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A B S T R A C T

The concepts of classical graph theory offer a framework for modeling problems
from almost all areas of life. Temporal graphs in particular provide a way to
represent and analyze dynamic data, enabling algorithmic solutions to problems
dealing with structures that change over time. For the extension to time-related
data, different modifications of the graph concept can be useful, depending on
the optimization goal. In this work, the focus is on the analysis of problems on
finite sequences of graphs whose sequence members are to be read as snapshots
of the same graph at different points in time.

The key topic is to solve a given combinatorial optimization problem on
a sequence of graphs such that the resulting solution sequence satisfies two
conditions: (i) each solution is optimal for its respective graph and (ii) solutions
of successive graphs are as similar as possible. Problems of this abstract form
are called multistage problems, since their instances consist of multiple stages.

First, the classical assignment problem Maximum Matching is exemplarily
transferred into such a multistage setting. For the two resulting problems MIM
and MUM various approximation algorithms and reductions are developed. The
algorithmic approaches for MIM can be generalized to apply to a broad class of
multistage formulations of classical problems in graph theory. This general class
of problems on multistage graphs, the so-called Multistage Subgraph Problems, is
the focus of the second part of this thesis. After discussing the corresponding
definitions and adapted algorithms, we present numerous examples of MSPs,
where these adapted algorithms can be applied. As we also study the complexity
of each example, this provides an overview of the similarities and differences
of such multistage problems. In a third part, the performance of the approx-
imation algorithms in practice is investigated by applying them to example
instances for the Multistage Shortest Path problem. A comparison is made
with derived heuristics and an exact (but slow) algorithm, investigating their
respective solution quality and running time. Additional problem-specific results
on Multistage Shortest Path and Multistage Minimum Weight Spanning

Tree complete the thesis.
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Z U S A M M E N FA S S U N G

Die Konzepte der Graphentheorie ermöglichen die Modellierung von Problem-
stellungen aus nahezu allen Lebensbereichen. Insbesondere lassen sich mit der
Darstellung dynamischer Daten als temporale Graphen Probleme darstellen, ana-
lysieren und algorithmisch lösen, die auf zeitveränderlichen Strukturen basieren.
Für die Erweiterung auf zeitbezogene Daten können, abhängig vom Optimie-
rungsziel, verschiedene Modifikationen des Graphenkonzept sinnvoll sein. In
dieser Arbeit liegt der Fokus auf der Analyse von Problemen auf endlichen
Folgen von Graphen, deren Folgenglieder zu lesen sind als Momentaufnahmen
desselben Graphen zu unterschiedlichen Zeitpunkten.

Das Kernproblem lautet, ein gegebenes kombinatorisches Optimierungspro-
blem auf einer Folge von Graphen so zu lösen, dass die resultierende Folge von
Lösungen zwei Bedingungen entspricht: (i) Jede Lösung ist optimal für ihren
jeweiligen Graphen und (ii) Lösungen von aufeinanderfolgenden Graphen sind
sich möglichst ähnlich. Probleme dieser abstrakten Form werden, da ihre Instan-
zen aus mehreren aufeinanderfolgenden Stufen bestehen, als Multistage-Probleme
bezeichnet.

Zunächst wird exemplarisch das klassische Zuordnungsproblem Maximum

Matching in ein solches Multistage-Setting übertragen. Für die zwei daraus
resultierenden Problemstellungen MIM und MUM werden diverse Approxi-
mationsalgorithmen und Reduktionen entwickelt. Die algorithmischen Heran-
gehensweisen für MIM lassen sich verallgemeinern zur Anwendung auf eine
breite Klasse an Multistage-Formulierungen von klassischen Problemen der
Graphentheorie. Diese allgemeinen Problemklasse, die sogenannten Multistage-
Teilgraph-Probleme, stehen im Fokus des zweiten Teils dieser Arbeit. Nach einer
Diskussion der entsprechenden Definitionen und dem Anpassen der Algorith-
men werden zahlreiche Beispiele für solche Problemstellungen vorgestellt, für
die diese anwendbar sind. Indem auch die Komplexität dieser Beispiele unter-
sucht wird, entsteht ein Überblick über die Gemeinsamkeiten und Unterschiede
solcher Multistage-Problemstellungen. In einem dritten Teil wird die Performanz
der Approximationsalgorithmen in der Praxis untersucht, indem diese auf Bei-
spielinstanzen für das Problem Multistage Shortest Path angewendet werden.
Im Vergleich mit abgeleiteten Heuristiken und einem exakten (aber langsamen)
Algorithmus erfolgt eine Einordnung in Bezug auf Lösungsgüte und Laufzeit.
Ergänzende problemspezifische Ergebnisse zu Multistage Shortest Path und
Multistage Minimum Weight Spanning Tree schließen die Arbeit ab.
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1
I N T R O D U C T I O N

As you discover
changing world

You can’t be guessing
You must be for sure

— Earth, Wind & Fire: The Changing Times [EWF81]

Most disciplines in science and engineering devise models of the world to better
understand it. One of the most successful models in computer science is that of
graphs, capturing objects as vertices and relationships between pairs of objects as
edges connecting those vertices. Put simply, a graph is a mathematical model of
a network-like structure, providing plentiful applications. A graph can model,
for example,

• a group of people sharing contact data,

• train stations and tracks connecting them,

• computers that communicate via network cables,

• protein structures that are related.

However, as many real world situations are subject to change over time, a static
model is often not sufficient and a dynamic model is needed to reflect those
changes. Natural examples for graphs that vary over time are communication
networks where the vertices represent cell phones and cell phone towers, or a
set of mobile agents such as drones or robots. If two vertices are close enough to
communicate directly, the graph contains an edge between those vertices. But
since the agents are moving independently, the graph is continuously changing
whenever two vertices lose contact or establish new connections. Figure 1.1
shows an example of such a graph.

In this chapter, we give a brief overview of various ways to enrich graph
models with temporal data and the problems they are typically associated with.
We continue with a more detailed description of the class of multistage problems
and introduce some notation that will be used throughout this thesis.

1.1 temporal graphs

In general, every aspect of a graph may be subject to change: edges or even
vertices may appear or disappear, and also edge weights (or vertex weights, if
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Figure 1.1: An example of a temporal graph, where each vertex represents a person and
edges change over time. The first three graphs each show a snapshot of the
temporal graph at three specified points in time. The fourth graph shows
the whole temporal graph at a glance: each edge is stylized according to
the point in time at which it occurs; multiple occurrences are displayed by
parallel edges. This is the representation of temporal graphs that we will
mainly use in the following.

there are any) may have time-dependent numerical values. To avoid confusion, it
is typically understood that the vertices have a unique identifier that is consistent
over the whole lifetime of a temporal graph. Edges, however, may be treated
differently, depending on the exact problem description. For example, in [KKK00;
CFQ+12] each edge is equipped with a list of timestamps denoting the points in
time at which the edge is present in the graph. Some models use real-valued
time intervals [AMS+21], some consider periodic patterns [FMS09], some use
draw a random graph at each point in time [CRR+22], and the common model
in the long established field of dynamic graph theory is to consider a stream of
update information encoding incremental changes of the graph [ST81; Epp91;
HHS22]. Since we do not aim for algorithms with highly efficient running
time or space usage in this thesis, we will model temporal graphs in their
most basic form as multistage graphs1, where a full copy of the current graph is
explicitly given for each point in time (see Section 1.3 for specific definitions).
Casteigts [Cas18] provides a survey on various temporal graph representations.
Other good introductions showcasing the variety in temporal graph research
are the works of Holme and Saramäki [HS19] and Michail [Mic16].

As rich in variety as models and encodings of temporal graphs are, so are
the problem types that are typically considered. Some questions arise only
by examining the specific structures of temporal graphs, e.g., determining
temporal graph parameters [BM23; CFQ+12], finding recurring patterns of
subgraphs [PBL17], identifying a subsequence of graphs with a generic graph
property [BKK+19] or designing graphs that have some desired temporal prop-
erty [AGM+17; MMS19]. Other questions are akin to classical problems from
graph theory, but introduce new temporal constraints. When tasked to find an
optimal path2 between two vertices, the challenge is that edges may appear or

1 The term multistage graph is also sometimes used for leveled graphs, whose vertices are partitioned
into levels, and edges join consecutive levels, see, e.g., [CLX+21]. That definition and results
thereon are unrelated to our scenario.

2 Depending on the circumstances one might want to minimize the time between departure and
arrival, or the time spent traveling (i.e. ignoring waiting times between routes); others might
prefer a path with latest departure or earliest arrival.
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disappear during the time it takes to travel from one vertex to the next. This
gives rise to various definitions of temporal reachability, temporal distance and
different notions of temporal paths or journeys [WCH+14; KKK00; CCS22; CPS21;
Oet22; XFJ03].

Many other temporal graph problems are concerned with generalizations of
classical graph problems like Vertex Cover or Matching. In dynamic graph
theory [HHS22], the typical goal is to—possibly after each graph modification—
update a solution (online) as quickly as possible, not necessarily caring about
the specific amount of change made to the solution. In other (offline) problem
situations, solutions are allowed to “spread out” along the time dimension, i.e.,
a single solution is not restricted to a point in time but covers a certain time
window. For example, the Temporal Matching problem [BBR20] asks for a set
of time-edges (i.e., an instance of an edge at a single point in time) such that in
each time window of a given size, no two selected time-edges share a vertex.
Other examples of similar problems can be found, e.g., in [Mol20; AMS+20]. A
third flavor of temporal graph problems are so-called multistage problems. As
they are the main focus of this thesis, they deserve a more detailed introduction.

1.2 multistage problems

In multistage problems (first introduced by Gupta, Talwar, and Wieder [GTW14],
and Eisenstat, Mathieu, and Schabanel [EMS14]), we consider a multistage
graph as a sequence of graphs, where each stage, i.e., each member of the
sequence, represents the respective graph at a distinct point in time. The goal is
to solve some classical graph problem independently for each stage, resulting
in a sequence of solutions. Such problems arise, e.g., when a certain task has
to be performed multiple times at discrete points in time, but the underlying
graph instance has received several modifications between two such time points.
Most importantly, additionally to the original problem’s objective per stage,
the stage-wise objective, in multistage problems we also aim to maximize the
similarity between the individual stages’ solutions—the transition quality. The
challenge is to find solutions that are both “good” when viewed locally and
work well together from a global perspective. In general, one may not want to
yield the highest possible transition quality between two stages if this would
cause an exorbitant loss of quality in other stage transitions.

Having two distinct optimization goals at hand, one typically considers a
weighted sum of both measures to allow trade-offs between the quality of
the individual solutions and the similarity of those solutions [GTW14; EMS14;
HHK+21; BEK21; BEL+18; BES+21; BET22; FNR+22]. More formally, the typical
objective is to optimize a combined quantity O + T that measures both the
objective value O of the individual per-stage solutions and the quality T of
the transitions between subsequent solutions.3 For example, consider a mul-
tistage variant of the Maximum Matching problem: Given a sequence of τ

3 Although most works aim for transitions where subsequent solutions should be similar, the
inverse objective of pursuing dissimilar transitions has also been studied [FNS+20; KRZ21].
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graphs (Gi)
τ
i=1, find a matching Mi for each Gi such that O + T is maximized.

Here, O := ∑τ
i=1 |Mi| is the sum of the individual matchings’ cardinalities

and T := ∑τ−1
i=1 |Mi ∩Mi+1| is the sum of transition qualities measured as the

cardinality of edges that are common between subsequent solutions.
Interestingly, most polynomial-time solvable graph problems (such as shortest

paths, matchings, minimum cuts, etc.) yield NP-complete problems in a multi-
stage setting: this often already occurs when only two stages are considered, and
independent on whether one restricts themselves to optimal solutions per stage
or not [Flu21; FNS+20; GTW14; HHK+21]. There is some work on identifying
parameters that allow for fixed-parameter tractability of NP-hard multistage
problems [FNS+20; BFK22; FNR+22; Flu21; FK22; HHK+21].

Another popular approach to tackle such problems are approximation algo-
rithms [GTW14; BEK21; BEL+18; BES+21; BET22]. In an approximation setting,
the combined objective allows to trade suboptimal transitions for suboptimal
solutions in some stages. This is exploited, e.g., in a 2-approximation for a
multistage Vertex Cover problem [BEK21] and a 3-approximation for a 3-stage
Minimum Weight Perfect Matching problem on metric graphs [BEL+18].
In an online algorithm setting, the authors of [BES+21] show several upper
and lower bounds for the competitive ratios of online algorithms considering a
general type of multistage subset maximization problems; however, their algorithms
are not considering running times and depend on polynomial oracles for the
underlying single-stage problems.

To the best of our knowledge, all approximation results in this setting discuss
the combined objective function that reflects a trade-off between the quality of
each individual solution and the cost of the change over time (see, e.g., [GTW14;
BEL+18]). However, this is a drawback if one requires each stage’s solution to
attain a certain quality guarantee, such as optimality.

optimal solutions . Sometimes it is desired to guarantee optimal solutions
in each stage, i.e., fixing O to its maximum value. Then the sole goal is to
maximize T by picking a suitable optimal solution (out of the set of possible
optimal solutions) per stage.

A natural approach to ensure this would be to adjust the weighting—e.g., by
multiplying O with some large constant λ—such that the stage-wise objective O
would contribute significantly more to the global objective than the transition
quality T. However, considering approximation algorithms, this technique has a
clear drawback. If λ is sufficiently large, an approximation algorithm would not
need to consider the transition qualities at all, because it may achieve a large
enough objective value from maximizing the stage-wise objectives. If on the
other hand λ is only slightly smaller than necessary, there could be no guarantee
that the solution would not sacrifice some optimal solutions for large gains in
the transition quality.

Contrasting the combined objective, the focus of this thesis is to break up the
interdependency between O and T for several types of multistage problems and
require O to be optimal. Hence, any feasible solution must necessarily consist
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of optimal solutions for each individual stage. Regarding exact algorithms,
this problem type can be treated as a special case of the respective problem
with combined objective, where O is scaled up as discussed above. However,
approximation guarantees for the combined-objective setting are in general not
transferable to this special case as the approximation may require non-optimal
solutions in individual stages; we will see a detailed example in Section 2.3.
Thus, approximation guarantees for this problem type provide a better measure
for the difficulty in approximating the temporal transition cost. Although the
concept of fixing O to optimality is novel, there exist some results on multistage
problems where O is a constant due to the underlying single-stage problem. In
particular, Multistage 2-Sat [Flu21] and Multistage 2-Coloring [FK22] have
been studied from a parameterized complexity viewpoint.

1.3 definitions and notation

For n, n′ ∈ Z, let [n, n′] := {n, n+ 1, . . . , n′} ⊂ Z denote the integer range from n
to n′. As we are mostly considering natural numbers, we will make extensive use
of the shorthand notations JnK := [0, n] and [n] := [1, n]. An indexed sequence
of n objects (x1, x2, . . . , xn) is thus concisely denoted as (xi)i∈[n]. For some logical
statement φ, the indicator function 1

(︁
φ
)︁

returns 1 if φ is satisfied and 0 otherwise.

graphs . For a graph G = (V, E), we refer to its vertices V(G) := V and
edges E(G) := E collectively as elements X(G) := V ∪ E. For a set W ⊆ V of
vertices, let δ(W) :=

{︁
uv ∈ E | u ∈W, v ∈ V \W

}︁
denote the set of its cut edges;

for a singleton {v}, we may write δ(v) instead of δ({v}). For a set F ⊆ E of
edges, let V(F) := {v ∈ V | δ(v) ∩ F ̸= ∅} denote its incident vertices. For a
vertex v ∈ V, |δ(v)| is the degree of v.

A k-path is a connected graph with k edges where exactly two vertices have
degree 1 and all other vertices have degree 2. A k-cycle is a connected graph
with k edges where every vertex has degree 2. A k-cycle is odd (even) if k is odd
(even, respectively). A graph that does not contain any odd cycle as a subgraph
is bipartite.

multistage graphs . A multistage graph is a finite sequence of τ > 1
graphs G = (Gi)i∈[τ], where the vertices of each member are chosen from a
common vertex superset V(G). The graph Gi =: (Vi, Ei) is the ith stage of G
(sometimes also referred to as a snapshot). The number τ of stages is sometimes
called the lifetime of G; if τ is assumed constant, G is a τ-stage graph.

Considering some fixed multistage graph, E∩ :=
⋂︁

i∈[τ] Ei denotes the set
of edges that are common to all stages and E∪ :=

⋃︁
i∈[τ] Ei the entirety of its

edges. The graph G∪ := (V(E∪), E∪) is the union graph of G (sometimes also
called the underlying graph). Given a multistage graph, its intertwinement χ(G) :=
maxi∈[τ−1] |Ei ∩ Ei+1| is the maximum commonality between the edge sets of two
subsequent stages. It thus provides a coarse measure for the similarity between
the stages of a multistage graph.
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approximation. An approximation algorithm A, or simply approximation,
outputs a feasible, but not necessarily optimal solution for some optimization
problem P in polynomial time. Considering an instance I of P , opt(I) denotes
the optimal objective value w.r.t. I and apx(I) the objective value thatA computes
on input I. If P has a maximization (minimization) goal, the approximation
ratio of A is the infimum (supremum, respectively) of apx(I)/opt(I) over all
instances I of P .

1.4 organization and original publications

This thesis is structured as follows. In Part I we develop several approxima-
tion results for two multistage matching variants. It is based on joint work
with Markus Chimani and Tilo Wiedera that has been published in the confer-
ence proceedings of the 32nd International Workshop on Combinatorial Algorithms
(IWOCA 2021) [CTW21] and in a special issue of Algorithmica [CTW22].

In Part II, some of the previous findings are generalized to a broad class
of similar multistage problems. We define the necessary notational machinery,
reiterate the generalized results, apply them to some example problems, and
discuss the NP-hardness of said examples. This part is based on joint work with
Markus Chimani and Tilo Wiedera that has been accepted for publication in
the conference proceedings of the XII. Latin-American Algorithms, Graphs and
Optimization Symposium (LAGOS 2023).

The practical value of this approach is studied in Part III by conducting
algorithmic experiments using the example problem of finding a shortest s-t-
path. A main focus of this part is the work on identifying suitable instances
and their discussion. While the problem is not directly motivated from practice,
the experiments do provide some foundation for further theoretical research
directions. These results are based on joint work with Markus Chimani that
has been published in the conference proceedings of the 2nd Symposium on
Algorithmic Foundations of Dynamic Networks (SAND 2023) [CT23].

Finally, in Part IV, we give a brief overview of the main findings of the previous
parts, present further, yet unpublished results on closely related problems and
tie everything together by discussing some open questions.



Part I

M U LT I S TA G E P E R F E C T M AT C H I N G S





The good news? It’s just a matter of time before
you make a connection with someone new.

— Tinder FAQ: Problems with Matches [Tin23]

2
B A C K G R O U N D

This part is based on joint work with Markus Chimani and Tilo Wiedera that has
been published in the conference proceedings of the 32nd International Workshop
on Combinatorial Algorithms (IWOCA 2021) [CTW21] and in a special issue of the
Algorithmica journal [CTW22].

A classical problem in computer science is that of computing a matching, i.e.,
a collection of edges that are independent in the sense that they do not share
any vertices. While there are many practical applications, the problem is also
well-known for its significant impact on research in theoretical computer sci-
ence [LP86]. Even before being investigated in one of the first publications
on multistage problems [GTW14], time-dependent variants of the traditional
matching problems (perfect matching, maximum weight matching, etc.) have
been considered in various disciplines, see Section 2.2. From a complexity point
of view, the problem is particularly interesting as optimality for a single stage
would be obtainable in polynomial time, but all known multistage variants
are NP-hard already for two stages. There are several known approximation
algorithms for multistage matching problems [BEL+18]; however, they all follow
the trade-off paradigm. In this part of the thesis, we are concerned with main-
taining a perfect matching on a multistage graph, such that the changes between
consecutive matchings are minimized. More precisely, we aim to maximize the
intersections, or minimize the unions between consecutive matchings.

We show that these problems are NP-hard even in very restricted scenarios. As
our main contribution, we present the first non-trivial approximation algorithms
for these problems: On the one hand, we devise a tight approximation on
2-stage graphs. On the other hand, we propose general methods to deduce
multistage approximations from blackbox approximations on 2-stage graphs.
After showcasing the complexities of our problems (Chapter 3), we will devise
efficient approximation algorithms (Chapter 4).

2.1 definitions and preliminaries

A set M ⊆ E of edges is a matching if every vertex is incident to at most one
edge of M; it is a perfect matching if |δ(v)∩M| = 1 for every v ∈ V. Considering
a graph with positive edge weights w : E→ N>0, a matching M has maximum
weight if there is no matching M′ with ∑e∈M′ w(e) > ∑e∈M w(e).
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A multistage perfect matching in a multistage graph G = (G1, . . . , Gτ) is a
sequenceM := (Mi)i∈[τ] such that for each i ∈ [τ], Mi is a perfect matching in
stage Gi. A multistage graph is spanning if Vi = V for each i ∈ [τ]. Let ni := |Vi|
denote the number of vertices in stage i ∈ [τ], and n := |V(E∪)| the number of
vertices in the union graph.

All problems considered in this part (MIM, MUM, MinMPM, MaxMPM; see
below) are of the following form: Given a multistage graph G, we ask for a
multistage perfect matching M optimizing some objective function. In their
respective decision variants, the input furthermore consists of some value κ

and we ask whether there is anM with objective value at most (minimization
problems) or at least (maximization problems) κ.

Definition 1 (MIM and MIM|τ). Given a multistage graph G, the multistage in-
tersection matching problem (MIM) asks for a multistage perfect matchingM of G
with maximum profit p(M) := ∑i∈[τ−1] |Mi ∩Mi+1|. If there is an upper bound t on
the number of stages τ, we denote the problem by MIM|t.

We also consider the natural inverse objective, i.e., minimizing the unions.
While the problems differ in the precise objective function, an optimal solution
of MIM is optimal for MUM as well, and vice versa.

Definition 2 (MUM and MUM|τ). Given a multistage graph G, the multistage
union matching problem (MUM) asks for a multistage perfect matching M of G
with minimum cost c(M) := ∑i∈[τ−1] |Mi ∪Mi+1|. If there is an upper bound t on
the number of stages τ, we denote the problem by MUM|t.

2.2 related work

Some matching problems on temporal graphs are defined considering time
windows and allow for parameterized complexity results [MMN+20; BBR20].
While the definitions ensure that there are no conflicting edges in each stage,
the per-stage solutions are not necessarily perfect matchings. The problem of
finding the largest edge set that induces a matching in each stage, which is
shown to be W[1]-hard in [HHK+21], suffers from the same flaw.

In dynamic graph theory, a typical approach to tackle matchings is to make
local changes to a previous solution, working through the stages one after
another [BS15; BHI18; BLS+14; San07]. Naturally, this setting does not take into
account which changes might give a benefit with respect to future graph stages
and are thus not suited well for our problem definitions.

In the literature we find the problem MaxMPM [BEL+18], where the graph
is augmented with time-dependent edge weights, and we want to maximize
the value of each individual perfect matching (subject to the given edge costs)
plus the total intersection profit. Our problem MIM is the special case where all
edge costs are uniform, i.e., we only care about the multistage properties of the
solution, as long as each stage is perfectly matched. There is also the inverse
optimization problem MinMPM, where we minimize the value of each perfect
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matching plus the number of matching edges newly introduced in each stage.
We have APX-hardness for MaxMPM and MinMPM [BEL+18; GTW14] (for
MinMPM one may assume a complete graph at each stage, possibly including
edges of infinite weight). The latter remains APX-hard even for spanning 2-stage
graphs with bipartite union graph and no edge weights (i.e., we only minimize
the number of edge swaps) [BEL+18]. For uniform edge weights, the objective
of MinMPM is to minimize ∑i∈[τ−1] |Mi+1 \Mi|, which is similar but slightly
different to MUM (equal up to additive ∑i∈[τ−1] ni/2).

When restricting MaxMPM and MinMPM to uniform edge weights, optimal
solutions for MIM, MUM, MaxMPM, and MinMPM are identical (although
they yield different objective value); thus MIM and MUM are NP-hard as well.
However, the APX-hardness of MinMPM does not imply APX-hardness of
MUM since their objective functions differ. Furthermore, the APX-hardness
reduction to MaxMPM inherently requires non-uniform edge weights and does
not translate to MIM. To the best of our knowledge, there are no non-trivial
approximation algorithms for any of these problems on more than three stages.

2.3 a note on approximating maxmpm

For MinMPM on metric spanning 2- or 3-stage graphs, the authors of [BEL+18]
show 3-approximations. They also propose a 1/2-approximation for MaxMPM
on spanning multistage graphs with an arbitrary number of stages, which is
unfortunately wrong.

It takes a multistage graph as input, where each stage may be an arbitrary
graph (not necessarily complete), picks a matching for every second stage Gi,
and reuses the same matching for stage Gi+1. Thus, every second stage transition
is optimal, whereas every other second transition potentially constitutes a worst
case. If the algorithm’s solution is feasible, we indeed obtain the proposed
approximation ratio. However, such an approach is inherently problematic as
there is no reason why a matching in Gi would need to be feasible for Gi+1. In
fact, consider a multistage graph G = (G1, . . . , Gτ) where Vi = {v1, . . . , v4} for
all i ∈ [τ], Ei = {v1v2, v3v4} for odd i, and Ei = {v2v3, v4v1} for even i. As no
perfect matching in Ei is also a perfect matching in Ei+1, we have p(M) = 0 for
any multistage perfect matchingM for G. Since one could argue about simple
methods to devalue this example (see Section 2.5 for an efficient preprocess-
ing rendering this instance trivial), we will provide a second, more involved
counterexample.

Thus, although any α-approximation for MaxMPM would directly yield an α-
approximation for MIM on spanning multistage graphs, we currently do not
know of any such algorithm. In fact, a constant-factor approximation seems
difficult to obtain, see Theorem 7. Personal communication with B. Escoffier con-
firmed our counterexample. One may consider a relaxed version of MaxMPM
where one tries to find matchings of large weight in each stage, formally optimiz-
ing the weighted sum between the profit and the summed stagewise matching
weights. Observe that in this scenario it is not guaranteed that the optimal
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e2e1 f1 f2 e4e3

Figure 2.1: Counterexample for the proposed 1/2-approximation. Edges in E1=E3 are
curvy (and blue), edges in E2=E4 are straight (and red).

solution induces a perfect (nor even maximum) matching in each stage. How-
ever, for this problem their analysis would be correct and their algorithm yields
a 1/2-approximation.

counterexample . We examine the 1/2-approximation algorithm A for
MaxMPM that was proposed in [BEL+18, Theorem 8], and give a spanning 4-
stage instance (that is also reduced in the sense of Section 2.5) where A does not
yield a feasible solution. We use four stages since the algorithm treats fewer
stages as special cases. Still, the feasibility problem that we are about to describe
is inherent to all its variants.

