
Influence of matrix
structures in spin systems

Dissertation

zur Erlangung des akademischen Grades eines
Doktors der Naturwissenschaften (Dr. rer. nat.)

dem Fachbereich Mathematik/Informatik/Physik
der Universität Osnabrück

vorgelegt von

Mats H. Lamann

Osnabrück, September 2023

Betreuender Professor : Prof. Dr. Jochen Gemmer



Influence of matrix
structures in spin systems

Mats H. Lamann

School of Mathematics/Computer Science/Physics
University of Osnabrück,
BarbarastraSSe 7,
D-49076 Osnabrück,
Germany

Abstract
Within this thesis the effect of structures of quantum systems and their impact on the

dynamics of these systems are investigated. At first, the focus will be on the properties of
elements of specific observables in the energy eigenbasis. In this approach, a framework already
exists with the Eigenstate Thermalization Hypothesis (ETH), which makes certain assumptions
about those elements. The assumptions were investigated within the work for different spin-1/2
models. These results have been published in Ref. [P1] and contradict assumptions made by ETH
in a strict sense. Furthermore, the results from Ref. [P2] will be presented, which investigates
a new type of perturbation theory based on similar assumptions to those of ETH. It is shown
that the perturbation theory can yield good results in spite of non-satisfied assumptions, but
those cases can either be explained otherwise and/or it is questionable whether these results are
transferable to mesoscopic systems. Cases in which all assumptions are strictly fulfilled were not
found. In addition, further investigations were carried out based on the fact that autocorrelation
functions can be described as 1-dimensional transport dynamics. Thereby possibilities were
investigated, which allow a substantial reduction of the complicity of the transport.
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1 Introduction
This thesis is based on the fundamentals of quantum thermodynamics, which is the interface between
thermodynamics and quantum mechanics. Thus, this topic connects two very different branches of
physics, both of which have shown their validity and significance in various experiments. The dia-
metrical behavior of both individual theories becomes especially clear in the area of their application:
While the quantum mechanical properties of physical systems are mostly only visible at very small
system sizes, the focus of thermodynamics is on meso- and macroscopic systems. Thus, for suffi-
ciently large systems, quantum mechanics is expected to merge into classical theory. On the other
hand, due to its statistical nature, thermodynamics loses more and more accuracy and explanatory
power as the size of the system decreases.
Another difference is also the way of describing the state of a physical system: While thermodynam-
ics usually uses a few macroscopic quantities (e.g. pressure, volume and temperature) to describe
a system and can make statements about it, a quantum mechanical description requires exponen-
tially many parameters to describe a system (e.g. to describe a spin 1/2 system with N -particles
2N parameters are needed). In connection with the fact that thermodynamics can describe meso-
and macroscopic, the problem becomes apparent when comparing both theories, since a quantum
mechanical description of such system sizes is hardly feasible. Moreover, everyday observations seem
to contradict those statements of quantum mechanics, since mesoscopic systems rarely depend on
the exact state of a system. As an example, consider a cup of tea which, when left open in a room,
cools to room temperature. How exactly the molecules are distributed in the cup (or in the room)
are not relevant for the equilibrium values of the system.
Despite the huge successes of thermodynamics, this branch of physics is based on assumptions that
are difficult to verify and still not really proven, even if there are many good reasons for them [1].
The combination with quantum mechanics could help to further understand those assumptions and
under which conditions thermodynamics is applicable.
Vice versa, quantum mechanics itself could also benefit from thermodynamics; for example, the
former does not show a clear direction of time compared to the latter. Processes are possible in
both directions, respectively. This contradicts everyday experience. Imagine a plate falling down
and shattering on the ground. The reverse case (the broken pieces assemble to a plate) is not to
be observed in everyday life, although this would be completely legitimate in the sense of classical
mechanics. Even if that case satisfies a classical description, similar kinds of situations are also pos-
sible in quantum mechanical descriptions1. Thermodynamics, on the other hand, assigns a direction
to time by the second law; thus, time always proceeds in the direction in which entropy does not
decrease. A combined consideration of both topics could therefore provide improvements for both
areas and lead to a better understanding.
This thesis is to be considered in four parts. In the first part (Section 2), basic background will be
explained, which is needed for the understanding and interpretation of the results. Thereby already
established concepts are described with the focus on understanding the results of the thesis. There-
fore, many derivations are omitted, whereby always care was taken to provide sources for further
deepening.
The Section 3 will address statements of the Eigenstate Thermalization Hypothesis (ETH), which
is also described in Subsection 2.5. This hypothesis is an explanation for the independence of the
long-time value from the exact initial state2. In Section 4, a novel perturbation theory, in which
perturbations are described by only a few parameters, is examined for its applicability and the va-

1In addition, quantum mechanics merges into classical mechanics for sufficiently large systems.
2Some dependence is nevertheless given, so the long-time value of macroscopic observables depends on the energy

and other conservation variables.
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lidity of the basic assumptions.
A strong focus in Sections 3 and 4 is on the randomness of elements. Although it may seem counter-
intuitive at first glance, the randomness of elements is also a structure that allows various statements
about systems. Thus, randomness here is not to be understood as the absence, but rather as a par-
ticular (possibly unusual) kind of structure.
In Section 5, physical systems are approached in a way that is very different from the previous
sections. It treats physical systems as 1-dimensional transport problems of a semi-infinite chain.
On the basis of a new estimation of the transport coefficients, further investigations are carried out.
A truncation of the chain is performed, where the dynamics should give the same results as the
complete chain, if possible. This can be interpreted in the sense of thermodynamic reduction of
parameters. Also, it forms a potential point of attack to understand why some dynamics occur more
often than others in macroscopic systems [2].
Furthermore, the breaking of the chain was used to estimate the time integral of these dynamics
from t = 0 to ∞.
All these investigations of Section 5 are not yet finished and still part of intensive research, so that
a complete interpretation of the situation there is not possible and instead potential continuations
of the investigations will be highlighted.
A summary and potential continuations of the findings of the thesis can be found in Section 6.
This work does not claim to be a complete overview of the above mentioned topics. The aim of the
thesis is to enable the reader to understand, interpret and, if necessary, reproduce the results herein.
Thereby, extensive derivations shall be avoided, if they are not part of the results of this thesis. For
further deepening, sources shall always be given.
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2 Theoretical Background
In order to be able to understand and interpret the results of the thesis presented latter, it is first
necessary to illuminate the background and basics of the subject area treated. The following funda-
mentals are far from complete, as this would go beyond the scope of the thesis.
There will be a focus on enabling an understanding of the results and a reproduction of theses
without further sources. In doing so, some phenomena and facts are mentioned without derivation,
although sources are always given to the interested reader.
First in Subsection 2.1 shall be explained how quantum systems and their time evolutions can be
described. Since within this thesis the dynamics of quantum systems are often considered from the
point of view of autocorrelation functions, those are briefly described in Subsection 2.2. A justifica-
tion why the systems in this thesis can often be described by pure states is given in Subsection 2.3.
The notions of equilibration and thermalization are introduced in Subsection 2.4. In Subsection 2.5
the ETH is presented as a possible explanation for the thermalization of many quantum systems.
The connection of this hypothesis with the Random Matrix Theory (RMT) is explained in Subsec-
tion 2.6. There are also several common properties of those random matrices to be pointed out.
In addition to these established methods, the Subsection 2.7 describes a recently developed pertur-
bation theory whose effectiveness is examined in this thesis.
With the Recursion Method, another approach to autocorrelation functions will be explained in
Subsection 2.8. The models, which are used within this thesis, will be described in Subsection 2.9.
Since the main results of this work are based on numerical investigations, Subsection 2.10 explains
the numerical methods necessary to reproduce the data of this thesis.

2.1 Dynamics in Quantum Systems
The state of a quantum (sub)system is described in general by a density operator ρ̂, which has the
following properties

ρ̂ = ρ̂† Tr {ρ̂} = 1 (2.1.1)
pn ≥ 0 Tr

{︁
ρ̂2}︁ ≤ 1 (2.1.2)

where ρn are the eigenvalues of the density operator, which satisfy ρ̂ |φn⟩ = pn |φn⟩, where |φn⟩ is
an eigenstate of ρ̂. •† represents the hermitian conjugate and Tr {} denotes the trace.
Every density operator can be written in the form

ρ̂ =
∑︂

n

pn |φn⟩ ⟨φn|φn. (2.1.3)

The dynamical evolution of such a state is given by the von Neumann equation

∂ρ̂

∂t
= i

ℏ

[︂
ρ̂, Ĥ(t)

]︂
(2.1.4)

with the (possible time dependent) Hamiltonian Ĥ and the reduced Planck constant ℏ.
For the case of a time independent Hamiltonian, this equation has the formal solution

ρ̂S(t) = Û(t− t0)ρ̂(t0)Û
†
(t− t0) (2.1.5)

with

Û(t) = e− i
ℏ Ĥt. (2.1.6)
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Since the Hamiltonian is a hermitian operator (as all observables) the time-evolution-operator Û(t)
is a unitary operator such that

Û(t) · Û
†
(t) = 1̂ (2.1.7)

The expectation value A(t) at a given time t for a state ρ̂ is given by

A(t) = Tr
{︂
ρ̂S(t)Â

}︂
(2.1.8)

where Â is the corresponding observable to the expectation value.
If the special case of a pure state (Tr

{︁
ρ̂2}︁ = 1) is considered, it is easy to see that the density

operator can be reduced to

ρ̂ = |φn⟩ ⟨φn|φn (2.1.9)

such that the expectation value has now the following form

A(t) = Tr
{︂
ÂÛ(t) |φn⟩ ⟨φn| Û

†
(t)
}︂

(2.1.10)

= Tr
{︂

⟨φn|Û
†
(t)ÂÛ(t)|φn⟩

}︂
(2.1.11)

= ⟨φn|Û
†
(t)ÂÛ(t)|φn⟩ (2.1.12)

where the cyclic invariance of the trace operator and that the trace of a scalar is the scalar itself is
used.
To calculate the time dependent expectation value, it is not necessary to evolve the density operator
in time, it is sufficient to calculate

|φn(t)⟩S = Û(t) |φn⟩ , (2.1.13)

since S ⟨φn(t)| = (|φn(t)⟩S)†.
With Eq. (2.1.6) it follows that

∂

∂t
|φn(t)⟩S = − i

ℏ
Ĥ |φn(t)⟩S (2.1.14)

which is exactly the Schrödinger equation.
Until now the whole dynamic only takes place only in the state, the observable itself does not change
at all. The kind of view on the dynamic is called Schrödinger picture (therefore the index S).
Another perspective is the so-called Heisenberg picture. A closer look at Eq. (2.1.8) reveal

A(t) = Tr
{︂
Û(t)ρ̂Û

†
(t)Â

}︂
(2.1.15)

= Tr
{︂
ρ̂ÂH(t)

}︂
(2.1.16)

with

ÂH(t) = Û
†
(t)ÂÛ(t). (2.1.17)

which is the solution of the corresponding differential equation

d

dt
Â(t) = i

ℏ

[︂
Ĥ, Â(t)

]︂
, (2.1.18)
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this is known as the Heisenberg equation. In this picture, the state of the system is constant in time,
while the observable evolves in time.
A hybrid between these two approaches is also possible and is called Interaction picture. Thereby
the Hamiltonian H is split in two parts

Ĥ = Ĥ0 + Ĥ1 (2.1.19)

whereby one part of the time evolution happen in the observable while the other one effects the
state:

ρ̂I(t) = eiĤ0
t
ℏ e−iĤ t

ℏ ρ̂eiĤ t
ℏ eiĤ0

t
ℏ (2.1.20)

ÂI(t) = e−iĤ0
t
ℏ ÂeiĤ0

t
ℏ . (2.1.21)

Although this representation may seem unnecessarily complicated at first glance, it has proved useful
in time-dependent perturbation theory and is thus a central component for the derivation of, for
example, Fermi’s Golden Rule [3].
For the sake of simplicity, the indices of the time evolutions (S,H & I) are omitted within this work.
An operator Â(t) therefore describes the Heisenberg picture while a state |φ(t)⟩ always implies the
Schrödinger picture.
Also ℏ = 1 is always used outside this section for time evolutions.

