y

f(t)

⃓⃓⃓⃓
⃓

≤
⃦⃦⃦⃦
N

r
p1,n − p̃n

⃦⃦⃦⃦
L1

∥f∥L∞ +

⃓⃓⃓⃓∫︂
Td

f d(Frad,n ∗ µ̃)−
∫︂
Td

f dµ̃

⃓⃓⃓⃓
≤

√
d

4

⃦⃦⃦⃦
N

|Y |
p1,n − p̃n

⃦⃦⃦⃦
L1

+

∫︂
Td

Frad,n(x)∥x∥Td dx. (3.25)

Hence, it is enough to show that
⃦⃦⃦
N
|Y |p1,n − p̃n

⃦⃦⃦
L1

and the integral
∫︁
Td Frad,n(x)∥x∥Td dx

converge to zero for n→ ∞.
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If n is sufficiently large, then by Lemma 3.2.1 we can write p̃n(x) =
1
N e

(n)
x

∗
ŨΣ̃Ũ∗e

(n)
x ,

where Σ̃ ∈ C|Y |×|Y | denotes the diagonal matrix consisting of non-zero singular values,
and Ũ ∈ CN×|Y | denotes the corresponding singular vector matrix of the moment matrix
of µ̃. As p1,n only depends on the signal space of the moment matrix Tn of µ, which
agrees with the signal space of the moment matrix of µ̃, it follows by (3.19) that p1,n(x) =
1
N e

(n)
x

∗
ŨŨ∗e

(n)
x and thus

⃓⃓⃓⃓
N

|Y |
p1,n(x)− p̃n(x)

⃓⃓⃓⃓
=

⃓⃓⃓⃓
⃓e(n)x

∗
Ũ

(︄
I|Y |

|Y |
− Σ̃

N

)︄
Ũ∗e(n)x

⃓⃓⃓⃓
⃓ ≤ ⃦⃦⃦e(n)x

∗
Ũ
⃦⃦⃦2
2

⃦⃦⃦⃦
1

|Y |
I|Y | −

1

N
Σ̃

⃦⃦⃦⃦
2

.

Because
∫︁
Td

⃦⃦⃦
e
(n)
x

∗
Ũ
⃦⃦⃦2
2
dx = N∥p1,n∥L1 = |Y | is constant, the convergence

⃦⃦⃦⃦
N

|Y |
p1,n − p̃n

⃦⃦⃦⃦
L1

→ 0

follows from Lemma 3.2.8. For the second term in (3.25), we denote the coefficients of
Frad,n(x) by ck and because of Frad,n(x) =

1
N |Drad,n/2(x)|2 they can be computed via the

convolution

ck·e1 =
1

N

∑︂
j∈Zd

∥j∥2≤
n
2 ,∥j−k·e1∥2≤

n
2

1 = 1− 1

N

∑︂
j∈Zd

∥j∥2≤
n
2 ,∥j−k·e1∥2>

n
2

1 ≥ 1− 1

N

∑︂
j∈Zd

n
2 <∥j−k·e1∥2≤

n
2 +k

1

for k ∈ {1, 2, . . . , n}.66 Analogously to the proof of Lemma 3.1.2, we can then bound

∫︂
Td

Frad,n(x)∥x∥Td dx ≤
d∑︂
s=1

∫︂
Td

∑︂
k∈Zd

∥k∥2≤n

cke
2πikx|xs|Tdx

= d

∫︂
T

n∑︂
k=−n

ck·e1e
2πikx|x|Tdx

= d

(︄
1

4
+

n∑︂
k=1

ck·e1

∫︂ 1
2

0
4 cos(kx)xdx

)︄

= d

⎛⎜⎝ ∞∑︂
ℓ=⌊n−1

2
⌋+1

1

π2(2ℓ+ 1)2
+

⌊n−1
2

⌋∑︂
ℓ=0

2(1− c(2ℓ+1)e1)

π2(2ℓ+ 1)2

⎞⎟⎠ .

We know already from the proof of Lemma 3.1.2 that the first sum admits a rate of O(n−1)
as n → ∞. The second sum can be controlled if we use Taylor’s theorem in the last step
of the estimation

1− cke1 ≤ 1

N

∑︂
j∈Zd

n
2 <∥j−k·e1∥2≤

n
2 +k

1 ≤ 2dcd
nd

∫︂ n
2
+k

n
2

rd−1dr =
cd
d

(︄(︃
1 +

2k

n

)︃d
− 1

)︄
≤ 2cd2

dk

dn

66By definition of N , we have c0 = 1. Moreover, the symmetry property c−k·e1 = ck·e1 = ck·es holds for
all k ∈ Z and all s ∈ {1, 2, . . . , d}.
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for some constant cd > 0 in order to obtain

⌊n−1
2

⌋∑︂
ℓ=0

2(1− c(2ℓ+1)e1)

π2(2ℓ+ 1)2
≤ O

⎛⎝n−1

⌊n−1
2

⌋∑︂
ℓ=0

1

2ℓ+ 1

⎞⎠ = O
(︃
log(n)

n

)︃

and this completes the proof.

3.2.3 Numerical examples for approximation and interpolation

We complete this section by an illustration of the asymptotic behaviour of pn and p1,n for
discrete measures with respect to the 1-Wasserstein distance. We compute the distance us-
ing a semidiscrete optimal transport algorithm described below. The code to reproduce the
figures is available at https://github.com/Paulcat/Measure-trigo-approximations

and was implemented by Paul Catala [26]. The only difference is that we use the Eu-
clidean metric on the torus in contrast to the 1-norm considered in [26] such that this
results in a difference in the computation of the Wasserstein distance which is based on
these norms on T2. The updated code can be found in the GitHub repository containing
the relevant code of this work, see https://github.com/MHockmann/Dissertation.git.

Among the measures studied in the numerical examples of [26], we only present a bivari-
ate, discrete measure µ =

∑︁
t∈Y αtδt supported on 15 points with (nonnegative) random

amplitudes because the focus of this work is not on measures with support on curves. The
polynomials pn, Jn ∗µ, and p1,n can be evaluated efficiently via the fast Fourier transform
over a regular grid in T2. For the polynomial p1,n, the singular value decomposition of the
moment matrix Tn can be computed at reduced cost by exploiting that Tn has Toeplitz
structure and resorting only to matrix-vector multiplications which can be computed by
means of the FFT. This improvement will play a more important role when we deal with
more realistic data sets in Section 4.1.

10
1

10
2

10
-2

10
-1

10
0

Figure 3.5: Asymptotics of pn and p1,n. For p1,n, the distance is computed with respect
to the unweighted measure µ̃ = 1

|Y |
∑︁

t∈Y δt where Y is the support of µ.

The semidiscrete optimal transport between a measure with density p and the discrete
measure µ may be computed by solving the finite-dimensional optimisation problem

max
w∈R|Y |

+

f(w), f(w) =
∑︂
t∈Y

αtwt +
∑︂
t∈Y

∫︂
Ωt(w)

(∥t− y∥2 − αt)p(y)dy, (3.26)
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3.3 Rational Christoffel functions

where the Laguerre cells associated to the weight vector w are given by

Ωt(w) =
{︂
y ∈ Td : ∥t− y∥2 − wt ≤

⃦⃦
t′ − y

⃦⃦
2
− wt′ for all t

′ ∈ Y
}︂
,

see e.g. [129]. In our implementation, the density measure (and the Laguerre cells) are
computed over a 641 × 641 grid. The maximisation (3.26) is performed by a BFGS
algorithm using the Matlab implementation [143] and the iteration is stopped when the
change of the value of the objective goes below 10−9, or when the norm ∥∇f∥∞ goes
below 10−5. Note that this last condition has a geometrical interpretation since the j-th
component of ∇f corresponds to the difference between the measure of the Laguerre cell
Ωtj (w) and the amplitude αtj . We set the limit number of iterations to 100.
Our numerical results depicted in Figure 3.5 show that the distanceW1(pn, µ) decreases

at a rate close to the worst-case bound derived in Theorem 3.1.3. However, the multi-
plicative constant d

π2 might not be optimal as already suggested by the lower bound in
Theorem 3.1.3. This is also the case for W1(p1,n, µ̃), which is coherent with the bound
given in the proof of Theorem 3.2.9. Additionally, we can observe the faster rate for
convolution with the Jackson kernel.

3.3 Rational Christoffel functions

The polynomials u
(n)
j (x), v

(n)
j (x), j = 1, . . . , N , arising from the singular value decompo-

sition of the moment matrix Tn satisfy

⟨u(n)j , u
(n)
j′ ⟩ = ⟨v(n)j , v

(n)
j′ ⟩ =

∫︂
Td

v
(n)
j (x)v

(n)
j′ (x)dx = ⟨v(n)

j ,v
(n)
j′ ⟩ = δj,j′ and

⟨u(n)j , v
(n)
j′ ⟩µ :=

∫︂
Td

u
(n)
j (x)v

(n)
j′ (x)dµ(x) = u

(n)
j

∗
Tnv

(n)
j′ = σ

(n)
j δj,j′ (3.27)

such that they might be seen as orthogonal polynomials. The moment matrix Tn is Her-
mitian and positive semidefinite if the underlying measure is nonnegative such that its

SVD coincides with the eigendecomposition and u
(n)
j = v

(n)
j for all j = 1, . . . , rankTn

can be assumed in this case. The interpolant p1,n is then the sum of the squares of the

first rn = rankTn polynomials u
(n)
j being orthogonal to each other with respect to the

Lebesgue measure and to the underlying measure µ. However, these polynomials u
(n)
j

differ slightly from the usual definition of orthogonal polynomials. First, note that in con-
trast to most of the theory of orthogonal polynomials, we consider the case of a measure
that is discrete while orthogonal polynomials are usually considered with respect to an
absolutely continuous measure. Secondly, the degree of the polynomial is independent
of their index j = 1, . . . , N , as opposed to usual orthogonal polynomials having increas-
ing degree. Finally, one should note that any sequence of polynomials orthogonal with
respect to a measure supported on finitely many points is finite. Nevertheless, the con-
nection to orthogonal polynomials directly motivates to study the Christoffel function
known from the field of orthogonal polynomials, see [123] and the references therein for
a summary or the more recent works for instance in [93, 128, 111, 85, 84]. In our setting
from the previous section, where we construct the moment matrix Tn of a measure µ by
Tn := (µ̂(k − ℓ))k,ℓ∈[n] ∈ CN×N with [n] := Bn/2(0) ∩ Zd, the Christoffel function can be
defined as follows.

Definition 3.3.1. (Christoffel function, e.g. [123, 93, 128]) Let µ ∈ M+(Td) and assume

that its moments with respect to the vector of monomials e
(n)
x are given. If the moment
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matrix Tn has full rank, the Christoffel-Darboux polynomial is given by e
(n)
x

∗
T−1
n e

(n)
x and

the reciprocal rational function

qµ : Td → R, x ↦→ qµ(x) :=
1

e
(n)
x

∗
T−1
n e

(n)
x

is called Christoffel function.

Remark 3.3.2. (i) The assumption on the rank of Tn being equivalent to kerTn = 0
is fulfilled if µ is a measure µ ∈ M+(Td) whose support has a nonempty interior,
cf. [111]. This is because the eigenvalues of Tn are equal to the singular values for
nonnegative measures and these satisfy (3.27) leading to

σ
(n)
j =

∫︂
Td

|u(n)j (x)|2 dµ(x) > 0

in this case such that Tn is positive definite and in particular invertible. On the
other hand, discrete measures typically lead to rankTn < N if n is large enough as
we have seen in Section 3.2. Hence, this definition of the Christoffel function is not
directly applicable to discrete measures.

(ii) The Christoffel-Darboux polynomial can be seen as an evaluation of the Christoffel-

Darboux kernel kµ,n(x, y) := e
(n)
x

∗
T−1
n e

(n)
y , x, y ∈ Td for x = y. The kernel admits

the reproducing kernel property∫︂
Td

kµ,n(x, y)p(y)dµ(y) = e(n)x

∗
T−1
n

(︃∫︂
Td

e(n)y e(n)y

∗
dµ(y)

)︃
p = e(n)x

∗
p = p(x)

for any polynomial p ∈ Pn,d,2, cf. [93, 128].

(iii) Using the SVD of the moment matrix, we have

qµ(x) =
1∑︁N

j=1 |u
(n)
j (x)|2/σ(n)j

.

If rankTn = rn < N , it is natural, see [128, 111], to extend this by setting

qµ(x) =

⎧⎨⎩
1∑︁rn

j=1 |u
(n)
j (x)|2/σ(n)

j

= 1

e
(n)
x

∗
T †
ne

(n)
x

, if projkerTn
(e

(n)
x ) = 0,

0, else.

(iv) If we are given exact moments of a discrete measure µ =
∑︁

t∈Y αtδt with αt > 0 and
sepY large enough such that the corresponding Vandermonde matrix An satisfies

|Y | = rankAn = rankTn and V (kerTn) = Y , we can conclude that projkerTn
(e

(n)
x ) =

projR(An)⊥(e
(n)
x ) vanishes if and only if x ∈ Y . Therefore, we have under these

assumptions by Lemma 1.1.8

qµ(x) =

{︄
1

e
(n)
x

∗
A†

n
∗
W−1A†

ne
(n)
x

= αt, if x = t ∈ Y,

0, else.