Consider the multistage graph G = (G1, G2, G3, G4) given in Figure 2.1,
where E1 = E3 and E2 = E4 and edges have uniform weight 0. We trivially
observe that any perfect matching in Gi is optimal w.r.t. edge weight. For
each i ∈ [3], we have Ei

∩ := Ei ∩ Ei+1 = {e1, e2, e3, e4}.
The algorithm proceeds as follows on G: For each i ∈ [3], it computes a perfect

matching Mi in Gi that maximizes |Mi ∩ Ei+1|. It constructs the solutionsM :=
(M1, M1, M3, M3) andM′ := (M̂1, M2, M2, M̂3), where M̂i is an arbitrary perfect
matching in Gi, and outputs the solution that maximizes the profit.

Any perfect matching M1 in G1 that maximizes |M1 ∩ E2| must contain both e1

and e2 and as such also f1. This contradicts the feasibility of M, as f1 ̸∈ E2.
Conversely, any such perfect matching M2 in G2 must contain both e3 and e4

and as such also f2. Again, this contradicts the feasibility ofM′, since f2 ̸∈ E3.
It follows that the algorithm cannot pick a feasible solution. We are not aware of
any way to circumvent this problem.

2.4 contribution

We start with showing in Chapter 3 that the problems at hand are NP-hard even
in much more restricted scenarios than previously known, and that (a lower
bound for) the integrality gap of the natural linear program for MIM|2 is close
to the approximation ratio we will subsequently devise. This hints that stronger
approximation ratios may be hard to obtain, at least using LP techniques.

As our main contribution, we propose several approximation algorithms for
the multistage problems MIM and MUM, as well as for their stage-restricted
variants, see Figure 2.2. The algorithms’ approximation ratios are dependent
on the instance-specific parameter of intertwinement χ := maxi∈[τ−1] |Ei ∩ Ei+1|.
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MIM MUM
MIM|2
1/
√

2χ

MUM|2
2− 1/

√
2χ

α/2

Thm. 14

α(χ) ↦→ α
(︁
(τ − 1)χ

)︁Cor. 17

α

Cor. 18

2− α
Thm. 19

1 + α/2

Thm. 21

Figure 2.2: Relations of approximation results for multistage matching problems. An
arc from problem A to B labeled f (α) denotes the existence of an f (α)-
approximation for B, given an α-approximation for A. In Cor. 18, α has to be
constant. In Cor. 17, α(·) is a function of χ. The ratio of MIM|2 is by Thm. 8;
combining this with Thm. 19 yields the ratio for MUM|2.

In particular, in Section 4.1, we present a 1/
√

2χ-approximation for MIM|2
and show that this analysis is tight. Then, in Section 4.2, we show that any
approximation of MIM|2 can be used to derive two different approximation
algorithms for MIM, whose approximation ratios are a priori incomparable. In
Section 4.3, we further show how to use all these algorithms to approximate
MUM (and MUM|2). We also observe that it is infeasible to use an arbitrary
MUM algorithm to approximate MIM. In particular, we propose the seemingly
first approximation algorithms for MIM and MUM on arbitrarily many stages.
We stress that our goal is to always guarantee a perfect matching in each stage;
the approximation ratio deals purely with optimizing the transition costs. Recall
that approximation algorithms optimizing a weighted sum between stage-wise
objective and transition quality cannot guarantee such solutions in general.

2.5 preprocessing and remarks

Given a graph G = (V, E), a single edge e is allowed if there exists a perfect
matching M in G with e ∈ M and forbidden otherwise. A graph is matching-
covered if all its edges are allowed (see [LP86] for an in-depth characterization of
matching-covered graphs). Forbidden edges can easily be found in polynomial
time; see e.g. [RV89] for an efficient algorithm. A simple preprocessing for MIM
and MUM is to remove all forbidden edges in each stage, as they will never
be part of a multistage matching. Thereby, we obtain an equivalent reduced
multistage graph, i.e., a multistage graph whose stages are matching-covered. If
any stage in the reduced multistage graph contains no edges (but vertices), the
instance is infeasible. In the following, we thus assume w.l.o.g. that the given
multistage graph is reduced and feasible, i.e., there exists some perfect matching
in each stage.

Remark 3. Let G be a reduced 2-stage graph. For any e ∈ E∩, there is a perfect
matching in each stage that includes e. Thus, there is a multistage perfect matching with
profit at least 1 if E∩ ̸= ∅.
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Remark 4. For any multistage perfect matching (Mi)i∈[τ], it holds for each i ∈ [τ− 1]
that

max(
ni

2
,

ni+1

2
) ≤ |Mi ∪Mi+1| = c(Mi, Mi+1) ≤ 2 max(

ni

2
,

ni+1

2
).

Computing any multistage perfect matching is thus an immediate 2-approximation
for MUM.

Remark 5. Consider the following naïve algorithm: Enumerate all sequences (Fi)i∈[τ−1]
where Fi ⊆ Ei ∩ Ei+1 for each i ∈ [τ− 1]; then check for each i ∈ [τ] whether there is a
perfect matching Mi in Gi such that Fi−1 ∪ Fi ⊆ Mi, where F0 = Fτ = ∅. Thus, MIM
and MUM are in FPT w.r.t. parameter ∑i∈[τ−1] |Ei ∩ Ei+1| (or similarly τ · χ).



3
S E T T I N G T H E G R O U N D

Before we present our main contribution, the approximation algorithms, we
motivate the intrinsic complexities of the considered problems. On the one
hand, we show that the problem is already hard in very restricted cases. On the
other hand, we show that natural linear programming methods cannot yield a
constant-factor approximation for MIM|2.

3.1 np-hardness

While we have already established that MIM|2 is NP-hard in general, we show
that MIM|2 is already NP-hard in the seemingly simple case where each vertex
has only degree 2 in both stages. It immediately follows that the decision variants
of MIM, MUM|2, MUM, MinMPM, and MaxMPM remain NP-hard as well, even
if restricted to this set of multistage graphs.

Theorem 6. Deciding MIM|2 is NP-hard on spanning multistage graphs whose union
graph is bipartite, even if both stages consist only of disjoint even cycles and E∩ is a
collection of disjoint 2-paths.

Proof. We will perform a reduction from Maximum Cut [GJ79] to MIM|2. In
Maximum Cut, one is given an undirected graph G = (V, E), a natural number k
and the question is to decide whether there is an S ⊆ V such that |δ(S)| ≥ k. In
the first stage, we will construct an even cycle for each vertex and each edge of
the original graph and in the second stage we will create an even cycle for each
incidence between an edge and a vertex (see Figure 3.1). A perfect matching in
the first stage will correspond to a vertex selection and a perfect matching in the
second stage will allow us to count the edges that are incident to exactly one
selected vertex.

Given an instance I := (G = (V, E), k) of Maximum Cut, we construct an
instance J := (G, κ) of MIM|2. Set κ := 3|E|+ k. We start with an empty 2-stage
graph G := (G1, G2).

ye
v

e = vw

ye
w

xe
v

xe
w

Ye
v Ye

wXe
v Xe

w

Figure 3.1: Thm. 6: E1 is curvy blue, E2 is straight red. Marked vertices are encircled.
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Let I := {(v, e) | v ∈ V, e ∈ δ(v)} be the set of incidences. For each (v, e) ∈ I,
we add two new disjoint 2-paths to E1 ∩ E2 and call them Xe

v and Ye
v . Mark one

edge of each Xe
v as xe

v and one edge of each Ye
v as ye

v. We will refer to the endpoint
of Xe

v (Ye
v) incident to xe

v (ye
v) as the marked endpoint of Xe

v (respectively Ye
v).

In G1, for each e = vw ∈ E, we create a 6-cycle through Ye
v and Ye

w by
adding an edge between the marked endpoint of one path and the unmarked
endpoint of the other, and vice versa. Furthermore, for each v ∈ V, we create
a cycle of length 4|δ(v)| through the paths Xe

v for e ∈ δ(v) as follows: For each
edge e ∈ δ(v) and its successor edge f , according to some arbitrary cyclic order
of δ(v), connect the marked endpoint of Xe

v to the unmarked endpoint of X f
v by

a 2-path with a new inner vertex.
In G2, for each (v, e) ∈ I, we generate a 6-cycle through Xe

v and Ye
v by adding

an edge between the marked and an edge between the unmarked endpoints of
the 2-paths, respectively. G1 consists of |V|+ |E| and G2 of 2|E| disjoint even
cycles, thus G is reduced.

Claim. J is a yes-instance if and only if I is a yes-instance.

Proof of Claim. Since both stages of G consist only of pairwise disjoint even
cycles and there are only two perfect matchings in an even cycle, a perfect
matching in a stage is determined by choosing one edge in each cycle. For e =
vw ∈ E, let Xe := E(Xe

v) ∪ E(Xe
w) and Ye := E(Ye

v) ∪ E(Ye
w) denote those

common edges that correspond to e. Since those are the only common edges
between the two stages, we have E∩ =

⨄︁
e∈E Xe ∪ Ye ⊇ M1 ∩ M2 for any

multistage perfect matching (M1, M2).

“⇐” Suppose there is an S ⊆ V such that |δ(S)| ≥ k. For each (v, e) ∈ I,
add xe

v to both M1 and M2 if v ∈ S. Otherwise, add the unmarked edge
of Xe

v to M1 and M2. This uniquely determines a perfect matching M2 in G2,
where ye

v ∈ M2 ⇐⇒ xe
v ∈ M2 ⇐⇒ v ∈ S. For each e = vw ∈ δ(S)

with v ∈ S and w ̸∈ S, add ye
v to M1; thus ye

w ̸∈ M1 and ye
v ∈ M1 ∩ M2.

For e = vw ̸∈ δ(S), add either ye
v or ye

w to M1 (chosen arbitrarily). This
determines a 2-stage perfect matching (M1, M2).

Consider some edge e = vw ∈ E. The intersection M1 ∩M2 contains two
edges of Xe. If e ∈ δ(S), it also contains two edges of Ye, one marked and
one unmarked. If e ̸∈ δ(S), M1 ∩M2 contains exactly one edge of Ye. Thus,
|M1 ∩M2| = |

⨄︁
e∈E M1 ∩M2 ∩ Xe|+ |⨄︁e∈E M1 ∩M2 ∩Ye| = 3|E|+ |δ(S)|.

“⇒” Let (M1, M2) be a multistage perfect matching in G with large intersec-
tion |M1 ∩M2| ≥ 3|E|+ k. For e ∈ E, let me := |M1 ∩M2 ∩ (Xe ∪Ye)| ≤ 4 for
each e ∈ E. Observe that |M1 ∩M2| = ∑e∈E me. Thus, by pigeonhole principle,
there are at least k edges with me = 4.

Now M1 yields a selection S ⊆ V: Select v ∈ V if and only if the set X(v) :=
{xe

v | e ∈ δ(v)} is contained in M1. In a perfect matching in G1, either all
or none of the edges in X(v) are matched simultaneously. It can be seen
that me = 4 if and only if e ∈ δ(S), thus |δ(S)| ≥ k. ◁
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The cycles of length 4|δ(v)| may have introduced an even number of ver-
tices W ⊆ V that are isolated in G2. To make G spanning, we may add to E2 an
even cycle on W. This neither interferes with E∩ nor the profit p, since W is an
independent set in the first stage G1.

3.2 linear programming gap

Linear programs (LPs)—as relaxations of integer linear programs (ILPs)—are
often used to provide dual bounds in the approximation context [LP86; WS11;
Vaz03]. Here, we consider the natural LP-formulation of MIM|2 and show that
the integrality gap (i.e., the ratio between the optimal objective value of the
ILP and the optimal objective value of its relaxation) is at least

√
χ, already

for spanning instances with a bipartite union graph. Up to a small constant
factor, this equals the (inverse) approximation ratio guaranteed by Algorithm 9,
which we will propose in Chapter 4. This serves as a hint that overcoming the
approximation dependency on

√
χ for MIM|2 may be hard.

In the context of classical (perfect) matchings, the standard ILP-formulation
and its LP-relaxation describe the very same feasible points, the so-called match-
ing polytope, which is the corner stone of the problem being solvable in poly-
nomial time as described in the seminal paper by Edmonds [Edm65a]. Given
a 2-stage graph G = (G1, G2), the natural LP-formulation for MIM|2 starts
with the product of two distinct such perfect matching polytopes. Let δℓ(v)
denote all edges incident to vertex v in Gℓ, and let (M1, M2) be a 2-stage per-
fect matching in G. For each ℓ ∈ [2], we model Mℓ via the standard matching
polytope: For each e ∈ Eℓ there is an indicator variable xℓe that is 1 if and only
if e ∈ Mℓ. The constraints (3.1a) below suffice for bipartite graphs; for general
graphs one also considers the blossom constraints (3.1b). These ensure that for
any odd-sized vertex set W, at most ⌊|W|/2⌋ edges between those vertices can
partake in a matching (see [Edm65a; LP86] for details). Additionally to these
standard descriptions, for each e ∈ E∩ we use a variable ze that is 1 if and only
if e ∈ M1 ∩M2. This yields the following ILP:

max ∑
e∈E∩

ze

s.t. ∑
e∈δℓ(v)

xℓe = 1 ∀ ℓ ∈ [2], ∀ v ∈ Vℓ (3.1a)

∑
e∈E(G[W])

xℓe ≤
|W| − 1

2
∀ ℓ ∈ [2], ∀W ⊆ Vℓ with odd |W| (3.1b)

ze ≤ xℓe ∀ ℓ ∈ [2], ∀ e ∈ E∩ (3.1c)

xℓe ∈ {0, 1} ∀ ℓ ∈ [2], ∀ e ∈ Eℓ (3.1d)

ze ∈ {0, 1} ∀ e ∈ E∩ (3.1e)

Thereby, constraints (3.1c), together with the fact that we maximize all z-values,
ensure that ze = min{x1

e , x2
e} in any optimal solution.
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Figure 3.2: MIM|2 instance for k=3 with an integrality gap ≥√χ. E1 is straight and red,
E2 is curvy and blue. Dotted green lines identify vertices.

Theorem 7. The natural LP for MIM|2 has at least an integrality gap of
√

χ.

Proof. We construct a family of MIM|2 instances, each with bipartite union graph,
parameterized by a parameter k. Each instance is reduced and has maximum
profit of 1, but its LP-relaxation has objective value at least k + 1 =

√
χ.

Fix some k ≥ 3. We construct G := G(k) = (G1, G2) as follows (see Fig-
ure 3.2 for a visualization with k = 3). Let V(G) := {ai,j, bi,j}i,j∈JkK ∪ {ci, di}i∈[k].
Let E∩ := {ai,jbi,j}i,j∈JkK, i.e., the intersection contains precisely the natural
pairings of the a and b vertices. We call these the shared edges. In E1, we addition-
ally add edges {bi−1,jai,j}i∈[k],j∈JkK. Similarly, we add edges {bi,j−1ai,j}i∈JkK,j∈[k]
to E2. Now, both stages consist of k + 1 disjoint paths of 2k + 1 edges which
are “interwoven” between the stages such that (i) every second edge in each
path is shared (starting with the first), and (ii) any path in G1 has exactly
one edge in common with every path in G2. Let Pℓ

i , ℓ ∈ [2], i ∈ JkK, denote
those paths in their natural indexing. We make each stage connected by join-
ing every pair of “neighboring” paths, each together with a c and a d vertex.
More precisely, we add edges {cja0,j−1, cja0,j, bk,j−1dj, bk,jdj}j∈[k] to E1. Analo-
gously, we add {cφ(i)ai−1,0, cφ(i)ai,0, bi−1,kdφ(i), bi,kdφ(i)}i∈[k] to E2; the indexing
function φ(i) := k− i + 1 ensures that these new edges are not common to both
stages. (In fact, if we would not care for a spanning G, we could simply use
“new” vertices instead of reusing c, d in G2.) This finishes the construction, and
since G contains no forbidden edges, it is reduced.

Since the inner vertices of any path P1
i have degree 2 in G1, any perfect

matching in G1 either contains all or none of the path’s shared edges. As-
sume some shared edge a0,jb0,j is in a perfect matching in G1. Let C be the
path a0,0 c1 a0,1 c2 . . . ck a0,k in G1. Recall that all c-vertices have degree 2 in G1.
Since a0,j is matched outside of C, all other a0,j′ with j′ ̸= j have to be matched
with these c-vertices. Thus, P1

j is the only path that contributes shared edges
to the matching. Conversely, since C contains one less c-vertex than a-vertices,
any perfect matching in G1 has to have at least (and thus exactly) one such path.
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As the analogous statement holds for G2 and by the interweaving property (ii)
above, any multistage perfect matching contains exactly one shared edge.

However, we construct a feasible fractional solution with objective value
√

χ.
Let λ := 1/(k + 1). We set the x- and z-variables of all shared edges to λ,
satisfying all constraints (3.1c). This uniquely determines all other variable
assignments, in order to satisfy (3.1a): Since the inner vertices of each Pℓ

i have
degree 2 in Gℓ, the non-shared edges in these path have to be set to 1 − λ.
Again consider path C: Each a-vertex in C has an incident shared edge that
contributes λ to the sum in the vertex’ constraint (3.1a); there are no other edges
incident to C. Thus, we have to set x1

cja0,j−1
= 1− jλ and x1

cja0,j
= jλ such that, for

each vertex in C, its incident variable values sum to 1. The analogous statements
holds for the corresponding path through d-vertices in G1, and the analogous
paths in G2. All constraints (3.1a) are satisfied. The blossom constraints (3.1b)
act only on x-variables, i.e., on individual stages. Since our graph is bipartite,
only considering the x-variables of one stage and disregarding (3.1b) yields the
bipartite matching polytope which has only integral vertices; our (sub)solution
is an element of this polytope. Thus, constraints (3.1b) cannot be violated by our
assignment.

By construction we have χ = (k + 1)2. Thus, the objective value of our assign-
ment is ∑e∈E∩ λ = χ/(k + 1) =

√
χ, as desired.





4
A P P R O X I M AT I O N

We start with the special case of MIM|2, before extending the result to the
multistage MIM scenario. Then we will transform the algorithms for use with
MUM|2 and MUM.

4.1 approximating MIM |2

We first describe Algorithm 9, which is an approximation for MIM|2. Although
its ratio is not constant but grows with the rate of

√
χ, Theorem 7 hints that

better approximations may be hard to obtain. Algorithm 9 roughly works as
follows: Given a 2-stage graph G, we iterate the following procedure on G1 until
every edge of E∩ has been in at least one perfect matching: Compute a perfect
matching M1 in G1 that uses the maximum number of edges of E∩ that have not
been used in any previous iteration; then compute a perfect matching M2 in G2

that optimizes the profit with respect to M1. While doing so, keep track of the
maximal occurring profit. Note that by choosing weights appropriately, we can
construct a perfect matching that contains the maximum number of edges of
some prescribed edge set in polynomial time [LP86]. We show:

Theorem 8. Algorithm 9 is a tight 1/
√

2χ-approximation for MIM|2.

We prove this via two lemmata; the bad instance of Lemma 10 in conjunction
with the approximation ratio (Lemma 11) establishes tightness.

Lemma 10 (Bad instance). The approximation ratio of Algorithm 9 is at most 1/
√

2χ.

Proof. Consider the following family Gk of MIM|2 instances, parameterized by
some k ≥ 1. An example using k = 4 is depicted in Figure 4.1. In the first
stage, for each i ∈ [k] create a 4-cycle Ci and label two of its adjacent vertices w′i
and wi. Add a 3-path with new inner vertices of degree 2 from wi to w′i+1 for
each i ∈ [k− 1]. For each i ∈ [k− 1], create a vertex vi and an edge wivi. Create
a vertex u and an edge uwk. For each i ∈ Jk − 1K, create a vertex ui and an
edge uui. For each i ∈ [k− 1], create a path Pi from ui to vi with 2i + 1 edges
and label the new inner vertices with ai

1, bi
1, ai

2, bi
2, . . . , ai

i, bi
i in this order.

The second stage is constructed isomorphically to the first stage. To avoid
ambiguity in the naming, we underline element names of the second stage.
The 2-stage graph Gk is completely defined by the following identifications:
for each i ∈ [k], let w′i = wk−i+1 and wi = w′k−i+1; for each i ∈ [k − 1] and

each j ∈ [i], let ai
j = bk−j

k−i and bi
j = ak−j

k−i . Thus, E∩ = F ∪ A is precisely the union
of F := {wiw′i | i ∈ [k]} and A := {ai

jb
i
j | i ∈ [k− 1], j ∈ [i]}. Observe that Gk is

reduced, its union graph is bipartite, and χ = k + ∑i∈[k−1] i = k(k + 1)/2.
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Algorithm 9: Approximation of MIM|2
Input: Weighted 2-stage graph G = (G1, G2)

Output: 2-stage perfect matching (M1, M2)

1 (M1, M2)← (∅,∅)

2 for i = 1, 2, . . . do
3 w1(e)← 1

(︁
e ∈ E∩ \

⋃︁
j∈[i−1] M(j)

1

)︁
for e ∈ E1

4 compute a maximum weight perfect matching M(i)
1 in G1 w.r.t. w1

5 w2(e)← 1
(︁
e ∈ M(i)

1

)︁
for e ∈ E2

6 compute a maximum weight perfect matching M(i)
2 in G2 w.r.t. w2

7 if |M(i)
1 ∩M(i)

2 | ≥ |M1 ∩M2| then (M1, M2)← (M(i)
1 , M(i)

2 )

8 if E∩ ⊆
⋃︁

j∈[i] M(j)
1 then return (M1, M2)

w′1 w1 w′2 w2 w′3 w3 w′4 w4

v1 v2 v3
u0

a1
1 b1

1

a2
1 b2

1

a3
1 b3

1

a2
2 b2

2

a3
2 b3

2

a3
3 b3

3
u1

u2

u3u

Figure 4.1: MIM|2 instance G4 as in Lemma 10. Edges in E1 are curvy and blue, edges
in E2 straight and red. The vertices are labeled according to the first stage.

By construction, for any perfect matching M in the first (or second) stage,
we have |M ∩ E∩| ≤ k. Let MF (MF) denote the unique perfect matching that
contains uu0 (uu0, respectively) and all of F. The pair (MF, MF) is an optimal
solution with profit |F| = k.

Consider an alternative perfect matching M in the first stage. In each cycle Ci,
we consider the shared edge wiw′i and its opposing edge (i.e., its unique non-
adjacent edge in Ci). We distinguish between three possibilities regarding their
memberships in M: the shared edge and its opposing edge are in M (type Y),
only the opposing edge is in M (type N1), none of them are in M (type N2).

Picking an edge adjacent to u determines a perfect matching up to the types
of some Ci-cycles. For i ∈ Jk− 1K, let Mi denote the unique perfect matching that
contains uui, is type Y in Ci+1, but type N2 in each Cj for j > i + 1. Note that Mi
is type N1 in each Cj with j ≤ i and contains all i shared edges along Pi. Thus,
|Mi ∩ E∩| = i + 1. Most importantly, consider any perfect matching M′ in the
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second stage. By construction, for any i ∈ Jk− 1K, no two edges of (Mi ∩ A) ∪
{w′i+1wi+1} can be contained simultaneously in M′. It follows that |Mi ∩M′| ≤ 1.

Algorithm 9 may never choose the optimal MF as a perfect matching for
the first stage: In the first iteration, both MF and Mk−1 have weight k, so the
algorithm may choose Mk−1 and obtain a 2-stage perfect matching with profit 1.
In the following iteration, the weight (denoting the preference of edges) of MF

is decreased by 1, since the edge w′kwk has already been chosen in Mk−1. Con-
sequently, in each following iteration i ∈ [k] the algorithm may choose Mk−i
over MF, each time decreasing the weight of MF by 1. After choosing M0 over MF

in iteration k, each edge in E∩ has been in some matching in the first stage; the
algorithm stops and returns a 2-stage perfect matching with profit 1.

Since χ = k(k + 1)/2, the optimal profit is k =
(︁√

8χ + 1− 1
)︁
/2. Thus, the

approximation factor is at most 1/k = 2/
(︁√

8χ + 1− 1
)︁

which tends to our
approximation ratio of 1/

√
2χ for increasing k.

Lemma 11 (Guarantee). The approximation ratio of Algorithm 9 is at least 1/
√

2χ.

Proof. Let G be a feasible and reduced 2-stage graph with non-empty E∩. Clearly,
our algorithm achieves apx ≥ 1 as described in Remark 3. In each iteration i
of the loop, the algorithm picks into M(i)

1 at least one edge of E∩ that has

not been in any previous M(j)
1 (otherwise the loop terminates) and hence, the

loop terminates in polynomial time. Let k denote the number of iterations.
For any i ∈ [k], let (M(i)

1 , M(i)
2 ) denote the 2-stage perfect matching computed

in the ith iteration. Let (M∗1 , M∗2) denote an optimal 2-stage perfect matching
and M∗∩ := M∗1 ∩M∗2 ⊆ E∩ its intersection (note that M∗1 ∩ E∩ \M∗∩ may be non-
empty). Let Ri := (M(i)

1 ∩ E∩) \
⋃︁

j∈[i−1] Rj denote the set of intersection edges

that are in M(i)
1 but not in M(j)

1 for any previous iteration j < i; let ri := |Ri|.
Note that in iteration i, the algorithm first searches for a perfect matching M(i)

1
in G1 that maximizes

|M(i)
1 ∩ (E∩ \

⋃︂
j∈[i−1]

M(j)
1 )| = |M(i)

1 ∩
(︁
E∩ \

⋃︂
j∈[i−1]

Rj
)︁
| = ri.

We define R∗i := (M(i)
1 ∩M∗∩) \

⋃︁
j∈[i−1] R∗j and r∗i := |R∗i | equivalently to Ri,

but w.r.t. M∗∩ instead of E∩ (see Figure 4.2). Thus, R∗i contains those edges
of M∗∩ that are selected (into M(i)

1 ) for the first time over all iterations. Observe
that Ri ∩M∗∩ = R∗i .