2.2 Correlation functions
Since the dynamics of the systems considered in this thesis are mostly viewed through the lenses of
autocorrelation functions, this subsection will briefly explain how those functions are defined.
First consider the most general case of a correlation function

C ρ̂

ÂB̂
(t) = Tr

{︂
Â(t)B̂ρ̂

}︂
. (2.2.1)

where ρ̂ is the density operator of a system and B̂ is an operator at the time t = 0 while Â(t) is an
operator at time t in the Heisenberg picture. In most cases Â and B̂ are observables and as such
hermitian Â = Â

†
.

Within this thesis only the case ρ̂ = 1
D 1̂3 is considered, for which the correlation function is real for

all t.
Another common reduction is the case of autocorrelation, in which Â = B̂. These autocorrelation
functions are time symmetric CÂ(t) = CÂ(−t) and real.
In viewing of the Recursion Method (Subsection 2.8), such autocorrelation functions are often rep-
resented in normalized form such that

C̃Â(t) =
CÂ(t)
CÂ(0) . (2.2.2)

In addition, if one is only interested in the shape of the function and nether long-time values nor
prefactors are important, one can also use

C̃Â(t) =
CÂ(t) − CÂ(t → ∞)
CÂ(0) − CÂ(t → ∞) . (2.2.3)

3This corresponds to the canonical ensemble for infinitely high temperatures (see Subsection 2.4).
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For instance this is used for determining the timescales of autocorrelation functions4. Moreover, the
autocorrelation functions can also be described by using the dynamics of a density operator

ρ̂Â = Â−Amin1̂
Amax −Amin

(2.2.4)

so that

Tr
{︂
ρ̂Â(t)Â

}︂
=
CÂ(t) −AminTr

{︂
Â
}︂

Âmax − Âmin
(2.2.5)

where Amin (Amax) is the smallest (largest) eigenvalue of Â. In this case, the dynamics are merely
shifted and scaled by an offset; the basic shape of the dynamics remains unchanged.
This connection also allows theories dealing with the dynamics of a density operator to be applied
to autocorrelation functions (e.g. the theory in Subsection 2.7).
Besides the direct interpretation, correlation functions can also be used in the framework of linear
response theory [4], for example, to study transport properties of systems.

2.3 Dynamical Quantum Typicality
Even though the state of a quantum (sub)system is generally described by a density matrix ρ̂, the
dynamics of such a system can be approximately developed by a pure state |φ⟩.
This approximation is called Dynamical Quantum Typicality (DQT) and has the advantage that the
amount of elements to be time evolved decreases drastically. In a finite system, the density operator
corresponds to a hermitian D × D matrix with complex entries, where D is the dimension of the
associated Hilbert H space. Thus, for a time evolution, D2 elements have to be considered. The
evolution of a pure state |φ⟩, on the other hand, requires only the evolution of 2D real elements, since
those states correspond to a complex vector (in a dual space). Since the dimension of the Hilbert
space grows exponentially with the number of particles (and the number of degrees of freedom), the
reduction to a pure state is reasonable.
This possibility of reduction to dynamics of pure states has been first shown in Ref. [5] and has
become a standard tool for quantum mechanical simulations in recent years. There are several
derivations for this approximation [6, 7, 8]. In this subsection, the derivation from Ref. [6] will be
summarized succinctly. Let ρ̂ be a density operator whose dynamics is to be discussed. Moreover,
let R̂ be an operator satisfying

ρ̂ = R̂R̂
†

(2.3.1)

which is always possible for density operators, since their eigenvalues are semi positive. In addition,
also a pure state

|Φ⟩ =
∑︂

n

cn |n⟩ (2.3.2)

is defined. cn are independent random Gaussian numbers with mean c = 0 and variance (c− c)2 = 1,
where the bar denotes the mean over all possible realizations of |Φ⟩. {|n⟩} is an arbitrary orthonormal

4Of course this is only useful if a long-time value exists at all.
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basis. The precise basis is not important, since a random vector transforms into a random vector
under unitary transformation. Let Â be the observable of interest, it can be concluded that

⟨Φ|R̂ÂR̂
†
|Φ⟩ =

∑︂
n,m

(cn · cm) ⟨n|R̂ÂR̂
†
|m⟩ (2.3.3)

=
∑︂
n,m

(cn · c∗
m)⏞ ⏟⏟ ⏞

≈δnm

⟨n|R̂ÂR̂
†
|m⟩ (2.3.4)

≈
∑︂

n

⟨n|R̂ÂR̂
†
|n⟩ (2.3.5)

= Tr
{︂
R̂ÂR̂

†}︂
(2.3.6)

= Tr
{︂
ρ̂Â
}︂
. (2.3.7)

holds. It can be seen that the expected value of a mixed state is obtained as the mean value of
modified pure states.
A possible problem that might arise is that one needs a great many realizations of |Φ⟩ to determine
this mean. To investigate this problem, the variance of the ensemble of random states are considered:

σ2
DQT =

(︃
⟨Φ|R̂ÂR̂

†
|Φ⟩ − ⟨Φ|R̂ÂR̂

†
|Φ⟩
)︃2

(2.3.8)

≤ Tr
{︁
ρ̂2}︁ ||Â||2 (2.3.9)

Here ||Â|| is the largest eigenvalue of the operator Â in absolute value. The complete derivation can
be found in Ref. [6]. Since in many cases Tr

{︁
ρ̂2}︁ ≪ 1, the most realizations of |Φ⟩ are already very

close to the expectation value of the mixed state5. Tr
{︁
ρ̂2}︁ is also called the purity of a state; the

reciprocal of this purity is also known as the effective dimension deff [9].
An expansion to time evolution is easily seen in terms of the Heisenberg picture. Thus, the derivation
shown above only needs to be performed with Â(t).
It is trivial that some information of the density operator is still lost by the reduction to pure states.
A trivial example is the purity of the density operator: Every pure state |Φ⟩ has by definition a
purity of 1, while the density operator ρ̂ itself can also take smaller values for the purity.
Note that the method of DQT can be used in numerous ways for numerical simulations [7] and can
also be combined with other methods [10].
Before a possible application of the DQT is explained, it should be pointed out that even if the
DQT is used here mostly as a means to an end, the typicality already makes statements about
quantum systems itself. Thus, it shows that for sufficiently large systems the majority of all possible
states are similar in their properties, which hereby are to be understood as the expectation values
of observables and their dynamics. This fact reflects the principle often used in thermodynamics,
according to which a system can be described independently of the exact state6.

5For example, an often considered case is the thermal equilibrium by infinite temperature, for which Tr
{︁

ρ2
}︁

= 1
D ,

where D is the dimension of the system.
6In classical systems the exact position and velocity of every particle is not important for macroscopic behavior.
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2.3.1 Determination of the (local) density of states by means of dynamic quantum
typicality

An actual application of the DQT, which is used within the thesis, will be described in the following
subsection. The local density of states (LDOS) is determined by means of DQT and the Fourier
transform. LDOS of a (mixed) state ρ̂ is defined as

Ωloc(E) =
∑︂

n

⟨En|ρ̂|En⟩ rect
(︃
E − En

δE

)︃
(2.3.10)

where

rect (x) =
{︄

1 for |x| < 1
2

0 else
(2.3.11)

denotes the rectangle-function and δE is the width of an energy shell. The latter is chosen to be
macroscopically small, but still contains exponentially many states. In the spirit of DQT the density
matrix ρ̂ is replaced by a pure, random state |Φ⟩, which results to

Ωloc(E) ∝
∑︂

n

⟨En|R̂
†
|Φ⟩ ⟨Φ|R̂|En⟩ rect

(︃
E − En

δE

)︃
(2.3.12)

∝
∑︂

n

| ⟨Φ|R̂|En⟩ |2⏞ ⏟⏟ ⏞
c2

n

·rect
(︃
E − En

δE

)︃
. (2.3.13)

To calculate c2
n now consider the dynamics

⟨Φ|R̂
†
Û

†
(t)R̂|Φ⟩ =

∑︂
n

⟨Φ|R̂
†
|En⟩ ⟨En|R̂|Φ⟩ eiEnt (2.3.14)

=
∑︂

n

|cn|2eiEnt. (2.3.15)

It is easy to see that the Fourier transforms F {•} (ω) results in

F
{︂

⟨Φ|R̂
†
Û

†
(t)R̂|Φ⟩

}︂
(ω) = 1√

2π

∞∫︂
−∞

⟨Φ|R̂
†
Û

†
(t)R̂|Φ⟩ e−iωtdt (2.3.16)

=
∑︂

n

δ(En − ω)|cn|2. (2.3.17)

In practice, the integral is determined only over finite times, resulting in a limited resolution of
the δ-distributions. However, since LDOS itself is defined over a (small) energy range, that lack of
resolution is not only not a problem, but even a wanted result.
For the choice of R̂ = 1̂, the result corresponds to the density of states (DOS), which is the LDOS
for ρ̂ ∝ 1̂, i.e., the canonical density of states at infinitely high temperature (see Subsection 2.4).

2.4 Equilibration & thermalization in isolated Quantum Systems
Nearly all systems that one can observe tend to equilibrate in such a sense, that after a given time7,
the macroscopic properties of the system do not change much. For the sake of clarity, the example

7The timescale on which this equilibration occurs depends on the system and can differ a lot. E.g. a hot cup of
tea equilibrates in a normal room on a timescale of minutes to hours, the pitch drop experiment is running since 1930
[11] and is still not over (December 4, 2023).

11



of a box shall be used for illustration, in which a large number of gas particles are located in one
corner at the time t = 0. The box is completely isolated from the outside world (neither energy nor
particles can be exchanged). After a certain time, the gas particles will be evenly distributed in the
box. This state will hardly change (in realistic timescales8). This example is in so far well suited to
describe the equilibration since here it is easy to recognize that the position of individual gas particles
changes naturally over the time anyway and does not take an equilibrium value. Nevertheless, no
change can be seen from the outside.
From this picture, two properties of an equilibrium state are to be expected. Firstly, a long term
average exists, thus

A = lim
τ→∞

1
τ

∫︂ τ

0
A(t)dt (2.4.1)

converges.
Secondly, the deviations

σ2
A = lim

τ→∞

1
τ

∫︂ τ

0

(︁
A(t) −A

)︁2 dt (2.4.2)

from this mean value should also remain small. Note that this does not describe the deviation of
individual measurements, but the deviations of the mean value of the measurements to the long
term value of those expectation values.
These two conditions, which are necessary for equilibrium, nevertheless allow large deviations from
the long-term mean as long as they do not occur too frequently and/or last for a long time.
Even if this contradicts the everyday expectation of an equilibrium (think of a cold cup of tea which
would start boiling again for a short time), this would be acceptable in the sense of the definition of
equilibrium mentioned above.
Assuming a pure9 state |φ⟩ as the initial state and using the time evolution from Eq. (2.1.13), the
long term value can be determined as

A = lim
τ→∞

1
τ

∫︂ τ

0
A(t)dt (2.4.3)

= lim
τ→∞

1
τ

∫︂ τ

0

∑︂
n,m

⟨φ|En⟩⏞ ⏟⏟ ⏞
c∗

n

e−iEnt ⟨En|Â|Em⟩⏞ ⏟⏟ ⏞
Anm

⟨Em|φ⟩⏞ ⏟⏟ ⏞
cm

eiEmtdt (2.4.4)

= lim
τ→∞

1
τ

∫︂ τ

0

(︄∑︂
n

|cn|2Ann

)︄
+

⎛⎝∑︂
n̸=m

ei(Em−En)tc∗
ncmAnm

⎞⎠ dt (2.4.5)

=
∑︂

n

|cn|2Ann (2.4.6)

8In both classical mechanics and quantum mechanics, it is known that any closed system approaches infinitely
close to its initial state. This phenomenon is called Poincaré recurrence [12]. However, the time the system needs for
this is far beyond the human timescale.