A generalisation of this result can be found in [128, p. 249]. This type of Christoffel
function gives an exact representation of the measure in theory but this is not useful
in applications due to the sensitivity of the unregularised qµ to noise in the moments,
e.g. cf. [111].
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A well-known property of the Christoffel function qµ is that it can be linked to the
underlying measure µ in the following variational way.

Lemma 3.3.3. (Variational characterisation of qµ, e.g. [128, Lem. 1]) For µ ∈ M+(Td),
we have

qµ(x) = min

{︃∫︂
Td

|p(y)|2dµ(y) : p ∈ Pn/2,d,2, p(x) = 1

}︃
for any x ∈ Td. The minimiser p̃ for the right hand side is p̃(y) =

kµ,n(x,y)
kµ,n(x,x)

∈ Pn/2,d,2.

For measures with a density with respect to the Lebesgue measure, there exist results on
the pointwise or uniform convergence of the Christoffel function to the density function,
see [93, 128]. In contrast to this, we are interested in the recovery of sparse, discrete
measures where we have argued in Remark 3.3.2 that regularisation would be needed in
the presence of noise. Different regularisation schemes based on the singular values are
proposed in [111] and among those we choose to regularise the Christoffel function for
discrete measures with the following “spectral cut-off ” approach. This comes with the
benefit that we do not have to choose an additional parameter for an approximation of
the rank of the moment matrix.

Definition 3.3.4. (Regularised Christoffel function, cf. [111]) Let σ
(n)
|Y | > 0. For any

µ ∈ M(q) ∩M+(Td) and ε ∈
(︂
0, σ

(n)
|Y |

)︂
, we define for any x ∈ Td

qε,n(x) :=

⎛⎝ N∑︂
j=1

gε(σ
(n)
j )|u(n)j (x)|2

⎞⎠−1

=
1

e
(n)
x

∗
T †
ne

(n)
x + N

ε (1− p1,n(x))

as the regularised Christoffel function where the spectral cut-off function is

gε : R≥0 → R+, σ
(n)
j ↦→

⎧⎨⎩
1

σ
(n)
j

, σ
(n)
j > ε,

1
ε , σ

(n)
j ≤ ε.

In contrast to a Tikhonov regularisation approach using the positive definite moment
matrix Tn + εIN corresponding to the measure µ + ελ where λ is the Lebesgue measure
on Td, the cut-off regularised Christoffel function does not inherit a simple variational
formulation as in Lemma 3.3.3. But we have in analogy to Lemma 3.3.3 that

qε,n(x) = min
{︂
p∗ (︁Tn + εU0,nU

∗
0,n

)︁
p : p ∈ Pn/2,d,2, p(x) = 1

}︂
, (3.28)

where U0,n ∈ CN×(N−|Y |) contains in its columns the singular vectors of Tn which span the
kernel of Tn. Typically, upper bounds on Christoffel functions are obtained by plugging
test polynomials into (3.28), see for instance [128, 93, 111]. In particular, the needle
polynomial established in [85] is often used as a feasible polynomial p ∈ Pn/2,d,2 with
p(x) = 1 and exponential decay away from x.
Due to the lack of such a simple variational formulation, we will use a different approach

and derive bounds on qε,n by taking the SVD of Tn into account because the previous
section already gives an intuition how the singular values and the singular functions behave
if µ is a discrete measure. Exemplarily, the Christoffel function for µ ∈ M(q) ∩ M(T)
is displayed in Figure 3.6 where for comparison a scaled version of the convolution with
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3 Trigonometric polynomials and rational functions

Figure 3.6: Christoffel function for a univariate, discrete measure µ with three nodes and
n = 6. In contrast to the convolution with the Fejér kernel as discussed in Sec-
tion 3.1 (blue dash-dotted), the Christoffel function qε,n with ε = N−1 (green
dotted), its upper bound derived in Lemma 3.3.5 (red solid) and the lower
bound from Lemma 3.3.5 (magenta dashed) are more concentrated around the
support of the ground truth measure.

Fn as studied in Section 3.1 is included as well. A first observation is the interpolation
property qε,n(t) = αt for all t ∈ Y which holds for any allowed positive value of ε if n is
large enough such that rankAn = |Y |. Secondly, it follows from the definition that

qε,n(x) =
1

N
ε −

∑︁|Y |
j=1

(︃
1
ε −

1

σ
(n)
j

)︃
|u(n)j (x)|2

≥ ε

N
.

Thirdly, one can notice the following bounds in the plot of the Christoffel function.67

Lemma 3.3.5 (Simple bounds on qε,n). Let µ be a probability measure µ ∈ M(q) ∩
M+(Td), σ

(n)
|Y | > 0 and 0 < ε < σ

(n)
|Y | . Then, we have for every x ∈ Td

ε

N(1− p1,n(x)) +
Nε

σ
(n)
|Y |

≤ qε,n(x) =
ε

N(1− p1,n(x)) + εe
(n)
x

∗
T †
ne

(n)
x

≤ ε

N(1− p1,n(x)) +
Nε

σ
(n)
1

.

Proof. The upper bound is a direct consequence of ∥e(n)x ∥22 = N and the fact that the

smallest eigenvalue value of T †
n is 1/σ

(n)
1 . The lower bound follows analogously.

This lemma yields that limε→0 qε,n(x) = 0 if p1,n(x) < 1 and by (3.21) we can conclude
that this is the case exactly if x /∈ suppµ and n is sufficiently large in order to guarantee
V (kerTn) = suppµ. Therefore, we already observe that qε,n has the ability to identify the
support of µ by letting ε go to zero. However, we go beyond pointwise convergence and
make an attempt to analyse whether weak convergence of a normalised version of qε,n(x)
to µ holds. Because qε,n is always larger than ε/N , it turns out that we have to consider
the scaled function Nqε,n(x)− ε instead of qε,n for weak convergence.

67With more work, it is possible to derive bounds which maintain the interpolating property on the
support. Nevertheless, we omit their presentation as these simple bounds suffice for our purposes.
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3.3 Rational Christoffel functions

Example 3.3.6 (Single Dirac). If µ = δ0, the regularised Christoffel function can be

computed explicitly. The first singular function is simplyN−1/2Drad,n/2(x) while σ
(n)
1 = N .

Therefore, we have

Nqε,n(x)− ε =
εFrad,n(x)

(︁
1− ε

N

)︁
N − Frad,n(x) +

ε
NFrad,n(x)

(3.29)

for any x ∈ Td. In the following, we want to study whether
Nqε,n−ε

∥Nqε,n−ε∥L1(Td)
⇀ µ as ε → 0

and thus estimate the distance of the two measures in the 1-Wasserstein metric.

(i) Because there is only one possible transport map which pushes the mass from
Nqε,n−ε

∥Nqε,n−ε∥L1(Td)
forward to δ0, we have

W1

(︄
Nqε,n − ε

∥Nqε,n − ε∥L1(Td)

, δ0

)︄
=

∫︂
Td

Nqε,n(x)− ε

∥Nqε,n − ε∥L1(Td)

∥x∥Tddx

= ∥Nqε,n − ε∥−1
L1(Td)

∫︂
[− 1

2
, 1
2
]d

ε∥x∥2Frad,n(x)
(︁
1− ε

N

)︁
dx

N − Frad,n(x)
(︁
1− ε

N

)︁ .

We need a lower bound for N − Frad,n(x) around the origin which is difficult to
analyse directly. However, we observe that we have N − Frad,n(x) = N(1− p1,n(x))
such that we can use the results from the previous section. Hence, we can fix some

τ > 0 and have some constants c
(9)
d,τ , c

(11)
d,τ > 0 with

N − Frad,n(x) ≥

⎧⎨⎩c
(9)
d,τNn

2∥x∥22, if ∥x∥2 ≤
2
√
1+τjd/2,1
πn

c
(11)
d,τ N, if ∥x∥2 ≥

2
√
1+τjd/2,1
πn

by Theorem 3.2.6 and Proposition 2.3.2. Then, using Lemma 1.3.7, we bound∫︂
[− 1

2
, 1
2
]d

ε∥x∥2Frad,n(x)
(︁
1− ε

N

)︁
dx

N − Frad,n(x)
(︁
1− ε

N

)︁
≤
(︂
1− ε

N

)︂⎡⎣∫︂ 2
√
1+τjd/2,1

πn

0

cdεNr
d

c
(9)
d,τ (N − ε)n2r2 + ε

dr +

∫︂ √
d/2

2
√
1+τjd/2,1

πn

cdεNn
−2rd−2

c
(11)
d,τ (N − ε) + ε

dr

⎤⎦

≤ cdε
(︂
1− ε

N

)︂⎧⎪⎪⎪⎨⎪⎪⎪⎩
c
(1)
τ

(︄
log
(︂
1+

cτ (N−ε)
ε

)︂
2n(N−ε) + N

c
(11)
d,τ (N−ε)+ε

log(cτn)
n2

)︄
, d = 1,

c
(2)
τ

(︃
1

(N−ε)n2 + N

c
(11)
d,τ (N−ε)+ε

1
n2

)︃
, d ≥ 2,

≤ cdε
(︂
1− ε

N

)︂{︄
c
(3)
τ

log(1+ cτn
ε )

n2 , d = 1,

c
(4)
τ

1
n2 , d ≥ 2,

for some constants cd, cτ , c
(1)
τ , c

(2)
τ , c

(3)
τ , c

(4)
τ > 0.

(ii) On the other hand, with Remark 3.2.7 a lower bound on the total mass of Nqε,n− ε
is given by

∥Nqε,n − ε∥L1(Td) =

∫︂
[− 1

2
, 1
2
]d

ε
(︁
1− ε

N

)︁
Frad,n(x)

N −
(︁
1− ε

N

)︁
Frad,n(x)

dx
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≥
∫︂
B 1√

2πdn

(0)

ε
(︁
1− ε

N

)︁
N(1− 2π2d2n2∥x∥22)

2π2(N − ε)d2n2∥x∥22 + ε
dx

= cd

∫︂ 1

0

ε
(︁
1− ε

N

)︁
(1− r2)rd−1

(N − ε)r2 + ε
dr

≥ 1

4
cd

∫︂ 1
2

0

ε
(︁
1− ε

N

)︁
rd−1

(N − ε)r2 + ε
dr.

Interestingly, this integral has a very different behaviour in ε as ε → 0 depending
on the dimension d. This is because the integrand has a pole in zero for ε → 0 if
d ∈ {1, 2} whereas the singularity is removable if d ≥ 3. In the latter case, the lower

bound is proportional to ε
N−ε

∫︁ 1
2
0 rd−3 − ε

(N−ε)r2+εdr and in general we end up with

∥Nqε,n − ε∥L1(Td)

1− ε
N

≥

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
cd
4

√︂
ε

N−ε arctan

(︃
1
2

√︂
N−ε
ε

)︃
, d = 1,

cd
4

ε
N−ε log

(︁
1 + N−ε

4ε

)︁
, d = 2,

cdε
(︂
c̃d−ε1/2(N−ε)−1/2 arctan

(︂√
N−ε
2
√
ε

)︂)︂
4(N−ε) , d ≥ 3,

(3.30)

for some c̃d > 0.

(iii) Bringing (i) and (ii) together, we get

W1

(︄
Nqε,n − ε

∥Nqε,n − ε∥L1(Td)

, δ0

)︄
≤ cd,τ ·

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

√
ε log(1+ cτn

ε )
arctan

(︂√
n−ε
2
√
ε

)︂
n3/2

, d = 1,

1

log
(︂
1+n2−ε

4ε

)︂ , d = 2,

nd−2

c̃d−ε1/2(N−ε)−1/2 arctan

(︃
(N−ε)1/2

2
√
ε

)︃ , d ≥ 3,

for some constant cd,τ > 0. This yields
Nqε,n−ε

∥Nqε,n−ε∥L1(Td)
⇀ µ = δ0 as ε → 0 for

dimension d = {1, 2}.

(iv) On the contrary, we have by the same steps as in (ii) the lower bound∫︂
[− 1

2
, 1
2
]d

ε∥x∥2Frad,n(x)

N − Frad,n(x)
(︁
1− ε

N

)︁ ≥ 1

4
cd

∫︂ 1
2

0

εrd

(N − ε)r2 + ε
dr

≥
cd+1ε

(︂
c̃d+1 − ε1/2(N − ε)−1/2 arctan

(︂√
N−ε
2
√
ε

)︂)︂
4(N − ε)

in d ≥ 3. Similarly, one can follow the lines of (i) in order to deduce that

∥Nqε,n − ε∥L1(Td) ≤ ε
(︂
1− ε

N

)︂
c(4)τ

1

n2

and this implies

W1

(︄
Nqε,n − ε

∥Nqε,n − ε∥L1(Td)

, δ0

)︄
≥ cn2−d for some constant c > 0
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such that the diverging rate in (iii) is sharp in ε giving W1

(︃
Nqε,n−ε

∥Nqε,n−ε∥L1(Td)
, µ

)︃
↛ 0

as ε → 0 for d ≥ 3. On the other hand, the question of convergence for n → ∞
needs a more careful analysis because the upper and lower bounds show a different
convergence behaviour in n.