Let x :=
√

2χ. For every i ∈ [k], the algorithm chooses a perfect matching M(i)
2

in G2 that maximizes |M(i)
1 ∩M(i)

2 |. Since we may choose M(i)
2 = M∗2 , it follows

that apx ≥ maxi∈[k] r∗i . Thus, if maxi∈[k] r∗i ≥ opt/x, we have a 1/x-approximation.
In case opt ≤ x, any solution with profit at least 1 (cf. Remark 3) yields a 1/x-
approximation. We show that we are always in one of the two cases.

Assume that opt > x and simultaneously r∗i < opt/x for all i ∈ [k]. Since we
distribute M∗∩ over the disjoint sets {R∗i | i ∈ [k]}, each containing less than opt/x
edges, we know that k > x (thus k ≥ ⌈x⌉ =: x). Recall that in iteration i, we have
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E∩E∩E∩E∩E∩E∩E∩E∩E∩E∩E∩E∩E∩E∩E∩E∩E∩

M∗∩M∗∩M∗∩M∗∩M∗∩M∗∩M∗∩M∗∩M∗∩M∗∩M∗∩M∗∩M∗∩M∗∩M∗∩M∗∩M∗∩
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Figure 4.2: Inclusion relationships between E∩, M∗∩, M(i)
1 , Ri, and R∗i for i ∈ [3].

that (E∩ \
⋃︁

j∈[i−1] M(j)
1 ) ∩ ⋃︁

j∈[i−1] Rj is empty. Thus, the number of elements

of M∗1 that are counted towards |M(i)
1 ∩ (E∩ \

⋃︁
j∈[i−1] M(j)

1 )| = ri is⃓⃓
(M∗1 ∩ E∩) \

⋃︂
j∈[i−1]

Rj
⃓⃓
≥

⃓⃓
M∗∩ \

⋃︂
j∈[i−1]

Rj
⃓⃓
=

⃓⃓
M∗∩ \

⋃︂
j∈[i−1]

R∗j
⃓⃓
.

Hence, the latter term is a lower bound on ri and we deduce:

ri ≥
⃓⃓
M∗∩ \

⋃︂
j∈[i−1]

R∗j
⃓⃓
= opt− ∑

j∈[i−1]
r∗j

(⋆)

≥ opt− ∑
j∈[i−1]

opt
x

= opt ·
(︁
1− i− 1

x
)︁
≥ x

(︁
1− i− 1

x
)︁
.

Thereby, strict inequality holds at (⋆) for i ≥ 2. This raises a contradiction:

χ = |X∩| =
⃓⃓ ⋃︂

i∈[k]
Ri
⃓⃓
≥ ∑

i∈[x]
ri ≩ ∑

i∈[x]
x
(︁
1− i− 1

x
)︁

= x ·
(︁

∑
i∈[x]

1− ∑
i∈[x−1]

i
x
)︁
= x

(︁
x− (x− 1)x

2x
)︁

= x2(︁1− x− 1
2x

)︁
≥ x2(︁1− x

2x
)︁
=

x2

2
≥ x2

2
= χ.

4.2 approximating MIM

Let us extend the above result to an arbitrary number of stages. We show that we
can use any MIM|2 approximation algorithm (in particular also Algorithm 9) as
a black box to obtain an approximation algorithm for MIM, while only halving
the approximation ratio: Algorithm 13 uses an edge-weighted path (P, w) on τ

vertices as an auxiliary graph. We set the weight of the edge between the ith
and (i + 1)th vertex to an approximate solution for the MIM|2 instance that
arises from the ith and (i + 1)th stage of the MIM instance. A maximum weight
matching MP in (P, w) induces a feasible solution for the MIM problem: If
an edge (j, j + 1) is in MP, we use the corresponding solutions for the jth
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Algorithm 13: General multistage approximation
Input: Multistage graph G, 2-stage perfect matching algorithm A
Output: Multistage maximum weight perfect matching (M1, . . . , Mτ)

1 create path P := {e1, . . . , eτ−1}
2 foreach i ∈ [τ − 1] do
3 set (Si, Ti+1) to A(Gi, Gi+1) // approximate 2-stage graphs

4 set weight of ei to wi := |Si ∩ Ti+1|
5 compute maximum weight matching MP in (P, w)

6 set (Mi)i∈[τ−1] to (Si)i∈[τ−1] and Mτ to Tτ // set initial solution

7 foreach i ∈ [τ − 1] do // modify solution according to MP

8 if ei ∈ MP then set Mi to Si and Mi+1 to Ti+1

9 return (M1, . . . , Mτ)

and (j+ 1)th stage; for stages without incident edge in MP, we select an arbitrary
solution. Since no vertex is incident to more than one edge in MP, there are no
conflicts.

Remark 12. For F ⊆ E(P), denote w(F) := ∑e∈F w(e). Let ei denote the ith edge
of P. For b ∈ [2], the matchings Mb := {ei ∈ E(P) | i = b mod 2} are disjoint and
their union is exactly E(P). Thus, for any maximum weight matching MP in P we
have 2 · w(MP) ≥ w(E(P)).

Theorem 14. For a MIM|2 α-approximation, Algorithm 13 α/2-approximates MIM.

Proof. Let G = (G1, . . . , Gτ) be the given multistage graph. For any i ∈ [τ − 1],
(Si, Ti+1) is the output of the MIM|2 α-approximation A(Gi, Gi+1); let wi :=
|Si ∩ Ti+1|. LetM∗ := (M∗1 , . . . , M∗τ) denote a multistage perfect matching whose
profit p(M∗) is maximum. Since A is an α-approximation for MIM|2, we know
that |M∗i ∩M∗i+1| ≤ wi/α for every i ∈ [τ − 1]. Thus p(M∗) ≤ (1/α)∑i∈[τ−1] wi.
Algorithm 13 computes a maximum weight matching MP in (P, w) and con-
structs a multistage solutionM. By Remark 12, we obtain

p(M∗) ≤ 1
α ∑

i∈[τ−1]
wi =

1
α

w
(︁
E(P)

)︁
≤ 2

α
w(MP) ≤

2
α

p(M).

We compute a maximum weight matching in a path in linear time using
straightforward dynamic programming. Hence, assuming a running time func-
tion f for A, Algorithm 13 requires O

(︁
∑i∈[τ−1] | f (Gi, Gi+1)|

)︁
steps.

Corollary 15. Algorithm 9 in Algorithm 13 yields a 1/
√

8χ-approximation for MIM.

There is another way to approximate MIM via an approximation for MIM|2,
which neither dominates nor is dominated by the above method, but is advanta-
geous for small values of τ:
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Theorem 16. There is an S-reduction from MIM to MIM|2, i.e., given any MIM
instance G, we can find a corresponding MIM|2 instance G ′ in polynomial time such
that any solution for G bijectively corresponds to a solution for G ′ with the same profit.
Furthermore, |E(G′1) ∩ E(G′2)| = ∑i∈[τ−1] |E(Gi) ∩ E(Gi+1)|.

Proof. We will construct a 2-stage graph G ′ whose first stage G′1 consists of
(subdivided) disjoint copies of Gi for odd i; conversely its second stage G′2
consists of (subdivided) disjoint copies of Gi for even i. More precisely, consider
the following construction: Let b(i) := 2− (i mod 2). For each i ∈ [τ], we create
a copy of Gi in G′b(i) where each edge e ∈ E(Gi) is replaced by a 7-path pe

i .
We label the 3rd (5th) edge along pe

i (disregarding its orientation) with e−i
(e+i , respectively). To finally obtain G ′, for each i ∈ [τ − 1] and e ∈ E(Gi) ∩
E(Gi+1), we identify the vertices of e+i with those of e−i+1 (disregarding the edges’
orientations); thereby precisely the edges e+i and e−i+1 become an edge common
to both stages. No other edges are shared between both stages. This completes
the construction of G ′ and we have |E(G′1)∩ E(G′2)| = ∑i∈[τ−1] |E(Gi)∩ E(Gi+1)|.

AssumeM′ := (M′1, M′2) is a solution for G ′. Clearly, each path pe
i in G′b(i) is

matched alternatingly and hence either all or none of e−i , e+i , the first, and the
last edge of pe

i are in M′b(i). We derive a corresponding solutionM for G: For
every i ∈ [τ] and e ∈ E(Gi), we add e to Mi if and only if e−i ∈ M′b(i). Suppose
that Mi is not a perfect matching for Gi, i.e., there exists a vertex v in Gi that is
not incident to exactly one edge in Mi. Then also the copy of v in the copy of Gi
in G′b(i) is not incident to exactly one edge of M′b(i), contradicting the feasibility
ofM′.

Consider the profit achieved by M: Every edge in M′1 ∩ M′2 corresponds
to a different identification ⟨e+i , e−i+1⟩. We have e ∈ Mi ∩ Mi+1 if and only if
e−i ∈ M′b(i), e−i+1 ∈ M′b(i+1), and e+i = e−i+1. It follows that this holds if and only
if e+i ∈ M′b(i) ∩M′b(i+1) and hence the profit of M is equal to that of M′. The
inverse direction proceeds in the same manner.

Since the new χ′ := |E(G′1) ∩ E(G′2)| is largest w.r.t. the original χ if the
intersection |E(Gi) ∩ E(Gi+1)| has constant size for all i, we obtain:

Corollary 17. For any MIM|2 α(χ)-approximation, where α(χ) is a (typically decreas-
ing) function of χ, there is an α

(︁
(τ− 1)χ

)︁
-approximation for MIM. Using Algorithm 9,

this yields a ratio of 1/
√︁

2(τ − 1)χ; for MIM|3 and MIM|4 this is tighter than the
approximation in Theorem 14.

Assume the approximation ratio for MIM|2 would not depend on χ. Then the
above would yield a surprisingly strong result:

Corollary 18. Any MIM|2 α-approximation with constant α results in an α-approx-
imation of MIM. If MIM is APX-hard, so is MIM|2.



4.3 approximating MUM 27

4.3 approximating MUM

Consider the MUM-problem which minimizes the cost. As noted in Remark 4,
a 2-approximation is easily accomplished. However, by exploiting the previous
results for MIM, we obtain better approximations.

Theorem 19. Any α-approximation of MIM is a (2− α)-approximation of MUM.

Proof. Recall that an optimal solution of MIM constitutes an optimal solution of
MUM. As before, we denote the heuristic sequence of matchings by (Mi)i∈[τ]
and the optimal one by (M∗i )i∈[τ]. Let ξ := ∑i∈[τ−1](ni + ni+1)/2. Consider the
solutions’ values w.r.t. MUM:

apx∪
opt∪

=
∑i∈[τ−1] c(Mi, Mi+1)

∑i∈[τ−1] c(M∗i , M∗i+1)
=

ξ −∑i∈[τ−1] |Mi ∩Mi+1|
ξ −∑i∈[τ−1] |M∗i ∩M∗i+1|

≤ ξ − α · opt∩
ξ − opt∩

=: f .

As 0 < α < 1, f is monotonously increasing in opt∩ if 0 ≤ opt∩ < ξ. Thus, since

opt∩ ≤ ∑
i∈[τ−1]

min(ni, ni+1)

2
≤ ∑

i∈[τ−1]

ni + ni+1

4
=

ξ

2
,

it follows that

apx∪
opt∪

≤
ξ − α ξ

2

ξ − ξ
2

=
1− α

2

1− 1
2

= 2− α.

Corollary 20. Let r := min{8, 2(τ − 1)}. We have a
(︁
2− 1/

√
r · χ

)︁
-approximation

for MUM.

Note that a similar reduction from MIM to MUM is not achieved as eas-
ily: Consider any (1 + ε)-approximation for MUM. Choose an even k ≥ 6
such that k/(k− 1) ≤ 1 + ε; consider a spanning 2-stage instance where each
stage is a k-cycle and E∩ consists of a single edge e. The optimal 2-stage per-
fect matching M∗ that contains e in both stages has profit p(M∗) = 1 and
cost c(M∗) = 2 · k/2− 1 = k − 1. A 2-stage perfect matching M that does
not contain e still satisfies c(M) = k and as such is an (1 + ε)-approximation
for MUM. However, its profit p(M) = 0 does not provide any approximation
of p(M∗) = 1.

As for MIM, we aim to extend a given approximation for MUM|2 to a general
approximation for MUM. Unfortunately, we cannot use Theorems 16 and 19

for this, as an approximation for MUM|2 does not generally constitute one for
MIM|2 (and MIM). On the positive side, a similar approach as used in the proof
of Theorem 14 also works for minimization.

Theorem 21. Any α-approximation A for MUM|2 results in a (1 + α/2)-approxi-
mation for MUM by using A in Algorithm 13.

Proof. As before, let (M∗i )i∈[τ] denote an optimal solution for MUM. For each i ∈
[τ − 1], let (Si, Ti) denote the output of A(Gi, Gi+1). For L ⊆ [τ − 1], let ξ(L) :=
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∑i∈L(ni + ni+1)/2 and σ(L) := ∑i∈L |Si ∪ Ti|. Note that wi := ξ({i}) − σ({i})
equals the weight of ei. We define I := {i ∈ [τ− 1] | ei ∈ MP} as the set of indices
corresponding to MP and J := [τ − 1] \ I as its complement. By Remark 12, we
have w

(︁
E(P)

)︁
≤ 2 · w(MP); thus

ξ(I)− σ(I) + ξ(J)− σ(J) = w
(︁
E(P)

)︁
≤ 2 · w(MP) = 2

(︁
ξ(I)− σ(I)

)︁
⇒ σ(I) + ξ(J) ≤ ξ(I) + σ(J)⇒ 2

(︁
σ(I) + ξ(J)

)︁
≤ ξ(I ∪ J) + σ(I ∪ J).

The trivial upper bound ξ suffices to bound the algorithm’s solution value:

apx = σ(I) + ∑
j∈J
|Mj ∪Mj+1| ≤ σ(I) + ξ(J) ≤ 1

2
(︁
ξ(I ∪ J) + σ(I ∪ J)

)︁
.

Since σ(I ∪ J) α-approximates the sum of all MUM|2 instances’ solution values,
we have σ(I ∪ J) ≤ α · opt. For each transition, any solution satisfies (ni +

ni+1)/4 ≤ |Mi ∪ Mi+1| and hence ξ(I ∪ J) ≤ 2 · opt. Finally, we obtain the
claimed ratio: apx ≤ 1/2 ·

(︁
2 · opt+ α · opt

)︁
= (1 + α/2) · opt.



5
S U M M A RY

In this part, we presented the first approximation algorithm for MIM|2 with a
tightly analyzed approximation ratio of 1/

√
2χ. It remains open whether any

of the problems is APX-hard or if a constant factor approximation for MIM|2
is possible; however, we showed that the latter would imply a constant factor
approximation for MIM. We further showed two ways in which MIM and MUM
can be approximated by using any algorithm that approximates MIM|2, thereby
also presenting the first approximation algorithms for multistage matching
problems with an arbitrary number of stages.

As we will see in the next part, the techniques of Algorithm 9 and 13 for MIM
can be used as a building block to approximate the newly-introduced set of
preficient multistage subgraph problems.





Part II

M U LT I S TA G E S U B G R A P H P R O B L E M S





If we want things to stay as they are, things will have to change.

— Giuseppe Tomasi di Lampedusa: The Leopard [Tom60]

6
B A C K G R O U N D

This part is based on joint work with Markus Chimani and Tilo Wiedera that
has been accepted for publication in the conference proceedings of XII. Latin-
American Algorithms, Graphs and Optimization Symposium (LAGOS 2023). The
NP-hardness proofs in Chapter 8 are not included in the publication.

Subgraph Problems (SPs) are concerned with selecting some feasible set of
graph elements (vertices and/or edges) that is optimal w.r.t. some measure. The
class of SPs is very rich and includes many traditional problems like Shortest

s-t-Path, Minimum s-t-Cut, Maximum Independent Set, Minimum Vertex

Cover, Maximum Cut, Maximum Planar Subgraphs, and Steiner Trees.
As problem instances may be subject to change over time, it is often required

to solve the same SP multiple times: In a Multistage Subgraph Problem (MSP),
we ask for an individual, optimal solution per stage, while retaining as much
of the previous solution as possible. One example is the problem MIM from
Part I, where the underlying SP is the (unweighted) Perfect Matching problem.
Depending on the problem, the transition quality may be measured differently.
Even if the subgraph problem itself can be solved exactly in polynomial time,
this multistage variant turns out to be NP-hard in most cases as we have already
seen for MIM.

6.1 contribution

In this part, we provide a framework to obtain approximation algorithms for
a wide range of multistage subgraph problems, where, following the concept
of Part I, we guarantee optimal solutions in each stage. As a key ingredient
we define preficient (short for “preference efficient”) problems (Definition 26);
they allow to efficiently compute an optimal solution to an individual stage
that prefers some given graph elements. As it turns out, many polynomial-
time solvable graph problem are in fact trivially preficient. Our framework
algorithm can be applied to any preficient multistage subgraph problem where
we measure the transition quality as the number of common graph elements
between subsequent stages; it yields an approximation ratio only dependent on
the input’s intertwinement, see Theorem 27.

A building block of this algorithm, which itself does not depend on the
transition quality measure and may therefore be of independent interest, is
Theorem 25: Any α-approximation (including α = 1) for a t-stage Subgraph
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Problem with fixed t ≥ 2 can be lifted to an approximation for the corresponding
unrestricted multistage subgraph problem.

Finally, in Chapter 8, we demonstrate that the class of applicable multistage
problems is very rich: It is typically straightforward to construct a preficiency
algorithm from classic algorithms. We can thus deduce several new approxi-
mation results simply by applying our preficiency framework approximation,
without the need of additional deep proofs. As examples, we showcase this
for multistage variants of Shortest s-t-Path, Perfect Matching, and Mini-
mum s-t-Cut. Furthermore, several NP-hard (single-stage) problems become
polynomial-time solvable on restricted graph classes (e.g., planar, bipartite, etc.);
on these, we can apply our framework as well, as we showcase for Maximum

Cut, Vertex Cover, and Independent Set.

6.2 framework

All known successful applications of our framework are subgraph problems on
graphs. Thus, and for ease of exposition, we will describe our framework solely
in this context. However, we will never use any graph-intrinsic properties other
than the fact that it is a system of elements. It should be understood that we can
in fact replace graphs with any other combinatorial structure (e.g., hypergraphs,
matroids, fields, etc.) in all definitions and results, as long as a solution is a
subset of elements of said structure.

The following definitions may at first seem overly complicated, but are care-
fully constructed to be as general as possible, similar to those for general
NP-optimization problems, e.g., in [FG06; KV08]. Recall that we use the nota-
tion X(G) to refer to the elements of a graph G, i.e., its vertices and edges. An
enriched graph is a graph with additional information (e.g., weights or labels) at
its elements.

Definition 22. A Subgraph Problem (SP) is a combinatorial optimization prob-
lem P := (G, f , m, ψ), where

• G denotes a class of enriched graphs that is the (in general infinite) set of possible
instances;

• f is a function such that, for an instance G ∈ G, the set f (G) ⊆ 2X(G) contains
the feasible solutions; a feasible solution S ∈ f (G) is a subset of X(G);

• m is a function such that, for an instance G ∈ G and a feasible solution S ∈ f (G),
the measure of S is given by m(G, S);

• the goal ψ is either min or max.

Given some instance G ∈ G, the objective is to find a feasible solution S ∈ f (G) that is
optimal in the sense that m(G, S) = ψ{m(G, S′) | S′ ∈ f (G)}. The set of optimal
solutions is denoted by f ∗(G). An element x ∈ X(G) is allowed w.r.t. P if it occurs
in any optimal solution for the P-instance G, i.e., x ∈ ⋃︁

S∈ f ∗(G) S =: XP (G).
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As an example, Maximum Weight Perfect Matching is an SP: G is the class
of all edge-weighted graphs, f (G) is the set of all perfect matchings of G ∈ G,
m(G, S) returns the sum of the weights of all edges in S and ψ = max. Similarly,
Minimum Weight Perfect Matching is an SP with ψ = min, while the plain
Perfect Matching problem on unweighted graphs has constant measure m.

Definition 23. A Multistage Subgraph Problem (MSP) is a combinatorial optimiza-
tion problemM = (P , q), where

• P := (G, f , m, ψ) is a Subgraph Problem;

• an instance is a multistage graph G = (Gi)i∈[τ] ∈ Gτ for some τ > 1; and

• q is a non-negative function such that, given an instance G ∈ Gτ and subsets Yi ⊆
X(Gi) and Yi+1 ⊆ X(Gi+1), q(Yi, Yi+1) measures the transition quality of these
sets for any i ∈ [τ − 1].

Given some instance G ∈ Gτ, let f×(G) := f ∗(G1)× · · · × f ∗(Gτ) denote the set
of feasible multistage solutions, containing τ-tuples of optimal solutions for the
individual stages. The objective is to find a feasible multistage solution S ∈ f×(G)
that is maximum w.r.t. q in the sense that Q(S) = max{Q(S ′) | S ′ ∈ f×(G)}
where Q(S ′) := ∑i∈[τ−1] q(S′i , S′i+1) is the global quality of S .

If there is an upper bound t on the number of stages τ, an MSPM may be
denoted byM|t. MSPs with some fixed function q may be summarily referred
to as q-MSPs.

In our definition, we aim at maximizing the transition quality. One could anal-
ogously also consider minimizing transition costs (see, e.g., [FNS+20; FNR+22;
Flu21] or the problem MUM from Part I); however, for clarity of presentation,
we opted to solely focus on the former notion. Common choices for transi-
tion qualities are the intersection profit q∩(Si, Si+1) := |Si ∩ Si+1|, e.g., in [FNS+20;
BEL+18; BES+21] or measures based on the (symmetric) difference of subsequent
stages [BEK21; BET22; KRZ21]. The problem MIM from Part I can be understood
as an MSP with the (unweighted) Perfect Matching as the underlying SP and
intersection profit as the transition quality.

Considering some SP P and a multistage graph G = (Gi)i∈[τ], we measure
the similarity of consecutive stages of G w.r.t. P by the intertwinement χP (G) :=
maxi∈[τ−1] |XP (Gi) ∩ XP (Gi+1)|. If the context is clear, we may simply use χ :=
χP (G). Note that, deviating from the intertwinement definition in Part I, this
also allows us to count the maximum number of common allowed vertices in
two consecutive stages.

We will establish approximation algorithms whose approximation quality de-
creases monotonously with increasing χ. Consider any MSPM with polynomial-
time solvable SP P and a 2-stage input graph, where the two stages have nothing
in common. Then, optimizingM is typically a simple matter of solving P on
each stage individually, yielding an exact polynomial-time algorithm. Observe
that the intertwinement captures this as χ = 0. Increasing the commonality
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between the stages increases both the intertwinement and the multistage prob-
lem’s complexity, suggesting that intertwinement is a feasible measure. At some
tipping point, once stages become very similar, our use of intertwinement loses
its expressiveness and other similarity measures should be preferred.
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We first demonstrate how to obtain an approximation algorithm for an MSP with
arbitrary many stages, assuming we have an (approximation) algorithm for the
MSP with a fixed number of stages. This generalizes Algorithm 13 from Part I
in two ways: (i) the generalized method is not restricted to matching problems
and (ii) it can make use of an auxiliary algorithm that is capable of handling
more than two stages at once. Afterwards, we show that, if the underlying SP
has a certain property, we can use an appropriate formulation of Algorithm 9 to
get an approximation for the 2-stage case.

7.1 reducing the number of stages

It is natural to expect that an MSPM would be easier to solve if the number
of stages is bounded by some constant t ≥ 2. We can show that if we have
an α-approximate (or even an exact) algorithm A for M|t, one can use it to
craft a solution for the unbounded problem that is within factor α · (t− 1)/t
of the optimum. This result is under the assumption that algorithm A can
also handle smaller instances with t′ ∈ [t] stages; for a single-stage instance it
suffices for A to output any optimal solution. The following Algorithm 24 is a
more sophisticated variant of Algorithm 13, where we use an approximation for
2-stage instances to obtain a solution for instances with an arbitrary number of
stages.

Informally, G|ri denotes the subinstance of G with r stages, starting at the ith
stage. Formally, for i ∈ [τ], let G|ri consist exactly of the stages with index in the
range [i, min{i + r− 1, τ}]. LetM be an MSP, t ≥ 2, and assume we have an α-
approximation algorithm A forM|t. Algorithm 24 constructs a set {Sk | k ∈ [t]}
of candidate multistage solutions and returns one with maximum global quality.
Each candidate solution Sk is built as follows: Start with a partial solution
obtained from calling A on the first k stages of G; then iteratively consider the
subsequent t stages as a subinstance, compute a partial solution using A and
append it to the existing partial solution (denoted by operator ◦); repeat this step
until eventually stage τ has been considered (in general, the final subinstance
containing stage τ may again consist of less than t stages). Figure 7.1 shows an
example of the algorithm’s subinstance calls.

Theorem 25. Let M = (P , q) be an MSP and A an α-approximation for M|t for
some fixed t ≥ 2 (possibly with α = 1). Then Algorithm 24 yields a β-approximation
forM, where β := α(t− 1)/t.

Proof. The algorithm’s output S is the candidate with optimal profit and thus has
at least average profit over all t candidate solutions: Q(S) ≥ 1/t ·∑k∈[t] Q(Sk).
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Algorithm 24: Approximation of an MSPM = (P , q), given an
α-approximation A forM|t
Input: Enriched multistage graph G = (G1, . . . , Gτ), α-approximation A

forM|t
Output: Multistage solution S

1 S = (∅, . . . ,∅)

2 foreach k ∈ [t] do
3 Sk ← A(G|k1)
4 i← k + 1
5 while i ≤ τ do
6 Sk ← Sk ◦ A(G|ti)
7 i← i + t

8 if Q(Sk) ≥ Q(S) then S ← Sk

9 return S

1 2 3 4 5 6 7 8

S1 A(G|11) A(G|32) A(G|35) A(G|38)

S2 A(G|21) A(G|33) A(G|36)

S3 A(G|31) A(G|34) A(G|37)

Figure 7.1: Example of the subinstances that Algorithm 24 computes to obtain candidate
solutions S1,S2,S3 for an MSP with overall τ = 8 stages. Here, the auxiliary
algorithm A provides (approximate) solutions for up to t = 3 stages.