9The derivation is very similar for mixed states. With the results on Subsection 2.3, however, it is evident that
the case of pure states also has an impact on the case of mixed states.
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where it was assumed that there is a minimum distance between two energy states |En −Em| > ϵ10.
For the deviation from the long-term value can be shown in a similar manner:

σ2
A = lim

τ→∞

1
τ

∫︂ τ

0

(︁
A(t) −A

)︁2 dt (2.4.7)

= lim
τ→∞

1
τ

∫︂ τ

0
A(t)2 − 2AA(t) +A

2dt (2.4.8)

= −A2 + lim
τ→∞

1
τ

∫︂ τ

0
A(t)2dt (2.4.9)

= −A2 + lim
τ→∞

1
τ

∫︂ τ

0

∑︂
n,m,k,l

ei(Em−En+El−Ek)tc∗
ncmc

∗
kclAnmAkldt (2.4.10)

= −A2 +
∑︂
n,l

(︁
|cn|2Ann|cl|2All + |cn|2|cl|2|Anl|2

)︁
−
∑︂

n

|cn|4|Ann|2 (2.4.11)

= −A2 +
(︄∑︂

n

|cn|2Ann

)︄2

+
∑︂
n ̸=l

|cn|2|cl|2|Anl|2 (2.4.12)

=
∑︂
n ̸=l

|cn|2|cl|2|Anl|2 (2.4.13)

Here the non-resonance condition was assumed, which states that En − Em ̸= Ek − El is valid as
long as k ̸= m and l ̸= n.
It is easy to see that in any system it is possible to define an observable which does not equilibrate
e.g. Â = |En⟩ ⟨En|Em + |Em⟩ ⟨Em|En. As long as Em ̸= En and cn ̸= 0 ̸= cm this observable will
never arrive at equilibrium but will always oscillate. In Ref. [13] von Neumann already emphasizes
that it is important to focus on physically relevant observables rather than equilibration of states or
on more artificial observables11 .
As a special case of equilibration, these properties are also necessary for thermalization. In the
case of the latter, another everyday experience of equilibrium is added: The equilibrium state does
not depend on the exact initial state. In the image of the box, even if all gas particles are shifted
randomly at the beginning, the equilibrium state will still be the one in which the gas particles fill
the volume evenly.
For the case of an isolated system, the long-time value is assumed to correspond to the value of the
microcanonical ensemble [14]. Thus,

A ≈ Amc = Tr
{︂
ρ̂mcÂ

}︂
(2.4.14)

with

ρ̂mc =

∑︁
n

|En⟩ ⟨En|Enrect
(︁

E−En

δE

)︁
∑︁
n

rect
(︁

E−En

δE

)︁ . (2.4.15)

E is the mean energy of the microcanonical ensemble and δE denotes a narrow energy shell around
this mean energy. The word "narrow" refers to the fact that this shell is macroscopic small, but still

10This expression is also applicable in the case of degeneracies, but then a base change must be made so that
Anm = 0 holds for all mutually degenerate states {|n⟩ |m⟩}.

11Note that this is also the case in classical thermodynamics; it is always possible to find an observable which does
not equilibrate.
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contains exponentially many states. The physical properties of the system should not be sensitive
to a change of the width.
Note that this is the case for an isolated quantum system. If the system is weakly coupled to a heat
bath with temperature T , the expected long term value corresponds to

A ≈ Aβ = Tr
{︂
ρ̂βÂ

}︂
(2.4.16)

with

ρ̂β = e−βĤ

Tr
{︂

e−βĤ
}︂ (2.4.17)

and

β = 1
kBT

. (2.4.18)

ρ̂β is the density operator of a canonical ensemble [15] and kB denotes the Boltzmann constant12.
For other types of open systems (e.g. with particle exchange), there are corresponding ensembles in
each case [15].

2.5 Eigenstate Thermalization Hypothesis
One explanation for the thermalization of an isolated quantum system is the Eigenstate Thermal-
ization Hypothesis (ETH) [16, 17]. It states that few-body observables Â in non-integrable quantum
systems can be represented as follows:

⟨En|Â|Em⟩ = A(Ē)δnm + Ω
(︁
Ē
)︁− 1

2 f
(︁
Ē, ω

)︁
rnm (2.5.1)

with

ω = En − Em Ē = Em + En

2 (2.5.2)

where A(Ē) and f
(︁
Ē, ω

)︁
are smooth functions of their arguments and Ω

(︁
Ē
)︁

is the DOS [18]. The
latter is defined as

Ω(E) = 1
D
∑︂

n

rect
(︃
E − En

δE

)︃
(2.5.3)

where δE is the width of an energy shell chosen to be macroscopically small but to include expo-
nentially many states.
The fact that rnm are considered to be (complex) Gaussian independent13 random numbers shows
the connection of ETH with Random Matrix Theory (RMT). These random numbers have a mean
of 0 and a unit variance14.
It should be noted that this structure applies to symmetry-free subspaces, since otherwise the observ-
able has a structured sparseness, which trivially contradicts the randomness of the matrix elements.

12Note that kB = 1 is chosen within this work, if not mentioned otherwise.
13To preserve hermicity, rnm = r∗

mn is needed.
14For observables with time-reversal symmetry, the variance of the diagonal elements is R2

mm = 2 and the numbers
are all real.
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Substituting the ETH-structure into Eq. (2.4.3), one obtains for the long-term value

Ā =
∑︂

n

|cn|2A(En). (2.5.4)

Under the assumption that the cn are concentrated within a narrow energy shell, it follows by the
smoothness of A(E) that Amc ≈ Ā.
To show that the deviations from this mean value are small on average, the ETH structure is inserted
in Eq. (2.4.7):

σ2
A =

∑︂
n ̸=l

|cn|2|cl|2Ω−1(Ē) ·
⃓⃓
f(ω, Ē)

⃓⃓2 |rnl|2 (2.5.5)

≤ max |Anl|2 ∝ Ω−1(Ē) (2.5.6)

Since the DOS increases exponentially with system size, this deviation becomes very small even for
medium sized systems15.
Even though the independent randomness of the matrix elements is not necessary for the above
statements, it is a common assumption. Moreover, the Gaussian distribution has been established
in various numerical investigations16[19, 20, 21, 22].
Of course, observables can be generated which trivially do not fulfill the ETH structure. The state-
ment of the ETH is to be understood much more in such a way that physically relevant observables
in non-integrable systems show this structure17. It should also be mentioned that even such observ-
ables must show deviations from that structure. For example, if one considers as an observable the
magnetization of a spin 1/2 particle in z-direction, then the observable must have −1/2 and 1/2 as
eigenvalues. This would not be possible without correlations. In addition, matrix-element correla-
tions (MEC) are necessary to fulfill properties of chaotic systems, such as the information scrambling
[23].
However, these correlations between elements are assumed to be long-range and therefore observ-
ables in sufficiently small energy windows should be free of correlations [14, 24]. The size of those
energy windows is often associated with the Thouless Energy ∆ET h = 2π/τT h, where τT h is the
so-called Thouless time. The original definition of τT h as a timescale in which a single particle
diffuses through the complete system [25] shows the connection with the relaxation time τrel. [26].
Within this work, τrel. is defined as the time after which the autocorrelation function deviates only
marginally from the long-term value

C̃(t) = C(t) − C(∞)
C(0) − C(∞) ≤ ϵ for t ≥ τrel.. (2.5.7)

In this work, ϵ = 0.01 is chosen. The relaxation time depends on the considered observable and
is only usefully defined for systems which reach a long time value at all. From that definition of
the relaxation time, it can be seen that f(Ē, ω) ≈ const. holds for a corresponding energy window
∆Erel = 2π

τrel.
.

15The assumption was made that |f(ω, Ē)|2 does not grow exponentially with system size. For common observables,
this function grows at most linearly with system size.

16Note that this does not make any statement about the independence of the matrix elements.
17The question of which observables fulfill the ETH and which do not is still an open question. However, it is

assumed that at least few-body observables in non-integrable systems fulfill the ETH [14].
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2.6 Random Matrix Theory and indicators
In this subsection, some properties of specific random matrices are explained. This is motivated by
the fact that the ETH for small energy windows transition to the RMT, since

f(Ē, ω) ≈ const. A(Ē) ≈ const. (2.6.1)

holds in this limiting case. For simplicity, it is assumed here that Tr
{︂
Â
}︂

= 0; this can be realized
by subtraction with a suitably scaled identity matrix.
What kind of random matrix this limiting case yields depends on the system and the observable: If
there is a basis in which both the Hamiltonian and the observable are real, the associated ensemble
of random matrices is called a Gaussian Orthogonal Ensemble (GOE)18.
If, on the other hand, there is no such basis, so that either the Hamiltonian or the observable always
has complex components19, the associated ensemble is called a Gaussian Unitary Ensemble (GUE)20.
The elements of such matrices can be described by

rGOE
mn =

{︄
X for m ̸= n√

2 ·X for m = n
(2.6.2)

and

rGUE
mn =

{︄
X + iY for m ̸= n√

2 ·X for m = n
(2.6.3)

for the GOE and GUE. X and Y denote independently drawn gaussian numbers21.
In the following part of this subsection some properties of these random matrices shall be explained,
which are already established as indicators of the randomness of the matrix elements of the observ-
ables used. The first indicator is Wigner’s semicircle law (WSC), which states that for distribution
of eigenvalues λ of a random matrix from GOE or GUE

P (λ) =
{︄

2
πR2

√
R2 − λ2 for |λ| ≤ R

0 else
(2.6.4)

is valid, where R is the absolute largest eigenvalue22. The example of the already mentioned mag-
netization in z-direction of a single spin shows that at least this observable trivially does not fulfill
WSC. As an example, Fig. 1 shows the eigenvalue distribution of 24 × 24 GOE matrices, averaged
over 5000 realizations.

18This corresponds to systems with Time Reversal Symmetry.
19Nevertheless, the matrices are hermitian.
20There is also the Gaussian Symplectic Ensemble, which should be mentioned for completeness, but is not discussed

further.
21The only dependence between the elements is given by the hermiticity rmn = r∗

nm.
22This is also often used as a norm of a matrix.
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Fig. 1: Eigenvalue distribution of 24 × 24 GOE matrices as well as Wigner’s semicircle law with
R = 23 average over 5000 realizations. On average r̄ = 0.529 holds.

Thus, the deviation of the distribution of eigenvalues from the WSC is an indicator of randomness.
Here R must always be adapted to the operator, since a prefactor does not change the randomness
of the matrix elements. It should be noted that non-random matrices can also satisfy the indicators,
for example a diagonal matrix with eigenvalues obeying the WSC would still be far from being a
random matrix even if this indicator cannot distinguish it from such a matrix.
Another indicator can be examined by level spacing. For this, one considers

r̄ = 1
N − 1

N−1∑︂
n=1

min {∆n,∆n+1}
max {∆n,∆n+1}

(2.6.5)

with

∆n = λn+1 − λn (2.6.6)

and

λn < λn+1. (2.6.7)

N denotes thereby the number of contributing eigenvalues. In the case of a GOE matrix, this results
in rGOE = 4 − 2

√
3 ≈ 0.53 [27, 28]. For comparison, the matrices corresponding to Fig. 1 possess

r ≈ 0.5295.
Methods that investigate the Gaussian nature of the elements are often used in this context. Thus,
one can examine the distribution of the matrix elements or also only the variance of those. For the
sake of completeness, some of these methods will be shortly mentioned here. Prior to explaining
these, it should be pointed out that these methods do indeed examine the Gaussian properties of
the matrix elements, but do not allow statements about whether and how the matrix elements are
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correlated with each other. An indicator of this type is defined as

Γ(ω) = Nω

∑︁
nm

|Anm|2rect
(︂

(En−Em)−ω
∆ω

)︂
(︃∑︁

nm
|Anm|rect

(︂
(En−Em)−ω

∆ω

)︂)︃2 (2.6.8)

where ∆ω is a small area of frequencies23 and

Nω =
∑︂
nm

rect
(︃

(En − Em) − ω

∆ω

)︃
. (2.6.9)

If the matrix elements all correspond to a Gaussian distribution (with the same variance in the
frequency range) ΓGOE = π

2 would hold, independent of ω [19]. Note again, that this indicator in
contrast to r̄ is blind to potential correlation between the elements.
Another way to investigate the Gaussian nature of the elements is to consider the rescaled transition
strength

ỹ = A2
nm(︂

A2
nm

)︂ (2.6.10)

where the • denotes the mean over all elements. In the case of a GOE the distribution of these
should hold