As we have seen in Example 3.3.6 that we can control the situation for one node with
sufficient accuracy, it might be natural to consider a relation between Nqε,n−ε for multiple
nodes and the sum of the individual Christoffel functions. In fact, we develop the following
bound through the variational formulation of the Christoffel function.

Lemma 3.3.7 (Lower bound on qε,n). Let µ =
∑︁

t∈Y αtδt with αt > 0,
∑︁

t αt = 1 and

sepY =
2
√
1+τjd/2−1,1

π(n−1) for some τ > 0 and ε
N mint αt

< 1 + ∥Ir −
(︁
N−1A∗

nAn

)︁−1 ∥2. Then,

for every x ∈ Td the lower bound

Nqε,n(x)− ε ≥
∑︂
t∈Y

αt

ε

(︄
1− ε

N

[︃
1− ε(1+cn,d,sepY )

αtN

]︃−1
)︄
Frad,n(x− t)

N − Frad,n(x− t) + ε
N

[︃
1− ε(1+cn,d,sepY )

αtN

]︃−1

Frad,n(x− t)

is valid.

Proof. We have to make the variational formulation (3.28) more explicit. Therefore, let
U1,n ∈ CN×|Y | be the matrix whose columns are the first |Y | singular vectors of Tn and note
that IN = UnU

∗
n = U1,nU

∗
1,n+U0,nU

∗
0,n. By imgAn = imgU1,n, there is a regular matrix

B such that U1,n = AnB and thus I|Y | = U∗
1,nU1,n = B∗A∗

nAnB or (BB∗)−1 = A∗
nAn

respectively. Hence, we can rewrite the objective function in (3.28) as

p∗ (︁Tn + εU0,nU
∗
0,n

)︁
p = p∗

(︂
Tn − εAn (A

∗
nAn)

−1A∗
n + εIN

)︂
p

= p∗An

(︂
W − ε

N
Ir + ε

(︂
N−1Ir − (A∗

nAn)
−1
)︂)︂

A∗
np+ ε∥p∥22

≥ p∗An

⎛⎝W −
ε
(︂
1 + ∥Ir −

(︁
N−1A∗

nAn

)︁−1 ∥2
)︂

N
Ir

⎞⎠A∗
np+ ε∥p∥22

≥
∑︂
t

αt

(︃[︃
1−

ε (1 + cn,d,sepY )

αtN

]︃
|e∗tA∗

np|2 + ε∥p∥22
)︃

where we used the normalisation of the weights and abbreviate the term cn,d,sepY :=

∥Ir −
(︁
N−1A∗

nAn

)︁−1 ∥2 ∈ O(n−1), see the proof of Lemma 3.2.8. Then, the variational
formulation (3.28) and the representation for a single Dirac (3.29) allow to bound

qε,n(x)≥min

{︄∑︂
t

αt

(︃[︃
1−

ε (1 + cn,d,sepY )

αtN

]︃
|e∗tA∗

np|2 + ε∥p∥22
)︃

: p ∈ Pn/2,d,2, p(x) = 1

}︄

≥
∑︂
t∈Y

αtmin

{︃[︃
1−

ε (1 + cn,d,sepY )

αtN

]︃
|e∗tA∗

np|2 + ε∥p∥22 : p ∈ Pn/2,d,2, p(x) = 1

}︃
=
∑︂
t∈Y

αt
1[︃

1− ε(1+cn,d,sepY )
αtN

]︃−1

N−1Frad,n(x− t) + ε−1(N − Frad,n(x− t))

.

such that the proposed bound follows directly.
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Even though this Lemma gives an idea how it might be possible to link the regularised
Christoffel function of a discrete measure to the sum of the individual Christoffel functions,
it is not clear whether

Nqε,n−ε
∥Nqε,n−ε∥L1

⇀ µ as ε → 0 holds for general µ ∈ M(q). By

Example 3.3.6, we know that this can be only true for the univariate or bivariate case.
Moreover, the bounds from this section help us to choose ε depending on the noise level
if we deal with inexact moments.

3.4 Recovery from noisy data

Assume we are given noisy data µ̂ = µ̂0 + ρ̂ originating from some perturbation of the
ground truth µ0 =

∑︁
t∈Y αtδt ∈ M(q)∩M+,1(Td) such that we have access to the moment

matrix

Tn = (µ̂(k − l))k,l∈[n] = T0,n + Tϱ,n,

where T0,n is the moment matrix corresponding to the ground truth measure µ0 and
Tϱ,n = (ρ̂(k − l))k,l∈[n] contains the noise with |ρ̂(k)| ≤ ϱ for some ϱ > 0. In this section
we want to use the rational approximation of the previous Section 3.3 and develop a theory
how the regularisation parameter ε > 0 should be chosen in order to obtain an optimal
approximation to the unknown support of the ground truth measure µ0. To the best of
our knowledge, such a recovery of a discrete measure from noisy data using Christoffel
functions has not been analysed before.68

When we compute the SVD Tn = ṼnΣ̃nṼn
∗
, we cannot expect that this matrix satisfies

rankTn = |Y |. Instead, the matrix is full rank and we need to truncate the smallest singu-
lar values which are dominated by the noise. Therefore, it is natural to take the smallest

r̃ ∈ N such that the best r̃-term approximation Tr̃,n = Ṽn diag(σ̃
(n)
1 , . . . , σ̃

(n)
r̃ , 0, . . . , 0)Ṽn

∗

satisfies

∥Tr̃,n − Tn∥2 = σ̃
(n)
r̃+1 ≤ ∥Tϱ,n∥2 ≤ Nϱ (3.31)

and hope that Tr̃,n is close to the ground truth T0,n.
69, 70 In particular, the idea is that

r̃ = |Y | if the noise level ϱ is sufficiently small and that the first singular values and vectors
are close to the original ones. However, this approach is based on a very accurate knowledge
of the size of the noise. Instead, we generalise the concept of rational approximation from
Section 3.3 to the noisy case and study the regularised Christoffel function

q̃ε,n(x) =
1∑︁N

j=1 gε(σ̃
(n)
j )|ũ(n)j (x)|2

=
1∑︁

j:σ̃
(n)
j >ε

|ũ(n)
j (x)|2

σ̃
(n)
j

+
∑︁

j:σ̃
(n)
j ≤ε

|ũ(n)
j (x)|2
ε

(3.32)

with regularisation parameter ε > 0. This comes with the benefit that this expression can
be computed without any knowledge of the noise level. Nevertheless, the parameter ε must

68In [111, Sec. 3.3], an underlying measure which is absolutely continuous with respect to Lebesgue measure
is approximated by a regularised Christoffel function.

69In applications, it is more natural to assume knowledge about the noise level ϱ than on ∥Tϱ,n∥2. Hence,

the numerical rank r̃ will be chosen such that σ̃
(n)
r̃+1 ≤ Nϱ in these situations. However, this does not

change the situation if σ̃
(n)
r̃ ≥ σ

(n)
r̃ − ∥Tϱ,n∥2 ≥ N(αmin − ϱ) −O(nd−1) > Nϱ i.e. if αmin > 2ϱ and N

sufficiently large.
70Note that Tr̃,n is in general not a Toeplitz matrix. Rank-1 best approximations of matrices by Toeplitz

(or equivalently Hankel) matrices has been studied in [82] but the case of a larger rank is difficult, see
[81]. Therefore, we use the unstructured approximation of Tn by Tr̃,n.

106



3.4 Recovery from noisy data

be tuned depending on the noise level and it is the aim of this section to develop an idea
how one should choose ε in order to obtain a Christoffel function q̃ε,n which peaks around
the support of µ0. At first, we study under which condition on the noise the truncation
via (3.31) recovers the correct number of parameters.

Lemma 3.4.1. Let the smallest weight αmin = mint αt satisfy

αmin >
2∥Tϱ,n∥2

N
+
c
(10)
d,τ

n
· αmax|Y |

sepY

where c
(10)
d,τ is the constant from Lemma 3.2.8 and τ > 0 such that the separation fulfils

sepY · (n− 1) =
2
√
1+τjd/2,1
π . Then, we have r̃ = |Y |.

Proof. By Weyl’s bound on singular values, see Lemma 1.1.9, we can bound

σ̃
(n)
|Y | ≥ σ

(n)
|Y | − ∥Tϱ,n∥2 ≥ N

⎛⎝αmin −
c
(10)
d,τ

n
· αmax|Y |

sepY

⎞⎠− ∥Tϱ,n∥2 > ∥Tϱ,n∥2

where we use Lemma 3.2.8 in the second inequality. On the other hand, Weyl’s inequality

also gives σ̃
(n)
|Y |+1 ≤ ∥Tϱ,n∥2 and thus r̃ = |Y |.

The assumption of the previous lemma is natural and can be seen as a lower bound on
the signal-to-noise ratio (SNR) which is a classical assumption in signal analysis, e.g. see
[103]. Next, we analyse how the signal polynomial is perturbed by the noise.

Lemma 3.4.2. Under the conditions of Lemma 3.4.1, we have that the noisy version

p̃1,n = 1
N

∑︁|Y |
j=1 |ũ

(n)
j (x)|2 of the signal polynomial satisfies

|p1,n(x)− p̃1,n(x)| ≤
2∥Tϱ,n∥2
σ
(n)
|Y |

+ p̃1,n(x)max
j

|σ̃(n)j − σ
(n)
j |

σ
(n)
j

≤ 3∥Tϱ,n∥2
σ
(n)
|Y |

.

Proof. As rankTn = |Y | by Lemma 3.4.1, we have

|p1,n(x)− p̃1,n(x)| ≤

⃓⃓⃓⃓
⃓⃓ |Y |∑︂
j=1

σ
(n)
j |u(n)j (x)|2 − σ̃

(n)
j |ũ(n)j (x)|2

Nσ
(n)
j

⃓⃓⃓⃓
⃓⃓+
⃓⃓⃓⃓
⃓⃓ |Y |∑︂
j=1

σ̃
(n)
j − σ

(n)
j

Nσ
(n)
j

|ũ(n)j (x)|2
⃓⃓⃓⃓
⃓⃓

≤ 1

σ
(n)
|Y |

∥Tr̃,n − T0,n∥2 + p̃1,n(x)max
j

|σ̃(n)j − σ
(n)
j |

σ
(n)
j

≤ 3∥Tϱ,n∥2
σ
(n)
|Y |

where the last inequality follows from Weyl’s inequality for the perturbation of singular
values, cf. Lemma 1.1.9.

Additionally, we remark that by definition the perturbed noise-polynomial p̃0,n admits
p̃0,n(x) = 1− p̃1,n such that the previous Lemma 3.4.2 holds also for p̃0,n. Analogously, we
can derive a result on the difference between q̃ε,n and the exact Christoffel function qε,n
corresponding to the ground truth µ0.
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Lemma 3.4.3. If ε < min(σ
(n)
|Y | , σ̃

(n)
|Y |) and with the conditions on the noise level from

Lemma 3.4.1, we have that the noisy version q̃ε,n of the Christoffel function and qε,n being
the Christoffel function associated to µ satisfy

|qε,n(x)− q̃ε,n(x)|(︂
1 +

∥Tϱ,n∥2
N

)︂
qε,n(x)

≤ 3∥Tϱ,n∥2
σ
(n)
|Y |

⎛⎝N
ε

+
1 +

√
5

2σ̃
(n)
|Y |

N

⎞⎠+max(0, ε−1 − ∥Tϱ,n∥−1
2 )N

for any ε > 0 and x ∈ Td.

Proof. Using ε < min(σ
(n)
|Y | , σ̃

(n)
|Y |), we estimate

|qε,n(x)− q̃ε,n(x)|
qε,n(x)

=

⃓⃓⃓⃓
⃓
∑︁N

j=1 gε(σ
(n)
j )|u(n)j (x)|2 − gε(σ̃

(n)
j )|ũ(n)j (x)|2∑︁N

j=1 gε(σ̃
(n)
j )|ũ(n)j (x)|2

⃓⃓⃓⃓
⃓

≤

⃓⃓⃓⃓∑︁|Y |
j=1

(︃
1

σ
(n)
j

− ε−1

)︃
|u(n)j (x)|2 −

∑︁
j:σ̃

(n)
j >ε

(︃
1

σ̃
(n)
j

− ε−1

)︃
|ũ(n)j (x)|2

⃓⃓⃓⃓
1

σ̃
(n)
1

N

≤

⃓⃓⃓⃓∑︁|Y |
j=1

|u(n)
j (x)|2

σ
(n)
j

− |u(n)
j (x)|2

ε − |ũ(n)
j (x)|2

σ̃
(n)
j

+
|ũ(n)

j (x)|2

ε

⃓⃓⃓⃓
+
∑︁

j:ε<σ̃
(n)
j <∥Tϱ,n∥2

|ũ(n)
j (x)|2

ε − |ũ(n)
j (x)|2

σ̃
(n)
j(︂

1 +
∥Tϱ,n∥2
N

)︂−1

≤

N
ε |p1,n(x)− p̃1,n(x)|+ 1+

√
5

2σ
(n)
|Y | ·σ̃

(n)
|Y |
N∥T0,n − T|Y |,n∥2 +max(0, ε−1 − ∥Tϱ,n∥−1

2 )N(︂
1 +

∥Tϱ,n∥2
N

)︂−1

≤
(︃
1 +

∥Tϱ,n∥2
N

)︃⎡⎣3∥Tϱ,n∥2
σ
(n)
|Y |

⎛⎝N
ε

+
1 +

√
5

2σ̃
(n)
|Y |

N

⎞⎠+max(0, ε−1 − ∥Tϱ,n∥−1
2 )N

⎤⎦
and remark that the first inequality uses the assumption on ε, the second bounds the

singular value σ̃
(n)
1 ≤ N + ∥Tϱ,n∥2, the third applies Theorem 1.1.10 and the fourth takes

Lemma 3.4.2 into account.