Let Ik := {b ≤ τ | j ∈ N : b = (k + 1) + j · t} denote the set of values that i
takes in the kth iteration of the foreach loop. For r ∈ N>0, let Q(Sk|ri ) :=
∑j∈[i,i+r−2] q(Sj, Sj+1) denote the quality of Sk := (Sj)j∈[τ] restricted to G|ri . As
transition qualities are non-negative, we have Q(Sk) ≥ Q(Sk|k1) + ∑i∈Ik

Q(Sk|ti)
and thus Q(S) ≥ 1/t ·∑k∈[t]

(︁
Q(Sk|k1) + ∑i∈Ik

Q(Sk|ti)
)︁
.

Let Q∗|ir be the optimal quality achievable for G|ri . Since A is an α-approxima-
tion for M|t, we have for all k ∈ [t] that Q(Sk|k1) ≥ αQ∗|1k and also Q(Sk|ti) ≥
αQ∗|it for all i ∈ Ik. By construction, [2, τ] is the disjoint union of all Ik and thus

Q(S) ≥ 1/t · ∑
k∈[t]

(︁
αQ∗|1k + ∑

i∈Ik

αQ∗|it
)︁
= α/t ·

(︁
∑

k∈[t]
Q∗|1k + ∑

i∈[2,τ]
Q∗|it

)︁
.
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Let S∗ := (S∗j )j∈[τ] be an optimal multistage solution. As by definition Q∗|ir ≥
Q(S∗k |ri ), we have

Q(S) ≥ α/t ·
(︁

∑
k∈[t]

Q(S∗k |k1)⏞ ⏟⏟ ⏞
(a)

+ ∑
i∈[2,τ]

Q(S∗k |ti)⏞ ⏟⏟ ⏞
(b)

)︁
.

For each fixed j ∈ [t− 1], the term q(S∗j , S∗j+1) appears exactly t− j times in (a)
(namely once for each k ∈ [j+ 1, t]) and exactly j− 1 times in (b) (namely once for
each i ∈ [2, j]). Considering any larger j ∈ [t, τ− 1], the term q(S∗j , S∗j+1) does not
appear in (a) and exactly t− 1 times in (b) (namely once for each i ∈ [j− t+ 2, j]).
We thus have

∑
k∈[t]

Q(S∗k |k1) + ∑
i∈[2,τ]

Q(S∗k |ti) = (t− 1) · ∑
j∈[τ−1]

q(S∗j , S∗j+1) = (t− 1)Q(S∗)

and can conclude Q(S) ≥ α(t− 1)/t ·Q(S∗).

7.2 approximating two stages

Building on Algorithm 9 from Part I, we present an algorithm that computes
an approximate solution for the 2-stage restriction of any q∩-MSP where the
underlying SP has a certain property.

Definition 26. An SP P := (G, f , m, ψ) is called preficient (short for preference
efficient) if there is an algorithm B(G, Z) that solves the following problem in poly-
nomial time: Given a graph G ∈ G and subset Z ⊆ X(G), compute an optimal
solution S = argmaxS′∈ f ∗(G) |S′ ∩ Z|. Such an algorithm B is called a preficiency
algorithm for P . An MSP is called preficient if its underlying SP is preficient.

Note that for a preficient SP P , the set XP (G) of allowed elements is trivially
computable in polynomial time: a graph element x ∈ X(G) is allowed w.r.t. P if
and only if it is in a solution computed by B(G, {x}).

Provided we have a preficiency algorithm B for an SP P , the following
algorithm is an approximation forM|2 whereM = (P , q∩) (see Algorithm 28

for pseudocode):
Given a 2-stage graph G = (G1, G2), we generate candidate 2-stage solutions

in a loop while storing the currently best overall solution throughout. In the
loop, with iterations indexed by i = 1, 2, . . . , we consider a set Y that keeps
track of intersection elements which have not been in a solution for G1 in any
previous iteration; we initialize Y with X∩ := XP (G1) ∩ XP (G2) and update Y
at the beginning of each iteration. In iteration i, we use B to find some solution
S(i)

1 ∈ f ∗(G1) that optimizes q∩(S
(i)
1 , Y); we then use B again to find a second

solution S(i)
2 ∈ f ∗(G2) that optimizes q∩(S

(i)
1 , S(i)

2 ). The loop stops as soon as Y
is empty; the output is the 2-stage solution (S1, S2) with maximum quality over
all candidate solutions.

The approximation ratio depends on the input’s intertwinement χ = |X∩|.
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Algorithm 28: Approximation ofM|2 for an MSPM = (P , q∩) with
preficient P

Input: Enriched 2-stage graph G = (G1, G2) with non-empty intersection,
preficiency algorithm B for P

Output: 2-stage solution S = (S1, S2)

1 (S1, S2)← (∅,∅)

2 for i = 1, 2, . . . do
3 Y ← X∩ \

⋃︁
j∈[i−1] S(j)

1
4 if Y = ∅ then return (S1, S2)

5 S(i)
1 ← B(G1, Y)

6 S(i)
2 ← B(G2, S(i)

1 )

7 if q∩(S
(i)
1 , S(i)

2 ) ≥ q∩(S1, S2) then (S1, S2)← (S(i)
1 , S(i)

2 )

Theorem 27. Consider an MSPM = (P , q∩) with preficient P . Then, Algorithm 28
is a polynomial-time 1/

√
2χ-approximation algorithm forM|2.

The following proof is analogous to the proof of Lemma 11, differing only
in the use of more generalized terms (“perfect matching” becomes “solution”,
“edges” becomes “elements”, etc.) and notation that relates to the pseudocode
presented here. However, to enable a coherent understanding of Algorithm 28,
we will fully restate the proof here completely.

Proof. Let B be a preficiency algorithm for P and G a 2-stage graph. We can
assume w.l.o.g. that X∩ is non-empty and thus opt ≥ 1. Clearly, the first iteration
establishes apx ≥ 1.

In each iteration i of the loop, at least one element of X∩ that has not been in
any previous first stage solution is contained in a solution for G1 (otherwise the
loop terminates) and hence the loop terminates in polynomial time. Let k denote
the number of iterations. For any i ∈ [k], let (S(i)

1 , S(i)
2 ) denote the 2-stage solution

computed in the ith iteration. Let (S∗1 , S∗2) denote an optimal 2-stage solution
and S∗∩ := S∗1 ∩ S∗2 ⊆ X∩ its intersection (note that S∗1 ∩ X∩ \ S∗∩ may be non-
empty). Let Ri := (S(i)

1 ∩ X∩) \
⋃︁

j∈[i−1] Rj denote the set of intersection elements
that are in S(i)

1 but not in S(j)
1 for any previous iteration j < i; let ri := |Ri|. Note

that in iteration i, the algorithm first searches for a solution S(i)
1 ∈ f ∗(G1) that

maximizes

q∩(S
(i)
1 , X∩ \

⋃︂
j∈[i−1]

S(j)
1 ) = |S(i)

1 ∩
(︁
X∩ \

⋃︂
j∈[i−1]

Rj
)︁
| = ri.

We define R∗i := (S(i)
1 ∩ S∗∩) \

⋃︁
j∈[i−1] R∗j and r∗i := |R∗i | equivalently to Ri, but

w.r.t. S∗∩ instead of X∩ (cf. Figure 4.2 for a visualization of similar set inclusions).
Thus, R∗i contains those elements of S∗∩ that are selected (into S(i)

1 ) for the first
time over all iterations. Observe that Ri ∩ S∗∩ = R∗i .
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Let x :=
√

2χ. For every i ∈ [k], the algorithm chooses S(i)
2 that maxi-

mizes q∩(S
(i)
1 , S(i)

2 ). Since we may choose S(i)
2 = S∗2 , it follows that apx ≥

maxi∈[k] r∗i . Thus, if maxi∈[k] r∗i ≥ opt/x, we have a 1/x-approximation. In
case opt ≤ x, any solution with profit at least 1 yields a 1/x-approximation
(which we trivially achieve as discussed above). We show that we are always in
one of the two cases.

Assume that opt > x and simultaneously r∗i < opt/x for all i ∈ [k]. Since
we distribute S∗∩ over the disjoint sets {R∗i | i ∈ [k]}, each containing less
than opt/x elements, we know that k > x (thus k ≥ ⌈x⌉ =: x). Recall that in
iteration i, Y = X∩ \

⋃︁
j∈[i−1] S(j)

1 . Thus, we have that Y ∩⋃︁
j∈[i−1] Rj is empty and

the number of elements of S∗1 that are counted towards q(S(i)
1 , Y) = ri is⃓⃓

(S∗1 ∩ X∩) \
⋃︂

j∈[i−1]

Rj
⃓⃓
≥

⃓⃓
S∗∩ \

⋃︂
j∈[i−1]

Rj
⃓⃓
=

⃓⃓
S∗∩ \

⋃︂
j∈[i−1]

R∗j
⃓⃓
.

Hence, the latter term is a lower bound on ri and we deduce:

ri ≥
⃓⃓
S∗∩ \

⋃︂
j∈[i−1]

R∗j
⃓⃓
= opt− ∑

j∈[i−1]
r∗j

(⋆)

≥ opt− ∑
j∈[i−1]

opt
x

= opt ·
(︁
1− i− 1

x
)︁
≥ x

(︁
1− i− 1

x
)︁
.

Thereby, strict inequality holds at (⋆) for i ≥ 2. This raises a contradiction:

χ = |X∩| =
⃓⃓ ⋃︂

i∈[k]
Ri
⃓⃓
≥ ∑

i∈[x]
ri ≩ ∑

i∈[x]
x
(︁
1− i− 1

x
)︁

= x ·
(︁

∑
i∈[x]

1− ∑
i∈[x−1]

i
x
)︁
= x

(︁
x− (x− 1)x

2x
)︁

= x2(︁1− x− 1
2x

)︁
≥ x2(︁1− x

2x
)︁
=

x2

2
≥ x2

2
= χ.

As we know from Theorem 7, there is (weak) evidence that a χ-dependent
ratio may be unavoidable for the Multistage Perfect Matching problem. This
evidence carries over to the generalized algorithm, as the generalized problem
cannot be treated better than any of its special cases:

Remark 29. The analysis in Theorem 27 is tight in the sense that Algorithm 28 cannot
guarantee a better approximation ratio for arbitrary preficient SPs. This is due to the
fact that we know from Lemma 10 that there is an instance family for the Multistage
Perfect Matching Problem for which the stripped down version of Algorithm 28 yields
precisely this ratio. This does not rule out that for some “simpler” SP, our algorithm
may achieve a better approximation ratio.
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As examples of the utility of our framework, we show preficiency for a variety
of SPs and NP-hardness for the corresponding q∩-MSPs. Proving preficiency
typically always follows the same pattern for these problems: we modify (or
assign) weights for those graph elements that are to be preferred in a way that
does not interfere with the feasibility of a solution; we then apply a polynomial
algorithm (as a black box) to solve the problem w.r.t. the modified weights. The
above Theorems 25 and 27 then allow us to deduce approximation algorithms
for the corresponding q∩-MSP.

In general, instead of manipulating the weights, one could (try to) carefully
manipulate the arithmetic computations in the black box algorithm. This then
would typically also allow to consider non-negative weights (instead of strictly
positive ones). However, we refrain from doing so herein for clarity of exposition
and general applicability to any black box algorithm where such arithmetic
modifications may not be straightforward.

Under the new framework, the following preficiency proofs are consistently
remarkably short. In fact, we are able to use nearly identical proofs for a range
of q∩-MSP formulations of classical combinatorial problems. To justify the need
for approximation algorithms, we also present or refer to existing proofs that the
presented multistage problems are NP-hard. More precisely, all of them are even
NP-hard when restricted to two stages, using very similar proof ideas. We stress
that there are no known constant-ratio approximations for any of the MSPs.

well-behaved weight modifications . Let G = (V, E) be a graph with
weights w : X → N>0 on its elements. Let w(Z) := ∑e∈Z w(e) denote the weight
of a subset Z ⊆ X. Given an element subset Y ⊆ X and some ε ∈ Q, we
define the modified weight function wε,Y : X → Q that is identical to w on X \ Y
and wε,Y(e) := w(e)− ε for e ∈ Y.

Consider some SP P. The modified weight function wε,Y is well-behaved w.r.t. P
if the following properties hold for any two edge sets Z, Z′ ⊆ X:

Positivity: wε,Y(e) > 0 for all e ∈ X.

Monotonicity: If w(Z′) < w(Z), then wε,Y(Z′) < wε,Y(Z).

Preference: If w(Z′) = w(Z) and |Z′ ∩Y| > |Z∩Y|, then: if P is a minimization
problem then wε,Y(Z′) < wε,Y(Z); otherwise (P is a maximization problem)
wε,Y(Z′) > wε,Y(Z).

Naturally, we will choose ε > 0 for minimization problems and ε < 0 for
maximization problems.
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8.1 multistage minimum weight perfect matching

As a first example we consider a multistage version of Minimum Weight Perfect

Matching. In a graph G = (V, E) with positive edge weights w : E → N>0,
an edge set F ⊆ E is a perfect matching if each v ∈ V is incident with exactly
one edge in F. A perfect matching F has minimum weight if for each perfect
matching F′ we have w(F′) ≥ w(F).

Definition 30 (MMinPM). Given a multistage graph (Gi)i∈[τ] with positive edge
weights wi : Ei → N>0 for each i ∈ [τ], find a q∩-optimal multistage solution (Fi)i∈[τ]
such that for each i ∈ [τ], Fi ⊆ Ei is a minimum weight perfect matching w.r.t. wi
in Gi.

MMinPM|2 is NP-hard as the special case of uniform edge weights is equiva-
lent to MIM (Theorem 6).

Theorem 31. There is a 1/
√

8χ-approximation algorithm for MMinPM and a 1/
√

2χ-
approximation for MMinPM|2.

Proof. We only need to show preficiency for MMinPM and apply Theorems 25

and 27. Let G = (V, E) be a graph with edge weights w : E→ N>0 and Y ⊆ E
the set of edges to be preferred. Set ε := 1/(|E| + 1). We use an arbitrary
polynomial-time algorithm for computing a minimum weight perfect matching
in G with the modified weight function wε,Y (e.g., Edmond’s blossom algo-
rithm [Edm65b; LP86]) and denote its output by F. Since wε,Y is well-behaved
(which can be checked by straightforward computation), F is a minimum weight
perfect matching in G such that |F ∩Y| is maximum.

This result does not contradict the linear lower bound on the approximation
ratio discussed in [BEL+18], since they (i) minimize an objective function com-
bining transition costs and per-stage solution quality and (ii) do not consider
intertwinement dependency. Note that there are graphs with linear intertwine-
ment χ ∈ Θ(|E|).

8.2 multistage shortest s-t-path

The classic problem of finding a shortest s-t-path is easily formulated as an SP
when we view a path as a set of edges. The corresponding MSP is introduced
and shown to be NP-hard already for 2-stage directed acyclic graphs in [FNS+20]
(although they consider a slightly different definition, the NP-hardness proof
directly translates to our formulation).

In a graph G = (V, E) with edge weights w : E → N>0 and two termi-
nal vertices s, t ∈ V, an edge set F ⊆ E is an s-t-path in G if it is of the
form {v1v2, v2v3, . . . , vk−1vk} where k ≥ 2, v1 = s and vk = t. An s-t-path is a
shortest s-t-path if for each s-t-path F′ we have w(F) ≤ w(F′).

Definition 32 (MSPath). Given a multistage graph (Gi)i∈[τ] with positive edge
weights wi : Ei → N>0 for each i ∈ [τ] and terminal vertices s, t ∈ Vi , find
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a q∩-optimal multistage solution (Fi)i∈[τ] such that for each i ∈ [τ], Fi ⊆ Ei is a
shortest s-t-path in Gi.

From a practical viewpoint, one might consider a fixed query to be a restriction.
However, allowing a different query (si, ti) at each stage would not change the
problem, as we can easily obtain an equivalent instance where the terminals
are chosen consistently: Add two new vertices (s, t) to all stages, together with
paths of length 2 (via new vertices) from s to si as well as from ti to t in the
corresponding stage. This reduction does not affect approximation ratios, since
the new edges are only ever present in a single stage.

Theorem 33. There is a 1/
√

8χ-approximation algorithm for MSPath and a 1/
√

2χ-
approximation for MSPath|2.

Proof. Follow the proof of Theorem 31 using, e.g., Dijkstra’s algorithm [Dij59] to
compute a shortest s-t-path in polynomial time.

8.3 multistage minimum s-t-cut

Another classical SP is Minimum s-t-Cut. While it is usually defined as a
selection of vertices, we will first discuss the notion where we want to select a set
of edges that separates the target vertices. Then, we investigate two multistage
variants that select vertices.

In a graph G = (V, E) with edge weights w : E→ N>0, two vertices s, t ∈ V,
an edge set F ⊆ E is an s-t-cut if there is no s-t-path in (V, E \ F). An s-t-cut F is
minimum if for each s-t-cut F′ we have w(F′) ≥ w(F).

Definition 34 (MMinCut). Given a multistage graph (Gi)i∈[τ] with positive edge
weights wi : Ei → N>0 and terminal vertices si, ti ∈ Vi for each i ∈ [τ], find a q∩-
optimal multistage solution (Fi)i∈[τ] such that for each i ∈ [τ], Fi ⊆ Ei is a minimum
si-ti-cut for si, ti in Gi.

Theorem 35. MMinCut|2 is NP-hard, even if s1 = s2, t1 = t2, and the edges have
uniform weights.

Proof. We will perform a reduction from the NP-hard Maximum Cut [GJ79] to
the decision variant of MMinCut: Given G, (si, ti)i∈[τ] and a number κ ∈ N, is
there a q∩-optimal multistage solution for MMinCut with profit at least κ? In
Maximum Cut, one is given an undirected graph G = (V, E) and a number
k ∈ N; the question is whether there is a vertex set U ⊆ V, such that |δ(U)| ≥ k.
In the first stage, we will construct a bundle of s-t-paths for each vertex of the
original graph and in the second stage we will create two s-t-paths for each
edge (cf. Figure 8.1). A minimum s-t-cut in the first stage will correspond to
a vertex selection and a minimum s-t-cut in the second stage will allow us to
count the number of edges that are incident to exactly one selected vertex.

Given an instance I :=
(︁
G = (V, E), k

)︁
of Maximum Cut, we will construct

an equivalent instance J :=
(︁
G, (si, ti)i∈[τ], κ

)︁
for MMinCut. Set κ := |E|+ k.
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Figure 8.1: Two vertex gadgets and one edge gadget, as used in the proof of Theorem 35.
Vertices s and t are enlarged. Edges in E∩ are bold and green, edges in E1 \ E∩
are blue, edges in E2 \ E∩ are red.

Start with a 2-stage graph G := (G1, G2) and vertices s, t ∈ V1 ∩V2 that are used
as terminals si and ti in both stages.

In the first stage, create a vertex xv for each v ∈ V. For each v ∈ V and for
each edge e ∈ δ(v) := {e ∈ E | v ∈ e}, create a path of length 3 from s to xv

whose middle edge is labeled αe
v and a path of length 3 from xv to t whose

middle edge is labeled βe
v. Let Av := {αe

v | e ∈ δ(v)} and Bv := {βe
v | e ∈ δ(v)}.

Let ae
v (be

v) denote the endpoint of αe
v (βe

v) closer to xv and āe
v (b̄e

v) the other one.
The second stage reuses all a-, ā-, b- and b̄-vertices and all α- and β-edges.

For each edge e = vw ∈ E, add two vertices ce
v, ce

w. By adding the edge
sets {sce

w, ce
w āe

w, ae
w āe

v, ae
vt} and {sbe

w, b̄e
wbe

v, b̄e
vce

v, ce
vt}, we construct two paths, Ae

and Be, of length 6 from s to t: Ae via the α-edges and Be via the β-edges.
The c-vertices are there to avoid unwanted edges in E∩.

Since for each v ∈ V, a minimum cut C1 in G1 needs to cut all s-t-paths
through xv, C1 contains exactly |δ(v)| edges from these paths; these are either
all part of the 3-paths from s to xv or all part of the 3-paths from xv to t.

Claim. J is a yes-instance if and only if I is a yes-instance.

Proof of Claim. We prove the two implications separately:

“⇐” Suppose there is some S ⊆ V, such that |δ(S)| ≥ k. For each v ∈ S,
add Av to C1 and for each v ∈ V \ S, add Bv to C1. Thus, C1 is a minimum
s-t-cut in G1. For e = vw ∈ δ(S) assume w.l.o.g. v ∈ S and add αe

v and βe
w

to C2. For e = vw ∈ E \ δ(S), add arbitrarily either {αe
v, βe

w} or {αe
w, βe

v} to C2.
Thus, C2 is a minimum s-t-cut in G2.

Consider some edge e = vw ∈ E. If e ∈ δ(S), assume w.l.o.g. v ∈ S
and w ∈ V \ S. Then, C1 ∩ C2 contains two edges of Ae ∪ Be, namely αe

v
and βe

w. If e ̸∈ δ(S), C1 ∩ C2 contains exactly one edge of Ae ∪ Be. Thus,
|C1 ∩ C2| = |

⨄︁
e∈E C1 ∩ C2 ∩ (Ae ∪ Be)| = |E|+ |δ(S)|.
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“⇒” Let C := (C1, C2) be a multistage minimum s-t-cut with large intersec-
tion |C1 ∩C2| ≥ |E|+ k. For e ∈ E, let me := |C1 ∩C2 ∩ (Ae ∪ Be)| ≤ 2. Observe
that, by construction of G2, |C1 ∩C2| = ∑e∈E me Thus, by pigeonhole principle,
there are at least k edges with me = 2.

Recall that w.l.o.g. and by optimality of the individual stages, we can
assume for each v ∈ V that C1 contains either all of Av or all of Bv but no
elements of the other. This yields a selection U ⊆ V: Select v ∈ V into U if
and only if Av ⊆ C1. We observe that me = 2 then induces e ∈ δ(U) and we
obtain |δ(S)| ≥ k. ◁

This concludes the proof.

Theorem 36. There is a 1/
√

8χ-approximation algorithm for MMinCut and a 1/
√

2χ-
approximation for MMinCut|2.

Proof. Follow the proof of Theorem 31 using, e.g., the algorithm by Ford and
Fulkerson [FF56] to compute a minimum s-t-cut in polynomial time.

vertex variants . The problem of finding a minimum s-t-cut for each stage
can also be optimized to maintain the same set of vertices that are connected
to s. For a concise problem definition, we need new terminology: in a graph G =

(V, E) with edge weights w : E→ N>0 and vertices s, t ∈ V, a vertex set S ⊆ V
with s ∈ S, t ̸∈ S is an s-t-separating partition; S is optimal, if the induced
s-t-cut δ(S) = {e ∈ E | |e ∩ S| = 1} has minimum weight.

Given a multistage graph (Gi)i∈[τ] with edge weights wi : Ei → N>0 and
terminal vertices si, ti ∈ Vi for each i ∈ [τ], we may ask for a q∩-optimal
multistage solution (Si)i∈[τ] such that for each i ∈ [τ], Si ⊆ Vi is an optimal
si-ti-separating partition in Gi. A natural variation is to consider the quality
function q′ := |Si ∩ Si+1|+ |(Vi \ Si) ∩ (Vi+1 \ Si+1)| instead of q∩.

Theorem 37. Both vertex variants of MMinCut (using q∩ or q′, resp.) are polynomial-
time solvable.

Proof. Consider q∩. For each stage i, choose the cardinality-wise largest optimal
si-ti-separating partition Si. Observe that Si with si ∈ Si is unique, since every
other optimal si-ti-separating partition S′i is a strict subset of Si. Clearly, Si can be
found in polynomial time. Since we optimize the intersection of the stage-wise
partitions, we obtain a global optimum by having each Si maximal.

Consider q′. The problem can be easily reduced to a single-stage minimum s-t-
cut problem as shown in [BEK21]: Add disjoint copies of each stage to an empty
graph, and two new vertices s∗ and t∗. Add an edge with infinite weight from s∗

to each si and one from each ti to t∗. For each occurrence of a vertex in two
adjacent stages, add an edge with small positive weight ε between the two vertex
copies. A minimum s∗-t∗-cut in this graph directly induces a minimum si-ti-cut
in each stage such that the number of vertices that are in (Si ∪ Si+1) \ (Si ∩ Si+1)

is minimized and thus q′ is maximized.
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8.4 multistage weakly bipartite maximum cut

In contrast to the SPs considered before, the Maximum Cut problem has a
maximization goal. We will see that this requires a different technique for the
NP-hardness result, but proving preficiency is essentially the same as before.

In a graph G = (V, E) with edge weights w : E → N>0, a vertex set U ⊆ V
induces a maximum cut δ(U) = {e ∈ E | |e ∩U| = 1} if for each vertex set U′ ⊆
V we have w

(︁
δ(U′)

)︁
≤ w

(︁
δ(U)

)︁
. The (unfortunately named) class of weakly

bipartite graphs is defined in [GP81] and contains in particular also planar and
bipartite graphs. While the precise definition is not particularly interesting to
us here, we make use of the fact that, although Maximum Cut is NP-hard in
general [Yan78], a maximum cut can be computed in polynomial time on weakly
bipartite graphs [GP81].

Definition 38 (MWBMaxCut). Given a multistage graph (Gi)i∈[τ] with edge weights
wi : Ei → N>0 for each i ∈ [τ] where each stage is weakly bipartite, find a q∩-optimal
multistage solution (Fi)i∈[τ] such that for each i ∈ [τ], Fi ⊆ Ei is a maximum cut in Gi.

The NP-hardness proof for MWBMaxCut uses a similar technique as before.

Theorem 39. MWBMaxCut|2 is NP-hard already on 2-stage graphs where both stages
are weakly bipartite.

Proof. We will perform a reduction from the NP-hard unweighted Maximum

Cut problem on graphs with maximum degree 3 [Yan78] to the decision variant
of MWBMaxCut: “Given a two-stage graph G with edge weights wi : E→ N>0

for i ∈ [2] where each stage is weakly bipartite and a number κ ∈ N, is there
a q∩-optimal multistage solution (F1, F2) for MWBMaxCut with intersection
profit q∩(F1, F2) ≥ κ?” In Maximum Cut, one is given an undirected graph G =

(V, E) and a natural number k; the question is to decide whether there is
an S ⊆ V such that |δ(S)| ≥ k.