P (ỹ) = e− ỹ
2

√
2πỹ

, (2.6.11)

which is called the Porter Thomas distribution [29].
To illustrate that this distribution shows that the matrix elements are Gaussian random numbers,
but makes no statement about the independence among each other, the matrix from Fig. 2 b) shall
be considered here. This matrix was generated from a realization of a GOE by sorting the elements
within the diagonals according to their values. Thus, all elements individually are Gaussian random
numbers, but it is clear that the elements are locally strongly correlated with each other. In Fig. 3
it can be seen that such matrices exhibit the Porter Thomas distribution, but the distribution of
the eigenvalues deviates strongly from the WSC as seen in Fig. 4.
The correlations of the matrix elements are also reflected in the value r = 0.463, which differs from
the value of the unsorted GOE r = 0.529. However, it should also be noted that the numerical data
suggest that, especially in this situation, this indicator is not very sensitive. For example, Fig. 5
shows the distribution of the indicator for 107 different 24 × 24 GOEs for both cases, the sorted and
unsorted ones. Even if the expectation values of both distributions are clearly distinguishable, it can
be seen that both distributions are rather broad. Thus, single realizations can be indistinguishable
in respect to r. Even though the distributions are narrower for larger matrices, a distinction is not
possible even then, because then the r̄ for both cases tend to approach each other.
By the nature of random matrices, the possibility of generating an arbitrary (hermitian) matrix
is always non-zero. However, the probability of obtaining deviations from the usual indicators for
random matrices in individual realizations decreases as the size of the matrices increases. As an

23The limitation to a frequency range is necessary to assure that f ≈ const. holds and is thus redundant in true
GOE matrices.
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Fig. 2: a) Heatmap for a single realization of a 24 × 24 GOE matrix
b) Heatmap of a matrix with the same elements, but sorted along the (off-)diagonals.

example, consider the WSC of a single realization of a GOE of size 210 × 21024, which is shown in
Fig. 6. It is easy to see that the deviations for individual realizations are even rather small.
This property is particularly worth mentioning, since only one realization is ever considered when
looking at an observable. Therefore, averaging is not possible in this case. Due to the property de-
scribed above, a comparison with the expectations of GOE matrices for large systems is nevertheless
useful.
One way to compare a matrix with a similar but correlation-free matrix is to use the sign-random
method [24, 30, 31]. The method itself is not an indicator, instead it is a possibility to better es-
timate indicators. A sign-random version is generated from the observable Â, whose elements are
randomly signed25:

Ãnm =
{︄
Anm (50%)
(−1) ·Anm (50%)

(2.6.12)

Since MEC in this observation variable are broken, the indicators of this matrix can be compared with
the original one. If a random matrix already existed before, the behavior of these indicators should
not change by this method. Note that the Gaussian nature of the elements is preserved under sign
randomization, so investigations involving only the Gaussian distribution remain unchanged (e.g.
Γ(ω) or P (ỹ)).

24This would correspond to a spin system with 10 particles and is thus much smaller than the smallest systems
studied within this thesis.

25To obtain the hermicity Ãmn = Ã
∗
nm applies.
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5000 realizations compared to the Porter-Thomas distribution.
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Fig. 4: Eigenvalue distribution for modified 24 ×24 random matrices, as shown in Fig. 2 b), averaged
over 5000 realizations compared to the WSC. On average r̄ = 0.463 holds.
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Fig. 6: Eigenvalue distribution of single realization of a GOE 210 × 210 matrix, as well as Wigner’s
semicircle law with R = 26. r̄ = 0.520 holds.
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2.7 Typicality Perturbation Theory
The theory explained in this subsection has some similarity to the DQT (Subsection 2.3) and the
RMT (see Subsection 2.6), but unlike those, it is not a standard tool. The theory which is called
Typicality Perturbation Theory (TPT) within this thesis is relatively new and would (if valid) be
a powerful tool with great general predictive power. TPT was introduced in Ref. [32] and further
refined in Refs. [33, 34]. Since validity is a subject of investigation within this thesis (see Section 4),
that question shall be postponed. The focus of this subsection is to explain the basic idea of the
theory, as well as its assumptions and statements. TPT treats perturbations of the following form

Ĥ = Ĥ0 + λV̂ (2.7.1)

where Ĥ is the perturbed Hamiltonian of the system, λ denotes the perturbation strength, and V̂
is the perturbation.
Let

A(t) = Tr
{︂
Âe−iĤ0tρ̂eiĤ0t

}︂
(2.7.2)

be the known unperturbed dynamics of the system, where ρ̂ is the initial state. TPT makes state-
ments about the perturbed dynamics

Ã(t) = Tr
{︂
Âe−iĤtρ̂eiĤt

}︂
. (2.7.3)

It can be shown that under some conditions,

Ã(t) ≈ Ã+ |g(t)|2 ·
(︂
A(t) − Ã

)︂
(2.7.4)

holds, where Ã is the long term value (see Subsection 2.4) of the perturbed dynamics and g(t) is
monotonically decreasing in time. TPT does not make any statements about the former, so the
theory is unsuitable for investigating the long-time values.
The main idea behind TPT is to look at an ensemble of perturbations rather than individual specific
perturbations. This ensemble should have some main properties of the perturbation under investi-
gation, but otherwise be random.
To understand the necessary conditions for TPT, a few things should be explained first: First, it
is important to consider the matrix elements of the perturbation in the basis of the unperturbed
Hamiltonian

V 0
µν = 0 ⟨Eµ|V̂ |Eν⟩0 . (2.7.5)

Secondly, the LDOS26, which is proportional to the probability density to find an occupied energy-
eigenstate in a given energy range for a given initial state, requires to be put into context. The
LDOS is thereby the product of DOS and the population distribution ⟨En|ρ̂|En⟩, where ρ̂ is the
initial state. The LDOS is used here as an indicator which part of the spectra is relevant for the
dynamics of the system, e.g. if the LDOS equals zeros for some energy region, these parts are not
relevant for the dynamics. The DOS can be used as an indicator for a constant mean level spacing
ϵ, as a constant level spacing equals a constant DOS.
Even if the exact form of g(t) depends on further conditions, four basic assumptions can be listed,
which are necessary to develop the theory:

26For numerical calculation using DQT see Subsection 2.3.
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i) The DOS in the non-perturbed system should be approximately constant in the region where
the LDOS is not vanishingly small.

ii) The perturbation should not change any thermodynamic quantities of the system. This implies
that the DOS should not be changed significantly either, because of its connection to entropy.

iii) The perturbation should be strong enough, such that the eigenstates of the unperturbed system
|Eν⟩0 and those of the perturbed system |Em⟩ are well mixed.

iv) The perturbation V̂ should be a (pseudo) random matrix in the non-perturbed eigenbasis with
the following properties

V 0
µν = 0 (2.7.6)

|V 0
µν |2 = σ2(|Eµ − Eν |) (2.7.7)

where the bar denotes the mean over an ensemble of perturbations. The variance σ2 is a smooth
function of its arguments and will be called perturbation-profile.

At this point, some consequences of the assumptions shall be considered in more detail. Firstly,
it can be seen from condition i) that the perturbation theory is not necessarily independent of the
initial state ρ̂. Even if a system does not exhibit constant DOS in all its parts, this would not be a
problem as long as this region is not relevant to the dynamics.
For condition i), one could ask whether the DOS of the unperturbed or the perturbed Hamiltonian
is meant. The irrelevance of this question is shown in condition ii), which states that both cases
must not differ (strongly). Moreover, condition ii) excludes phase transitions.
These four conditions thus form the foundation of the theory, so to speak. In addition, further
conditions apply, depending on which function is to be used for g(t). For different cases there are
different gi(t). Within this thesis the focus will be on 3 of these cases.
The first one is the case of weak perturbation (small λ), where

g1(t) = e−Γ |t|
2 (2.7.8)

with

Γ = 2π
ϵ
λ2σ2(0) (2.7.9)

is appropriate for an approximation. Thereby, the weak perturbation should be strong enough to
satisfy condition iii).
There is also an application of the theory for the case of strong perturbations (large λ). For this

g2(t) = 2J1(γt)
γt

(2.7.10)

with

γ = λ

√︃
8∆vσ(0)2

ϵ
(2.7.11)

and

∆v = 1
σ2(0)

∞∫︂
0

σ2(ω)dω (2.7.12)
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is inserted. Here ∆v is an indicator for the bandwidth of the perturbation V̂ and J1(t) is the first
kind Bessel function of order 1. It should be noted that even in this case the perturbation may not
be arbitrarily strong, but is still limited by condition ii).
The crossover between these approximations should happen at a perturbation strength

λc :=

√︄
2∆vϵ

π2σ2(0) . (2.7.13)

In addition to these two cases, a third approximation was determined in Ref. [34], which is applied
using

g3(t) =
(︁
γ+ − Γ

2
)︁

e−γ−|t| +
(︁
γ− − Γ

2
)︁

e−γ+|t| − Γe−γ0|t|

2(γ0 − Γ) (2.7.14)

with

γ−,0,+ = 2∆v

π

[︄
1 ±

√︃
1 − πΓ

2∆v

]︄
. (2.7.15)

Similar to the first approximation, this one applies in the range of weak perturbations, but is
supposed to be valid over a larger range. However, it differs from the previous approximation in
that further assumptions have been made for the derivation, i.e. it is only applicable under additional
conditions. Strictly speaking, the new additional condition concerns the perturbation profile σ2(ω),
which is now assumed to be Lorentz-shaped

σ2(ω) = σ2(0)

1 +
(︂

ωπ
2∆v

)︂2 . (2.7.16)

It can be shown numerically in individual cases that g3 also yields good results for other perturbation
profiles, but those results are not a general proof, but only an indication of the stability of g3 under
violation of that condition.

2.8 Recursion Method
Even though the system behind an autocorrelation function can be arbitrarily complex, it can always
be mapped to a transport problem in a one dimensional semi-infinite chain. The method of this
mapping is called the Recursion Method [35].
Within this subsection it will be explained how this mapping works and how it relates to other
representations. In addition, the problems with the implementation of that mapping will be briefly
mentioned. For the interested reader Ref. [35] is recommended, which provides a more detailed look
into this method.
A modified version of this method, which is often called Krylov subspace method, can also be used
to approximately determine the dynamics of a pure state [36]. The normalized autocorrelation
function, which is expressed in Eq. (2.2.2), takes the following form

C̃Â(t) = Tr
{︂
ÂÂ(t)

}︂
/Tr

{︂
Â

2}︂
. (2.8.1)

Here Â(t) satisfies the differential Eq. (2.1.18), therefore

d

dt
Â(t) = iL̂

S
Â(t) (2.8.2)
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holds, where L̂
S

is a superoperator with

L̂
S

=
[︂
Ĥ, •

]︂
(2.8.3)

which is called Liouvillian27. In addition, a new scalar product

(A|B) := 1
D

Tr
{︂
Â

†
B̂
}︂

(2.8.4)

and a corresponding norm

||Â|| :=
√︁

(A|A) (2.8.5)

are introduced. With these two definitions, the Lanczos algorithm can now be applied. As a starting
point

|A0) := |A) |A1) := 1
b1

L̂
S
|A0) (2.8.6)

b0 := 0 b1 :=
√︂

(A0L̂
S
|L̂A0) (2.8.7)

are used.
All further definitions are recursively given by

|Bn) := L̂
S
|An−1) − bn−1|An−2) (2.8.8)

bn := ||Bn|| (2.8.9)

|An) := 1
bn

|Bn). (2.8.10)

As a result, this procedure yields an orthogonal basis {|An)}, which is called the Krylov basis,
and the so-called Lanczos coefficients bn, which are positive real numbers. Within this basis the
Liouvillian is tridiagonal:

L S
nm = (An|L̂

S
|Am) (2.8.11)

:=

⎛⎜⎜⎜⎜⎜⎜⎝

0 b1 0 0 · · ·
b1 0 b2 0 · · ·
0 b2 0 b3 · · ·

0 0 b3 0
. . .

...
...

...
. . . . . .

⎞⎟⎟⎟⎟⎟⎟⎠ (2.8.12)

Since the time evolution according to Eq. (2.8.2) is formally solved with

|A(t)) = eiL̂ S
t|A0), (2.8.13)

it follows for the autocorrelation function

C̃Â(t) = (A0|eiL̂ S
t|A0). (2.8.14)

27Since L̂ will latter represent a slightly modified variant of the Liouvillian, this form is marked here with an S.
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Introducing a new basis {|Ãn)}28, which is derived from the Krylov basis by

|Ãn) := in|An) (2.8.15)

and including the complex number i into the superoperator L̂ ,

Lmn := i(Ãn|L̂
S
|Ãm) (2.8.16)

:=

⎛⎜⎜⎜⎜⎜⎜⎝

0 −b1 0 0 · · ·
b1 0 −b2 0 · · ·
0 b2 0 −b3 · · ·

0 0 b3 0
. . .

...
...

...
. . . . . .