We now come back to the original problem to derive a parameter choice rule for ε. At
first, it might seem natural to choose ε > 0 such that the upper bound on the perturbed
Christoffel function q̃ε,n given by

q̃ε,n(x) ≤ qε,n(x) + |qε,n(x)− q̃ε,n(x)| (3.33)

becomes as small as possible for x outside of the support of µ0. Using Lemma 3.4.3,
this upper bound on the perturbed Christoffel function becomes minimal for ε = 0 and
the optimal value of the bound agrees up to a constant with the bound for the signal
polynomial presented in Lemma 3.4.2. Therefore, such a choice does not lead to a better
result than the signal polynomial with the additional drawback that ε → 0 promotes
singularity of the Christoffel function which is not beneficial for its visual representation.
The most natural approach might be to study the perturbation of the maxima of q̃ε,n

but this appears to be a complicated problem as it demands more than just an L∞ bound
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on the function. Instead, we propose to choose ε such that the fraction of the mass outside
of the support in relation to the total mass of the Christoffel function becomes small. More
precisely, we demand that for δ = sepY

2 and y ∈ Td such that Bδ(y)∩Y = ∅ the normalised
fraction

δ−d
∫︁
Bδ(y)

Nq̃ε,n(x)− εdx∫︁
Td Nq̃ε,n(x)− εdx

(3.34)

becomes as small as possible.71 Here, we use again the scaled version Nq̃ε,n − ε as the
analysis of weak convergence has already shown the benefit of this approach which is that
the integral over Nq̃ε,n − ε is asymptotically different from ε/N . Under the assumption

3∥Tϱ,n∥2 < 1
2σ

(n)
|Y | we introduce some δ̃ to be chosen such that

δ̃2π2d2n2 =
1

4
− 3∥Tϱ,n∥2

2σ
(n)
|Y |

.

Additionally, we assume the conditions of Lemma 3.4.3. Then, we bound the denominator
of (3.34) for some constant cd > 0 as

∫︂
Td

Nq̃ε,n(x)− εdx =

∫︂
Td

ε
∑︁

j:σ̃
(n)
j >ε

(︃
1− ε

σ̃
(n)
j

)︃
|ũ(n)j (x)|2

N −
∑︁

j:σ̃
(n)
j >ε

(︃
1− ε

σ̃
(n)
j

)︃
|ũ(n)j (x)|2

dx

≥
∫︂
Td

ε
∑︁|Y |

j=1

(︃
1− ε

σ̃
(n)
|Y |

)︃
|ũ(n)j (x)|2

N −
∑︁|Y |

j=1

(︃
1− ε

σ̃
(n)
|Y |

)︃
|ũ(n)j (x)|2

dx

≥

⎛⎝1− ε

σ̃
(n)
|Y |

⎞⎠∑︂
t∈Y

∫︂
Bδ̃(t)

εp̃1,n(x)

1− p̃1,n(x) +
ε

σ̃
(n)
|Y |

dx

≥

⎛⎝1− ε

σ̃
(n)
|Y |

⎞⎠∑︂
t∈Y

∫︂
Bδ̃(t)

ε

(︃
1− 2π2d2n2∥x− t∥22 −

3∥Tϱ,n∥2
σ
(n)
|Y |

)︃
2π2d2n2∥x− t∥22 +

3∥Tϱ,n∥2
σ
(n)
|Y |

+ ε

σ̃
(n)
|Y |

dx

≥ cd|Y |
2

∫︂ δ̃

0

(︃
1− ε

σ̃
(n)
|Y |

)︃
εrd−1

(2π2d2n2)r2 +
3∥Tϱ,n∥2
σ
(n)
|Y |

+ ε

σ̃
(n)
|Y |

dr

71Similarly as in (3.33), we decompose (3.34) into an approximation error going to zero as ε → 0 and a
regularisation error term which goes to infinity as ε → 0. The latter is a typical phenomenon for the
parameter choice of regularised inverse problems where one needs to belance between the two effects.

109



3 Trigonometric polynomials and rational functions

=

⎛⎝1− ε

σ̃
(n)
|Y |

⎞⎠ εcd|Y |
2

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

arctan

⎛⎜⎜⎜⎜⎝
⌜⃓⃓⃓
⃓⃓⃓⎷

1
2−

3∥Tϱ,n∥2
σ
(n)
|Y |

3∥Tϱ,n∥2
σ
(n)
|Y |

+ ε

σ̃
(n)
|Y |

⎞⎟⎟⎟⎟⎠
√
2πdn

√︄
3∥Tϱ,n∥2

σ
(n)
|Y |

+ ε

σ̃
(n)
|Y |

, d = 1,

log

⎛⎜⎜⎜⎝1+

⌜⃓⃓⎷ 1
2−

3∥Tϱ,n∥2
σ
(n)
|Y |

3∥Tϱ,n∥2
σ
(n)
|Y |

+ ε

σ̃
(n)
|Y |

⎞⎟⎟⎟⎠
4π2d2n2 , d = 2,

using the SVD representation from Lemma 3.3.5, whereas we can apply Lemma 3.3.5 and
Lemma 3.4.3 in order to control the numerator of (3.34) by∫︂

Bδ(y)
Nq̃ε,n(x)− εdx

≤
{︃
1 +

(︂
1 +

∥Tϱ,n∥2
N

)︂[︃
3∥Tϱ,n∥2
σ
(n)
|Y |

(︃
N
ε + 1+

√
5

2σ̃
(n)
|Y |
N

)︃
+max

(︂
0, Nε − N

∥Tϱ,n∥2

)︂]︃}︃∫︂
Bδ(y)

Nqε,n(x)dx

≤
∫︂
Bδ(y)

{︃
1 +

(︂
1 +

∥Tϱ,n∥2
N

)︂[︃
3∥Tϱ,n∥2
σ
(n)
|Y |

(︃
N
ε + 1+

√
5

2σ̃
(n)
|Y |
N

)︃
+max

(︂
0, Nε − N

∥Tϱ,n∥2

)︂]︃}︃
ε

c
(9)
d,τn

2 dist(x, Y )2 + ε

σ
(n)
1

dx

≤ c′d ·

{︃
1 +

[︃
3∥Tϱ,n∥2
σ
(n)
|Y |

(︃
1
ε +

1+
√
5

2σ̃
(n)
|Y |

)︃
+max

(︂
0, 1ε −

1
∥Tϱ,n∥2

)︂]︃(︂
1 +

∥Tϱ,n∥2
N

)︂}︃
ε

n2 dist(Bδ(y), Y )2

for some constant c′d > 0. To sum up, we end up with the following bound.

Proposition 3.4.4 (Optimal choice of ε). Let the conditions of Lemma 3.4.1 be fulfilled

and additionally assume 3∥Tϱ,n∥2 < 1
4σ

(n)
|Y | as well as ε ≤ min

(︂
σ̃
(n)
|Y | , σ

(n)
|Y |

)︂
.72 Then, we

can bound (3.34) from above by a dimension dependent constant times

h(ε) :=
1 +

∥Tϱ,n∥2
σ|Y |ε

+max
(︂
0, 1ε −

1
∥Tϱ,n∥2

)︂
(︃
1− ε

σ̃
(n)
|Y |

)︃
n dist(Bδ(y), Y )2|Y |

·

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

√︃
3∥Tϱ,n∥2
σ
(n)
|Y |

+ ε

σ̃
(n)
|Y |

, d = 1,

n

log

⎛⎝1+

⎛⎝ 3∥Tϱ,n∥2
σ
(n)
|Y |

+ ε

σ̃
(n)
|Y |

⎞⎠−1⎞⎠ , d = 2.
(3.35)

If we choose some rate ε = ∥Tϱ,n∥a2, a > 0 for the regularisation parameter, the resulting
rate for the bound h as ∥Tϱ,n∥2 → 0 is

sup

{︃
b : lim

∥Tϱ,n∥2→0

h(∥Tϱ,n∥a2)
∥Tϱ,n∥b2

<∞
}︃

=

⎧⎪⎨⎪⎩
1
2 , a = 1,
1
2a , a ∈ (0, 1),
1
2 − a , a > 1,

for dimension d = 1 and

sup

{︃
b : lim

∥Tϱ,n∥2→0

h(∥Tϱ,n∥a2)
∥Tϱ,n∥b2

<∞
}︃

=

{︄
0 , a ∈ (0, 1],

−a+ 1 , a > 1,

72Note that it is reasonable to take ε smaller than the smallest meaningful singular value of Tn.
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for d = 2. Therefore, the order-optimal choice is ε∗ = ∥Tϱ,n∥2 leading to the optimal value

h(ε∗) = ∥Tϱ,n∥1/22 · O
(︂
n−3/2

)︂
for d = 1, whereas any exponent a ∈ (0, 1] is optimal in the bivariate setting. Choosing
a = 1 for d = 2 gives the pointwise bound

δ−d
∫︁
Bδ(y)

Nq̃ε,n(x)− εdx∫︁
T2 Nq̃ε,n(x)− εdx

≤ c2

log
(︁
1 + n2∥Tϱ,n∥−1

2

)︁
for some constant c2 depending on Y, y, αmin and αmax.

Proof. The previously derived bounds on (3.34) are the first ingredient for (3.35) which

then follows from the (reasonable) assumptions on ∥Tϱ,n∥2 and ε in relation to σ̃
(n)
|Y | . This

includes the observation that the argument of arctan is larger than 1
2

√︂
4
5 such that we can

discard the contribution of arctan as a constant because of the monotony of arcus tangens.
The influence of the exponent a on the convergence rate of h(∥Tϱ,n∥a2) as ∥Tϱ,n∥2 → 0 is
straightforward. Finally, the rates for h(∥Tϱ,n∥2) in terms of ∥Tϱ,n∥2 and n can be directly

concluded from Lemma 3.2.8 where we have seen that σ
(n)
j ∈ O(N) = O(nd).

We remark that it appears difficult to find the exact minimum of h as in (3.35) which
is the reason why we circumvented the problem by simplifying it to the question of the
optimal order as ∥Tϱ,n∥2 → 0. As a consequence of this approach, it might be a good
choice in applications to take ε proportional to ∥Tϱ,n∥2 for both d = 1 and d = 2. With
this asymptotic parameter choice, Proposition 3.4.4 gives a convergence rate for

δ−d
∫︁
Bδ(y)

Nq̃ε,n(x)− εdx∫︁
T2 Nq̃ε,n(x)− εdx

→ 0

if ∥Tϱ,n∥2 → 0 or n→ ∞.

Example 3.4.5. In order to validate that this parameter choice rule for ε indeed minimises
our objective (3.34) at least in a simple example, we perturb the data on which Figure 3.6
is based.73 More precisely, we vary the size of the noise ∥Tϱ,n∥2 and set up the Christoffel
function q̃ε,n for fixed n = 24 and various ε ∈ [0, 6]. Here, the perturbed moments ρ̂(k)
are obtained by independent and identically distributed samples of a normally distributed
random variable and after storing them as entries of the Toeplitz matrix Tϱ,n subsequent
normalisation to a fixed value of ∥Tϱ,n∥2 is performed. For each of these configurations,
we approximately compute∫︁

[0,0.08]∪[0.45,0.58]∪[0.9,1]Nq̃ε,n(x)− εdx∫︁
T2 Nq̃ε,n(x)− εdx

(3.36)

in order to estimate how small the Christoffel function q̃ε,n is outside of the support of the
actual measure µ0 with suppµ0 = {1

6 ,
1
3 ,

3
4}. Additionally, the same analysis is performed

for fixed perturbation ∥Tϱ,n∥2 = ε = 1.5 and n ∈ {5, 6, . . . , 150} in order to check the rate
of O(n−3/2) presented for the contribution away from the support in Proposition 3.4.4. In

73Apart from the code described in Subsection 3.2.3, all code which is relevant for this work can be found
on GitHub, see https://github.com/MHockmann/Dissertation.git.
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Figure 3.7: Parameter choice for perturbed Christoffel function. The exact qε,n to the
ground truth µ0 was considered in Figure 3.6. In (a) we display q̃ε,n(x) −
miny q̃ε,n(y) for n = 24 and ε = ∥Tϱ,n∥2 = 1.5 while (b) compares (3.36) to
n−3/2 for ∥Tϱ,n∥2 = ε = 1.5 and n ∈ {5, 6, . . . , 150}. The optimal choice of ε

balancing effects if ε→ 0 and ε→ σ
(n)
3 is shown in (c) where for fixed n = 24

and various ε, ∥Tϱ,n∥2 ∈ [0, 6] we illustrate the value of (3.36). Moreover, we
highlight for each noise level the minimiser ε∗ of (3.36) (red crosses) and add
the barrier ∥Tϱ,n∥2 = max(4.1 − ε, 0) (magenta dots) in order to stress that
the region where Proposition 3.4.4 can be applied is below this barrier.