Given an instance I := (G = (V, E), k) of Maximum Cut, we construct an
equivalent instance J := (G, κ) of MWBMaxCut. Set κ := |E| + k. We start
with an empty 2-stage graph G := (G1, G2). In G1, we will have disjoint planar
gadgets for each vertex, allowing three incident edges each. In G2, we will have
disjoint planar gadgets for each edge, intersecting with the two corresponding
vertex gadgets in G1 (cf. Figure 8.2). A maximum cut in G1 will correspond to a
vertex selection in G and a maximum cut in G2 will allow us to count the edges
of G that are incident to exactly one selected vertex.

In G1, we create a gadget for each vertex v ∈ V as follows: Add a 9-
cycle and label its vertices counter-clockwise with ae

v, be
v, ce

v, ae′
v , be′

v , ce′
v , ae′′

v , be′′
v , ce′′

v ,
where {e, e′, e′′} = δ(v) are the edges incident with v (if |δ(v)| < 3, the vertices
are labeled with fictional indices). Add a vertex xv and edges {xvbe

v | e ∈ δ(v)},
as well as edges {ae

vce
v | e ∈ δ(v)}.

In G2, we start with the same vertex set except for the x-vertices and create
a gadget for each e = vw ∈ E as follows: Add edges ae

vce
w, be

vbe
w, ce

vae
w and for

each u ∈ {v, w}, add a path of length 3 between au,e and cu,e using new inner
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xv bev

e = vw

cev

aev

aew

cew

bew xw

Figure 8.2: Two vertex gadgets and one edge gadget as used in the proof of Theorem 39:
Edges in E∩ are bold and green, edges in E1 \ E∩ are blue, and edges in E2 \
E∩ are red. The white vertices display an optimal vertex selection S1 ∪ S2.

vertices. Also, the edges ae
ube

u and be
uce

u are added to E2 (and thus constitute E∩)
for each u ∈ {v, w}. Since both stages are planar, they are also both weakly
bipartite.

Let M ≥ 4 be a constant. Both weight functions wi, i ∈ [2], assign weight 1 to
edges in E∩ and weight M to edges in Ei \ E∩.

For a maximum cut in G1, each of the |V| vertex gadgets can be viewed
independently. In the gadget for vertex v there are four vertex selections S1 ⊆ V1

that yield a maximum cut of weight 9M + 3. They arise from two independent
choices: (i) on the 6-cycle of M-weighted edges, pick either the three a-vertices
or the three c-vertices into S1 and (ii) pick either xv or the three b-vertices into S1.
Note that, regardless of the vertex selections, for every maximum cut in G1 the
following statement holds true: in each vertex gadget either the ab-edges or
the bc-edges constitute precisely δ(S1) ∩ E∩.

For a maximum cut in G2, each of the |E| edge gadgets can be viewed
independently. In the gadget for edge e = vw there are four vertex selections S2

that yield a maximum cut of weight 9M + 2. They arise from two independent
choices: (i) on the 8-cycle of M-weighted edges, pick every second vertex thus
containing either the two a-vertices or the two c-vertices and (ii) pick one of the
two b-vertices into S2. Note that, regardless of the vertex selections, for every
maximum cut in G2 the following statement holds true: in each edge gadget
exactly one ab-edge and one bc-edge are in δ(S2).

Claim. J is a yes-instance if and only if I is a yes-instance.

Proof of Claim. We prove the two implications separately:

“⇐” Suppose there is an S ⊆ V such that |δ(S)| ≥ k. We construct a mul-
tistage cut (F1, F2) by choosing a vertex selection Si ⊆ Vi for i ∈ [2] and
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setting Fi := δ(Si). In G1, pick all a-vertices into S1. If v ∈ S, pick xv into S1;
if v ̸∈ S, pick the three b ·

v-vertices into S1. Thus, if v ∈ S, we have its ab-edges
in F1; otherwise its bc-edges. In G2, for each edge gadget for edge e = vw,
pick every second vertex of the 8-cycle into S2 including the two ae

·-vertices.
For each e = vw ∈ δ(S), assume w.l.o.g. v ∈ S and w ̸∈ S, and pick be

w into S2.
Thus, ae

vbe
v, be

wce
w ∈ F2 and ae

wbe
w, be

vce
v ̸∈ F2. If e ̸∈ δ(S), pick arbitrarily one of

the two be
·-vertices. Thus, |{ae

vbe
v, ae

wbe
w} ∩ F2| = 1 and |{be

vce
v, be

wce
w} ∩ F2| = 1.

Since the number of common edges in F1, F2 is optimized, in the edge gadget
of each e = vw ∈ E, the number of edges in F1 ∩ F2 is 2 if e ∈ δ(S) and 1
otherwise. Overall, this yields an intersection profit of q∩(F1, F2) ≥ |E|+ k = κ.

“⇒” Let (F1, F2) be a q∩-optimal multistage solution with q∩(F1, F2) ≥ |E|+ k.
Since F1 is a maximum cut in G1, in each vertex gadget either all ab-edges or
all bc-edges are in F1. We construct a vertex selection S ⊆ V in the original
graph according to the following rule: pick v into S if and only if the ab-edges
in the vertex gadget of v are in F1.

Consider some e = vw ∈ δ(S). W.l.o.g., assume v ∈ S and w ̸∈ S. By
construction, ae

vbe
v and be

wce
w are in F1. Since F2 is a maximum cut in G2, in

each edge gadget there is exactly one ab-edge and one bc-edge in F2. Since F2

is chosen such that q∩(F1, F2) is maximum and each edge gadget in G2 can
be resolved independent from the other edge gadgets, ae

vbe
v and be

wce
w will be

in F1 ∩ F2. However, if e ̸∈ δ(S), it is easily checked that in the corresponding
edge gadget only a single edge can be in F1 ∩ F2. By summing up F1 ∩ F2 over
all edge gadgets, we have κ ≤ |F1 ∩ F2| = 2 · |δ(S)|+ |E \ δ(S)| = |E|+ |δ(S)|
and thus |δ(S)| ≥ k. ◁

This concludes the proof.

Theorem 40. There is a 1/
√

8χ-approximation algorithm for MWBMaxCut and
a 1/
√

2χ-approximation for MWBMaxCut|2.

Proof. Follow the proof of Theorem 31 but using ε := −1/(|E|+ 1) and, e.g., the
algorithm by Grötschel and Pulleyblank [GP81] to compute a maximum cut in
polynomial time on weakly bipartite graphs.

8.5 multistage minimum weight bipartite vertex cover

The Vertex Cover problem is our first example of an SP that asks for a se-
lection of vertices, equipped with individual weights. Since it is NP-hard in
general [GJ79], we restrict our multistage version of the problem to bipartite
stages. In contrast to the edge selection problems we have seen before, proving
preficiency now requires a new proof.

In a bipartite graph G = (V, E) with vertex weights w : V → N>0, a vertex
set U ⊆ V is a vertex cover if each e ∈ E is incident with some vertex in U.
A vertex cover U has minimum weight if for each vertex cover U′ we have
w(U) ≤ w(U′). MMinBVC aims to maximize the number of common vertices:
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aev bew

bev aew

e = vw

Figure 8.3: Two vertex gadgets and one edge gadget as used in the proof of Theorem 42:
Bold green edges are in E∩, blue edges in E1 \ E∩, red edges in E2 \ E∩.

Definition 41 (MMinBVC). Given a multistage graph (Gi)i∈[τ] with vertex weight
functions wi : Vi → N>0 for each i ∈ [τ] where each stage is bipartite, find a q∩-optimal
multistage solution (Ui)i∈[τ] such that for each i ∈ [τ], Ui ⊆ Vi is a minimum weight
vertex cover in Gi.

Theorem 42. MMinBVC|2 is NP-hard already with uniform weights on multistage
graphs where each stage only consists of disjoint cycles.

Proof. We will perform a reduction from the unweighted Maximum Cut problem
on graphs with maximum degree 3 [Yan78] to the (unweighted) decision variant
of MMinBVC: “Given a two-stage graph G where each stage is bipartite and a
number κ ∈ N, is there a q∩-optimal multistage solution (U1, U2) for MMinBVC
with intersection profit q∩(U1, U2) ≥ κ?” In Maximum Cut, one is given an
undirected graph G = (V, E) and a natural number k; the question is to decide
whether there is an S ⊆ V such that |δ(S)| ≥ k.

Given an instance I := (G = (V, E), k) of Maximum Cut, we construct an
equivalent instance J := (G, κ) of MMinBVC. Set κ := |E|+ k. We start with
an empty 2-stage graph G := (G1, G2). In G1, we will have disjoint gadgets for
each vertex, allowing three incident edges each. In G2, we will have disjoint
gadgets for each edge, intersecting with the two corresponding vertex gadgets
in G1 (cf. Figure 8.3). A minimum vertex cover in G1 will correspond to a vertex
selection in G and a minimum vertex cover in G2 will allow us to count the
edges of G that are incident to exactly one selected vertex.

In G1, for each v ∈ V we create a 6-cycle Cv and label its vertices counter-
clockwise with ae

v, be
v, ae′

v , be′
v , ae′′

v , be′′
v , where {e, e′, e′′} = δ(v) denote the edges

incident with v (if |δ(v)| < 3, the vertices are labeled with fictional indices). In G2,
we use the same vertex set and for each e = vw ∈ E we create the 4-cycle Ce by
introducing the edges ae

vae
w, ae

wbe
w, be

wbe
v, be

vae
v.

For a minimum vertex cover U1 in G1, for each Cv either all a-vertices or all b-
vertices are in U1. For a minimum vertex cover U2 in G2, for each Ce with e = vw,
either ae

v, be
w ∈ U1 or ae

w, be
v ∈ U1.

Claim. J is a yes-instance if and only if I is a yes-instance.

Proof of Claim. We prove the two implications separately:

“⇐” Suppose there is an S ⊆ V such that |δ(S)| ≥ k. We construct a vertex
cover U1 for G1 as follows: for each v ∈ S, pick all a-vertices of Cv into U1;
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for each v ∈ V \ S, pick all b-vertices of Cv into U1. Similarly, we construct a
vertex cover U2 for G2: for each e = vw with v ∈ S and w ̸∈ S (i.e., e ∈ δ(S)),
pick ae

v and be
w into U2; for each e ̸∈ δ(S), pick any two opposite vertices in Ce.

Consider some edge e = vw ∈ E. If e ∈ δ(S), U1 ∩ Ce = U2 ∩ Ce and two
vertices are chosen identically. If e ̸∈ δ(S), U1 ∩ Cv and U1 ∩ Cw contain either
both an a-vertex or both a b-vertex; since U2 must contain one vertex of each
type, exactly one vertex is chosen identically. Summing over all edge cycles
yields q∩(U1, U2) = |E|+ |δ(S)| ≥ κ.

“⇒” Let (U1, U2) be a q∩-optimal multistage solution with q∩(U1, U2) ≥
|E|+ k. We construct a vertex selection S ⊆ V in the original graph according
to the following rule: pick v into S if and only if the a-vertices of Cv are in U1.

Consider some edge e = vw ∈ E. If v ∈ S and w ̸∈ S (i.e., e ∈ δ(S)),
U1 ∩ Ce = {ae

v, be
w}. Since U2 maximizes the intersection with U1 and can be

chosen independently on each Ce, U2 must be identical to U1 on Ce; thus,
|U1 ∩U2 ∩ Ce| = 2. If e ̸∈ δ(S), every minimum vertex cover U2 can contain at
most one vertex of U1 ∩ Ce. Summing up U1 ∩U2 over all edge gadgets, we
have κ ≤ |U1 ∩U2| = 2 · |δ(S)|+ |E \ δ(S)| and thus |δ(S)| ≥ k. ◁

This concludes the proof.

Theorem 43. There is a 1/
√

8χ-approximation algorithm for MMinBVC and a 1/
√

2χ-
approximation for MMinBVC|2.

Proof. We only need to show preficiency for MMinBVC and apply Theorems 25

and 27. Let G =
(︁
V = (A, B), E

)︁
be a bipartite graph with vertex weights

w : V → N>0 and Y ⊆ V the set of vertices to be preferred. Let ε := 1/(|V|+ 1).
We construct the modified graph G′ from G by adding two new vertices s, t
and edge sets {sv | v ∈ A} and {vt | v ∈ B}. We then equip G′ with edge
weights w′(uv) := w(v) − ε · 1

(︁
v ∈ Y

)︁
for all u ∈ {s, t}, and w′(uv) := ∞

otherwise.
Note that w′ is well-behaved w.r.t. w. It is well-known that a minimum weight

s-t-cut C ⊆ E in G′ (computable in polynomial time [FF56]) induces a minimum
weight vertex cover U in G by picking all vertices v ∈ V that are incident
with an edge in C. Further, U maximizes |U ∩Y|: Suppose there is a minimum
weight vertex cover U′ in G with |U′ ∩ Y| > |U ∩ Y|. Let C′ again denote
the s-t-cut associated with U′. By construction and since w(U′) = w(U), we
have w′(C′) < w′(C), again contradicting minimality of C w.r.t. w′.

8.6 multistage maximum weight bipartite independent set

The last example is again based on a weighted vertex selection SP that is NP-
hard on general graphs, Independent Set [GJ79]. While it has a maximization
goal, we make use of its relation to Vertex Cover on bipartite graphs.

In a graph G = (V, E) with vertex weights w : V → N>0, a vertex set U ⊆ V
is an independent set if for u, v ∈ U with u ̸= v we have uv ̸∈ E. An independent
set U has maximum weight if for each independent set U′ we have w(U) ≥ w(U′).
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Definition 44 (MMaxBIS). Given a multistage graph (Gi)i∈[τ] with vertex weights
wi : Vi → N>0 for each i ∈ [τ] where each stage is bipartite, find a q∩-optimal
multistage solution (Ui)i∈[τ] such that for each i ∈ [τ], Ui ⊆ Vi is a maximum weight
independent set in Gi.

It is well-known that the complement of a minimum weight vertex cover is a
maximum weight independent set. However, the complement of an optimal mul-
tistage vertex cover in general does not yield an optimal multistage independent
set. Nonetheless, the former property is still key to the following proof.

Theorem 45. MMaxBIS|2 is NP-hard already with uniform weights on multistage
graphs where each stage only consists of disjoint cycles.

Proof. Follow the proof for Theorem 42. Equivalently to before, every cycle in
every stage allows exactly two (sub)solutions. In particular, these are the very
same subsolutions as before, since here maximum independent sets are identical
to minimum vertex covers. To solve Maximum Cut, one has to pick subsolutions
with maximum intersection.

Theorem 46. There is a 1/
√

8χ-approximation algorithm for MMaxBIS and a 1/
√

2χ-
approximation for MMaxBIS|2.

Proof. Follow the proof of Theorem 43, but using ε := −1/(|V| + 1). Now,
selecting the complement of the vertex cover yields an independent set with the
maximum number of vertices from Y.





9
S U M M A RY

In this part, we considered multistage generalizations of Subgraph Problems that
require an optimal solution in each individual stage while the transition quality
is to be optimized. We provided two framework approximation algorithms for
such MSPs: Algorithm 24 allows to generalize any 2-stage algorithm for any MSP
to an unrestricted number of stages; Algorithm 28 is a 2-stage approximation
algorithm for any preficient q∩-MSP. We then showcased the ease-of-use of our
results by applying them to several natural MSP variants of well-known classical
graph problems.

It remains open whether these algorithms are best possible polynomial-time
approximations for any of the considered MSPs. In fact, there cannot be a general
result establishing tightness for the whole class of MSPs as some problems are
actually polynomial-time solvable (see, e.g., the vertex variants of MMinCut

above).
For ease of exposition, we have only considered multistage generalizations of

subgraph problems in this part. However, our techniques are also applicable to
more general multistage subset problems, i.e., without the need of an underlying
graph. This can be easily understood as all our proofs solely work on a set
system on a ground set X. Alas, we know of no natural multistage non-subgraph
optimization problem that simultaneously is (a) NP-hard, (b) preficient, and
(c) not trivially reformulated as an MSP.





Part III

E X P E R I M E N TA L S T U D Y:
M U LT I S TA G E S H O RT E S T PAT H





The long and winding road
That leads to your door

Will never disappear
I’ve seen that road before

— The Beatles: The Long and Winding Road [Bea70]

10
B A C K G R O U N D

This part is based on joint work with Markus Chimani that has been published
in the conference proceedings of the 2nd Symposium on Algorithmic Foundations of
Dynamic Networks (SAND 2023) [CT23].

There are several theoretical results on different multistage problems and their
complexities, as well as FPT and approximation algorithms. However, there is a
severe lack of experimental validation and resulting feedback. Not only are there
no such algorithmic experiments (except for a recent comparison of heuristics
for a niche subset problem [BCE+23]), we do not even know of any strong set of
multistage benchmark instances.

In this part we want to improve on this situation. We consider the Multistage

Shortest Path (MSPath) problem. MSPath was first proposed in [GTW14]
and introduced with a trade-off objective in [FNS+20]. We discuss it here in
the setting where we only allow optimal solutions per stage: Given an edge-
weighted multistage graph and a vertex pair (s, t), find a shortest s-t-path
in each stage such that the subsequent paths are as similar as possible (see
Section 10.2 for a formal definition). For example, in a transportation scenario, it
might be necessary but expensive to prepare each road segment before using
it. Thus, we want a collection of shortest paths that allows us to reuse as many
segments as possible. In a communication scenario, we prefer to use recently
established channels, but not at the cost of sacrificing transfer speed. If the
optimality requirement per stage appears too restricting, we point out that one
may potentially relax it in practice by altering the notion of what a shortest path
is, e.g., by rounding edge weights so that all paths of reasonably similar length
are considered optimal.

10.1 contribution

In this part we improve on the state-of-the-art regarding practical algorithmics in
the following two ways: First (Chapter 11), we propose the first rich benchmark
sets for a multistage graph problem, ranging from synthetic to real-world data.
We take special care to avoid ad-hoc generation schemes and parameterizations
which, in case of MSPath, would typically only yield rather trivial instances.
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Instead, we devise several explicit measures of reasons for triviality and actively
seek schemes and parameterizations to avoid them. Secondly, we implemented
and tested a set of heuristic, approximate, and exact algorithms to tackle MSPath

in practice (Chapter 12), and we report on our exploratory study (Chapter 13).
A focus of this study is to test the consistency between theoretical results and
their practical realization and use it as a source for identifying new research
questions.

Theoretical research suggests to improve on algorithms for the (formally
already hard) 2-stage problem variant MSPath|2, as we only know a single
approximation algorithm (with non-constant approximation ratio). The multi-
stage variants with more than two stages can reuse any 2-stage algorithm while
weakening its approximation ratio only by the constant ratio of 1/2. Interestingly,
we find that in practice solutions for MSPath|2 can be approximated (and even
computed exactly) rather simply, but neither the known approximation nor
other heuristics yield satisfactory results for general MSPath. Thus, we propose
that a promising step for theoretical research would be to further investigate the
intricacies of the true multistage setting instead of relying on algorithms for a
small constant number of stages.

The implementations will be part of the open-source (GPL) Open Graph
algorithms and Data structures Framework [CGJ+13] (http://www.ogdf.net); all
benchmark sets and experimental data are available at https://tcs.uos.de/r
esearch/msp.

10.2 multistage shortest path

Given a graph G with positive edge weights w : E(G) → Q+, we encode a
path P ⊆ E(G) as an edge set and denote its path length by ℓ(P) := ∑e∈P w(e).
Given a query (s, t) ∈ V(G)2, a shortest s-t-path is an s-t-path with minimum path
length. In contrast, we may also consider the number of hops (edges) |P| of a
path P. The hop-distance h(s, t) is the smallest number of hops over all s-t-paths.

Definition 47 (MSPath). Given a multistage graph (Gi)i∈[τ], positive edge weights
wi : Ei → Q+ for each i ∈ [τ], and a query (s, t) ∈ V2, find a sequence (Pi)i∈[τ] of
paths such that each Pi is a shortest s-t-path in Gi and the transition quality Q(P) :=
∑i∈[τ−1] |Pi ∩ Pi+1| is maximized.

If there is an upper bound T on the number of stages τ, MSPath may be denoted
by MSPath|T.

While the classical shortest s-t-path problem is long known to be efficiently
solvable using Dijkstra’s algorithm [Dij59], MSPath|2 was shown to be NP-hard
even for unweighted instances via a reduction from 3Sat [FNS+20]. Although
not stated explicitly, the proof can easily be adapted to an approximation-
preserving reduction from Max-2Sat showing that, unless P = NP, MSPath|2
does not admit a PTAS nor a constant-factor approximation with factor better
than 21/22 [Hås97]. In [FNS+20], several similarity and dissimilarity measures

http://www.ogdf.net
https://tcs.uos.de/research/msp
https://tcs.uos.de/research/msp
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Figure 10.1: MSPath|2 instance with k = 3 as in Lemma 48. Edges in E1 are curvy and
blue, edges in E2 straight and red.

were considered, and several results w.r.t. the parameterized complexity of
MSPath could be established.

As the problem is NP-hard, we may be interested in approximate solutions.
The only known approximation algorithms for MSPath|2 and general MSPath

arise as special cases of the general approximation framework presented in
Part II. We will briefly summarize the adapted algorithms in Sections 12.2
and 12.3. For MSPath and MSPath|2, Algorithm 24 and Algorithm 28 yield
approximation ratios of 1/

√
8χ and 1/

√
2χ, respectively. While Theorems 25

and 27 guarantee these ratios, their tightness cannot be deduced for arbitrary
subgraph problems. However, following the construction ideas of Lemma 10

from Part I, we can show the tightness of the ratio (up to a small constant)
for MSPath|2, which also implies the respective tightness of the MSPath-
algorithm:

Lemma 48. The approximation ratio of Algorithm 28 for MSPath|2 is at most 1/
√

2χ.

Proof. We construct a family (Gk, sk, tk)k∈N of MSPath|2 instances, parameter-
ized by some k ≥ 2. An example using k = 3 is depicted in Figure 10.1.

In the construction description, we denote sk = s and tk = t for simplicity. In
the first stage, we have k disjoint s-t-paths P1, . . . , Pk of length 2k + 1; the inner
vertices of path Pi with i ∈ [k] are labeled a1

i , b1
i , a2

i , b2
i , . . . , ak

i , bk
i . We add an

additional s-t-path P∗ of length 2k + 1 by adding edges bi
ia

i+1
i+1 for each i ∈ [k− 1].

In the second stage, we again construct k disjoint s-t-paths P1, . . . , Pk of length
2k + 1, reusing some ab-edges in reversed direction. For each i ∈ [k], path Pi

is the s-t-path from s through bi
i, ai

i, bi
i+1, ai

i+1, . . . bi
k, ai

k to t; the first edge sbi
i

is subdivided into 2i− 1 edges to obtain paths of equal length. We create an
additional s-t-path P∗ of length 2k + 1 by adding edges ai

ib
i+1
i+1.

In each stage, exactly the named paths are shortest s-t-paths. The only edges
common to both stages are E∩ = {aj

ib
j
i | i ∈ [k], j ∈ [i]} and thus χ = k(k + 1)/2.

The optimal MSPath|2 solution is (P∗, P∗) containing k = (
√

8χ + 1 − 1)/2
common edges; any other solution contains at most one common edge.
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Algorithm 49: Preprocessing forbidden elements in an edge-weighted
graph G = (V, E)

1 compute shortest path distances d(v) from s to each v ∈ V using Dijk-
stra’s algorithm

2 remove all edges {uv ∈ E | d(u) + w(uv) ̸= d(v)}
3 compute all vertices U with a path to t (via breadth-first search from t

with reversed edges)
4 remove all vertices V \U

Algorithm 28 may never choose the optimal P∗ as the s-t-path for the first
stage: In the first iteration, both P∗ and Pk contain k edges of E∩, so the algorithm
may choose Pk and obtain a MSPath|2 solution with intersection quality 1. In
the following iteration, the weight (denoting the preference of edges) of P∗
has decreased by 1, since the edge ak

kbk
k has already been chosen in Pk. Thus,

in each iteration i ∈ [k], the algorithm may choose Pk−i+1 over P∗, decreasing
the weight of P∗ to k− i. After choosing P1 in iteration k, each edge of E∩ has
been in some shortest s-t-path in the first stage; the algorithm stops and returns
a MSPath|2 solution with intersection quality 1. The approximation ratio of
Algorithm 28 is thus at most 1/k = 2/(

√
8χ + 1− 1), which tends to 1/

√
2χ for

increasing k.

10.3 preprocessing

For a given query (s, t) ∈ V2 and looking at any stage individually, we may
remove all its forbidden edges (i.e., edges that are not in any shortest s-t-path in
that stage) without altering the set of feasible solutions. We may also discard
(arising) vertices of degree 0. This can be done efficiently, as given in Algo-
rithm 49. Thus, in the following we will assume that this preprocessing is always
performed before running the actual algorithms. A reduced stage Gi, i.e., a stage
that has been preprocessed w.r.t. the instance’s query (s, t), has the following
useful properties:

1. Gi is a directed acyclic graph (DAG), and

2. for each vertex v ∈ V(Gi), all paths from s to v have the same length. The
same holds for all paths from v to t.

After the stage-wise preprocessing, both properties in particular also hold for
the graph induced by the intersection Ei ∩ Ei+1, for each i ∈ [τ − 1].
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B E N C H M A R K I N S TA N C E S

Multistage problems have mostly been viewed from a theoretical perspective up
to now, and there are thus no established sets of stage-wise temporal instances
available. Furthermore, it turns out that acquiring and even generating reason-
able instances is no easy feat: In our investigations, we learned that most ad-hoc
generation schemes typically lead to rather trivial multistage instances. If there
are only very few different (or even just one unique) shortest paths per stage,
there is not much room for transition optimization; if there are several shortest
paths but on very similar stages, chances are that a single solution path can
be chosen throughout all stages; if the stages become too dissimilar, such that
they have only few edges in common between shortest paths, it again becomes
rather simple to select shortest paths that agree in terms of these edges between
subsequent stages.

An adversary may argue that such issues would go away if one switches to
a trade-off based objective function where the paths’ lengths are allowed to
deviate from the optimum in order to allow better transitions. But we disagree:
Generating instances with only a trade-off based objective function in mind
would easily hide the fact that such instances may become trivial for different
balancing ratios between the two considered objective functions. If, however, the
instances are well-designed for our scenario with truly optimal shortest paths,
we expect them to be also interesting for trade-off based optimization. Thus,
it is important to discuss our benchmark generating procedure in more detail
than is often done otherwise. While we cannot guarantee that our instances are
especially sensible for problems beyond MSPath, we hope that the underlying
generation methods and considerations may be useful for devising new instances
for experimental studies on other multistage problems as well.