⎞⎟⎟⎟⎟⎟⎟⎠ (2.8.17)

is obtained. This antisymmetric matrix corresponds to a hopping on a semi-infinite29 chain, the
so-called Mori chain. Here xn is the occupation on the n-th place. Since in the base transformation
the first base state is unchanged, the autocorrelation function is given by

C̃Â(t) = (A0|eL̂ t|A0). (2.8.18)

In terms of hopping, the dynamics of the chain can also be described as a differential equation

∂

∂t
xn(t) = bnxn−1(t) − bn+1xn+1(t), (2.8.19)

with xn(t = 0) = δn0 as the initial condition. The advantage of the new basis is that the occupations
of the sites are always real.
In this way, it is possible to reduce arbitrary autocorrelation functions of quantum systems to simple
transport dynamics in one-dimensional systems with real values.
In addition, a representation for the Laplace transform of the autocorrelation can be obtained from
this equation. By means of the Laplace transform

L {x(t)} (s) =
∞∫︂

0

x(t)estdt = x(s) (2.8.20)

follows from that equation

sxn(s) − xn(t = 0) = bnxn−1(s) − bn+1xn+1(s). (2.8.21)

Adding now the initial condition xn(t = 0) = δn0, the two equations

x0(s) = 1
s+ b1

x1(s)
x0(s)

for n = 0 (2.8.22)

bn
xn−1(s)
xn(s) = s+ bn+1

xn+1(s)
xn(s) for n ̸= 0 (2.8.23)

28Note that this basis is also orthonormal.
29The chain is semi-infinite only for infinite systems.
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are obtained. If one now substitutes Eq. (2.8.23) into Eq. (2.8.22) and repeats this successively for
the new equation, the result can be expressed by

x0(s) =
1

s+
b2

1

s+
b2

2

s+
.. .

, (2.8.24)

which is called Continued Fraction.
However, even though the full information is written in these coefficients, it is far from trivial to
construct the autocorrelation function from this. For the exact behavior of this dynamic for a general
case a ED is needed. Moreover, these dynamics are carried out in the so-called Liouville space, which
is much larger than the Hilbert space otherwise used30.
Even without the problem of the sheer size of the resulting matrices, the Lanczos algorithm itself is
problematic, since it is numerically unstable: Even if mathematically it follows beyond doubt that
the Krylov basis is orthonormal, in practice it turns out that due to the limited numerical accuracy,
orthogonality is no longer fulfilled after a few steps. Even though there are numerical methods that
improve the stability of the algorithm [38], they greatly increase the numerical cost, so they are not
necessarily useful to apply.
An alternative approach will be introduced in Subsubsection 2.10.4, which does not change the
numerical procedure itself, but exploits structures of the underlying model, so that the Lanczos
method can be performed exactly.

2.8.1 Operator Grows Hypothesis

Although in general the Lanczos coefficients can only be determined numerically in finite numbers,
the Operator Grows Hypothesis (OGH) presented in Ref. [39] states that for few-body observables
in non-integrable systems, these coefficients bn increase linearly31 for large n. Such a behavior has
already been proven for different cases [40], where the linear behavior could already be seen in the
range in which the Lanczos coefficients are determinable.
Even if the determination of the coefficients is strongly limited by the numerical costs, by means of
that procedure a meaningful continuation can be formed, which yields in many cases equivalent
results to the autocorrelation functions determined by the usual methods (see Subsection 5.1).
Moreover, this representation of a chain is suitable for further investigations, since many complicated
dynamics in the original model can be reduced to a more intuitive picture of a one-dimensional chain.

2.9 Models
All systems studied within this thesis are spin-1/2 lattice systems. The Hamiltonians of these systems
can be written in the most general form as follows

Ĥ =
∑︂
j,l

Jjl

(︄∑︂
u

∆uσ̂
u
j σ̂

u
l

)︄
+
∑︂

j

(︄∑︂
u

huj σ̂
u
j

)︄
(2.9.1)

with
u ∈ {x, y, z} , (2.9.2)

30In the worst case for the dimension of this space K = D2 − D + 1 holds, whereby D is the dimension of the Hilbert
space [37].

31For 1-dimensional systems there exists a logarithmic correction bn ∼ A n
ln(n) .
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where σ̂u
j is one of the Pauli matrices at site j. The first sum runs over all combinations of the

different sites, Jjl indicating the coupling strength between the sites j and l, while ∆u corresponds
to the anisotropy in the different directions. The second sum is to be interpreted in the sense of an
external magnetic field, where huj is the strength of the magnetic field at the site j in direction u.
The Pauli matrices are defined as

σ̂x =
(︃

0 1
1 0

)︃
σ̂y =

(︃
0 −i
i 0

)︃
σ̂z =

(︃
1 0
0 −1

)︃
. (2.9.3)

Since a Pauli matrix σ̂u
j acts only on position j, the effect of the operator on the whole system can

be expressed as

σ̂u
j =

L⨂︂
l=1

[︁
1̂ · (δlj − 1) + σ̂uδlj

]︁
, (2.9.4)

where
⨂︁

denotes a row of dyadic products and L is the number of sites within the system.
From Eq. (2.9.3) and (2.9.4) follows the commutation relation of those operators:[︁

σ̂u
j , σ̂

v
l

]︁
= 2iεuvwσ̂

w
j δjl (2.9.5)

where ε is the antisymmetric Levi-Civita symbol.
For a more direct view, the spin operators ŝu = 1/2 · σ̂u are also frequently introduced, which
accordingly have the commutation relation[︁

ŝu
j , ŝ

v
l

]︁
= iεuvwŝ

w
j δjl. (2.9.6)

For the special case that huj = 0 if u ̸= z holds, the model in this thesis is called the Heisenberg
model. Moreover, for all Heisenberg models in this thesis, ∆x = ∆y := ∆xy holds. These two
properties allow a more efficient computation of dynamics of those systems. For this purpose, first
the Hamiltonian is rewritten to

Ĥ =
∑︂
j,l

Jjl

[︁
∆xy

(︁
σ̂x

j σ̂
x
l + σ̂y

j σ̂
y
l

)︁
+ ∆zσ̂

z
j σ̂

z
l

]︁
+
∑︂

j

hj σ̂
z
j (2.9.7)

=
∑︂
j,l

Jjl

[︁
2∆xy

(︁
σ̂+

j σ̂
−
l + σ̂−

j σ̂
+
l

)︁
+ ∆zσ̂

z
j σ̂

z
l

]︁
+
∑︂

j

hj σ̂
z
j (2.9.8)

with

σ̂+ =
(︃

0 1
0 0

)︃
σ̂− =

(︃
0 0
1 0

)︃
(2.9.9)

which are called creation (annihilation) operators32.
It is easy to see that the xy-term is equivalent to hopping: If there is an up spin at j and a down
spin at l (or vice versa), then this term swaps both spins. It follows that this term preserves the
total magnetization in the z-direction Ŝ

z
= 1

2
∑︁

j σ̂
z
j . Since the further terms consist only of σ̂z,

and those operators always commute with all parts of the z-magnetization (see Eq. (2.9.5)), it turns
out that Ŝ

z
is commuted with the complete Hamiltonian and thus is obtained. This is particularly

32Note that even if the operators are called creation (annihilation) operators, the spin particles are neither created
nor annihilated.
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useful since constants of motions span subspaces in the Hilbert space H, which can be considered
separately from each other. Thus, in a divide and conquer manner, the numerics can be simplified.
Thus, there are L different subspaces which can be investigated separately. The dimensions of these
spaces are given by

DM =
(︃
L

M

)︃
= L!
M !(L−M)! with M = 0, 1, 2, ..., L. (2.9.10)

So for a common system size of L = 16 the largest subspaces of magnetization only has one fifth of
the total dimension.
Another reduction is the absence of external magnetic fields, so that the Hamiltonian takes the form

Ĥ =
∑︂

j

J
[︁
2∆xy

(︁
σ̂+

j σ̂
−
j+1 + σ̂−

j σ̂
+
j+1
)︁

+ ∆zσ̂
z
j σ̂

z
j+1
]︁
. (2.9.11)

This case is worth mentioning because it is integrable in terms of the so-called Bethe Ansatz33[41, 42].
Moreover, such a system also corresponds to a system of spinless fermions by means of the Jordan-
Wigner transformation [43] and a bosonic system via the HolsteinPrimakoff transformation [44].
Another named model used within this thesis is the mixed-field Ising model, which takes the following
form

Ĥ =
∑︂
j,l

Jjlσ̂
z
j σ̂

z
l +

∑︂
j

(︄∑︂
u

huj σ̂
u
j

)︄
. (2.9.12)

In contrast to the Heisenberg model the total magnetization in z-direction is not conserved here, so
that a separation into magnetization subspaces is not possible here34.
In the special case of

Ĥ = J
∑︂

j

σ̂z
j σ̂

z
j+1 + h

∑︂
j

σy
j , (2.9.13)

this model (which then is also called XY chain) is integrable [42]. Remark that since a cyclic
swapping of {x, y, z} is just a change of the coordinates, which does not change the integrability
property.
It should be mentioned that the usual computational basis is the Ising basis, which are the eigenstates
of σ̂z

l for all l. In this basis, it is easy to see that the Hamiltonian (as well as local observables)
are sparse. This property can be used to speed up numerical calculations [45]. To see this, consider
the Heisenberg chain in Eq. (2.9.11) in this basis: Since all states of the basis are eigenstates of
σ̂z

l , this part of the Hamiltonian only contributes to the diagonal elements. The other part of the
Hamiltonian corresponds to a flip of two neighboring spins. Even in the worst case, there are only
L possible ways to do so. Thus, considering this worst case, every state of the basis connects to a
maximum of L other basisstates. Since the number of basisstates is exponential, only (L+1)

4L % of the
elements are not zeros35.
The models described here are used to describe ultracold trapped atoms [46, 47, 48] and quantum
magnets [49]. In spite of those application possibilities, it is to be pointed out that those experimental
relations are less relevant within this thesis and the models are to be regarded only as examples or
objects of investigation.

33Which systems are considered integrable and which are not is still a topic of discussion in science today. However,
the case of integrability in the sense of the Bethe approach is consensus.

34The exploitation of other symmetries is still possible, but is not used within this work, since the symmetries are
broken by additional magnetic fields.

35Similar arguments in the Ising chain lead to a similar result.
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2.10 Numerical methods
In this subsection the numerical methods used within this thesis will be explained. The focus lies
strongly on the applicability of these methods and less on the theoretical background. The goal is
to enable the reader to reproduce the basic results of the thesis.

2.10.1 Exact Diagonalization

The most direct way to compute the dynamics of a system numerically is by exact diagonalization.
As already shown in the previous sections, the Schrödinger equation is formally solved by

|φ(t)⟩ =
∑︂

n

e−iEnt ⟨φ(0)|En⟩⏞ ⏟⏟ ⏞
cn

|En⟩ (2.10.1)

where Ĥ |En⟩ = En |En⟩, thus En are eigenvalues and the corresponding eigenstates of the Hamil-
tonian Ĥ.
Therefore, the state can be directly determined at any time if cn and En are known. These values can
be determined by standard methods of diagonalization. These methods are already highly efficient
in many linear algebra packages (e.g. LAPACK [50]) and can be further optimized by exploiting the
hermicity of the Hamiltonian.
Even though ED is in principle applicable to any finite system and highly optimized methods are
available, its use is still severely limited. On the one hand, this is due to the poorly scaling runtime
of O(D3), on the other hand, the required storage space grows with D2. For example, for 18 spin
1/2 particles one requires ∼ 1 TB of memory.
Since much larger systems are to be considered within this thesis in order to minimize possible finite
size effects, other methods are mostly used for dynamics, which scale better.