Figure 3.7, the results of this experiment are shown. From Figure 3.7 (a), we can derive
that q̃ε,n(x)−miny q̃ε,n(y) does nicely peak around the actual support of the ground truth
for n = 24 and ε = ∥Tϱ,n∥2 = 1.5. Furthermore, Figure 3.7 (b) indicates that the rate
of h(ε∗) ∈ O(n−3/2) seems to hold also for the original objective (3.34) while (c) strongly
supports the statement of Proposition 3.4.4 that the choice of ε = ∥Tϱ,n∥2 is optimal if

∥Tϱ,n∥2 = ε ≤ min
(︂
σ̃
(n)
|Y | , σ

(n)
|Y |

)︂
≤ min

(︂
σ
(24)
3 − ∥Tϱ,n∥2, σ(24)3

)︂
≈ min (4.1− ∥Tϱ,n∥2, 4.1) .

In particular, we see that fraction of mass away from the ground truth support increases
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3.4 Recovery from noisy data

for a non-optimal choice of ε and we observe that we can naturally only hope for full

recovery if ∥Tϱ,n∥2 ≤ σ
(n)
|Y | .

Even though one might hope to have a simple heuristic parameter choice rule because one
can derive ε∗ = ∥Tϱ,n∥2 without the knowledge of ∥Tϱ,n∥2 by minimisation of (3.36) with
respect to ε, this idea is misleading since the computation of (3.36) already includes the
knowledge on the underlying support. Therefore, one needs an estimate for the noise level
or an experienced practitioner in order to choose ε by an a-priori or heuristic parameter
choice rule in applications of this method.

Algorithm 1 Support approximation by Christoffel function

Input: Perturbed moment matrix Tn, estimate on contribution ∥Tϱ,n∥2 of the noise
1: Compute low rank approximation Tr̃,n by truncation of the SVD of Tn under the

constraint (3.31).
2: Choose ε according to Proposition 3.4.4.
3: Set up the Christoffel function q̃ε,n via (3.32).

Output: Visual representation of the support or parameter estimate by computing the
local maxima of q̃ε,n.

Finally, the method to compute the noisy Christoffel function as a good approximation
of the support of a discrete measure is summarised in Algorithm 1. Even if the algorithm
does not solve the parameter recovery problem but just gives a visual representation of
the measure, the convergence rate from Proposition 3.4.4 is especially remarkable because
it gives a completely deterministic result in a natural, multidimensional setting with well-
separated nodes and small noise. Moreover, the rate of O(n−3/2) is faster than the rate
of nonlinear polynomial interpolation by the signal polynomial, see Lemma 3.4.2, at the
cost of a nonlinear order in the noise level.74 We postpone more detailed examples for the
performance of the method to the next chapter.

74One should notice that this comparison is slightly flawed because the rates presented in Lemma 3.4.2
and Proposition 3.4.4 are not for the same kind of objective.
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4 Applications in microscopy

The second section of this chapter dealing with structured illumination microscopy is related
to our publications [70, 69] even though we analyse the problem in a different way in this
work where we focus on a condition analysis showing the gain in resolution obtained by
this method.

After observing a limit for the stable recovery of closely spaced positions from low pass
Fourier data in Chapter 2, we have seen in Chapter 3 that the presented approximation
method performs well if one works above this resolution limit. However, many biological
processes proceed on smaller spatial scales such that there has been ongoing research on
techniques to overcome the diffraction limit. In this work, we study two of them, namely
Stochastic Optical Reconstruction Microscopy (STORM) and Structured Illumination Mi-
croscopy (SIM), and analyse whether we can understand how these methods overcome the
diffraction limit which we defined in Chapter 2.

4.1 An approach to STORM analysis

In the late 20th and early 21st century, many approaches to overcome the diffraction limit
were proposed in microscopy and culminated into the awarding of the Nobel prize 2014
in Chemistry to Betzig, Hell and Moerner “for the development of super-resolved fluores-
cence microscopy”, cf. [115]. In particular, highly resolved localisation microscopy where
one wants to extract the positions of individual molecules through their light emission is
confronted with the problem that on one hand the diffraction limit makes it impossible
to recover the positions if the specimen is labelled densely with fluorescent molecules and
on the other hand a dense labelling is needed in order to see fine details in the probe.
According to [115], the main tool for the solution of this issue was Moerner’s analysis of
a labelling molecule which can be turned on and off when it is illuminated by light of a
certain wavelength. It was then Betzig who suggested and implemented a first method
which used these photoswitchable dyes such that out of a dense collection of labels only a
small and sparse subset is active at a certain time. This allows to extract the active subset
such that one obtains the full information of the dense set of emitters after repeating this
process at various time steps. While Betzig published this method as Photo-Activated
Localization Microscopy (PALM) in 200675, Rust et al. developed Stochastic Optical Re-
construction Microscopy (STORM) in the same year and this technique uses basically the
same idea with a different dye, see [139]. We visualise this concept of repeated recovery
of a stochastically chosen subset of the emitters in Figure 4.1.

Although the strategy behind localisation techniques like STORM appears quite natural,
we want to analyse how this method can overcome the diffraction limit as defined in
Chapter 2 and we devote the first part of the section to this question. Additionally, it
remains a computational challenge to extract the positions of the active molecules in every

75See [115] for a short overview over the development of super resolution fluorescence microscopy.
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4 Applications in microscopy

(a) (b) (c)

Figure 4.1: The principle of STORM for a toy example. Already for continuous mea-
surements of five blurred, densely spaced labels it is difficult to recover their
position (a) and this becomes even worse for realistic discrete data on a grid of
pixels in a digital camera (b). On the contrary, turning on only a fraction of
the emitters (green) while the rest is off (red) allows to extract the positions
of the two active molecules (c). Repeating this stochastic process of photo-
switching gives good estimates for the full set of emitter positions.

time step76 and to bring this information from all frames together in order to obtain a
highly resolved image of the specimen. In the second part of this section, we will use the
methods from Chapter 3, in particular the signal polynomial, in order to solve this task.

Gain in condition using STORM Similar to the previous considerations, we want to re-
cover µ =

∑︁
t∈Y αtδt where Y ⊂ T2 may now contain very closely spaced points compared

to the bandlimit n and the measurements are given by

gs(x) = ([Isµ] ∗ h) (x) =
∑︂
t∈Y

Is(t)αth(x− t), s = 1, . . . , S and x ∈ [0, 1]2

or equivalently one has access to the Fourier coefficientsˆ︃Isµ(k) :=∑︂
t∈Y

Is(t)αte
−2πitk, s = 1, . . . , S and k ∈ I = Z2 ∩Bn(0). (4.1)

Here, the number of frames S ∈ N can typically be of the order 105 while the most simple
way to describe the illumination Is(t) is by allowing Is(t) ∈ {0, 1} corresponding to the
off- and on-state of the photoswitchable dye respectively.77 As in our analysis of the
condition of the original super resolution problem, we mention that previous works can be
distinguished between stability analysis for algorithms solving the problem and the study
of the condition of the problem itself. A mixture of both approaches can be found in [100]
where a situation similar to (4.1) is referred to as “multi snapshot spectral estimation”.78

76Usually, the image at a fixed time is called frame.
77A comparison to [139, Fig. 1b], where the activity of a single label is displayed over time, shows that

the assumption Is(t) ∈ {0, 1} is reasonable because one can clearly distinguish two different levels of
activation alternating over time which correspond either to Is(t) = 0 or Is(t) = 1. Unfortunately,
our notation is not optimal at this point because t runs over the nodes in Y whereas the natural
connotation is that t represents a variable for time. On the contrary, the variable running through the
frames collected over time is denoted by s. Nevertheless, we keep the notation this way in order to be
consistent with the previous chapters.

78An important difference is that the weights are modelled as functions of s and t without the specific
product structure Is(t)αt.
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4.1 An approach to STORM analysis

On one hand, the authors derive a variant of MUSIC and ESPRIT for this situation and
prove its stability due to the repeated measurements allowing to resolve details finer than
the diffraction limit. On the other hand, they show using the Cramer-Rao bound in [100,
Thm.VI.3] that each unbiased estimator Ŷ for the node set Y has a covariance satisfying

E
[︂
md(Y, Ŷ )2

]︂
≥ c · (n · sepY )−2ℓ+2δ2

Sn3∥X∥2
(4.2)

where md denotes the matching distance between two finite sets with equal cardinality,
c > 0 is some constant, ℓ ∈ N is the size of the largest “clump”, i.e. the largest number of
points which are closer spaced than the diffraction limit, δ2 is the variance of the assumed
Gaussian noise and X is a (covariance) matrix containing the weights. It is remarkable
that their stability bound for ESPRIT [100, eq. (19)] matches this order in the number of
frames S, the noise level δ and the inverse of the super resolution factor n·sepY . However,
a drawback of this work is its limitation to the univariate case Y ⊂ T.

The work by Liu et al. [107] overcomes this issue and studies the problem (4.1) in the
univariate and bivariate case. Their approach combines the various illuminations Is(t)
as entries of a illumination matrix I of size S × |Y | and quantifies the gain in resolution
by examination of the spectral properties of this matrix. More precisely, the minimal
separation allowing for approximate recovery of µ with the correct number of parameters
is

sepY ≥ c|Y |2

n

(︃
δ

∥I∥∞,min · αmin

)︃1/|Y |
(4.3)

in the bivariate case if c > 0 is some constant, δ the noise level and the influence of
the illumination matrix is taken into account by ∥I∥∞,min = min∥x∥∞≥1 ∥Ix∥∞ ≥ σmin(I)√

S

(cf. [107, Thm. 3.1]). One should compare this bound with the result from [108, Thm. 2.3
and Prop. 2.4] which we described in (2.3) and this shows how the resolution limit can be
decreased by an illumination pattern such that ∥I∥∞,min is large. A comparison of (4.3)
with (4.2) indicates that the exponent 1/|Y | is not optimal if one includes knowledge about
the geometry of the nodes and taking 1/|Y | deteriorates the gain of resolution represented
by (4.3) if |Y | is very large as in STORM.

In order to contribute to these approaches of a theoretical explanation for the resolution
of STORM, we develop an argument which should be connected to our results on the
resolution limit for classical light microscopy in Chapter 2. The stochastic nature of
STORM makes it natural to study the resolution limit by the behaviour of the Cramer-
Rao bound for an unbiased estimator of the measure as we did in Subsection 2.2.3. There,
we assumed S = 1 and I1(t) = 1 for all t ∈ Y as well as uncorrelated Gaussian noise ρ̂ with
variance δ2 for the measurements of the moments of µ, see (2.27). Here, we will extend this
model by allowing each node to be in the on-state (Is(t) = 1) or the off-state (Is(t) = 0)
respectively and the choice should be made in a probabilistic manner. The simplest idea is
then to introduce a parameter p ∈ [0, 1] and to draw Is(t) for s = 1, . . . , S, t ∈ Y , mutually
independent from the Bernoulli distribution with parameter p, i.e. P(Is(t) = 1) = p and
the illumination at different frames or different nodes are assumed to be independent.79

Then, we define the following hierarchical model for STORM.

79We remark that especially the assumption of independence is a strong simplification. If we consider [139,
Fig. 1b] showing Is(t) for fixed t as a function of s, this indicates that there is a correlation between
consecutive values of Is.
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4 Applications in microscopy

Definition 4.1.1 (STORM-model). For each frame, we assume that the random variable

Zs,k, s = 1, . . . , S, k ∈ I = Z2 ∩Bn(0), measuring ˆ︃Isµ(k) follows the probability measure

P (Z ∈ [a, b] + i[c, d], Is = ιs) = P
(︂
CN (ˆ︃Isµ(k), δ2I) ∈ [a, b] + i[c, d]|Is = ιs

)︂
· P(Is = ιs)

where for ιs ∈ {0, 1}|Y |, |ιs| :=
∑︁

t(ιs)t, the last probability is P(Is = ιs) = p|ιs|(1−p)|Y |−|ιs|

and the conditional probability follows the complex normal distribution with density

fs,k(z) =
1

2π
exp

(︄
−
|z −

∑︁
t∈Y ιs(t)αte

−2πitk|2

2δ2

)︄

for z ∈ C. Letting the resulting measurements at different frames s or frequencies k be
independent allows to describe them by a large vector in CS·|I| whose joint density function
f does admit

log f(z, ι)=

(︄
−
|zs,k −

∑︁
t∈Y ιs(t)αte

−2πitk|2

2δ2
− log 2π + log

(︂
p|ιs|(1− p)|Y |−|ιs|

)︂)︄
k,s

∈CS·|I|

for z ∈ CS·|I| and ιs ∈ {0, 1}|Y | for s = 1, . . . , S.