We consider four different types of benchmark instances, each with slightly
different focus and motivation (see Section 11.1), and ranging from highly syn-
thetic to real-world origins. After discussing schemes of obtaining MSPath

instances from underlying graphs in Section 11.2, we discuss the complexities
of identifying good parameters to obtain non-trivial MSPath instances in Sec-
tion 11.3. Then, Section 11.4 presents the final technical parameterizations of our
benchmark sets and resulting instance properties.

11.1 rationale for the benchmark scenarios

As discussed in Section 10.3, the query-specific preprocessing of MSPath in-
stances may yield vastly smaller stages, and the reduced stages have a very
specific structure. In particular, their size is not necessarily related to the original
instance size anymore. To obtain interesting instances, a main goal is thus to
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generate instances with a reasonable number of shortest paths with a reasonable
number of hops each, so that the preprocessing does not already essentially
solve the instance.

To this end, we start with generating a highly synthetic benchmark set grid,
which consists of long grid graphs (i.e., two-dimensional grids where one
dimension is significantly smaller than the other). For a query (s, t) where s (t)
is the lower left (upper right, respectively) corner of the grid, these graphs
(assuming unit edge weights) already resemble reduced MSPath instances.
Further, in contrast to more quadratically-shaped grid graphs, even relatively
small modifications to the graphs are likely to yield non-trivial instances.

The benchmark set geom contains nearest-neighbor graphs [EPY97], generated
by a random point set in the Euclidean plane. Such random graphs allow for
multiple shortest paths of reasonable lengths. In contrast, other well-established
randomized generation paradigms like Erdős-Renyi graphs or Barabási-Albert
graphs would only yield very small diameters [CL01; BR04]. Our geometric
graphs arguably have naturally occurring edge weights. Further, if one stage is
generated from the previous stage by adding some random displacement to each
vertex, they also provide a natural temporal relationship between consecutive
stages.

The probably most natural application for shortest path queries is navigation
in road networks. However, readily available data sets do not include temporal
data suitable for MSPath. Our benchmark set hybr thus uses real-world road net-
works as the underlying graph data, for which we artificially generate temporal
differences between the stages. Our modification methods (see Section 11.2) are
mainly motivated by this scenario, but we use the same modification methods
for the previous two benchmark sets as well.

Finally, there exist real-world data sets from other applications that include
time-stamped edges. Under those, we are mainly interested in email communica-
tion networks (“who wrote to whom, and when?”) or human contact networks
(“who was near whom, and when?”), as we can interpret these data in the
context of the MSPath problem: We want to quickly pass some information
from source to target, while preferring interpersonal relations that have been
used recently. We collect such instances in our benchmark set real.

11.2 multistage instance generation

modification variants . Necessarily, the stages of a multistage graph
need to differ to compose a non-trivial instance. The real instances already have
differing stages; for grid, geom, and hybr base instances we can use either of the
following three modification schemes (applied to each stage independently) to
obtain multiple differing stages. Additionally, we can also obtain differing stages
for the geom instances by perturbing the vertex coordinates between stages to
simulate random walks of the vertices (see Section 11.4). Keep in mind that these
modifications are performed on the original graph, prior any query knowledge
and thus prior to any preprocessing.
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Edge deletion: In most real-world interpretations of multistage graphs, there
are reasons for the absence of some edges in some stages (as otherwise
the multistage framework would probably not be the best model). For
example, road closures in road networks or link failures in computer
networks can lead to their temporary unavailability. Given a modification
ratio λE ∈ [0, 1), we remove ⌊λE · |Ei|⌋ many edges, chosen uniformly at
random, from each Gi.

Vertex deletion: Removing arbitrarily chosen edges might (i) not alter the set
of shortest paths too much and (ii) not describe all real-world scenarios
too well, as the reason for the absence of an edge can have some local
impact on surrounding edges as well. A simple method to generate local
events of slightly larger impact is to remove vertices together with all
incident edges—this occurs, e.g., if some road intersection is blocked, or if
some server goes offline in a communication network. As above, we use a
modification ratio λV ∈ [0, 1) and remove ⌊λV · |V|⌋ many vertices, chosen
uniformly at random, from each Gi.

Weight scaling: Some incidents (e.g., construction sites) do not render the
respective vertex or edge completely unusable but rather increase the
cost for their usage. This is typically no isolated effect but also affects the
neighborhood of said graph element—the closer the proximity, the larger
the effect. We model this by selecting a random vertex v and sorting Ei by
hop-distance from v (i.e., the minimum of the hop-distances between v
and the edge’s endpoints); the closer an edge is to v, the more we scale
up its weight. The following precise parameters were selected subject to
the discussion in Section 11.3: the weights of the ⌊|Ei|/8⌋ closest edges
are multiplied by a factor of 4; the next ⌊|Ei|/4⌋ edges are multiplied by a
factor of 2. Observe that if edges have exponential weights (see details of
Random Nearest Neighbor Graphs in Section 11.4) they retain this property
after the scaling.

query selection. While the grid instances are constructed with specific
extremal queries in mind, we need to choose queries for the other three bench-
mark sets. To find multiple queries, each with relatively long shortest paths,
we use the following randomized process. Consider some stage Gi with the
least number of edges. Let h′(v, w) := h(v, w) denote the hop-distance from v
to w in Gi if they are in a common component, and h′(v, w) := −1 otherwise.
Let h∗(v) := maxu∈V h′(v, u) and H(v) := {w ∈ V | h′(v, w) ≥ 3/4 · h∗(v)} de-
note a set of distant vertices from v. Starting from a random vertex c ∈ V in the
largest connected component of Gi, we choose the source s uniformly at random
from H(c). The target t is in turn chosen uniformly at random from H(s). If the
query is not feasible for all stages, it is rejected.
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11.3 quality criteria and triviality considerations

To differentiate interesting from trivial instances, multiple aspects have to align.
These are specifically derived from our view on the MSPath-problem but might
also be generalized to classify instances for other multistage problems.

triviality in a stage . Some trivialities can be pinpointed to a single stage.

Few paths: Let N denote the number of shortest s-t-paths in a single stage Gi.
If N = 0, vertex t is not reachable from s and the instance could be split into
two independent sub-instances before and after the ith stage. Alternatively,
if a practical application would rather incentivize similarity to the last
feasible solution, we could simply remove the infeasible stage. Similarly,
if N = 1, the shortest s-t-path is unique in stage i, and we can split the
instance at this stage. The case N ≤ 1 is trivial to check after preprocessing,
since then Ei is either empty or a single path. We may discard instances
with such a stage for experimental purposes. As N may be exponential
in |Ei|, for N ≥ 2, we consider the ratio |Ei|/hi(s, t) as a measure to
estimate the non-triviality of stage Gi. Here, hi is the hop-distance in Gi,
easily computable during preprocessing.

Short paths: We may disregard instances with too small hi, as defined above.

triviality in a transition. Trivialities arising in transitions between
stages may be harder to spot. Furthermore, even after understanding how to
generate instances with reasonable stage-wise non-triviality, finding generation
parameters that yield transition-wise non-trivial instances turned out to be
much more fiddly and required more computational effort. E.g., to compute
(or estimate) the measures below, we require optimal (or heuristic) solutions.
Section 12.1 discusses a method to (in practice) acquire such an optimal solu-
tion (Pi)i∈[τ] in reasonable enough time by the use of an ILP.

Small intersection: If, after preprocessing, the intersection E′ := Ei ∩ Ei+1

between two consecutive stages is too small or poorly structured (e.g., if E′

consists of mostly disconnected edges), all of E′ might be in an optimal
solution simultaneously, i.e., Ei ∩ Ei+1 ⊆ Pi ∩ Pi+1. In this case, already
the simplest greedy algorithm (see Section 12.2) would always find an
optimal solution. We introduce the triviality measure tS := |Pi∩Pi+1|

|Ei∩Ei+1| which
compares the optimal transition quality to the intersection size. If tS = 1,
the transition is trivial; if tS is close to 0, this triviality aspect plays no
important role.

Large intersection: If, on the other hand, Ei ∩ Ei+1 is too large, each solution
edge may always also be an intersection edge, i.e., Pi = Pi ∩ Ei+1 for any
shortest path Pi in Gi (and similarly for Pi+1). We introduce the triviality
measure tL := 2·|Pi∩Pi+1|

|Pi |+|Pi+1| , comparing the optimal transition quality with
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Figure 11.1: Triviality measures for 2-stage geom instances.

the mean number of hops of the respective shortest paths. If tL = 1, the
transition is trivial; if tL is close to 0, this aspect is not important.

Small transition quality: Both triviality measures tS and tL are not very expres-
sive if the optimal transition quality |Pi ∩ Pi+1| is low.

identifying non-trivial instances . The selection of the underlying
graphs (and/or their generation methods) allows us to control the non-triviality
within single stages in a reasonable and predictable manner. However, control-
ling the transition-based triviality (mainly tS and tL) turns out to be much more
challenging. This is furthered by the fact that for a nice set of benchmarks, we
would like to have similar parameterizations over all instance classes. To this
end, we required multiple rounds of generating many instances starting with
vastly diverse parameter selections until honing in with fine-grained parame-
ter differences. While this may seem straight-forward on first sight, there are
sometimes only very small ranges of suitable parameter values, and they may
vastly drift or even disappear by slight changes to other parameters due to the
interdependencies of the parameters.

We exemplarily discuss the effects on tS and tL by varying the modification
parameters for geom. See Figure 11.1 for a visualization, where instances (points
in the figure) that are trivial due to a too small (large) intersection tend to the
horizontal (vertical, respectively) axis. Consider neighborhoods of size k = 10.
For a small edge deletion modification ratio λE, the intersection is mostly too
large, causing low 1− tL; for larger λE, the point set moves down and to the right,
rendering more instances to have low 1− tS. This plausible effect is evident
for all instance sets, albeit with large discrepancy for sensible values of λE

depending on, for example, k: while λE = 0.4 is a sensible choice for k = 10,
k = 50 would benefit from a higher λE value. Even more so, for some instance
parameterizations (e.g., k = 5 and λV = 0.4), both tS and tL are likely to trigger.
Thus, the selected parameters are a compromise between comparability of
parameter values and non-triviality w.r.t. all of the above triviality considerations.
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Table 11.1: Instance characteristics, grouped by relevant parameters. Here, n and m (n′

and m′) are the mean number of vertices and edges before (after, respec-
tively) preprocessing, always understood as the union over all stages. The
ratios n′/n and m′/m thus measure the effectiveness of the preprocessing
strategy. h denotes the mean hop-count of a shortest path per stage; larger
numbers typically indicate higher problem difficulty. Value χ gives the mean
intertwinement of the considered instances after preprocessing.

grid y = 100 y = 200 y = 500 y = 1000

n′
n χ n′

n χ n′
n χ n′

n χ

x m′
m h m′

m h m′
m h m′

m h

5
97.7% 362.8 98.0% 626.1 99.2% 1396.5 99.4% 2605.9

97.1% 105.0 97.3% 208.6 98.6% 519.6 98.9% 1037.4

10
89.6% 676.5 87.8% 962.3 90.7% 1892.5 93.9% 3476.2

88.0% 110.2 85.5% 214.8 87.7% 530.6 90.8% 1069.0

25
86.9% 2356.1 77.8% 3540.0 68.2% 4347.4 72.0% 6834.9

86.0% 123.5 76.1% 227.0 64.8% 538.6 67.0% 1069.2

50
91.1% 5506.0 80.8% 9321.3 64.8% 14414.3 55.4% 13940.5

90.7% 148.0 80.1% 249.0 63.0% 566.4 52.1% 1106.7

geom n = 1000 n = 2000 n = 5000

n′
n χ n′

n χ n′
n χ

k m′
m h m′

m h m′
m h

5
21.6% 53.6 17.1% 79.0 13.7% 141.4

10.5% 30.8 8.4% 47.2 6.9% 74.1

10
20.5% 60.7 18.1% 100.6 15.0% 213.3

7.7% 20.7 6.6% 30.9 5.7% 54.3

25
18.1% 120.6 17.2% 228.1 15.5% 505.0

4.7% 12.4 4.5% 18.5 4.0% 35.7

50
13.1% 165.5 15.1% 335.2 15.6% 988.0

2.3% 7.3 3.0% 13.3 3.2% 20.3

hybr n m n′
n

m′
m χ h

CA 2.0M 2.8M 0.11% 0.09% 571.3 747.7

PA 1.1M 1.5M 0.19% 0.15% 551.4 653.6

TX 1.4M 1.9M 0.19% 0.15% 654.0 860.0

real n m n′
n

m′
m χ h

dnc.24 401.8 1.2K 6.9% 5.8% 11.5 6.3

dnc.48 536.4 1.7K 5.5% 5.1% 15.0 5.4

enron.168 5.3K 12.4K 1.0% 0.8% 11.1 7.7

enron.744 8.9K 25.2K 0.5% 0.4% 12.4 7.4

11.4 final parameterization and generation details

After multiple rounds of investigations to identify reasonable and consistent pa-
rameterizations that yield non-trivial instances, we finally arrive at the following
generation settings. Table 11.1 shows key figures of the generated multistage
instances, given as averages over the indicated instance classes. A detailed
overview of the generation parameters is given in Tables 11.2–11.4 at the end of
the section. The full set of benchmark instances and experimental results can be
found at https://tcs.uos.de/research/msp.

grid : long grid graphs . The underlying grids have |V| = x · y for (x, y) ∈
{5, 10, 25, 50}× {100, 200, 500, 1000} and unit edge weights. For each of the three
modification variants we generate MSPath instances with 16 stages; each stage
is derived from the original underlying graph. We consider the modification

https://tcs.uos.de/research/msp
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ratios λE ∈ {1/5, 1/10, 1/20} (for x = 5, λE = 1/5 is omitted due to generating
mostly infeasible instances) and λV = 1/20. Overall, we generate 36 instances for
each parameter combination, so we obtain 2736 grid instances.

geom: random nearest neighbor graphs . We use several parame-
ters to generate MSPath instances with 16 stages. The vertices in G1 are n ∈
{1000, 2000, 5000} randomly chosen real-valued points uniformly distributed
over the unit square [0, 1]2. We obtain the vertex position for each Gi+1 from Gi
by moving each vertex independently in a random direction chosen uniformly
from [− ϱ

n , ϱ
n ]

2 with ϱ ∈ {0, 1, 5}. In every stage, for each vertex we add an
edge to its k ∈ {5, 10, 25, 50} nearest neighbors (according to Euclidean dis-
tances). To allow for multiple shortest paths per stage, we consider two different
weight functions: unit weights and exponential weights. The latter are generated
by 2⌈log2 100d⌉, where d is the Euclidean distance. This mapping partitions the
otherwise very diverse edge weights into buckets of (exponentially) similar
weights. Due to the factor 100 (and that we have a nearest neighbor graph) we
mostly observe weights in {1, 2, 4, 8, 16}.

We consider these graphs with the edge deletion (with λE ∈ {1/2, 1/20}, omit-
ting λE = 1/2 for k = 5 and λE = 1/20 for (k, n) = (50, 5000) due to triviality)
and the weight scaling modifications. We do not use vertex deletion here, as these
modifications (even for small non-trivial values of λV) resulted in mostly trivial
instances (especially many infeasible ones). However, unless ϱ = 0, we also con-
sider the instances without any further modifications since the random walks
of the vertices already establish differences between the stages. Overall, we
generate 4 instances for each of the 240 parameter combinations with a unique
query as described in Section 11.2. We obtain 960 geom instances overall.

hybr: road networks . We use the undirected variants of the popular real-
world roadNet data set [LLD+08], namely the road networks of California (CA),
Pennsylvania (PA), and Texas (TX) as three distinct underlying graphs. As the
original data set does not contain any temporal information, we use the three
modification variants to obtain multistage instances, with λE ∈ {1/10, 1/20, 1/100}
and λV ∈ {1/20, 1/100}. In contrast to the artificial graphs, we observe that
preprocessing the underlying graph w.r.t. a query yields dramatically smaller
graphs (see Table 11.1). Thus, we performed the stage-wise modifications after
preprocessing (i.e., we first choose a random query as described in Section 11.2,
then preprocess, modify and check feasibility), in order to guarantee that the
modifications are significant within the stages. The benchmark set hybr consists
of overall 360 multistage instances with 4 stages and a unique query each.

real : communication networks . Many real-world graph data sets with
timestamped edges are email data sets [KY04; Kun13], where vertices represent
people and an edge indicates a message exchange at the indicated times. We
use the data sets as provided by the Konect graph collection [Kun13], but
consider edges to be undirected. Here, timestamps are given with a relatively



70 benchmark instances

high resolution ranging between 1 and 100 seconds, meaning that only very few
events happen exactly at the same time. To generate stages with a non-trivial
number of edges, we have to decrease the temporal resolution, i.e., we generate
stages by accumulating all events that occur during some time window. If we
choose too large time windows, the stages become too dense and yield only
very short shortest paths. On the other hand, if we have too many stages, there
are typically no feasible non-trivial queries possible. We thus pick time window
sizes that yield interesting graphs, but restrict ourselves to 2 or 8 consecutive
stages. The queries are selected as described in Section 11.2.

• enron [KY04; Kun13]: Email communication between employees of the
energy corporation Enron. We use time window sizes of 168 hours (a week)
and 744 hours (a month). To avoid too sparse (or obviously mislabeled)
data, we only consider timestamps between May 27, 1998 and Feb 04, 2004

(a span of 297 weeks).

• dnc-email [Kun13]: Email communication between members of the US
Democratic National Committee. We use time window sizes of 24 and 48
hours. Here, we consider timestamps between Sep 16, 2013 and May 25,
2016 (a span of 140 weeks).

The benchmark set real consists of 80 2-stage (66 × enron, 14 × dnc-email)
and 20 8-stage instances (14× enron, 6× dnc-email) that are selected as those
instances with the lowest triviality score, which is calculated as the sum over
the values 10 · 1

(︁
tS = 1∨ tL = 1

)︁
+ tS · tL for the considered transitions.

We also conducted the same process on human contact data sets [ISB+11;
EP06], where a timestamped edge indicates a measurement of physical proximity
at the given point in time. However, the resulting graphs had either a very low
diameter (3 or even lower, rendering MSPath essentially trivial) if the time
windows were too wide, or were highly disconnected if the time windows
were too narrow. There was no sweet spot between these effects and thus these
instances are not included. We also note that research tells us that autonomous
systems and similar networks typically experience shrinking diameters over
time [LKF05], and are thus not well-suited to yield non-trivial MSPath instances.

Table 11.2: Instance characteristics of hybr graphs. Columns as in Table 11.1.
hybr CA PA TX

n′
n

m′
m χ h n′

n
m′
m χ h n′

n
m′
m χ h

λE = 0.01 0.08% 0.06% 744.1 668.0 0.13% 0.10% 752.9 608.1 0.13% 0.10% 945.2 813.2

λE = 0.05 0.12% 0.09% 472.6 763.8 0.19% 0.15% 474.1 648.5 0.20% 0.16% 510.8 857.3

λE = 0.1 0.15% 0.12% 355.5 876.2 0.23% 0.19% 316.4 700.6 0.26% 0.20% 306.8 939.7

λV = 0.01 0.08% 0.06% 684.5 677.1 0.14% 0.11% 792.2 626.0 0.13% 0.10% 896.0 816.1

λV = 0.05 0.13% 0.11% 423.6 782.2 0.21% 0.17% 409.9 656.3 0.23% 0.18% 451.1 878.2

scaling 0.11% 0.08% 747.5 719.0 0.23% 0.18% 562.6 682.3 0.18% 0.14% 813.9 855.4
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Table 11.3: Instance characteristics of grid graphs. Instance sets with “—” are not generated, while “��” indicates no known optimal solution. A
mean hop-count value in italics is ignoring instances with no known optimum.

grid x = 5 x = 10 x = 25 x = 50

n′
n

m′
m χ h n′

n
m′
m χ h n′

n
m′
m χ h n′

n
m′
m χ h

n = 100, λE = 0.05 96.0% 95.3% 349.8 104.5 91.4% 90.6% 911.9 108.1 96.3% 96.1% 3531.4 123.0 97.8% 97.7% 7771.4 ��

n = 100, λE = 0.1 97.7% 96.8% 245.0 108.2 81.5% 79.4% 395.9 109.8 83.1% 82.3% 2206.0 123.0 90.5% 90.1% 5802.2 ��

n = 100, λE = 0.2 — — — — 84.6% 80.2% 198.4 117.1 60.6% 57.4% 455.1 124.5 69.7% 68.0% 2258.6 148.0

n = 100, λV = 0.05 97.2% 96.5% 340.5 104.5 90.6% 89.8% 824.5 108.1 95.5% 95.3% 3204.2 123.0 97.6% 97.6% 7029.1 ��

n = 100, scaling 99.9% 99.8% 515.8 103.0 100.0% 100.0% 1051.7 108.0 99.2% 99.1% 2383.9 123.0 100.0% 100.0% 4668.6 148.0

n = 200, λE = 0.05 97.1% 96.3% 587.7 207.8 82.3% 80.6% 1003.3 209.4 83.3% 82.7% 5291.2 �� 92.4% 92.2% 14171.8 ��

n = 200, λE = 0.1 98.3% 97.2% 405.3 215.5 83.9% 80.7% 551.4 215.3 60.3% 58.5% 1885.6 223.7 75.4% 74.7% 8791.3 ��

n = 200, λE = 0.2 — — — — 89.3% 84.2% 306.9 231.7 60.4% 54.8% 449.1 234.3 44.6% 42.2% 1272.7 249.8

n = 200, λV = 0.05 96.5% 95.4% 502.5 208.1 83.9% 82.1% 871.8 209.7 84.8% 84.3% 4763.4 223.0 91.8% 91.6% 12546.6 ��

n = 200, scaling 100.0% 100.0% 1008.9 203.0 99.8% 99.8% 2078.2 208.0 100.0% 100.0% 5310.8 223.0 100.0% 100.0% 9824.1 248.0

n = 500, λE = 0.05 98.7% 98.0% 1149.8 518.1 84.9% 81.9% 1451.2 517.6 57.7% 56.1% 3602.3 524.5 70.1% 69.5% 22019.8 ��

n = 500, λE = 0.1 99.3% 98.6% 873.9 538.1 90.5% 86.5% 908.7 534.4 60.5% 56.1% 1308.3 536.3 41.7% 40.1% 3725.3 550.3

n = 500, λE = 0.2 — — — — 93.7% 88.8% 642.1 575.1 67.4% 58.2% 582.6 571.6 43.4% 37.1% 738.7 577.1

n = 500, λV = 0.05 98.7% 98.0% 1056.4 519.1 84.1% 81.4% 1244.6 518.1 55.5% 53.8% 3009.1 524.8 69.0% 68.5% 18871.9 ��

n = 500, scaling 100.0% 100.0% 2505.7 503.0 100.0% 100.0% 5215.7 508.0 99.7% 99.7% 13234.9 523.0 100.0% 100.0% 26715.7 ��

n = 1000, λE = 0.05 99.0% 98.3% 1935.5 1035.9 90.4% 87.5% 2241.7 1032.8 58.4% 55.0% 3006.2 1034.9 41.7% 40.6% 9908.8 ��

n = 1000, λE = 0.1 99.6% 99.0% 1574.0 1074.9 93.8% 90.2% 1753.5 1065.8 67.5% 60.3% 1628.0 1064.5 43.6% 39.0% 2207.7 1070.5

n = 1000, λE = 0.2 — — — — 94.9% 89.5% 1103.1 1146.7 74.7% 64.0% 1019.0 1137.1 50.1% 40.6% 924.4 1137.2

n = 1000, λV = 0.05 99.3% 98.7% 1808.1 1037.4 90.4% 87.3% 2200.1 1033.9 59.7% 55.9% 2793.2 1036.0 41.7% 40.5% 7904.4 1050.1

n = 1000, scaling 99.8% 99.7% 5105.9 1003.0 99.8% 99.8% 10082.5 �� 99.8% 99.7% 25728.0 �� 99.8% 99.8% 48757.2 ��
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Table 11.4: Instance characteristics of geom graphs. We use the same notation as in Table 11.2. Weights are given either as unit weights (denoted
as 1x) or exponential weights (2x).
geom k = 5 k = 10 k = 25 k = 50

n′
n

m′
m χ h n′

n
m′
m χ h n′

n
m′
m χ h n′

n
m′
m χ h

n = 1000, 1x, ϱ = 1, λE = 0 19.5% 10.3% 142.0 26.8 13.6% 6.2% 258.5 16.7 13.9% 4.5% 444.2 9.2 8.5% 1.8% 444.2 6.0

n = 1000, 2x, ϱ = 1, λE = 0 10.1% 4.9% 55.8 33.2 7.3% 2.2% 66.8 22.1 5.4% 0.7% 34.2 13.6 4.4% 0.3% 46.5 8.1

n = 1000, 1x, ϱ = 5, λE = 0 24.2% 12.0% 70.8 26.7 22.8% 10.2% 144.8 16.8 22.5% 8.7% 394.0 9.3 12.3% 2.5% 307.8 6.0

n = 1000, 2x, ϱ = 5, λE = 0 16.1% 7.3% 33.2 29.2 13.9% 4.6% 37.0 22.0 10.3% 1.9% 34.0 14.4 8.0% 0.8% 38.0 7.7

n = 1000, 1x, ϱ = 0, λE = 0.2 19.5% 11.1% 43.8 29.1 16.0% 7.0% 84.8 17.9 16.0% 4.9% 193.2 10.1 11.2% 2.3% 316.2 6.0

n = 1000, 2x, ϱ = 0, λE = 0.2 13.8% 7.4% 30.2 33.0 9.8% 3.1% 29.0 22.0 9.3% 1.6% 49.2 15.4 5.5% 0.5% 23.2 8.0

n = 1000, 1x, ϱ = 1, λE = 0.2 21.0% 11.9% 41.0 29.3 18.6% 8.4% 76.0 17.0 16.2% 5.3% 210.2 9.6 12.2% 2.4% 271.8 6.0

n = 1000, 2x, ϱ = 1, λE = 0.2 15.4% 8.1% 28.2 31.7 12.4% 4.0% 28.2 22.3 8.3% 1.3% 30.8 14.2 5.7% 0.5% 33.5 7.9