2.10.2 Runge-Kutta-4 Method

Since ED is not possible for large systems, within this thesis different methods are used which can
describe the dynamical behavior of pure states in a very good approximation without the need to
determine the eigenvalues (and eigenvectors) of the Hamiltonian.
The first method presented here is the Runge-Kutta-4 method. This is an iterative method which
allows to solve a differential equation of the form

dy

dt
(t) = f(y(t), t) (2.10.2)

successively.
By using this method y(t0 + δt) can be determined approximately:

y(t0 + δt) = y(t0) + δt

6 (k1 + 2k2 + 2k3 + k4) + O(δt4) (2.10.3)

k1 = f(t0, y(t0)) (2.10.4)

k2 = f(t0 + δt

2 , y(t0) + δt

2 · k1) (2.10.5)

k3 = f(t0 + δt

2 , y(t0) + δt

2 · k2) (2.10.6)

k4 = f(t0 + δt, y(t0) + δt · k3) (2.10.7)
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Thus, y(t0 + δt) can be determined with arbitrary accuracy as long as δt is chosen small enough36.
Plugging in the Schrödinger Eq. (2.1.14) results in:

|ψ(t0 + δt)⟩ = |ψ(t0)⟩ + δt

6 (|k1⟩ + 2 |k2⟩ + 2 |k3⟩ + |k4⟩) + O(δt4) (2.10.8)

|k1⟩ = −iĤ |ψ(t0)⟩ (2.10.9)

|k2⟩ = −iĤ
(︃

|ψ(t0)⟩ + δt

2 |k1⟩
)︃

(2.10.10)

|k3⟩ = −iĤ
(︃

|ψ(t0)⟩ + δt

2 |k2⟩
)︃

(2.10.11)

|k4⟩ = −iĤ (|ψ(t0)⟩ + δt |k3⟩) (2.10.12)

By this method a temporal dynamic can be developed by multiple application of the Hamiltonian to
a vector; a diagonalization is no longer necessary for this. The most expensive operation within the
method is a matrix-vector multiplication, which has a running time of O(D2) (compare ED running
time O(D3)). In turn, matrix-vector multiplication must be performed very often in consecutive
order. Since within this thesis the Hilbertspaces are large and the dynamics have been developed
only for relatively short times, this method offers an advantage over ED.
By exploiting sparseness of the used Hamiltonian (see 2.9) and high parallelization, the matrix-vector
multiplication can be greatly improved, especially when using the graphics processing unit (GPU).

2.10.3 Chebyshev Method

Another approach to iterative evolution of dynamics is the Chebyshev method, which is based on
the Chebyshev polynomials [51, 52].
Just as in the previous subsubsections, the focus here will be on the application rather than on the
derivation. For the time evolution of

|ψ(t)⟩ = e−iĤt |ψ⟩ (2.10.13)

by means of this method, the largest (smallest) energy eigenvalue Emax (Emin) must first be deter-
mined.
Now introduce a new scaled Hamiltonian

Ĥscal. = Ĥ − b1̂
a

. (2.10.14)

with

b = (Emax + Emin)
2 a = (Emax − Emin)

2 . (2.10.15)

This new Hamiltonian has the eigenvalues

|λ̃n| ≤ 1. (2.10.16)

This rescaling is necessary because the Chebyshev method is only applicable if the eigenvalues are
between −1 and 1. In practice, the maximum energy eigenvalues can be approximated by standard

36For too small δt also the dynamic changes become too small, so that these are lost in the numerical rounding.
However, this is not a problem in practice, since there is a large range in which δt is small enough to satisfy the
approximation very precisely, but large enough so that the dynamic changes do not become too small.
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estimation. This is easily applicable if the Hamiltonian is built up from several local operators whose
maximum eigenvalues are known. This is for example the case in models of spin lattices/chains. If
the Hamiltonian has the following form

Ĥ =
∑︂

j

Âj · B̂j , (2.10.17)

it follows via the triangle inequality and the sub-multiplicative

||Ĥ|| ≤
∑︂

j

||Âj || · ||B̂j ||, (2.10.18)

where || • || denotes the absolute value of the absolute largest eigenvalue of the operator. It is easy
to see that Emax ≤ ||Ĥ|| and Emin ≥ −||Ĥ||, so that an estimation of the maximum eigenvalues
is obtained37. In addition to this rough estimate, it is possible to determine the maximum (and
minimum) eigenvalue more precisely using Von Mises iteration [53] or the Lanczos iteration [54].
The time evolution of the state |ψ(t)⟩ can be expressed by the rescaled Hamiltonian as follows

|ψ(t)⟩ = e−i
(︁

aĤscal.+b1̂
)︁

t |ψ⟩ (2.10.19)

= e−ib1̂te−iĤscal.at |ψ⟩ . (2.10.20)

Since the first part of the equation only provides a constant phase factor, which is not relevant for
most dynamics38, this part shall be disregarded. Using the Chebyshev polynomials one obtains

e−iĤscal.at |ψ⟩ = J0(at) |ψ⟩ + 2
∞∑︂

n=1
(−i)nJn(at)Tn

(︂
Ĥscal.

)︂
|ψ⟩ . (2.10.21)

Here Jn are the Bessel functions of nth order and Tn are the Chebyshev polynomials, which can be
constructed recursively:

T0

(︂
Ĥscal.

)︂
= 1̂ (2.10.22)

T1

(︂
Ĥscal.

)︂
= Ĥscal. (2.10.23)

Tn

(︂
Ĥscal.

)︂
= 2Ĥscal. · Tn−1

(︂
Ĥscal.

)︂
− Tn−2

(︂
Ĥscal.

)︂
(2.10.24)

Since the main interest is only in Tn

(︂
Ĥscal.

)︂
|ψ⟩ the focus is set on the recursive construction of

those states

|ψ0⟩ = |ψ⟩ (2.10.25)
|ψ1⟩ = Ĥscal. |ψ⟩ (2.10.26)
|ψn⟩ = 2Ĥscal. |ψn−1⟩ − |ψn−2⟩ . (2.10.27)

The Bessel functions Jn(at) are available in many packages as highly optimized functions, so that
the computation of those values needs virtually no time. Thus, the recursive determination of |ψn⟩ is

37Note that too large an estimate is not a problem in principle. It only slows down the procedure, while too small
an estimate leads to incorrect results.

38For the calculation of the LDOS this phase factor is indeed important.
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mainly causing the running time of the method. Of course, the infinite sum can never be computed
in finite time. This is not necessary, because Jn(aδt) ∼ ( aδt

n )n holds for n ≫ at and thus higher
orders are negligible. It can be clearly seen that an overestimation of a can be compensated by using
higher orders or smaller time steps.
Similar to the Runge-Kutta-4 method, the runtime is mainly caused by matrix-vector multiplications.
Thus, this method also has a running time of O(D2).

2.10.4 Determination of Lanczos coefficients by means of Pauli strings

As mentioned in Subsection 2.8, the determination of Lanczos coefficients by means of the Lanczos
algorithm is highly unstable, so that even mathematically trivial properties such as orthogonality of
the basis are no longer satisfied after only a few iterations. In practice, the stability of the method
can be optimized, but this would increase the runtime [38]. This approach would thus result in a
trade-off between precision and computational speed.
Here an alternative method is briefly explained, which is based on an exact description of the
expressions, which was introduced in Ref. [39]. However, this method is severely limited in its
application, as it is only useful for spin-1/2 systems.
For this, first a new basis {τn} is introduced, where each basis state has the form

τn :=
⨂︂

l

σ̂u
l (2.10.28)

with u ∈ {x, y, z, 0}39. From the commutator relation in Eq. (2.9.5), it follows that

σ̂uσ̂v = δuv 1̂ + iϵuvwσ̂
w (2.10.29)

holds for Pauli matrices on the same site. By this expression, it is clear that this new basis is
orthonormal in the sense of the scalar product from Eq. (2.8.4).
Another representation of this basis is given by

τn = iδn(−1)ϵn

⨂︂
l

(σ̂z
l )vn

l (σ̂x
l )wn

l (2.10.30)

where n denotes the basis state and l the site of the Pauli operator. δn, ϵn, w
n
l , v

n
l ∈ {0, 1} are binary

numbers. It should be noted that not all states that can be represented in this way are necessary
to span the complete space. In this way, it is possible to describe each of these base states uniquely
by two binary numbers δn, ϵn and two binary vectors v⃗n, w⃗n. In addition, this representation of the
base states offers the advantage that the product of two such states can be simply represented as

τn · τm = τk (2.10.31)

with

δk = δn + δm (2.10.32)
ϵk = ϵn + ϵm + δnδm + w⃗n · v⃗m (2.10.33)
v⃗k = v⃗n + v⃗m (2.10.34)
w⃗k = w⃗n + w⃗m, (2.10.35)

39Thereby the identity on one site is also denoted by σ0
l = 1̂l.
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where all additions are performed over Z2. From this, we can see that the commutator can be
nonzero if and only if w⃗n · v⃗m ̸= w⃗m · v⃗n. The trivial case that observables acting on different sites
commute is thus fulfilled. Moreover, it is shown that the commutator of two basis states consists of
at most two basis states.
Mostly one examines local observables, which can be represented particularly simply by means of
this representation. In this case only few basis states are needed, which in addition also have only
few nonzero elements in the vectors v⃗n and w⃗n.
Moreover, mostly Hamiltonians are considered, which consist of few-body operators, whereby those
also have few entries not equal to 0. Unlike the single local operator, a Hamiltonian is usually
a superposition of many shifted such operators. Thus, it can be seen that both the Hamiltonian
and relevant observables can be easily transferred into this representation. By further application
of Eq. (2.8.8), the Lanczos algorithm can be implemented with high precision. The choice of the
representation in Eq. (2.10.30) has the advantage that the representation of the operators is much
more precise compared to storing whole matrices and also requires less memory. Also the coefficients
can be determined with high accuracy due to the orthogonality of the base states. Another advantage
of this representation is that it deals directly with the infinite system. Nevertheless, even with
this method, only a few dozen coefficients can be determined, since the required memory grows
exponentially even for the very efficient representation by means of binary parameters.
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3 Eigenstate Thermalization Hypothesis and its deviations
from Random-Matrix Theory beyond the thermalization
time

As explained in Subsection 2.5, one of the basic assumptions of ETH is that the elements of local
observables in the energy eigenbasis are independent random numbers, or at least this is the case
within energy windows. In the following section this is to be examined with the help of a new
method at the example of 6 different systems. Here, a system is always considered to be a combina-
tion of an observable and Hamiltonian. The sizes of the investigated systems do not allow an exact
diagonalization so that common indicators for the randomness are no longer applicable.
The section will be divided into three parts: First, in Subsection 3.1, a new method for the ap-
plication of an energy filter will be explained. Without this filter the investigation within energy
windows would not be possible. Even though it is a numerical method, it has been omitted from
Subsection 2.10 because it is a result of this thesis and therefore should be mentioned separately
from the already established methods.
In Subsection 3.2, a new indicator Λ is introduced to study the independent randomness of elements
within a matrix.
Numerical results of that indicator for different systems are presented in Subsection 3.3.
Subsequently, in Subsection 3.4 a comparison with common indicators will be made. Furthermore,
it will be examined whether ETH is fulfilled independently of the randomness of the elements.
The results of this section have been published in [P1].

3.1 Energy filter
Since the investigations are to be carried out in energy windows of systems, which lies outside the
range of the ED, first a method must be introduced, which allows to regard an energy window
isolated40. Such an introduction is the goal of this subsection.