Lemma 4.1.2. The Fisher information matrix (FIM) of the STORM-model has the form

JSTORM(α, Y ) = S

|Y |−2∑︂
i=0

(︃
|Y |
i+ 2

)︃
pi+2(1− p)|Y |−2−iJ(α, Y )

+

∑︁|Y |−1
i=0

(︁ |Y |
i+1

)︁
pi+1(1− p)|Y |−1−i −

∑︁|Y |−2
i=0

(︁ |Y |
i+2

)︁
pi+2(1− p)|Y |−2−i

δ2S−1|I|−1
· Cα

where J(α, Y ) ∈ R3|Y |×3|Y | is the FIM for the super resolution model from (2.27) and

Cα := diag

⎛⎜⎜⎝1, . . . , 1⏞ ⏟⏟ ⏞
|Y | times

,
∑︁

k∈I ∥k∥22
|I| ·

(︂
|αt1 |2, . . . , |αt|Y | |

2, |αt|1| |
2, . . . , |αt|Y | |

2
)︂

⏞ ⏟⏟ ⏞
twice the absolute value squared weight vector

⎞⎟⎟⎠ ∈ C3|Y |×3|Y |.

Proof. The derivatives contained in JSTORM(α, Y ) can be computed as(︃
∂ log f(z, ι)

∂αt′

)︃
k,s

= −δ−2ιs(t
′)ℜ

(︄
e2πit

′k

[︄
zs,k −

∑︂
t∈Y

ιs(t)αte
−2πitk

]︄)︄
,

(︃
∂ log f(z, ι)

∂(t′)j

)︃
k,s

= −δ−2ιs(t
′)αt′ℜ

(︄
2πikje

2πit′k

[︄
zs,k −

∑︂
t∈Y

ιs(t)αte
−2πitk

]︄)︄

for j = 1, 2. As in Corollary 2.2.23, the Fisher information matrix has the block structure

JSTORM(α, Y ) = EZ,I

⎡⎣⎛⎝G1G
∗
1 G2G

∗
1 G3G

∗
1

G1G
∗
2 G2G

∗
2 G3G

∗
2

G1G
∗
3 G2G

∗
3 G3G

∗
3

⎞⎠⎤⎦
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4.1 An approach to STORM analysis

and we investigate the top left block G1G
∗
1 at first. Entrywise, one obtains

(EZ,I [G1G
∗
1])t′,t′′ = δ−4EZ,I

∑︂
s,k

ιs(t
′)ιs(t

′′)ℜ

(︄
e2πit

′′k

[︄
zs,k −

∑︂
t∈Y

ιs(t)αte
−2πitk

]︄)︄

· ℜ

(︄
e2πit

′k

[︄
zs,k −

∑︂
t∈Y

ιs(t)αte
−2πitk

]︄)︄

= δ−4EZ,I
∑︂
s,k

ιs(t
′)ιs(t

′′)

(︄
1

2
cos(2π(t′′ − t′)k)

⃓⃓⃓⃓
⃓zs,k −∑︂

t∈Y
ιs(t)αte

−2πitk

⃓⃓⃓⃓
⃓
2

+
1

2
ℜ

⎛⎝e2πi(t
′′+t′)k

[︄
zs,k −

∑︂
t∈Y

ιs(t)αte
−2πitk

]︄2⎞⎠)︄

= δ−2EI
∑︂
s,k

ιs(t
′)ιs(t

′′) cos(2π(t′′ − t′)k)

because the expectation with respect to z over the absolute value squared gives 2δ2 whereas
the expectation over the square vanishes.80 The remaining expectation over I is by the
independence of the illumination at different frames given by

(EZ,I [G1G
∗
1])t′,t′′ = δ−2

∑︂
s,k

∑︂
ιs∈{0,1}|Y |

p|ιs|+1(1− p)|Y |−1−|ιs|ιs(t
′)ιs(t

′′) cos(2π(t′′ − t′)k)

= δ−2S
∑︂

ι∈0,1|Y |

p|ι|+1(1− p)|Y |−1−|ι|ι(t′)ι(t′′)
∑︂

k∈Z2∩Bn(0)

e−2πi(t′′−t′)k

= δ−2 (A ∗A )t′,t′′ ·

{︄∑︁|Y |−1
i=0

(︁ |Y |
i+1

)︁
pi+1(1− p)|Y |−1−i , t′ = t′′,∑︁|Y |−2

i=0

(︁ |Y |
i+2

)︁
pi+2(1− p)|Y |−2−i , t′ ̸= t′′,

where A ∈ C|I|×|Y | is the matrix from Corollary 2.2.23. With this observation at hand,
the same calculation can be made for the other blocks of JSTORM(α, Y ) such that we
can conclude that the entries of JSTORM(α, Y ) are the entries of J(α, Y ) times a con-
stant depending on whether we deal with an entry on or off the main diagonal of each
block. By symmetry, the main diagonals of the off-diagonal blocks are zero.81 Therefore,
JSTORM(α, Y ) and J(α, Y ) are a scalar multiple of each other except for the main diagonal
and this leads to the proposed statement.

Lemma 4.1.3. We can calculate the sums from the previous Lemma in closed form as

|Y |−2∑︂
i=0

(︃
|Y |
i+ 2

)︃
pi+2(1− p)|Y |−2−i = 1− (1− p)|Y | − |Y |p(1− p)|Y |−1,

|Y |−1∑︂
i=0

(︃
|Y |
i+ 1

)︃
pi+1(1− p)|Y |−1−i = 1− (1− p)|Y |.

Proof. The binomial coefficients satisfy(︃
|Y |
i+ 2

)︃
=

(︃
|Y | − 2

i

)︃
(|Y | − 1)|Y |
(i+ 2)(i+ 1)

and

(︃
|Y |
i+ 1

)︃
=

(︃
|Y | − 1

i

)︃
|Y |
i+ 1

80This is by definition of the complex normal distribution having relation matrix or pseudo-covariance
matrix equal to zero.

81The main diagonals have the form α2
t

∑︁
k∈Z2∩Bn(0)(2πik1)

j1(2πik2)
j2 for (j1, j2) ∈ {(0, 1), (1, 0), (1, 1)}.
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such that the result follows by the representation through the integrals pi+1

i+1 =
∫︁ p
0 x

idx

and pi+2

(i+1)(i+2) =
∫︁ p
0

∫︁ x
0 y

idydx together with the binomial theorem.

Theorem 4.1.4 (Condition of STORM). The STORM model admits

JSTORM(α, Y ) =S
(︂
1− (1− p)|Y | − |Y |p(1− p)|Y |−1

)︂
J(α, Y )

+ S|I|δ−2|Y |p(1− p)|Y |−1Cα

and thus the STORM model is well-conditioned in the sense of Definition 2.2.24 for illu-
mination parameter p ∈ (0, 1) regardless of the separation of Y .

Proof. The result for JSTORM(α, Y ) follows by Lemma 4.1.2 and Lemma 4.1.3 such that
the smallest eigenvalue of it can be estimated as

|I|−1λmin(JSTORM(α, Y )) ≥ δ−2S|Y |p(1− p)|Y |−1min(1, α2
min). (4.4)

As this lower bound is independent of n and positive for p ∈ (0, 1), Definition 2.2.24 is
fulfilled for any separation of the node set Y .

Apart from the natural observation that JSTORM(α, Y ) equals J(α, Y ) for S = 1 and
p = 1, we complete the analysis of the resolution of STORM with the following remarks.

Remark 4.1.5. (i) First of all, it makes sense that the lower bound (4.4) deteriorates
for p ∈ {0, 1} because one cannot hope for an improved condition if no labels or all
labels emit light at the same time. An intuition for the parameter p might be given
by the observation that |Y | ·p describes the expected number of active labels in each
frame. Setting this value to r, the lower bound on |I|−1λmin(JSTORM(α, Y )) from
(4.4) is

δ−2Sr

(︃
1− r

|Y |

)︃|Y |−1

min(1, α2
min) ≈ δ−2Sr

(︃
1− r

|Y |

)︃−1

e−rmin(1, α2
min)

if we think of |Y | being large. Hence, we see that the expected number of on-labels
per frame needs to be nicely balanced in order to obtain a large value for the lower
bound in (4.4).

(ii) As for Vandermonde matrices, there is some theory available for the smallest singular
value of a confluent Vandermonde matrix with clustering, univariate nodes, see [9,
100], showing that λmin(J(α, Y )) behaves like (n · sepY )4ℓ−2 if ℓ ∈ N is the size of
the largest cluster, e.g. cf. [9, Thm. 3.1], and we might conjecture a similar behaviour
for higher dimensions. Under the assumption of such a conjecture, one could then
obtain a bound similar to (4.2) with the same dependency on S but with a different
behaviour in the super resolution factor (n · sepY )−1. The latter might be because
(4.2) takes into account estimates for Y only whereas we consider estimators for Y
and the weights simultaneously.

(iii) Although we already mentioned limitations of the model, it is justified as it is able
to describe the gain of resolution through STORM and we want to highlight that it
especially reflects the intuition behind the parameter S. For example, it is natural
that the model gives JSTORM(α, Y ) = S · J(α, Y ) for p = 1 because the S-fold,
independent repetition of the original super resolution problem would lead to the
same amount of reduction in the variance of the noise, see [100, p. 4564].
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4.1 An approach to STORM analysis

Application of Christoffel function and signal polynomial to STORM data A wide
range of algorithms for the processing of STORM data is available. Most common might
be algorithms which use filters to detect the parts of each frame where molecules are ex-
isting and then find their sub-pixel positions by fitting a PSF into each of the regions.
For example, ThunderSTORM [125] belongs to this class of methods. In contrast to this,
mathematically more sophisticated algorithms using SDP optimisation or gradient meth-
ods like the sliding Frank-Wolfe method (e.g. [17, 96, 35]) or (multi-snapshot) subspace
methods (e.g. Li et al. [100]) appear to be used less frequently. Instead, recent approaches
involving the utilisation of deep neural networks have gained some attention, see [122, 121].
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Figure 4.2: STORM data set and results. An individual frame (a) and its reconstruction
via (1−p̃1,n)−1 (b) is shown in the first row. In the second row, the ground truth
containing a simulation of microtubules (c) taken from https://srm.epfl.

ch/Challenge is compared with our result obtained by taking the pixelwise
maximum of (1− p̃1,n)

−1 over all frames (d).

In order to test our approach from Chapter 3 to interpolate the support of a measure by
the signal polynomial or the Christoffel function, we analyse the test data set MT0.N1.HD
which is publicly available in the context of the EPFL SMLM challenge 2016, see https:
//srm.epfl.ch/Challenge. It consists of a stack of 2500 STORM images of size 64× 64
simulated from a ground truth distribution of fluorophores depicted in Figure 4.2 (c).
Exemplarily, the tenth frame is shown in Figure 4.2 (a) in order to give an idea on the
signal-to-noise-ratio (SNR) and the number of active molecules in each frame.
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4 Applications in microscopy

As for the previous numerical experiments, the code can be found on https://github.

com/MHockmann/Dissertation.git. At first and for each frame, one needs to compute
the moments of the underlying discrete measure such that deconvolving with a carefully
estimated PSF and thresholding the considered range of moments at some frequency n
are needed. The theoretical resolution limit gives a first idea how to choose the frequency
parameter n. While the size of the field of view in x and y direction is simulated to be
6400 nm and the wavelength of the emitted light is set to 660 nm, the simulation uses a
numerical aperture (NA) of 1.49 such that the theoretical bandlimit is expected82 to be at
1.49 · 2 · 6400660 ≈ 29. However, one has to make sure that the moments can be distinguished
from the noise such that we consider the moments µ̂(k) with frequencies k ∈ Z2 ∩ Bn(0)
and n = 20. For these frequencies, the moments are obtained with a Gaussian PSF whose
standard deviation is heuristically chosen such that the first image is nicely deconvolved.

The computation of the signal polynomial and of the Christoffel function demand for the
SVD of the moment matrix. As it is already costly to store this matrix of size |I|×|I| with
|I| = 317 ≈ π(n/2)2 for each frame, we just implement the matrix-vector multiplication
for Tn with any vector v by observing that

(Tnv)ℓ =

∫︂
T2

e−2πilx

⎛⎝ ∑︂
k∈Z2∩Bn/2(0)

e2πikxvk

⎞⎠dµ(x), ℓ ∈ Z2 ∩Bn/2(0), (4.5)

can be approximated efficiently by two FFTs without storage of Tn. This allows to calcu-
late only the first singular vectors and values in a sparse SVD by the MATLAB function
svds.