n = 1000, 1x, ϱ = 5, λE = 0.2 24.4% 11.6% 29.2 28.5 22.9% 9.8% 74.0 16.9 19.7% 6.3% 161.8 9.9 16.2% 4.2% 337.8 6.1

n = 1000, 2x, ϱ = 5, λE = 0.2 20.8% 9.1% 22.2 32.0 15.7% 4.9% 18.2 21.5 12.4% 2.1% 18.0 14.8 6.7% 0.5% 15.8 7.6

n = 1000, 1x, ϱ = 0, λE = 0.5 — — — — 22.2% 10.0% 19.8 20.8 26.1% 8.1% 55.0 11.1 16.8% 4.5% 124.5 6.6

n = 1000, 2x, ϱ = 0, λE = 0.5 — — — — 15.8% 5.5% 11.2 24.7 10.9% 1.9% 9.8 13.8 8.0% 0.8% 10.5 8.6

n = 1000, 1x, ϱ = 1, λE = 0.5 — — — — 26.8% 10.6% 17.8 20.7 20.6% 5.6% 51.0 10.6 21.5% 4.6% 92.0 6.4

n = 1000, 2x, ϱ = 1, λE = 0.5 — — — — 16.2% 5.4% 9.8 23.8 10.6% 2.0% 12.8 13.5 8.5% 0.9% 11.5 8.4

n = 1000, 1x, ϱ = 5, λE = 0.5 — — — — 24.2% 9.3% 23.5 18.9 24.0% 6.9% 47.2 10.2 20.0% 4.6% 104.8 6.3

n = 1000, 2x, ϱ = 5, λE = 0.5 — — — — 19.0% 5.7% 10.2 23.8 11.9% 2.2% 9.5 13.6 8.9% 0.7% 8.8 8.0

n = 1000, 1x, ϱ = 0, scaling 23.8% 12.1% 105.2 30.0 29.4% 11.9% 142.8 19.6 26.8% 8.1% 233.8 10.8 20.2% 4.2% 444.5 6.5

n = 1000, 2x, ϱ = 0, scaling 19.0% 8.6% 48.8 34.7 20.1% 5.9% 46.2 23.0 20.4% 2.8% 30.5 16.1 9.2% 0.7% 44.5 9.2

n = 1000, 1x, ϱ = 1, scaling 28.3% 14.4% 83.8 28.5 34.9% 14.2% 102.2 18.7 32.5% 10.0% 356.8 10.3 25.6% 6.2% 703.8 6.7

n = 1000, 2x, ϱ = 1, scaling 28.9% 12.7% 48.8 35.8 23.2% 6.4% 42.2 25.6 20.2% 2.8% 26.2 16.5 12.3% 1.0% 47.2 8.8
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n = 1000, 1x, ϱ = 5, scaling 31.9% 14.2% 50.5 28.9 41.6% 15.6% 66.0 18.0 37.0% 12.2% 230.2 10.1 30.5% 6.2% 191.0 6.5

n = 1000, 2x, ϱ = 5, scaling 28.1% 10.8% 24.5 34.8 24.9% 6.7% 25.8 23.5 23.7% 3.2% 20.0 15.7 15.0% 1.2% 23.2 9.3

n = 2000, 1x, ϱ = 1, λE = 0 7.9% 4.0% 126.5 38.0 12.1% 4.9% 366.5 24.4 11.6% 3.9% 921.8 13.9 11.3% 2.9% 1411.0 8.9

n = 2000, 2x, ϱ = 1, λE = 0 8.3% 4.1% 90.2 52.4 5.2% 1.5% 86.5 33.6 5.5% 0.8% 111.2 21.3 4.9% 0.4% 124.8 16.9

n = 2000, 1x, ϱ = 5, λE = 0 17.0% 9.0% 117.0 39.4 17.4% 7.7% 251.0 24.9 22.8% 8.3% 983.8 14.7 10.0% 2.0% 559.5 9.0

n = 2000, 2x, ϱ = 5, λE = 0 13.6% 6.4% 60.5 50.2 12.9% 4.2% 64.0 34.4 10.8% 2.1% 67.5 21.2 8.9% 1.0% 92.0 17.7

n = 2000, 1x, ϱ = 0, λE = 0.2 11.8% 6.8% 45.0 39.8 18.6% 8.2% 232.5 26.4 12.3% 4.3% 270.8 14.5 14.1% 3.9% 968.2 9.5

n = 2000, 2x, ϱ = 0, λE = 0.2 13.9% 7.5% 60.5 56.1 10.8% 3.4% 64.2 35.0 7.2% 1.1% 60.8 21.0 7.1% 0.6% 55.5 17.2

n = 2000, 1x, ϱ = 1, λE = 0.2 16.2% 9.1% 53.8 41.3 16.4% 7.6% 126.2 26.2 19.7% 6.9% 365.5 14.9 17.6% 4.6% 337.8 9.5

n = 2000, 2x, ϱ = 1, λE = 0.2 12.8% 7.1% 47.5 50.2 10.7% 3.6% 59.5 36.2 7.8% 1.3% 45.8 20.8 6.1% 0.6% 35.0 16.6

n = 2000, 1x, ϱ = 5, λE = 0.2 20.2% 9.9% 42.0 40.9 19.9% 8.3% 89.2 26.4 21.0% 7.2% 371.5 14.9 17.0% 4.4% 750.5 9.0

n = 2000, 2x, ϱ = 5, λE = 0.2 15.4% 7.1% 35.8 51.3 14.1% 4.8% 32.2 35.0 10.6% 1.8% 34.5 19.7 9.1% 0.9% 40.5 15.8

n = 2000, 1x, ϱ = 0, λE = 0.5 — — — — 19.6% 7.9% 26.5 28.7 21.3% 6.7% 73.5 15.9 22.6% 6.3% 204.0 9.9

n = 2000, 2x, ϱ = 0, λE = 0.5 — — — — 14.7% 4.8% 13.2 33.5 11.0% 1.7% 14.0 21.0 7.8% 0.7% 16.0 16.2

n = 2000, 1x, ϱ = 1, λE = 0.5 — — — — 20.4% 8.4% 31.2 27.8 18.6% 5.7% 72.0 15.0 21.8% 5.7% 245.5 10.2

n = 2000, 2x, ϱ = 1, λE = 0.5 — — — — 12.6% 4.4% 17.0 33.2 10.9% 1.8% 15.5 21.8 8.0% 0.7% 16.2 16.0

n = 2000, 1x, ϱ = 5, λE = 0.5 — — — — 20.0% 7.1% 28.0 27.1 20.6% 6.6% 85.8 15.0 17.8% 4.6% 210.5 9.6

n = 2000, 2x, ϱ = 5, λE = 0.5 — — — — 15.1% 4.7% 13.5 32.6 11.2% 1.8% 12.8 21.3 9.1% 0.9% 11.5 14.5

n = 2000, 1x, ϱ = 0, scaling 19.4% 10.0% 129.2 43.3 27.7% 11.0% 188.8 28.9 33.0% 9.9% 351.8 16.2 31.3% 8.2% 753.0 10.2

n = 2000, 2x, ϱ = 0, scaling 20.5% 9.2% 85.8 55.6 19.8% 5.5% 77.5 37.1 17.6% 2.3% 159.2 24.8 13.8% 1.0% 42.8 17.6

n = 2000, 1x, ϱ = 1, scaling 19.4% 9.9% 154.8 43.5 24.6% 9.4% 208.8 27.7 29.2% 8.9% 596.2 16.4 26.9% 6.1% 1041.5 10.8

n = 2000, 2x, ϱ = 1, scaling 18.8% 8.9% 80.8 57.1 23.8% 6.6% 76.5 36.8 20.4% 2.8% 71.2 23.3 15.7% 1.1% 70.5 18.1

n = 2000, 1x, ϱ = 5, scaling 30.4% 13.0% 88.0 41.9 36.2% 12.8% 119.0 28.6 35.6% 9.7% 299.8 16.2 34.3% 7.6% 355.2 10.8

n = 2000, 2x, ϱ = 5, scaling 28.5% 11.0% 46.5 53.9 26.6% 7.0% 40.2 36.0 19.7% 2.8% 33.8 22.2 16.6% 1.4% 33.2 17.3
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n = 5000, 1x, ϱ = 1, λE = 0 5.9% 3.0% 206.5 63.7 7.7% 3.3% 455.0 39.7 13.2% 4.5% 2153.2 25.1 9.5% 2.4% 2729.5 16.3

n = 5000, 2x, ϱ = 1, λE = 0 5.9% 3.0% 214.0 80.2 7.2% 2.6% 393.2 66.1 6.0% 1.1% 401.8 53.8 4.3% 0.4% 283.5 24.3

n = 5000, 1x, ϱ = 5, λE = 0 10.2% 5.3% 188.2 64.0 14.5% 6.2% 392.5 41.3 17.1% 6.2% 1263.8 24.2 14.6% 4.0% 2787.8 16.7

n = 5000, 2x, ϱ = 5, λE = 0 9.6% 4.9% 160.0 75.8 12.3% 4.9% 263.0 67.1 8.6% 1.9% 294.0 46.3 8.5% 1.1% 284.8 22.7

n = 5000, 1x, ϱ = 0, λE = 0.2 14.1% 7.8% 94.5 69.7 13.0% 5.6% 229.0 44.0 14.2% 4.9% 621.0 24.2 — — — —

n = 5000, 2x, ϱ = 0, λE = 0.2 10.8% 6.2% 98.8 80.5 8.0% 3.2% 138.5 62.0 7.2% 1.4% 193.2 45.9 — — — —

n = 5000, 1x, ϱ = 1, λE = 0.2 11.7% 6.3% 70.8 64.0 12.6% 5.5% 194.0 41.9 13.4% 4.6% 575.8 24.4 — — — —

n = 5000, 2x, ϱ = 1, λE = 0.2 11.7% 6.4% 82.0 81.6 11.5% 4.4% 160.0 62.5 9.6% 2.0% 190.0 45.2 — — — —

n = 5000, 1x, ϱ = 5, λE = 0.2 12.8% 6.5% 56.8 65.9 14.7% 6.2% 164.2 41.8 16.2% 5.9% 549.5 24.0 — — — —

n = 5000, 2x, ϱ = 5, λE = 0.2 12.9% 6.4% 69.2 79.1 13.1% 4.9% 121.2 63.4 11.5% 2.4% 133.0 46.2 — — — —

n = 5000, 1x, ϱ = 0, λE = 0.5 — — — — 14.1% 5.7% 48.2 45.6 17.9% 5.2% 146.8 25.3 18.7% 5.0% 509.8 17.3

n = 5000, 2x, ϱ = 0, λE = 0.5 — — — — 12.5% 4.6% 30.8 60.4 10.1% 2.0% 43.8 40.1 8.2% 1.0% 36.8 21.3

n = 5000, 1x, ϱ = 1, λE = 0.5 — — — — 14.9% 5.8% 47.8 46.9 19.1% 5.5% 154.5 26.6 17.8% 4.2% 436.0 17.0

n = 5000, 2x, ϱ = 1, λE = 0.5 — — — — 12.4% 4.4% 25.8 62.2 11.2% 2.2% 38.2 40.5 9.0% 1.0% 45.2 22.1

n = 5000, 1x, ϱ = 5, λE = 0.5 — — — — 17.4% 6.1% 34.5 47.5 18.2% 5.2% 108.0 25.8 18.2% 3.9% 253.5 17.8

n = 5000, 2x, ϱ = 5, λE = 0.5 — — — — 12.9% 4.4% 29.2 61.8 12.5% 2.5% 47.5 40.5 9.2% 1.0% 34.8 21.6

n = 5000, 1x, ϱ = 0, scaling 14.1% 7.0% 219.2 69.8 19.6% 7.5% 417.0 46.1 21.1% 5.9% 1878.2 26.1 25.8% 6.2% 2086.5 18.0

n = 5000, 2x, ϱ = 0, scaling 16.4% 8.2% 152.5 83.1 20.5% 6.8% 224.5 69.5 17.8% 2.9% 274.8 48.4 14.0% 1.3% 207.8 24.5

n = 5000, 1x, ϱ = 1, scaling 20.2% 10.3% 210.5 69.8 22.3% 9.2% 606.8 44.3 26.0% 7.5% 595.5 26.3 25.3% 7.3% 4169.2 17.9

n = 5000, 2x, ϱ = 1, scaling 17.8% 8.8% 186.8 86.6 19.1% 6.3% 272.5 67.1 18.9% 3.2% 328.5 48.9 16.3% 1.5% 72.2 24.5

n = 5000, 1x, ϱ = 5, scaling 20.9% 9.3% 137.2 67.3 25.5% 9.6% 273.5 46.3 25.9% 7.2% 869.2 26.5 32.4% 8.8% 1726.5 18.3

n = 5000, 2x, ϱ = 5, scaling 23.6% 10.6% 115.8 84.9 24.2% 7.7% 171.5 67.5 24.9% 4.4% 249.2 50.8 18.3% 1.8% 144.2 24.2
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A L G O R I T H M S

12.1 exact solutions

To compute exact MSPath solutions, we propose a straight-forward integer
linear programming (ILP) formulation. The preprocessing routine gives us the
length Li of any shortest s-t-path in Gi, for each i ∈ [τ]. Furthermore, it lets
us define δ+i (v) ⊆ Ei (or δ−i (v) ⊆ Ei) as the number of edges that enter (leave,
respectively) vertex v in a reduced instance. This allows us to use a directed
flow formulation [Ord56] for assuring the path property.

For each stage i ∈ [τ], the binary variable xi(e) indicates whether edge e ∈ Ei
is in Pi. Constraints (12.1a) ensure that each Pi is an s-t-path, constraint (12.1b)
forces Pi to be of shortest length. For each transition (Gi, Gi+1) the (de facto
binary) variable zi(e) indicates—due to constraints (12.1c), (12.1d), and the
objective function—whether edge e ∈ Ei ∩ Ei+1 is in Pi ∩ Pi+1. Thus, the objective
is to maximize the transition quality.

max ∑
i∈[τ−1]

∑
e∈Ei

zi(e)

s.t. ∑
e∈δ−(v)

xi(e)−∑
e∈δ+(v)

xi(e) = 1
(︁
v = s

)︁
− 1

(︁
v = t

)︁
∀ i ∈ [τ], ∀ v ∈ V (12.1a)

∑
e∈Ei

wi(e) · xi(e) = Li ∀ i ∈ [τ] (12.1b)

zi(e) ≤ xi(e) ∀ i ∈ [τ − 1], ∀ e ∈ Ei ∩ Ei+1 (12.1c)

zi(e) ≤ xi+1(e) ∀ i ∈ [τ − 1], ∀ e ∈ Ei ∩ Ei+1 (12.1d)

xi(e) ∈ {0, 1} ∀ i ∈ [τ], ∀ e ∈ Ei (12.1e)

12.2 two-stage algorithms

In the following, we are going to make extensive use of the auxiliary algorithm
prefPath(i, F). It finds, among all shortest s-t-paths in Gi, a shortest s-t-path
with the maximum number of edges from F. It does so by computing Dijkstra’s
algorithm w.r.t. the edge weights of Ei where the weight of the edges in F ∩ Ei is
reduced by some small ε. See Theorem 33 for details, where it is discussed as
the preficiency algorithm for MSPath.

We first present some algorithms for the 2-stage problem MSPath|2, as these
are later used as black-box algorithms for general MSPath.

Greedy (G): Computes a shortest s-t-path P1 ← prefPath(1, E2) in G1 and,
favoring this path, a shortest s-t-path P2 ← prefPath(2, P1) in G2.
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Double Greedy (Gd): Calls G twice independently: once as described above,
then with the roles of the stages exchanged. The output is the solution
with larger transition quality.

Iterated Greedy (Gi): Computes (P1, P2) with G and then alternatingly reopti-
mizes Pi ← prefPath(i, P3−i) for i = 1, 2 until the transition quality does
not improve anymore.

Approximation (A): This 1/
√

2χ-approximation algorithm (see Section 7.2) iter-
atively computes candidate solutions (pairs of paths) and finally outputs
the pair with largest transition quality. Let Y := E1 ∩ E2 be the initial
set of edges to be preferred. In each iteration j, a pair of paths P(j)

1 ←
prefPath(1, Y) and P(j)

2 ← prefPath(2, P(j)
1 ) is computed as a new candi-

date solution, and we update the set of preferred edges to Y ← Y \ P(j)
1 .

According to the original description, the algorithm continues until even-
tually Y = ∅ (which is guaranteed to happen due to our preprocessing).
Our implementation can furthermore correctly halt earlier if the current
best transition quality matches the upper bound |E1 ∩ prefPath(2, E1)|.

Double Approximation (Ad): Similarly to how Gd doubles G, this variant calls A

twice, the second time with the roles of the two stages exchanged. It
outputs the solution with larger transition quality.

Bounded Approximation (A5): A variation of A that halts after the first 5
candidate solutions (or earlier if A halts earlier).

12.3 multistage algorithms

We consider two different polynomial-time approaches to find solutions for
instances where τ > 2.

Multistage Greedy (M-G): After initializing P1 ← prefPath(1, E2), subsequent
paths Pi ← prefPath(i, Pi−1) are computed iteratively for i = 2, . . . , τ. Pro-
ceeding in the reversed direction, for each i = τ− 1, . . . , 1 the solution Pi is
updated to prefPath(i, Pi+1). This process is repeated alternatingly front
to back and back to front as long as the transition quality increases. Note
that M-G coincides with Gi for τ = 2.

Multistage with black-box (B-*): This algorithm (see Section 7.2) uses any
MSPath|2-algorithm * as a black-box. The latter is executed on each consec-
utive pair of stages. Using a linear-time dynamic programming approach, it
computes a collection of non-adjacent transitions whose transition qualities
sum to the largest number. If the individual (2-stage) transitions are com-
puted using some α-approximation, this routine yields an α

2 -approximation;
in the case of B-A we thus obtain an 1/

√
8χ-approximation.

Improving over the description in Section 7.2 in practice, our implementa-
tion does not use arbitrary solutions for a stage that is neither optimized
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to the previous nor to the next stage. Instead, considering such a stage Gi,
we set Pi to either prefPath(i, Pi−1) or prefPath(i, Pi+1), depending on
which path yields the better transition qualities in conjunction with the
solution paths of its neighboring stages (both of which are naturally fixed
by the dynamic programming). We evaluate the algorithm’s performance
using each of the 2-stage algorithms described above as a black-box.





13
E X P E R I M E N TA L R E S U LT S

The different algorithmic variants differ mainly in their approach for solving two-
stage sub-instances. Therefore it is natural to first investigate their performance
on MSPath|2 instances separately. Then, we consider the multistage instances
with τ > 2.

To better understand the performance of some algorithm X, we use the follow-
ing notion: Given some instance, the gap is the ratio (opt− heu)/opt, where heu

is the objective value computed by X and opt the optimal objective value.

resources . All computations were run on an Intel Xeon Gold 6134 with
3.2 GHz and 256 GB RAM running Debian 9. We limit each run to a single
thread with a 10-minute time limit. Our C++ (gcc 8.3.0) code uses OGDF Dog-
wood [CGJ+13] as a graph algorithms library; the code will become part of the
next OGDF release. We use CPLEX 20.1 as our ILP solver.

13.1 MSPath |2

To obtain MSPath|2 instances, we simply use the first two stages of every
instance of grid, geom and hybr, as well as the two-stage instances from real

(which, by construction, are selected to have better non-triviality than a random
stage pair in the 8-stage real instances). See Table 13.1 for some average key
figures on the two-stage experiments.

Nearly all two-stage algorithms are able to find solutions for all MSPath|2
instances within the time limit, except for ILP, which hits the time limit on 1.1%
of the instances. In particular, due to the high success rate of ILP (whose few
fails are restricted to very large grid instances), allows us to understand how
often the heuristics and approximation algorithms yield optimal solutions as
well. For grid and geom instances, the running times behave as one would expect
on average: The greedy variants are fastest, followed by the A versions. The exact
ILP is slower than the greedy approaches by up to 3 orders of magnitude (and
still up to 2 orders of magnitude compared to A and Ad); only for hybr it is
roughly 10-fold slower than the non-exact approaches. Naturally, Gd and Ad take
about double the time of their basic counterparts. While Gi is slower than G,
it is still faster than Gd on average: G and Gd require 2 and 4 calls to prefPath,
respectively, but Gi typically terminates after the 3rd call, realizing that it cannot
improve on the solution after the first two calls (i.e., the solution is identical
to the one of G). Interestingly, A5’s running time is roughly comparable to that
of Gd: it requires 2.64 iterations on average (and thus roughly 5 calls to prefPath

on average, with a median of 2 calls), and does not suffer from outliers with a
vast number of iterations as A does (see below). On the hybr benchmark set, A
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Table 13.1: Results for MSPath|2 experiments: The instances successfully solved by ILP

yield a subset of each benchmark set for which we now know the optimal
solutions. The “solved optimally” columns for ILP give the mean size of the
respective subsets relative to the overall size of the benchmark sets. For the
other algorithms, the values in the “solved optimally” columns, as well as
the various “gap” columns, are then always given w.r.t. to these subsets. The
columns “avg. gap” and “avg. gap (¬opt)” give the mean observed gaps
to the optima, where the latter is restricted to the instances not solved to
optimality by the considered algorithm. We suppress the “gap” columns for
real, since all algorithms solved all these instances to optimality.

time [ms] solved optimally avg. gap avg. gap (¬opt) max. gap
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ILP 46787 897 2947 148 98.9% 100% 100% 100% — — — — — — — — —

G 20 3 185 1 48.3% 95.0% 91.4% 100% 3.0% 0.8% 0.1% 5.9% 15.4% 0.9% 43.6% 37.5% 7.4%

Gd 41 5 316 1 56.2% 98.5% 99.2% 100% 1.5% 0.2% 0.0% 3.4% 11.2% 0.3% 23.7% 22.2% 0.4%

Gi 31 4 256 1 70.4% 96.9% 98.6% 100% 1.0% 0.5% 0.0% 3.2% 15.3% 0.7% 28.5% 33.3% 1.9%

A 972 17 361 1 48.9% 96.5% 91.4% 100% 2.6% 0.5% 0.1% 5.1% 13.0% 0.9% 27.4% 23.1% 6.0%

Ad 1913 34 660 2 56.6% 99.0% 99.2% 100% 1.4% 0.1% 0.0% 3.2% 9.5% 0.3% 19.5% 16.7% 0.4%

A5 46 4 346 1 48.9% 96.2% 91.4% 100% 2.6% 0.5% 0.1% 5.2% 13.1% 0.9% 27.4% 25.0% 6.0%

requires drastically fewer iterations than on grid and geom, and its running time
becomes comparable to A5 and thus not too far off from the greedy approaches.
The running times on the real instances are negligibly small for all algorithms,
so we refrain from analyzing them in detail.

However, as depicted in Figure 13.1a, the average running times do not tell the
whole story. While most algorithms expose a rather predictable running time,
the high variance in the running time of A is stunning: for many grid and geom

instances, A spends a lot of time on later iterations that only yield candidate
solutions with trivially small transition quality, but is unable to deduce that
further iterations are futile.

For the following quality comparisons of the non-exact algorithms, we only
consider instances with known optimal objective value (i.e., those that ILP could
solve to proven optimality). The 2-stage real instances can all be solved to
optimality by all algorithms. We conclude that they are, despite our best effort,
still too trivial. Also the hybr and geom instances can typically be solved to
optimality by most algorithms, with success rates of (clearly) above 90%. In
contrast to this, the grid instances yield comparably hard instances for the
heuristics (seemingly independent of the precise parameter choices). Note that
this is also the only set where ILP sometimes fails to prove optimal solutions
(for (x, y) ∈ {50} × {500, 1000}). Interestingly, Gi finds the maximum number
of optimal solutions (79.7%) overall.

Considering the average gaps, however, the difference in hardness between
grid and geom seems to flip: even though many grid instances are not solved
optimally, the observed gaps are relatively low, within one-digit percentages. In
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(c) Approx. ratios: theory & practice
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(d) Observed approx. ratio vs. χ

Figure 13.1: Visualizations for the MSPath|2 experiments. (a) The boxes show the me-
dian and quartiles; the whiskers extend to the farthest data point within 1.5
times the interquartile range. (b)–(d) We show the average gaps on all
instances with known optimum; a gap g is equivalent to an observed
approximation ratio of 1− g; the y-axes are arranged such that vertically
higher data points represent solutions closer to the optimum.
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contrast to this, non-optimally solved geom instances typically yield gaps in the
range of 10%–15% for all non-exact algorithms.

The two greedy variants Gd and Gi beat G w.r.t. the objective value on 20.7%
and 32.5% of the instances, respectively. The average improvement over the
initial greedy objective value in these cases is 30.2% and 21.6%, respectively.

For A, the average number of iterations (each iteration requiring two calls to
prefPath) is 35.3. However, the actual output solution is already found after 1.2
iterations on average, generating an average computational overhead of 60.7%
per instance for futile subsequent iterations. In fact, for 95.6% of the instances
A already finds the optimal solution with the initial candidate solution (which
is the same solution G finds). For nearly all instances (99.2%), A finds its output
solution within the first 5 iterations, i.e., here A5 outputs the same solution as A.
Inversely, even if A5 terminates earlier than A, this yields worse solutions only
in 2.1% of those instances. Using Ad improves the objective value compared to A

on 19.9% of the instances; the average improvement is 31.2% (coming at the cost
of doubling the running time).

Algorithm A has an approximation ratio of 1/
√

2χ. As Figure 13.1c shows,
A not only performs much better than the worst-case analysis suggests, but
the correlation between the observed approximation ratio (which is 1− g for
gap g) and the intertwinement χ is just not very pronounced on our instances
(as shown more clearly in Figure 13.1d). Clearly, the quite intricate instance
structures necessary to yield weak approximations do typical not appear in
practice (at least not in our benchmark sets).

Figure 13.1b shows the trade-off between solution quality (in terms of aver-
age gap over the instances solved by ILP) and required running time for all
considered algorithms. We can conclude that the ILP should be preferred if
running time is not an issue, and one of the two greedy approaches Gi or Gd

in all other cases. The slightly better running time of G is typically not worth it
due to the drop in quality. One could also make a case for Ad which, despite
requiring much more time, sometimes finds slightly better solutions than the
greedy variants.