40It is to be mentioned here that the dimension of the energy window can lie quite within the range of the ED,
however for the determination of the window nevertheless a diagonalization of the full system would be necessary.
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First, let P̂
Ec

∆E be an energy filter which reduces a state to a ∆E wide energy window around Ec:

P̂
Ec

∆E =
∑︂

n

rect
(︃
Ec − En

∆E

)︃
|En⟩ ⟨En|En (3.1.1)

=
∑︂

n

∞∫︂
−∞

rect
(︃
Ec − τ

∆E

)︃
· δ(En − τ)dτ |En⟩ ⟨En|En (3.1.2)

=
∑︂

n

∆E
2π

∞∫︂
−∞

F
{︃

sinc
(︃
t
∆E
2π

)︃}︃
(Ec − τ) · F

{︁
eiEnt

}︁
(τ) dτ |En⟩ ⟨En|En (3.1.3)

=
∑︂

n

∆E√
2π

F
{︃

sinc
(︃
t
∆E
2π

)︃
eiEnt

}︃
(Ec) |En⟩ ⟨En|En (3.1.4)

=
∑︂

n

∆E
2π

∞∫︂
−∞

sinc
(︃
t
∆E
2π

)︃
eiEnte−iEctdt |En⟩ ⟨En|En (3.1.5)

= ∆E
2π

∞∫︂
−∞

sinc
(︃
t
∆E
2π

)︃
eiĤte−iEctdt (3.1.6)

= ∆E
2π

∞∫︂
−∞

sinc
(︃
t
∆E
2π

)︃
e−iĤteiEctdt (3.1.7)

with

sinc (t) = sin (πt)
πt

. (3.1.8)

Within this derivation the convolution theorem

√
2πF {f · g} (ω) =

∞∫︂
−∞

F {f} (ω − ν) F {g} (ν) dν (3.1.9)

was used. It is easy to see that the expression (3.1.7) serves as an energy filter, as described above.
Applying the right-hand side of Eq. (3.1.7) to an arbitrary state |ψ⟩, one obtains

∆E
2π

∞∫︂
−∞

sinc
(︃
t
∆E
2π

)︃
eiEct |ψ(t)⟩ dt = P̂

Ec

∆E |ψ⟩ . (3.1.10)

This way of representing the filter can already be implemented numerically. For this, the dynamics
of the state in small steps δt is needed, so that for the integration approximately results in

P̂
Ec

∆E |ψ⟩ ≈ ∆E
2π δt

∞∑︂
n=−∞

sinc
(︃
nδt

∆E
2π

)︃
eiEcnδt |ψ(nδt)⟩ . (3.1.11)

Of course, an infinite sum is outside the realm of the numerically possible. However, already nu-
merically realizable values of n are sufficient. By adding further sums and smaller time steps the
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sharpness of the filter can be increased arbitrarily. Time evolution can be performed using the usual
methods (see Subsection 2.10).
The choice of the Chebyshev method (see Subsubsection 2.10.3) allows further optimization of the
numeric. For this one inserts Eq. (2.10.21) into (3.1.10)

∆E
2π

∞∫︂
−∞

sinc
(︃
t
∆E
2π

)︃
eiEct |ψ(t)⟩ dt (3.1.12)

= ∆E
2π

∞∫︂
−∞

sinc
(︃
t
∆E
2π

)︃
eiEcte−ibt

[︄
J0(at) |ψ⟩ + 2

∞∑︂
n=1

(−i)nJn(at) |ψn⟩

]︄
dt. (3.1.13)

The n-th order Bessel function of the first kind Jn(t) can be Fourier transformed using the integral
notation

Jn(t) = 1
2π

π∫︂
−π

ei(nτ−t sin(τ))dτ (3.1.14)

such that

F {J } (ω) = 1√
2π

∞∫︂
−∞

⎛⎝ 1
2π

π∫︂
−π

ei(nτ−t sin(τ))dτ

⎞⎠ e−iωtdt (3.1.15)

= (2π)− 3
2

π∫︂
−π

⎛⎝ ∞∫︂
−∞

e−i(ω+sin(τ))tdt

⎞⎠ einτdτ (3.1.16)

= 1
2π

π∫︂
−π

δ (ω + sin(τ)) einτdτ (3.1.17)

= 1
2π

(︃
einτ1

| cos(τ1)| + einτ2

| cos(τ2)|

)︃
, (3.1.18)

with

τ1 = −asin (ω) τ2 = π − τ1 . (3.1.19)

So that in all one receives

F {J } (ω) = einτ1 + (−1)ne−inτ1

2π| cos(τ1)| (3.1.20)

= e−inasin(ω) + (−1)neinasin(ω)

2π
√

1 − ω2
. (3.1.21)
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With this knowledge, consider now one part of Eq. (3.1.12) again, which will be called

Cn = (−i)n ∆E
2π

∞∫︂
−∞

sinc
(︃
t
∆E
2π

)︃
eiEcte−ibtJn(at)dt (3.1.22)

= (−i)n∆E√
2π

F
{︃

sinc
(︃
t
∆E
2π

)︃
Jn(at)

}︃
(b− Ec) (3.1.23)

= (−i)n

a

∞∫︂
−∞

rect
(︃
b− Ec − ω

∆E

)︃
F {J }

(︂ω
a

)︂
dω (3.1.24)

= (−i)n

κ+∫︂
κ−

F {J } (ω̃) dω̃ (3.1.25)

= (−i)n

κ+∫︂
κ−

e−inasin(ω̃) + (−1)neinasin(ω̃)

2π
√︁

1 − ω̃2
dω̃ (3.1.26)

=

⎧⎪⎨⎪⎩
asin(κ+)−asin(κ−)

π if n = 0

(−i)n−1

2πn

[︁(︁
e−inasin(κ+) − e−inasin(κ−))︁+ (−1)n (︁einasin(κ−) − einasin(κ+))︁]︁ else

(3.1.27)

=

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

asin(κ+)−asin(κ−)
π n = 0

(−1)n−1

πn [cos (nasin (κ+) − cos (nasin (κ−)] n odd

(−1)n/2

πn [sin (nasin (κ−) − sin (nasin (κ+)] n even

(3.1.28)

with

κ± =
b− Ec ± ∆E

2
a

. (3.1.29)

This concludes in an easy expression for

P̂
Ec

∆E |ψ⟩ = C0 |ψ⟩ + 2 ·
∞∑︂

n=1
Cn |ψn⟩ (3.1.30)

where again the sum is only carried along up to a certain order, so that the accuracy meets the
requirements. In practice, the required length of the sum depends on the width of the filter ∆E;
wider energy windows require fewer summands. As a result, smaller windows are numerically more
costly.
Since this method is based on time evolution using Chebyshev polynomials, many tips from Sub-
section 2.10 are transferable. Thus, a and b can be estimated again from the composition of the
Hamiltonian, or determined through iterative methods. Moreover, an too large estimate of a en-
sures that more sums are needed for the same accuracy. A too small estimation of a on the other
hand provides a general failure of the energy filter. Therefore, as for the case of time evolution, an
overestimation of a is preferable to an underestimation.
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It should be pointed out that the Eq. (3.1.30) can be understood as a superposition of polynomials,
which converge to the rectangle function. The chosen polynomials are the Chebychev polynomials,
since they are well understood and a common tool in the topic of quantum dynamics. However, this
choice is not unique and one could also try to construct the rectangle function with different kinds
of polynomials. This could lead to different convergence behavior, for better or worse.
Finally, it should be pointed out what this method cannot do. It does not allow observation of the
elements from the given observables in the energy window, nor does it provide a reduction of the
(numerical) dimension of the system; even if the effective dimension can be strongly reduced, the
same number of parameters is still needed to describe a state in the computational basis. Thus, this
filtering method does not allow speeding up programs by reducing the effective dimension.

3.2 The Λ-indicator
Now that a method for isolating individual energy windows is available, this subsection is devoted
to introducing a new indicator for analyzing MEC.
As a new indicator of independent randomness of matrix elements, let

Λ = M2
2

M4
(3.2.1)

be introduced with

Mn :=
Tr
{︂

(P̂Â)n
}︂

d
(3.2.2)

and

d := Tr
{︂

P̂
}︂
. (3.2.3)

For the sake of clarity, the exact description of the energy filter (width and center) is omitted.
Furthermore, Tr

{︂
P̂Â
}︂

= 0 is assumed, this can always be achieved by a constant shift of the
spectrum. In case the elements of Â within the energy window are independent random numbers,

ΛGOE = 1
2 (3.2.4)

should hold. In the case that those numbers are distributed in a Gaussian way, the consideration
of the WSC is sufficient for this insight: Mn are the higher moments of the distribution of the
eigenvalues, which in that case obey the WSC. For those moments then holds

Mn =
R∫︂

−R

xn 2
√
R2 − x2

πR2 dx (3.2.5)

=
{︄

0 for odd n
Rn

2n−1

[︂
n!

( n
2 !)2 − (n+2)!

4(( n
2 +1)!)2

]︂
for even n

. (3.2.6)

The first 4 moments (higher moments are not relevant for the indicator) are shown in Tab. 1. The
advantage of this reasoning is that it works without any further assumptions. However, it is limited
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n 0 1 2 3 4

Mn 1 0 R2

4 0 R4

8
Table 1: First few moments of the WSC

to the case of independent Gaussian random numbers. A more general justification for independent
random numbers will be given as well. For this purpose, the fourth moment M4 is considered first:

M4 = 1
d

∑︂
mnkl

AP
mnA

P
nkA

P
klA

P
lm . (3.2.7)

Here AP
mn are the elements of P̂ÂP̂ in the eigenbasis of the Hamiltonian. If those elements are now

independent random numbers with zero mean, only the quadratic terms provide a contribution for
the fourth moment, ergo

M4 = 1
d

∑︂
mnl

|AP
mn|2|AP

lm|2 + 1
d

∑︂
mnk

|AP
mn|2|AP

kn|2 − 1
d

∑︂
mn

|AP
mn|4 (3.2.8)

= 2
d

∑︂
mnl

|AP
mn|2|AP

lm|2 − 1
d

∑︂
mn

|AP
mn|4 (3.2.9)

= 2
d

∑︂
m

(︄∑︂
n

|AP
mn|2

)︄(︄∑︂
l

|AP
lm|2

)︄
− 1
d

∑︂
mn

|AP
mn|4 (3.2.10)

= 2
d

∑︂
m

(︄∑︂
n

|AP
mn|2

)︄2

− 1
d

∑︂
mn

|AP
mn|4 (3.2.11)

= 2
d

∑︂
m

F2
m − 1

d

∑︂
mn

|AP
mn|4 (3.2.12)

with

Fm :=
∑︂

n

|AP
mn|2 (3.2.13)

= ⟨Em|P̂ÂP̂ÂP̂|Em⟩ . (3.2.14)

This can be expressed via the mean

F = 1
d

∑︂
m

Fm (3.2.15)

and the variance

σ̂2
F = 1

d

∑︂
m

(︁
Fm − F

)︁2 (3.2.16)

=
(︄

1
d

∑︂
m

F2
m

)︄
− F2 (3.2.17)
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of Fm as

M4 = 2F2 + 2σ̂2
F − 1

d

∑︂
mn

|AP
mn|4 (3.2.18)

= 2
(︄

1
d

∑︂
m

Fm

)︄2

+ 2σ̂2
F − 1

d

∑︂
mn

|AP
mn|4 (3.2.19)

= 2
(︄

1
d

∑︂
m

⟨Em|P̂ÂP̂ÂP̂|Em⟩

)︄2

+ 2σ̂2
F − 1

d

∑︂
mn

|AP
mn|4 (3.2.20)

= 2
(︃

1
d

Tr
{︂

P̂ÂP̂ÂP̂
}︂)︃2

+ 2σ̂2
F − 1

d

∑︂
mn

|AP
mn|4 (3.2.21)

= 2M2
2 + 2σ̂2

F − 1
d

∑︂
mn

|AP
mn|4⏞ ⏟⏟ ⏞

∆Λ

. (3.2.22)

Inserting this into the definition of Λ in Eq. (3.2.1) then yields the expression

Λ = M2
2

2M2
2 + ∆Λ

. (3.2.23)

Note that this relation does not require a Gaussian distribution of the elements. It was only used
that only the elements are drawn independently and have a mean of 0. A comparison with the
moments of the WSC (see Tab. 1) exhibits that for the case of a GOE ∆Λ = 0 holds.
In the remainder of this work, no exact compliance with the WSC is required, but only that ∆Λ is
assumed to be small. Thus, in linear approximation

Λ ≈ 1
2 − ∆Λ

4M2
(3.2.24)

holds. That this linear approximation is reasonable can be shown by data from the ED range, which
can be seen in Fig. 9.
Additionally, those contributions are small enough to be further neglected. Therefore, it follows that

Λ ≈ 1
2 = ΛGOE, (3.2.25)

even without the assumption that the spectrum satisfies the WSC.
Note that in the limit of large numbers ∆Λ approaches 0, if the drawn numbers are gaussian. Thus,
non-zeros ∆Λ can be caused by two reasons. On the one hand, by using non-gaussian random num-
bers. This can even in the limit of large numbers cause deviation from 0.
On the other hand, even gaussian independent drawn numbers can exhibit ∆Λ ̸= 0 as a finite size
effect. Remark that the limit of large numbers was already used before considering ∆Λ = 0. Thus,
even if ∆Λ is (close to) 0, Λ itself could still suffer from finite size effects.
Using the DQT (see Subsection 2.3) and the energy filter P introduced in Subsection 3.1, it is pos-
sible to determine that indicator efficiently for different systems:

Mn =
Tr
{︁

(AP)n
}︁

Tr {P}
(3.2.26)

≈ ⟨ψ|(AP)n|ψ⟩
⟨ψ|P|ψ⟩

(3.2.27)

41



3.3 Numerical results
In this subsection numerical results of the Λ-indicator for different cases shall be investigated. In
particular, the focus will be on the progression of Λ as a function of the width of energy windows,
keeping the mean energy constant.
The main system of those investigations is a mixed-field Ising model (see Subsection 2.9), whose
Hamiltonian is given by