Algorithm 2 STORM processing with signal polynomial

Input: Images gs, s = 1, . . . , S, PSF h and bandlimit n
1: Obtain low order moments up to order n by deconvolution, set s = 1
2: while s ≤ S do
3: Compute sparse SVD of Tn by implementing (4.5) with FFTs
4: Truncate SVD at singular values below certain fraction of the largest singular value
5: Store evaluation of signal polynomial p̃1,n,s
6: s = s+ 1
7: end while
8: For each x compute maxs(1− p̃1,n,s(x))

−1

It turns out that the influence of the noise is larger than assumed in Section 3.4 such
that only the singular vectors corresponding to the largest singular values are not dom-
inated by noise. Hence, the regularisation parameter ε in q̃ε would need to be too large
in order to guarantee a well-localised interpolation of the support with the Christoffel
function. Additionally, the reconstructed intensities are not only secondary but also harm
the reconstruction of the full image because merging images with possibly very different
intensities is problematic. Consequently, we refuse to consider the Christoffel function
but use the interpolation property of signal polynomial, see Section 3.2. Its noisy version
p̃1,n(x) is large (with value slightly smaller than 1) if x is close to the support such that
we plot (1 − p̃1,n)

−1 for the representation of the measure.83 In fact, this is then similar

82By Abbe’s diffraction limit, the inverse of the bandlimit n admits n−1 = λ
2NA

if λ is the wavelength of
the emission light and taking into account the size of the field of view gives the mentioned estimate.

83We evaluate this super-resolved representation on a grid of 2048× 2048 pixels.
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4.2 Structured Illumination Microscopy

to MUSIC, cf. [144]. It can be seen in Figure 4.2 that this yields very highly resolved
representations of the expected ground truth even though choosing the numerical rank for
p̃1,n too small might lead to false negative identifications, i.e. there is the risk to identify
only four out of five active molecules in this frame. Nevertheless, balancing the risk of a
few false negatives in a stack of 2500 frames with the risk of false positive identifications
gives rise to a small value for the number of terms included in the signal polynomial.84

The ratio that each support identification should be represented in the overall approxi-
mation motivates to take for each pixel the maximum of (1− p̃1,n)

−1 over all frames and
the result is shown in Figure 4.2 (d).85 The outcome has a quality similar to the recon-
struction in [96] showing in particular at least in outlines the interweaving microtubules
on the right part of the image. Our approach which we summarise in Algorithm 2 needs
less than a second per frame such that parallelisation enables to solve the task within min-
utes and by improving the implementation further speed-up might be possible. However,
it appears not to be realistic to exceed the performance of an approach based on deep
learning like DeepSTORM, see [122, 121], with this kind of method.

4.2 Structured Illumination Microscopy

The idea to enhance the resolution of an optical system by manipulation of the illumina-
tion of the sample is used not only for stochastic illumination as in STORM but also for
illumination with deterministic patterns. An example for the latter is Structured Illumi-
nation Microscopy (SIM) introduced by Heintzmann [65, 66] and Gustafsson [62] where
typically a periodic, nonnegative illumination function

I(x) =
M∑︂

m=−M
bme

2πim(vx+φ), bm ∈ C, bm = b−m, v ∈ R2, φ ∈ T,M ∈ N,

is used in order to obtain measurements

g(x) = ([Iµ] ∗ h) (x) =
∑︂
t∈Y

I(t)αth(x− t)

at discrete values x = xj =
j
J , j ∈ {0, . . . , J − 1}2 and sampling parameter J ∈ N.86 Here,

the situation where M = 1 and thus I(x) = 1 + c0 cos(2π(vx + φ)) is called linear SIM
with modulation depth c0 ∈ (0, 1), while an illumination function with order M > 1 can
be generated for instance by utilisation of saturation effects and the resulting microscopy
technique is then called nonlinear SIM.87 The main idea of SIM is that modulation in
real space corresponds to translations in Fourier space such that by multiplication of the
ground truth µ with I the spectral data contains a collection of translates, i.e.

ĝ(k) =
M∑︂

m=−M
bme

2πimφĥ(k) · µ̂(k −mv), k ∈ Z2.

84We set the maximal number of considered singular vectors to eight.
85A more sophisticated statistical approach would be to take the second or third highest value as this

might reduce the probability of a false positive support identification. Taking the maximum value is
often called maximum intensity projection in volumetric imaging, e.g. see [153].

86Compare this to our setting in Subsection 2.2.4.
87For example, nonlinear SIM was introduced in [66, 63]. See [75] for a good overview over linear and

nonlinear SIM.
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4 Applications in microscopy

Despite the fact that ĥ is typically bandlimited, the signal g thus contains frequency
information of µ̂ outside of supp ĥ. Given the knowledge of the optical transfer function
(OTF) ĥ and measurements gl,s for various angles φs and pattern vectors vl it is then
possible to recover the spectrum of µ on a larger region in Fourier space. Schematically,
this is displayed in Figure 4.3 for the classical case of three shift vectors vl, l = 1, 2, 3.
The method to process the data is referred to as the Gustafsson algorithm and it is well
described in [75, 92]. However, we observed in [69] that this Gustafsson algorithm may

kx

ky

supp ĥ

kx

ky

v kx

ky
additional

spectral data

Figure 4.3: Linear 2D-SIM in frequency space: While conventional microscopy just allows
to reconstruct the spectrum µ̂ on supp ĥ (left), SIM-images contain shifted
spectral data in directions ±v (middle). By rotation of the pattern one obtains
additional data in various directions (right).

fail if the ground truth µ is a discrete measure.88 Additionally, the expression µ̂(k −mv)
for k ∈ Z2,m ̸= 0, v /∈ Z2, makes only sense in the non-periodic setting. Hence, we analyse
the problem in the setting from Subsection 2.2.4 and study how the gain in resolution
through SIM can be justified by our model of a diffraction limit.89 Furthermore, we want
to find a way to circumvent the issue with the Gustafsson algorithm for discrete measures.

Resolution analysis for SIM Let the PSF h admit the properties of Definition 2.2.29.
We generalise the model from Subsection 2.2.4 and assume access to discrete samples of

gl,s(x) = [h ∗ (Is,lµ)] (x) =

[︄
h ∗ (

1∑︂
m=−1

bme
2πi·mvl+2πimφsµ)

]︄
(x)

=
1∑︂

m=−1

e2πimφs
[︁
h ∗ (bme2πi·mvlµ)

]︁
(x) (4.6)

at all points x = xj =
j
J := (j1/J, j2/J)

⊤ ∈ [−1
2+∆, 12+∆]2 for j1, j2 ∈ Z with field-of-view

parameter ∆ > 0, angles φs, s = 1, . . . , 3, and three modulation vectors vl with indices
l = 1, 2, 3. We remark that this is the classical linear SIM setting of three orientations and
that our approach can be extended to nonlinear SIM or to different illumination patterns,

88Summarised briefly, the problem is that the decoupled data for µ̂(k +mv) is given on an integer grid
k ∈ Zd while the translation vector v generically satisfies v /∈ Z2. This means that an interpolation is
necessary in order to evaluate all decoupled data sets on the same grid. Therefore, the data is shifted
in Fourier space by multiplication with an appropriate modulation in real space but this works well
only for data with few oscillations in Fourier domain which is not the case for discrete measures.

89As ∥v∥2 ≤ n where n is the bandlimit of h, see [75, p. 5], linear SIM is often advertised to increase the
resolution up to a factor two while nonlinear SIM taking more translates into account can gain even
better resolution (e.g. cf. [62, 63]).
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4.2 Structured Illumination Microscopy

e.g. to the ones presented by Ingerman et al. in [75]. Moreover, we expect the angles φs
and pattern vectors vl to be known.90 Then, the classical step of the Gustafsson method
would be to compute (an approximation to) the Fourier transform of the data and to
disentangle the contribution of the different orders in m afterwards, cf. [75, 92]. However,
the signal is much more regular (in the sense that it contains only a few oscillations) in
spatial domain than in Fourier domain. Therefore, we propose to separate the components
before taking the Fourier transform. This will then also allow to circumvent the issues
with the Gustafsson algorithm in the next paragraph. For the analysis of the condition,
we compute

fl,m(xj) :=
1

3

3∑︂
s=1

e−2πimφsgl,s(xj) (4.7)

and obtain the bandlimited function values

fl,m(xj) =
[︁
h ∗ (bme2πi·mvlµ)

]︁
(xj) = bm

∑︂
t

αte
2πimvlth(xj − t)

= bm
∑︂
t

αt

∫︂
R2

ĥ(ξ)e−2πit(ξ−mvl)e2πiξxjdξ

= e2πimvlxj
∫︂
R2

bmĥ(ξ +mvl)µ̂(ξ)e
2πiξxjdξ (4.8)

for m = −1, 0, 1 if the angles φs, s = 1, 2, 3, are equidistant in T such that (4.7) is the
application of the inverse of the Fourier matrix

(︁
e2πimφs

)︁
1≤s,m≤3

.91 As in Subsection 2.2.4,

we denote the vectors of evaluations of gl,s and fl,m at xj by g̃l,s or f̃l,m respectively. This
allows to generalise the definition of the reconstruction map from Definition 2.2.30.

Definition 4.2.1 (SIM-Reconstruction from image data). For given PSF h as in Defini-
tion 2.2.29, illuminations Is,l, 1 ≤ l, s ≤ 3 as in (4.6), and q,∆ > 0 the linear SIM-image
data reconstruction map is R̃SIM : C9J → P (M(q)) ,

g̃ ↦→ argmin
ν∈M(q)

∥g̃ − h ∗ [Iν]∥2SIM,2 := argmin
ν∈M(q)

∑︂
s,l

∑︂
xj∈[− 1

2
+∆, 1

2
+∆]2

⃓⃓⃓
(g̃s,l)j − (h ∗ [Is,lν])(xj)

⃓⃓⃓2
where we consider in this section M(q) as the set of non-periodic, discrete measures with
support Y ⊂ [−1

2 ,
1
2 ]

2 having Euclidean separation mint,t′∈Y ∥t− t′∥2 at least q.

Definition 4.2.2 (Condition for SIM). We define the condition number of SIM as92

κ̃SIM(q,∆, J, h,M) := sup
µ∈M(q)
|Y µ|≤M

sup
ρ∈C9J
ρ ̸=0

inf
ν∈RSIM(((h∗[Iµ])(xj))j+ρ)

W1(ν, µ)

∥ρ∥SIM,2
.

The condition can then be analysed by the Cauchy-Schwartz inequality in the estimation∑︂
m,l

∑︂
xj∈[− 1

2
+∆, 1

2
+∆]2

|gl,m(xj)|2
3 =

∑︂
m,l

∑︂
xj∈[− 1

2
+∆, 1

2
+∆]2

|fl,m(xj)|2 ≥
∑︂

xj∈[− 1
2
+∆, 1

2
+∆]2

|∑︁m,l |fl,m||2
9

90How these parameters can be derived from the data is explained in [92].
91Note that this matrix is well conditioned such that the separation of the components does not affect the

analysis of the condition. Of course, the latter is also the motivation to achieve equidistant angles in
practice.

92As in Subsection 2.2.4, we use the 1-Wasserstein distance according to Proposition 1.4.5 with X =
[− 1

2
, 1
2
]2 equipped with the Euclidean distance. The norm ∥ · ∥SIM,2 was introduced in Definition 4.2.1.
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4 Applications in microscopy

and thus

∑︂
m,l

∑︂
xj∈[− 1

2
+∆, 1

2
+∆]2

|gl,m(xj)|2 ≥
∑︂

xj∈[− 1
2
+∆, 1

2
+∆]2

⃓⃓⃓⃓
⃓⃓∫︂

R2

⎛⎝∑︂
m,l

bmĥ(ξ +mvl)

⎞⎠ µ̂(ξ)√
3
e2πiξxjdξ

⃓⃓⃓⃓
⃓⃓
2

=
1

3

∑︂
xj∈[− 1

2
+∆, 1

2
+∆]2

|(hSIM ∗ µ)(xj |2

with the SIM-PSF hSIM(x) =
∑︁

m,l bme
2πimvlxh(x) satisfying supp ĥSIM =

⋃︁
m,lBn(mvl).

With this extension of the support of the OTF, it is straightforward to see that the
following definition of the diffraction limit for SIM being analogously to Definition 2.2.35
can be made precise as a corollary of Theorem 2.2.36.

Definition 4.2.3 (Diffraction limit of SIM). We define the optimal transition constant of
SIM as

Ω̃SIM,2 = inf

⎧⎨⎩q̃ > 0 : ∃β ∈ N lim
n→∞

sup
M≤(

√
dn/q̃)d

κ̃SIM

(︂
q̃
n ,∆, J, h,M

)︂
Mβ

<∞

⎫⎬⎭ .

Corollary 4.2.4. Let the wave vectors vl satisfy ∥vl∥2 = k0 ∈ [0, n]. Then, we have

1

n+ k0

√︃
4

3
≤ Ω̃SIM,2 ≤

1
√
3
2 k0 +

√︂
n2 − 1

4k
2
0

j1,1
π

for the optimal transition constant of linear SIM.