13.2 MSPath

Considering the true multistage instances, i.e., τ > 2, we compare M-G and
the various variants B-{G,Gd,Gi,A,Ad,A5}. Some key figures are presented in
Table 13.2.

The ILP’s running times increase compared to the 2-stage scenarios, but not
by as much as one might expect: compared to their 2-stage counterparts, the
16-stage grid, 16-stage geom, 4-stage hybr, and 8-stage real instances require
roughly 3.5, 7.2, 1.4, and 4.5 times as much time, respectively. Thus, while
ILP is certainly a time-wise expensive algorithm, we still can solve nearly all
multistage instances to proven optimality within the time limit: it only fails on
roughly 1/6 of the grid instances. This still allows us to investigate the ability
of the non-exact algorithms to find optimal solutions.
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Table 13.2: Results for MSPath (τ > 2) experiments: Columns are interpreted as in
Table 13.1. Recall that the grid, geom, hybr, and real instances have 16, 16,
4, and 8 stages, respectively.

time [ms] solved optimally avg. gap (¬opt) max. gap
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ILP 165242 6453 4202 666 84.4% 100% 100% 100% — — — — — — — —

B-G 206 48 627 13 0.0% 1.6% 10.8% 35.0% 15.6% 13.8% 3.2% 10.4% 37.6% 45.2% 14.9% 20.8%

B-Gd 397 71 1023 19 0.0% 1.7% 11.4% 35.0% 14.7% 13.4% 3.2% 10.4% 37.6% 45.2% 14.5% 20.8%

B-Gi 338 58 839 16 0.0% 1.6% 11.1% 35.0% 14.1% 13.6% 3.2% 10.4% 37.6% 45.2% 14.5% 20.8%

B-A 13922 130 1185 13 0.0% 1.5% 10.8% 35.0% 15.5% 13.6% 3.2% 10.4% 37.6% 45.2% 14.9% 20.8%

B-Ad 19096 245 2107 22 0.0% 1.6% 11.4% 35.0% 14.6% 13.4% 3.2% 10.4% 37.6% 45.2% 14.5% 20.8%

B-A5 572 68 1121 16 0.0% 1.5% 10.8% 35.0% 15.5% 13.7% 3.2% 10.4% 37.6% 45.2% 14.9% 20.8%

M-G 257 31 692 8 0.1% 2.1% 15.3% 0.0% 16.8% 23.5% 3.2% 23.0% 45.1% 68.8% 23.7% 42.9%

First we may consider their running times. Observe that all B-* variants first
run their internal MSPath|2 algorithm for τ − 1 transitions. The subsequent
dynamic programming over a sequence of only τ− 1 integers requires negligible
time compared to the various prefPath-calls. Hence, the running times of
these algorithms are essentially the running times observed for their internal
MSPath|2 algorithms, scaled by the number of stage transitions. B-Ad is the only
non-exact algorithm that (on 1.3% of the grid instances) runs into the time limit.
The running time of M-G is very competitive and roughly comparable with the
fastest B-* variant, namely B-G.

The most interesting finding is how seldom the heuristics and the approx-
imation approach find optimal solutions. While they all do so in most of the
cases for MSPath|2, the situation changes drastically for τ > 2: We may start
with discussing the B-* variants, as they all yield essentially the same success
rates: not a single multistage grid instance is solved to optimality (and only
mediocre 19% and 11% of geom and hybr, respectively). Even for the previously
too trivial real instances, the algorithms find optimal solutions only for roughly
a third of the 8-stage instances. The reason for this consistent picture amongst
all B-* variants is easy to see: generally, the solution quality for the individual
2-stage sub-problems is very similar. Their common ingredient, i.e., the selection
of “good” non-adjacent transitions, is to blame for the weak performance. While
it is theoretically sound to simply essentially “ignore” every second transition
(while still retaining an approximation ratio), this turns out to be abysmal in
practice. In fact, we can see that this worst-case scenario is even (nearly) hap-
pening for some geom instances: despite the fact that half of the individual
transitions are essentially optimal, we observe instances with an overall gap
of 45.2%—very close to the worst case of 50%. Generally, this effect overshadows
the influence of the precise selection of the black-box algorithm. Even when
considering the gaps yielded by the non-optimal solutions, we only see slight
deviations between the variants. Interestingly, the hybr instances allow generally
lower gaps than the other benchmark sets.
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Now, one may hope that the straight-forward but reasonably sounding heuris-
tic M-G may fare better, but this is also hardly the case: it finds (only) two optimal
solutions on grid instances and is slightly more successful than B-* on geom

and hybr. For the real instances, however, it fails to find any optimal solution
at all. Generally over all benchmark sets, its obtained gaps are weaker than
those of B-*. In fact, on the grid instances its gaps can become close to 50% and
for geom it even achieves a solution quality only 31.2% of the optimum (a gap
of 68.8%).

Overall, we can see that no non-exact algorithm comes close to the optimal
solution quality obtained by ILP, which is thus the probably best algorithmic
choice—if time is not an issue. Otherwise, we would have to recommend the
use of B-G or M-G, which are comparable in quality and running time. The other
more expensive MSPath|2 algorithms are not worth it when used within the B-*
context on these instances.
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S U M M A RY

In theory, the only known approximations for MSPath|2 and general MSPath

(A and B-A) guarantee approximation ratios of 1/
√

2χ and 1/
√

8χ = 1/(2
√

2χ),
respectively, where B-A uses A internally and only differs by a constant factor
of 1/2. Thus, in the hunt for better (in particular constant) approximation ratios,
it seems natural to focus on stronger approximations for MSPath|2. However,
our study shows that this is precisely not the interesting question when we
want to obtain practically strong algorithms: MSPath|2 is rather simple to
solve in practice, the worst-case ratios of A are never met, and even simple
greedy heuristics find close-to-optimal solutions. In contrast, the lifting from 2
to τ > 2 stages is a central weak point which undermines the algorithms’ success.
Also, straight-forward alternative greedy strategies (M-G) do not work well. We
therefore propose to focus on finding true multistage approximation routines,
instead of relying on simple liftings from algorithms for few stages.

The general version of A from Part II is applicable to any preficient subgraph
problem, which roughly speaking means that they allow a routine along the
lines of prefPath. Thus, all G variants (as well as M-G) can also be used there,
and we wonder if they perform similarly strong for other such problems as they
do for MSPath|2 (MSPath, respectively).





Part IV

P R O S P E C T





The stage is yours.
— Uri Geller: The next Uri Geller [Gel08]
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M A I N F I N D I N G S : A S U M M A RY

In this thesis we investigated approximation algorithms for Multistage Sub-
graph Problems, some specialized for specific multistage problems and some
generalized for a generic problem type. The focus was in particular to obtain
good multistage solutions when the quality of per-stage solutions must not be
compromised in favor of gains in the transition quality.

part i . multistage perfect matchings

In Part I, we studied two multistage variants of the classical matching problem,
MIM and MUM. A core result is the 1/

√
2χ-approximation for MIM|2 and its

analysis. It is accompanied by several meta-results, which correlate (i) the two
problems with one another and (ii) the 2-stage special case of the problems to
their respective multistage formulation. They not only allow to make use of the
positive algorithmic results, but also facilitate complexity considerations.

part ii . multistage subgraph problems

With little algorithmic effort, the algorithms for MIM|2 and MIM could be
generalized and fitted to the class of preficient Multistage Subgraph Problems
(MSPs). The main contribution of Part II is the careful definition of the framework
and the preficiency property, together with the general proof technique of well-
behaved weight functions. The subsequent presentation of various preficient
MSPs not only shows the simplicity of the framework’s application, but also
contains yet unpublished hardness results for such multistage problems.

part iii . experimental study : multistage shortest path

Part III is dedicated to an experimental study on the algorithmic behavior of
the general algorithms presented in Part II. Using the illustrative example of
MSPath, we assessed their performance regarding solution quality and running
time compared to exact algorithms and heuristics. Aside from the experimental
evaluation, another key contribution are the considerations on finding “hard”
instances and discussions on suitable generators and parameter choices.

The following two chapters contain additional, yet unpublished results that
clearly fall into the scope of this thesis but would have been misplaced in any
of the previous parts. Together with the published results they provide the
background for the concluding discussion of open questions.
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F U RT H E R R E S U LT S O N M S Pat h

The specific structure of MSPath instances after the preprocessing of Section 10.3
allows to devise another approximation for MSPath|2 that is independent of the
intertwinement (but still depends on an instance-specific parameter). This chap-
ter is based on joint work with Fritz Bökler, Markus Chimani and Tilo Wiedera.

16.1 approximation by longest path

The key for the MSPath|2 approximation Algorithm 50 is that any longest path
in the intersection graph of a reduced MSPath|2 instance (which is a DAG, see
Section 10.3) can be extended to a shortest s-t-path in each stage. Although
finding a longest path is NP-hard in general graphs, on DAGs it can be solved in
polynomial time [GJ79]. As we are mainly concerned with DAGs in this section,
we will herein refer to directed edges as arcs.

Lemma 51. In a reduced MSPath|2 instance, for any path Q in G∩ and any stage Gi
there exists a shortest s-t-path Pi in Gi such that Q ⊆ Pi.

Proof. Let (a1, ..., ak) denote the arcs in Q in the order of a traversal. Since
each stage Gi is reduced, there is a shortest s-t-path Pi in Gi that contains ak.
If ak−1 =: uv is not in Pi, we may modify it by exchanging the subpath of Pi
from s to v with a path from s to u plus ak−1. The modified Pi is still a shortest
s-t-path in Gi since all paths from s to v have the same length. We can now
iterate this modification process for ak−2, ...., a1 to obtain a shortest s-t-path in Gi
that completely contains Q.

Since G∩ is in general not connected and an optimal MSPath|2 solution may
be scattered all over G∩, we want to bound the error by which the optimum may
deviate from a long path in G∩. To this end we will consider a decomposition
of G∩ into components where the length of a longest path in such a component
also provides a bound for the maximum number of edges that an optimal
solution may realize in the respective component.

By the observations in Section 10.3, G∩ is a DAG that may possibly have
multiple sinks and sources. We denote with σ+ (σ−) the number of sources (sinks,

Algorithm 50: Approximation for MSPath|2
1 compute a longest path Q in G∩
2 compute a shortest s-t-path Pi in Gi with Q ⊆ Pi for i = 1, 2
3 return (P1, P2)
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respectively) in G∩ after preprocessing, i.e., vertices with indegree (outdegree,
respectively) zero. Further, let σ := min(σ+, σ−).

A rooted arc set (RAS) of a DAG G = (V, A) is an arc set B ⊆ A such that the
subgraph G[B] induced by B is a single-source DAG. The depth d(B) of a RAS B
is the length of a longest path in G[B]. A rooted arc set decomposition (RASD) of G
is a partition B = {B1, ..., Bk} of its arcs where each Bi is a RAS, i.e., a family
of disjoint RASs such that A =

⋃︁
i∈[k] Bi. Note that the number of sets in any

RASD is at least σ+, as no two sources can belong to the same RAS; a RASD
with exactly σ+ sets is minimum. The depth of a RASD B is d(B) := maxB∈B d(B);
a RASD is tall if it maximizes the depth over all RASDs.

Lemma 52. Let G = (V, A) be a connected DAG. There is a RASD of G that is both
tall and minimum.

Proof. For each source v of G, create an initially empty RAS B(v). Let P be a
longest path in G and vP its first vertex. By maximality of P, vP is a source of G.
Adding all arcs reachable from vP to B(vP), we have P ⊆ B(vP) and thus B(vP)

is a RAS of maximum depth. Similarly, for each source v ̸= vP, we greedily add
to B(v) all arcs that are reachable from v and are not in some RAS yet. As each
arc is reachable from some source, the resulting RASD is minimum.

The RASD concept allows us to reason about the length of a longest path.

Lemma 53. Let opt denote the optimal solution value of a given MSPath|2 instance.
For a longest path Q in the reduced G∩, we have opt ≤ σ · |Q|.

Proof. We give a detailed proof for opt ≤ σ+|Q|; considering the instance that re-
sults from reversing all arcs, the rationale for sinks is analogous. Let G = (G1, G2)

be the reduced multistage graph, (P∗1 , P∗2 ) an optimal solution, and P∗∩ := P∗1 ∩ P∗2
its intersection. Let B be a tall and minimum RASD of G∩ and let B∗ :=
argmaxB∈B |B ∩ P∗∩| be a RAS in B with maximum intersection with P∗∩. By
pigeonhole principle, we have |B∗ ∩ P∗∩| ≥ opt/|B| ≥ opt/σ+.

Let Q be a longest path in G∩. Since B is tall, we have |Q| = d(B) ≥ d(B∗).
The intersection B∗ ∩ P∗∩ consists of possibly disconnected subpaths of P∗1 , but
its arcs all have distinct distances to s in G1. Since arcs in B∗ possess only
d(B∗) possible different distances to s in G1, we have d(B∗) ≥ |B∗ ∩ P∗∩|. Thus,
|Q| ≥ |B∗ ∩ P∗∩| ≥ opt/σ+.

Algorithm 50 builds a feasible solution where both paths contain the same
longest path Q in the reduced G∩ as shown in Lemma 51. By Lemma 53, the
intersection quality of this solution is thus at least opt/σ.

Theorem 54. Algorithm 50 is a 1/σ-approximation for MSPath|2.

The above still holds for edge-weighted instances of MSPath|2. However,
since the intersection quality only counts the number of common edges but not
its weight, Q must still be computed as a longest path w.r.t. to unit costs.

For a MSPath instance G = (Gi)i∈[τ] with τ > 2, let σi denote the σ-value
of the ith MSPath|2 subinstance (Gi, Gi+1) in G. Let σmax = maxi∈[τ−1] σi be the
maximum over all consecutive MSPath|2 subinstances’ σ-values.
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Corollary 55. Using Algorithm 50 with Theorem 25 is an MSPath approximation
with approximation guarantee 2/σmax.

16.2 reduction to MSPath |2

Instead of using Theorem 25, we can also reduce an MSPath instance with
an arbitrary number of stages to an equivalent MSPath|2 instance and then
apply any appropriate (approximation) algorithm. The following result uses a
technique similar to that used for MIM in Theorem 16.

Theorem 56. There is an S-reduction from MSPath to MSPath|2, i.e., given any
MSPath instance (G, s, t), we can construct a corresponding MSPath|2 instance
(G ′, s′, t′) in polynomial time such that any solution for (G, s, t) bijectively corresponds
to a solution for (G ′, s′, t′) with the same intersection quality and |E(G′1) ∩ E(G′2)| =
∑i∈[τ−1] |E(Gi) ∩ E(Gi+1)|.
Proof. We construct a 2-stage graph G ′ whose first stage G′1 consists of (sub-
divided) concatenated copies of Gi for odd i; conversely its second stage G′2
consists of (subdivided) concatenated copies of Gi for even i. More precisely,
consider the following construction: Let b(i) := 2− (i mod 2). For each i ∈ [τ],
we create a copy of Gi in G′b(i) where each edge e ∈ E(Gi) is replaced by a 5-
path pe

i . We concatenate the copies in each stage by identifying the copy of t
from Gi with the copy of s from Gi+2 and set s′ (t′) to the copy of s (t) from the
first (last) stage in G′i .

We label the second (fourth) edge along pe
i as e−i (e+i , respectively). To finally

obtain G ′, for each i ∈ [τ − 1] and e ∈ E(Gi) ∩ E(Gi+1), we identify the vertices
of e+i with those of e−i+1 (disregarding the edges’ orientations); thereby precisely
the edges e+i and e−i+1 become an edge common to both stages. No other edges
are shared between both stages. This completes the construction of G ′ and we
have |E(G′1) ∩ E(G′2)| = ∑i∈[τ−1] |E(Gi) ∩ E(Gi+1)|.

There is a natural bijection that links a solution P ′ = (P′1, P′2) for (G ′, s′, t′) to
a solution P = (Pi)i∈[τ] for (G, s, t): the subpath of P′1 through the subdivided
copy of an odd stage Gi of G directly corresponds to a shortest s-t-path Pi in Gi.

Consider the intersection quality of P ′: Every edge in P′1 ∩ P′2 corresponds to a
different identification ⟨e+i , e−i+1⟩. We have e ∈ Pi ∩ Pi+1 if and only if e−i ∈ P′b(i),
e−i+1 ∈ P′b(i+1), and e+i = e−i+1. This in turn holds if and only if e+i ∈ P′b(i) ∩ P′b(i+1)
and hence the intersection qualities of P and P ′ are equal.

The intertwinement |E(G′1) ∩ E(G′2)| of G ′ is largest w.r.t. the intertwinement
of G if |E(Gi) ∩ E(Gi+1)| is constant for all i. We thus obtain the following result.

Corollary 57. Using Algorithm 28 after performing the reduction to a 2-stage instance
yields an approximation ratio of 1/

√︁
2(τ − 1)χ; for MSPath|3 and MSPath|4 this is

tighter than the MSPath approximation via Algorithm 24.

However, running Algorithm 50 on the new 2-stage instance would not yield
any useful solution since its intersection graph consists solely of independent
edges; the algorithm could thus only ensure a single common edge.





17
M U LT I S TA G E M I N I M U M W E I G H T S PA N N I N G T R E E

All multistage problems considered in this thesis turned out to be NP-hard
already on 2-stage graphs, even though their single-stage counterpart was
polynomial-time solvable. However, we found one problem so simple that its
2-stage formulation is polynomial-time solvable with a basic algorithmic idea
(similar to the one used in Algorithm 50). This chapter is based on joint work
with Markus Chimani and Mirko H. Wagner.

In an undirected graph G = (V, E) with edge weights w : E → N, a set of
edges T ⊆ E is a spanning forest of G if it is acyclic and of maximum cardinality.
If T is connected, it is a spanning tree. A spanning tree T of G is minimum weight
if the sum ∑e∈T w(e) of its edge weights is minimum over all spanning trees
of G.

Definition 58 (MMST). Given an edge-weighted multistage graph (Gi)i∈[τ], find a
sequence T := (Ti)i∈[τ] of edge sets such that each Ti is a minimum weight spanning
tree in Gi and the intersection quality ∑i∈[τ−1] |Ti ∩ Ti+1| is maximized. If there is an
upper bound t on the number of stages τ, MMST is denoted by MMST|t.

Given uniform edge weights, any spanning tree is minimum weight. As such,
one cannot make a wrong decision when iteratively building a spanning tree,
which leads to the following result.

Theorem 59. MMST|2 with uniform edge-weights is solvable in polynomial time.

Proof. Using Kruskal’s algorithm [Kru56], we compute a maximal minimum
weight spanning forest T∩ of G∩, i.e., an edge set that consists of a minimum
weight spanning tree for each connected component of G∩. Starting from the
intermediate solution T∩, Kruskal’s algorithm allows to compute a minimum
weight spanning tree Ti for each stage Gi such that T∩ ⊆ Ti. Since T∩ has
maximal cardinality, the intersection quality |T1 ∩ T2| = |T∩| is maximum.

With a little bit of effort, this procedure can be generalized for an arbitrary
number of stages that each have uniform edge weights; a rough proof can be
found in [San23]. While the complexity of the weighted MMST|2 problem also
remains open, we can contrast above result with an NP-hardness result for the
weighted problem on 3-stage graphs.

Theorem 60. MMST|3 is NP-hard, even when using only two weights 0 ≤ w1 < w2

consistently over all stages.

Proof. In the NP-hard problem (2, 3)-MaxSat [RRR98] we are given an inte-
ger k ∈ N and a set of boolean clauses on a variable set X, where each clause
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(b) Clause gadget Bc for c = x̄ ∨ y

Figure 17.1: Gadgets used in the proof of Theorem 60. E1 is curvy blue, E2 is straight
red, and E3 is zigzaggy orange; edges with a label have weight w2, all other
edges have weight w1.

contains exactly 2 variables and each of the n variables in X occurs in at most 3
clauses. The question is whether there exists a variable assignment that satisfies
at least k clauses. We may further assume that (after removing variables that
only occur (non-)negated and possibly variable renaming) a variable x ∈ X
occurs at most twice non-negated and at most once negated.

Given an instance I of (2, 3)-MaxSat, we construct an equivalent MMST|3
instance J by generating a 3-stage graph (V, E1, E2, E3) and setting the target
value to k′ := 2n + k. For each variable x ∈ X we generate a gadget Ax as
depicted in Figure 17.1a, where there are four edges with labels x, x, and x
that all have weight w2 and eight further edges with weight w1. These variable
gadgets completely constitute G1 and G2. For clarity, we will now use w1 := 0
and w2 := 1 throughout the proof, but stress that any two weights 0 ≤ w1 < w2

evoke the same behavior.
In G3, for each clause c = ℓ ∨ ℓ′ with literals ℓ, ℓ′ ∈ {x, x | x ∈ X} we generate

a clause gadget Bc as depicted in Figure 17.1b: We choose an edge labeled ℓ and
one labeled ℓ′ from the respective variable gadgets, add them to E3 and join
them to a 4-cycle by adding two new weight-1 edges to E3.

To ensure connectedness of each stage, add new vertices u0, u1, u2, and u3.
For each i ∈ [3], add an edge from ui to each connected component in Gi.
These new vertices are connected by edges u0u1, u1u2, u2u3 in G1 and G3, and
by {u0u2, u0u3, u1u3} in G2.

Claim. J is a yes-instance if and only if I is a yes-instance.

Proof of Claim. We prove the two implications separately:

“⇐” Consider a yes-instance of (2, 3)-MaxSat and a variable assignment
that satisfies at least k clauses. We construct a 3-stage MST (T1, T2, T3) for the
corresponding MMST|3 instance: In each stage we must necessarily choose all
weight-1 edges to achieve minimality. Since none of these is present in two
adjacent stages, they do not contribute to the intersection quality. In both T1

and T2, for each variable x we choose the two x-labeled edges if x = true

and the x- and x-labeled edges if x = false. Thus, T1 ∩ T2 contains exactly
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2n edges. In T3, for each satisfied clause c choose an edge in T2 ∩ Bc; for each
non-satisfied clause c choose an arbitrary labeled edge in Bc. As there are at
least k satisfied edges, we have |T1 ∩ T2|+ |T2 ∩ T3| ≥ 2n + k = k′.

“⇒” Consider a (2, 3)-MaxSat instance where the corresponding MMST|3
instance allows a 3-stage MST T := (T1, T2, T3) with intersection quality at
least k′. Our goal is to show that the (2, 3)-MaxSat instance is a yes-instance.
As noted above, all weight-1 edges are necessarily in every MST for each stage.
A variable gadget Ax is consistent in T if T1 ∩ T2 contains either both x-labeled
edges or both the x- and the x-labeled edge. By construction, Ax is consistent
if and only if |T1 ∩ T2 ∩ Ax| = 2. Further, Ti ∩ Ax cannot contain three labeled
edges for i ∈ {1, 2}.

Suppose all variable gadgets are consistent; thus, we have |T1 ∩ T2| = 2n
and |T2 ∩ T3| ≥ k. We derive a variable assignment by setting variable x to
true if and only if the x-labeled edges are in T1 ∩ T2. For each clause gadget Bc

we can have at most one labeled edge in T3 and |T2 ∩ T3 ∩ Bc| = 1 if and only
if c is satisfied by the derived assignment. Thus, from |T2 ∩ T3| ≥ k it follows
that at least k clauses are satisfied by the derived assignment.

If any variable gadget is not consistent, we have |T1 ∩ T2| = 2n − d for
some d > 0 and |T2 ∩ T3| ≥ k + d. Consider some inconsistent variable
gadget Ax and adjust T1 and T2 such that it is consistent (it is irrelevant to the
argument if x is consistently positive or negative). Since |T1 ∩ T2 ∩ Ax| = 2
only occurs for consistent variable gadgets, the adjustment increases |T1 ∩ T2|
by at least 1. On the other hand, |T2 ∩ T3| can only decrease by at most 1, since
at least one of the labeled edges in E3 remains in T2. After adjusting all d
inconsistent variable gadgets, we have |T1 ∩ T2| = 2n and |T2 ∩ T3| ≥ k and
the above argument holds. ◁

This concludes the proof.
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In this final section we point out possible directions for future research regarding
multistage problems. While problem-specific open questions have already been
posed in the summarizing chapter of the respective part, we add to those some
more high-level questions.

approximations . While we do not expect to find a polynomial-time exact
algorithm for any of the NP-hard problems (unless P ̸= NP), our results could
not completely rule out the existence of a polynomial-time approximation
scheme or a constant-factor approximation.

1. Do any NP-hard MSPs allow for a constant-factor approximation?

2. Are there algorithms that exploit the characteristics of a particular MSP
like Algorithm 50 does for MSPath|2?

As we discussed at the end of Chapter 6, our approximations are best suited
for instances with low intertwinement, i.e., instances whose stages are mostly
dissimilar.

3. Is there an approximation for any of the presented MSPs that is more
powerful for instances with high intertwinement or otherwise highly
similar stages?

MSPath . The experimental study of Part III has been conducted with the
goal to make educated guesses on the general behavior of MSPs. However, the
MSPath problem is interesting in its own right. An expanded experimental
study that also considers the problem-specific algorithms of Chapter 16 could
provide valuable new insights.

4. How does Algorithm 50 compare to the algorithms of Section 12.2?

5. How do the algorithms of Section 12.3 compare to an algorithm exploiting
the S-reduction described in Theorem 56?

complexity. In Chapter 17, we found that the complexity of MMST is not
fully resolved yet. The respective open questions are particularly interesting
as they could provide new insights in a general complexity dichotomy for
multistage formulations of other “simple” polynomial-time solvable problems
like, e.g., Maximal Matching.

6. Is MMST with uniform edge weights NP-hard for more than two stages?
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7. Is MMST|2 still NP-hard with non-uniform edge weights?

8. Are there other multistage problems that are polynomial-time solvable
when restricted to a fixed number of stages?

Our research was sparked by the problem of discerning the two optimization
goals of the stage-wise objective and the transition quality. To further broaden our
understanding of the interdependency between the two concurring objectives,
one could consider the other natural edge case, where we do not fix the stage-
wise objective, but the transition quality:

9. How do multistage problems behave where each transition is required to
have optimal transition quality while per-stage solutions are allowed to be
suboptimal?

Instead of fixing one objective to its optimum or investigating their weighted
sum, one could also treat the optimization goals as two equally important
objective functions in a multi-criteria optimization problem, where the goal is to
compute Pareto-optimal solutions.

10. What insights can be found by considering an MSP as a two-dimensional
multi-criteria optimization problem?
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