Proof. Because of hSIM(x) = I(x)·h(x) and k0 ≤ n, the estimates on the polynomial decay
of h and its radial derivative carry over to the ones for hSIM. In addition, the support of
ĥSIM admits

B√
3

2
k0+

√︂
n2− 1

4
k20
(0) ⊂ supp ĥSIM =

⋃︂
m,l

Bn(mvl) ⊂ Bn+k0(0)

and this allows to conclude the statement by Theorem 2.2.36.

This analysis shows nicely that our definition of the diffraction limit is also able to
explain the increased resolution by SIM. Finally, we remark that this result could similarly
be extended to nonlinear SIM. In this case, one would need to know the behaviour of the
coefficients bm and this is beyond the scope of this work.

SIM algorithm for discrete measures The approach to separate the spectral components
in the spatial domain as described in (4.8) is not only helpful for the analysis of the
condition of SIM but also beneficial for the derivation of a SIM-algorithm for sparse
measures. From (4.8), we can compute

∑︂
m,l

e−2πimvlxjfm,l(xj) =

∫︂
R2

⎛⎝∑︂
m,l

bmĥ(ξ +mvl)

⎞⎠ µ̂(ξ)e2πiξxjdξ

=

⎡⎣⎛⎝∑︂
m,l

bme
−2πimvlyh(y)

⎞⎠ ∗ (µ(y))

⎤⎦ (xj) = (hSIM ∗ µ)(xj)

126



4.2 Structured Illumination Microscopy

and thus one obtains a bandlimited version of µ with larger bandlimit than the original
data gl,s. From there it is then straightforward to obtain µ̂ on a larger grid of frequencies,
which allows the estimation of finer details. We summarise this in Algorithm 3. As an
alternative to the last step, one might use Chapter 3 in order to obtain an approximate
representation of µ by a polynomial or a rational function.

Algorithm 3 SIM with separation and recombination in spatial domain.

Input: gl,s(xj)
1: Separate components fl,m by DFT along the arc’s φs as in (4.7).
2: Compute

∑︁
m,l e

−2πimvlxjfm,l(xj).
3: Approximate its Fourier transform by FFT.
4: Obtain approximate values for µ̂ on extended, equispaced grid by deconvolution.
5: Use a standard algorithm like Matrix Pencil, MUSIC or ESPRIT in order to estimate

parameters of µ.
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Figure 4.4: Low-pass filter given by the
fraction in (4.10) for the ex-
periment in Example 4.2.6
where n = k0 = 10 and
θ = 10−3.

In contrast to Algorithm 3 one could also perform the recombination in Fourier domain
after doing the order separation in spatial domain. One would then compute an estimate
for the Fourier transform of e−2πimvl·f(·) followed by a Wiener filter in Fourier space.93

More precisely, one obtains the Wiener estimate

µ̂θ(ξ) :=

∑︁
m,l bmĥ(ξ +mvl)

[︁
e−2πimvl·fm,l(·)

]︁
(ξ)∑︁

m,l |bm|2|ĥ(ξ +mvl)|2 + θ
(4.9)

for some regularisation parameter θ > 0. By substituting (4.8), this reads

µ̂θ(ξ) =

∑︁
m,l |bm|2|ĥ(ξ +mvl)|2∑︁

m,l |bm|2|ĥ(ξ +mvl)|2 + θ
· µ̂(ξ) (4.10)

in the noise free case such that θ = 0 would lead to the perfect low-pass filter in this
situation. For a small but positive value of θ, the filter is displayed in Figure 4.4. To
sum up, the approach with the Wiener filter for recombination in Fourier domain is then
outlined in Algorithm 4.

93The Wiener filtering in Fourier domain is also part of the classical Gustafsson method, cf.[75, 92]. Its
background is that one is confronted with different estimates for the same moments of µ at frequencies
where the supports of the translated OTF overlap, see Figure 4.3. Wiener filtering allows to combine
these measurements by weighting each estimate by the value of the translated OTF at this frequency.
As described in [75], this is the optimal combination with respect to the noise.
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4 Applications in microscopy

Algorithm 4 SIM with separation in spatial and recombination in Fourier domain

Input: gl,s(xj), regularisation parameter θ
1: Separate components fl,m by DFT along the arc’s φs as in (4.7).
2: Compute the Fourier transform

[︁
e−2πimkl·fm,l(·)

]︁
.

3: Obtain a noise-optimal estimate for µ̂θ on enlarged set by Wiener filter (4.9).
4: Estimate parameters of µ or approximate µ by polynomial or rational function.

Remark 4.2.5. Algorithm 4 has the advantage that the recombination (4.9) is prov-
ably noise-optimal in Fourier domain whereas it comes with the drawbacks that we have
to compute more FFTs compared to Algorithm 3 and that we have to choose the reg-
ularisation parameter θ reasonably. One might define parameter choice rules by study-
ing the connection of (4.9) to a Tikhonov-regularised least squares problem. For those
problems, a large range of parameter choice rules is available. On the other hand, one
could also modify Algorithm 3 by allowing additional weights βm,l in the recombination∑︁

m,l βm,le
−2πimvlxjfm,l(xj) and optimising them subject to a desired criterion. However,

this is beyond the scope of this work.
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Figure 4.5: Results of Algorithm 3 and Algorithm 4 compared to Gustafsson algorithm for
simulated data consisting of ten nodes having uniform weights. For n = k0 =
10, we simulate noisy SIM images gl,s for three pattern directions vl and three
angles φs for each direction (a). From this, the result of the Gustafsson method
containing artefacts (b) as well as the results of the presented algorithms (c,d)
are shown. In (b),(c),(d) we represent the moments as the outcome of the
algorithms by their filtering through an apodisation function.
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4.2 Structured Illumination Microscopy

Example 4.2.6. In Figure 4.5, we compare the performances of Algorithm 3 and Algo-
rithm 4 with the outcome of the Gustafsson method in a simple example consisting of
a measure with ten randomly selected nodes and weights uniformly equal to one. The

simulated SIM images for n = k0 = 10 and coefficient vector b =
(︁
1
2 , 1,

1
2

)︁⊤
contain noise

where the noise is drawn from a uniform distribution with maximal intensity equal to
30% of the largest intensity of the signal. In order to compare the moments resulting as
estimates for µ̂ from the algorithms and as a way to reduce the ringing, we filter these
values with a window or apodisation function a and plot∑︂

k∈Z2

â(k)µ̂(k)e2πikx

via the FFT for each of the estimates µ̂. Therein, the apodisation function is chosen such
that â goes to zero smoothly next to the maximal observed frequency and more precisely

â(k) = exp
(︁
(1.9n)−1 − (0.1(1.9 · n− ∥k∥22)−1)

)︁
for ∥k∥2 ≤ 1.9 ·n and zero else.94 As described before, the Gustafsson methods fails to give
a meaningful result because we use pattern vectors vl /∈ Z2. In contrast to this, Algorithm 3
and Algorithm 4 provide higher resolved representations of the measure compared to the
SIM data such that a gain in resolution is indeed observable. In this example, Algorithm 4
seems to produce less pattern artefacts than Algorithm 3 even though the differences
appear to be marginal.

94Simpler choices like triangular windows with less regularity are possible as well, e.g. cf. [75].
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[15] Å. Björck. Numerical methods in matrix computations, volume 59 of Texts in Applied
Mathematics. Springer, Cham, 2015.

[16] M. Born and E. Wolf. Principles of optics. Pergamon Press, sixth edition, 1986.
Reprinted (with corrections).

[17] K. Bredies and H. K. Pikkarainen. Inverse problems in spaces of measures. ESAIM
Control Optim. Calc. Var., 19(1):190–218, 2013.

[18] P. Breiding and N. Vannieuwenhoven. The condition number of Riemannian ap-
proximation problems. SIAM J. Optim., 31(1):1049–1077, 2021.

[19] P. Bürgisser and F. Cucker. Condition, volume 349 of Grundlehren der mathema-
tischen Wissenschaften. Springer, Heidelberg, 2013.

[20] P. L. Butzer and R. J. Nessel. Fourier analysis and approximation. Pure and Applied
Mathematics, Vol. 40. Academic Press, New York-London, 1971.

[21] C. A. Cabrelli and U. M. Molter. The Kantorovich metric for probability measures
on the circle. J. Comput. Appl. Math., 57(3):345–361, 1995.

[22] E. Candès and C. Fernandez-Granda. Towards a mathematical theory of super-
resolution. Comm. Pure Appl. Math., 67(6):906–956, 2013.
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[98] N. Lev and J. Ortega-Cerdà. Equidistribution estimates for Fekete points on complex
manifolds. J. Eur. Math. Soc. (JEMS), 18(2):425–464, 2016.

[99] W. Li, W. Liao, and A. Fannjiang. Super-resolution limit of the ESPRIT algorithm.
IEEE Trans. Inform. Theory, 66(7):4593–4608, 2020.

[100] W. Li, Z. Zhu, W. Gao, and W. Liao. Stability and super-resolution of MUSIC
and ESPRIT for multi-snapshot spectral estimation. IEEE Trans. Signal Process.,
70:4555–4570, 2022.

[101] W. Liao and A. Fannjiang. MUSIC for single-snapshot spectral estimation: stability
and super-resolution. Appl. Comput. Harmon. Anal., 40:33–67, 2016.

[102] F. Littmann. Quadrature and extremal bandlimited functions. SIAM J. Math.
Anal., 45(2):732–747, 2013.

[103] P. Liu. Mathematical Theory of Computational Resolution Limit and Efficient Fast
Algorithms for Super-resolution. PhD thesis, Hong Kong University of Science and
Technology, 2021.

[104] P. Liu and H. Ammari. Nearly optimal resolution estimate for the two-dimensional
super-resolution and a new algorithm for direction of arrival estimation with uniform
rectangular array. arXiv: Image and Video Processing, 2022.

[105] P. Liu and H. Ammari. Super-resolution of positive near-colliding point sources.
arXiv: Image and Video Processing, 2022.

[106] P. Liu, Y. He, and H. Ammari. A mathematical theory of resolution limits for
super-resolution of positive sources. arXiv: Image and Video Processing, 2022.

[107] P. Liu, S. Yu, O. Sabet, L. Pelkmans, and H. Ammari. Mathematical foundation
of sparsity-based multi-illumination super-resolution. arXiv: Image and Video Pro-
cessing, 2022.

[108] P. Liu and H. Zhang. A mathematical theory of computational resolution limit in
multi-dimensional spaces. Inverse Problems, 37(10):Paper No. 104001, 30, 2021.

[109] P. Liu and H. Zhang. A theory of computational resolution limit for line spectral
estimation. IEEE Trans. Inf. Theory, 67(7):4812–4827, 2021.

[110] D. Manolakis, V. Ingle, and S. Kogon. Statistical and Adaptive Signal Processing.
ARTECH, 2005.

[111] S. Marx, E. Pauwels, T. Weisser, D. Henrion, and J. Lasserre. Semi-algebraic ap-
proximation using Christoffel-darboux kernel. Constr. Approx., 54:391–429, 2021.

[112] H. Mehta. The L1 norms of de la Vallée Poussin kernels. J. Math. Anal. Appl.,
422(2):825–837, 2015.

[113] H. N. Mhaskar. Super-resolution meets machine learning: approximation of mea-
sures. J. Fourier Anal. Appl., 25(6):3104–3122, 2019.

137



Bibliography

[114] B. S. Mityagin. The zero set of a real analytic function. Mat. Zametki, 107(3):473–
475, 2020.
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t node of discrete measure
δt Dirac measure at t
Y support of discrete measure
ρ, ρ̂ noise in spatial or Fourier domain
ϱ noise level
∥ · ∥Td wrap around distance
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Glossary of symbols

q, sepY wrap around separation
clusepY cluster separation
M(q) q-separated complex measures

M̂n(q) truncated moment set
M upper bound on number of nodes
αmin, αmax smallest and largest weight in absolute value
Y1, Y2, Y3 decomposition of node sets from Theorem 2.2.8

E expected value
J(θ) Fisher information matrix
CN complex normal distribution
S number of frames

n bandlimit or parameter for truncation of moments
I sampling set I = {k ∈ Zd : ∥k∥2 ≤ n}
R reconstruction map

R̃ iamge data reconstruction map
Ωd optimal transition constant
J sampling parameter
∆ field-of-view parameter
n′ = γn truncation parameter in Fourier domain

Ω̃2 optimal transition constant for image recovery problem

Ω̃SIM,2 optimal transition constant for SIM

Pn,d,∞ space of polynomials with maximal degree n
Pn,d,2 space of polynomials with Euclidean degree n

N dimension of Pn/2,d,2

Dn Dirichlet kernel
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Fn Fejér kernel
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Frad,n(x) radial Fejér kernel
pn convolution of µ with Fn
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B1 Bernoulli spline of degree 1

e
(n)
x vector of monomials

p vector of coefficients of general polynomial p
V (kerTn) variety spanned by polynomials in kerTn
p1,n signal polynomial
p̃1,n perturbed signal polynomial
p0,n noise polynomial

u
(n)
j , v

(n)
j polynomials with coefficients u

(n)
j or v

(n)
j respectively

qµ Christoffel function
qε,n regularised Christoffel function
q̃ε,n perturbed, regularised Christoffel function
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