ĤIs = h2σ̂
z
2 + h5σ̂

z
5 +

L∑︂
l=1

ĥl (3.3.1)

where

ĥl = σ̂z
l σ̂

z
l+1 + 1

2
(︁
σ̂x

l + σ̂x
l+1
)︁

+ 1
4
(︁
σ̂z

l + σ̂z
l+1
)︁

(3.3.2)

and

h2 = 0.1665 h5 = −0.2415 (3.3.3)

hold. The magnetic fields in z-direction ensure that that system has no symmetry subspaces any-
more, so that the investigations are carried out in the full Hilbert space (D = 2L).
In this system 3 different observables are to be considered, which are related to transport within the
model in different ways. By means of

Êq = 1√
L

L∑︂
l=1

cos
(︃

2π
L
ql

)︃
ĥl (3.3.4)

two observables with q = 1 and q = 1
L , respectively, are introduced. Since the total energy in the

system is conserved, a local change can only occur by transport along the chain. Thus, the above
observable for q = 1 (q = 1/L) corresponds to the slowest (fastest) mode of the energy41.
Additionally, also

B̂ = 1√
L

L∑︂
l=1

σ̂x
l (3.3.5)

should be considered. That observable hereby exhibits no transport behavior and decays rapidly
(see Fig. 7).
Since focusing on an energy window blocks out high frequencies, this can be compared to a dephasing
of those after a certain time. It should be noted that the case considered here is different from
straight frequency cutting. The latter would lead to a banded matrix, while here block matrices are
considered. Therefore, the investigations performed here are blind to correlations which are in the
same banded matrix but not in the same energy window.
Motivated by the connection between energy window and temporal dephasing, it is now determined
on which timescales the considered autocorrelation functions take place. These dynamics are shown
in Fig. 7 for different system sizes. Methods of the iterative time evolution (see Subsection 2.10)
as well as the DQT (see Subsection 2.3) were used for the determination. The relaxation time τrel.

introduced in Eq. (2.5.7) is used to describe the timescale. It is shown that τrel. for B̂ and the fastest
41The magnetic fields used to break the symmetry should be neglected for this purpose.
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Fig. 7: Course of the autocorrelation func-
tion as a function of time for the observables
a) Ê 1

L
, b) Ê1 and c) B̂. Insets show a logarith-

mic representation. In b) the inset also shows
a scaling with 1/L2, so that the diffusive be-
havior can be more easily recognized. The
black line denotes the thermalization time
τrel.

mode are independent of the system size. For the slowest mode however, τrel. ∝ L2 holds due to the
diffusive nature of the system.
Furthermore, Fig. 8 shows coarse grained images for the observables within different energy windows.
The coarse graining is understood to be the average over the absolute values of all elements within
an energy block. By means of

Ajk = 1
Njk

∑︂
nm

|Anm|rect
(︃
Ej − En

δE

)︃
rect

(︃
Ek − Em

δE

)︃
(3.3.6)

with

Njk =
∑︂
nm

rect
(︃
Ej − En

δE

)︃
rect

(︃
Ek − Em

δE

)︃
(3.3.7)

such a coarse grained matrix can be created. Here δE is to be chosen in such a way that there
are enough elements within a section so that a statistical averaging is reasonable, but not so large
that the structure can no longer be recognized. In the sense of ETH, this is to be understood as a
visualization of |f(ω, Ē)|. The energy windows were chosen in such a way that one describes a time
before the thermalization and one afterward. In Fig. 8 it can be seen that a structure for a previous
time can still be recognized, but after the thermalization it is no longer visible42.

42Except for the diagonal of B̂, which is also in agreement with ETH.
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Fig. 8: Coarse-grained matrix of observables for different energy windows centered around Ec = 0:
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and c) B̂.

Before the results of the Λ-indicator are shown, first the approximation from the previous subsection
(see Eq. (3.2.22)) for those observables shall be analyzed. Since an investigation of that approxima-
tion is only possible using ED, smaller systems must be considered here. The results for this can
be seen in Fig. 9, where Ec = 0 was chosen43. One recognizes first that all results are very small
in comparison to ΛGOE = 0.5, and thus at least for those cases the approximation is reasonable. It
can be seen that the negligible expression becomes smaller as the system size L increases. Assuming
that this trend also continues in the sizes outside the range of the ED, it can be expected that the
above approximation is reasonable. Another trend in the data can be seen in the case of observables
with transport properties. It is seen that the negligible expression becomes larger for smaller energy
windows. The increasing deviation for very large windows (T < τrel.) is not problematic, since
the main focus is on the regime of larger times and the deviation is still rather small. In contrast,
the tendency for smaller windows is rather disadvantageous for the investigation, however, it also
emerges that for larger systems the first trend dominates, so that for the systems discussed in the
following, also smaller energy windows should not be problematic. Furthermore, especially in the
case of the slowest mode, it can be seen that the data form plateaus. This can be explained by the
small number of matrix elements within the energy window. Since the relaxation time of the slowest
mode is much larger than that of the other observables, the corresponding energy window is much
smaller. Accordingly, the number of matrix elements is not sufficient for statistical analysis. Since
this behavior occurs already at L = 14 in the case of the slowest mode, an investigation of smaller
systems is omitted.
Now that the approximation is justified, Λ is shown in Fig. 10 for the different observables as a
function of the width of the energy windows. It can be seen that Λ for small energy windows ap-

43This corresponds to infinite temperature.
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L
, b) Ê1 and c)

B̂.

proaches the expected value for GOE ΛGOE = 0.5, but does not reach this value (permanently).
In particular, Λ still exhibits a large distance to ΛGOE for energy windows corresponding to the
relaxation time. This has two implications, since in those energy windows f(ω, Ē) ≈ const. holds
(see Fig. 8), those deviations here cannot be explained by a rough structure, but only by MEC. Fur-
thermore, these findings are in contradiction with the assumption that for energy windows smaller
than the Thouless energy ∆ET h the matrix consists of independent, identically distributed random
elements (see Subsection 2.5). At that point, it is worth briefly pointing out possible problems of
the implementation of the Λ-indicator in the range of small energy windows. First, the runtime
of the simulations, the smaller the desired energy window, the more summands are needed for the
implementation of the energy filter (see Subsection 3.1). Furthermore, the effective dimension deff

of the considered observables becomes smaller due to the restriction of the energy. As mentioned in
Subsection 2.3, the variance of the expectation values determined by DQT is proportional to that
dimension. This means that the precession of the results decreases with smaller energy windows44.
These two points are not directly problems of the Λ-indicator itself, but only concern the method
chosen here to determine that quantity. Another possible problem concerns again the effective di-
mension. If the effective dimension becomes too small, it could happen that there are not enough
elements left in the matrix to make a statistical statement. However, this is a problem that affects
every investigation that makes statistical statements about the elements within an energy window.
In addition to the investigations of the above-mentioned model, the Λ-indicator was also investigated
in systems which have other conservation values in addition to the energy, so that other observables
with transport properties can also be investigated. For this purpose, a Heisenberg model is used,

44To counteract this, averaging over more random states would be an option.
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whose Hamiltonian can be described by means of

ĤXXZ =
N∑︂

l=1

1
4 σ̂

x
l σ̂

x
l+1 + 1

4 σ̂
y
l σ̂

y
l+1 + ∆1σ̂

z
l σ̂

z
l+1 (3.3.8)

+
N∑︂

l=1
∆2σ̂

z
l σ̂

z
l+2 + h1σ̂

z
1 + h⌊L/3⌋+1σ̂

x
⌊L/3⌋+1 (3.3.9)

where parameters ∆1 = 3
8 , ∆2 = 1

8 , h1 = 0.05 and h⌊L/3⌋+1 = 0.0375 are chosen and periodic
boundary conditions apply. In this system, the total magnetization in z direction is thereby pre-
served. Here the consideration is done in the magnetization space with

∑︁
σz

l = 0. A reduction to
the smallest subspace is necessary, because otherwise the structure of further subspaces can influence
the Λ-indicator. All further symmetries (translation and mirror symmetry) were again broken by
relatively small magnetic fields.
As observables again the limiting modes of transport within the system are chosen, now however
around transport of the magnetization in z-direction, so that

Ŝq =
L∑︂

l=1
cos
(︃

2π
L
ql

)︃
σ̂z

l , (3.3.10)

with q = 1 (q = L/2) denotes the slowest (fastest) mode. The Hamiltonian of another system
considered here can be described by

Ĥ3 =
L−1∑︂
l=1

1
4 σ̂

x
l σ̂

x
l+1 + 1

4 σ̂
y
l σ̂

y
l+1 + ∆1σ̂

z
l σ̂

z
l+1 (3.3.11)

+
L−2∑︂
l=1

∆2σ̂
z
l σ̂

z
l+2 + h1σ̂

z
1. (3.3.12)

The parameters ∆1 = 3
8 , ∆2 = 3

10 and h1 = 0.05 were chosen. In contrast to the previous system,
open boundary conditions are present here. The chosen observable of interest is σ̂z

L
2

. Also the inves-
tigation will be done within the magnetization subspace with

∑︁
σz

l = 0. This system has already
been investigated in detail in Ref. [24], whereas the new methods here now allow investigations for
larger systems45.
A plot of the dynamics can be seen in Fig. 11. It shows that for ĤXXZ there is a diffusive transport,
so that the relaxation time of the slowest mode is τrel. ∝ L2. The relaxation time of the fastest
mode, on the other hand, is again independent of the system size. Moreover, it turns out that
the local operator under Ĥ3 exhibits a relaxation time which does not support a simple scaling.
Therefore, in this context, no consistent scaling based on that timescale is to be used.
Fig. 12 shows the results for Λ as a function of the width of the considered energy window. The
mean energy of these windows are chosen as Ec = −0.3 L

16 in the case of ĤXXZ and Ec = −0.1 ·L for
Ĥ3. The value of the latter one was taken from Ref. [24]. It is recognizable that the observables of
the slowest (fastest) mode show a similar behavior as the previously considered observables. Thus,
it is shown that even for small energy windows the value ΛGOE = 0.5 is not reached and the distance
is still large, in particular, if one considers energy windows corresponding to the relaxation time.

45It should be noted that within that work no consideration was made in the energy window but within a limited
frequency range.
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A clearly different behavior can be observed for the local operator: Here Λ first approaches ΛGOE
from above46, then drops below that value, and then approaches the value again, this time from
below. The first phase of this behavior is thus consistent with the results of Ref. [24], where var-
ious indicators showed a sharp transition between random matrix and correlated matrix elements.
However, the Λ-indicator shows that even after a first strong approach to ΛGOE there is a further
deviation as well as a renewed slow approach. Thus, also those investigations show that an energy
window, which corresponds to the Thouless time, nevertheless still contains MEC. These findings
confirm the analytical considerations from Ref. [55]. There it was shown that a lower bound for the
RMT time τRMT exists which scales with L3. Since the Thouless time τTh only grows with L2, there
must still be MEC for sufficiently large systems within the corresponding energy window.

3.4 Comparison with other indicators
Within this subsection, other common indicators of ETH will be considered using the example of Ising
systems. Since the usual investigation methods work on the carrier of ED, smaller system sizes are
considered here N = 14, 16. In addition to the randomness of the matrix elements, the smoothness
of the functions from Eq. (2.5.1) is a significant condition of ETH. As a first indication of this
property can be seen in Fig. 8. Thus, at least a coarse structure of the observables does not reveal
any discontinuities. However, the coarse resolution could prevent the visibility of deviations from
single elements47. To exclude this case, in Fig. 13 the diagonal elements are shown in dependence of
the energy. It can be seen that the diagonal elements represent a dense point cloud, which becomes
narrower with increasing system size. Thus, for the thermodynamic limit case L → ∞, a smooth
function of the diagonal elements is expected.
Since the matrices considered here are real (and symmetric), the ratio of the variance of the diagonal
elements should be twice that of the offdiagonal elements [57] (see Eq. 2.6.2). For an investigation
of that property

Σ(ν, µ) = σ2
d(ν, µ)

σ2
od(ν, µ) (3.4.1)

is considered. Here σ2
d(ν, µ) denotes the variance of the diagonal elements within an energy window

of the n-th energy eigenstates with n ∈ [µ ± ν/2], σ2
od(ν, µ) corresponds to the variance of the

offdiagonal elements in that window. The results of Ising systems accordingly can be seen in Fig. 14.
Two different sizes with ν = 100, 1000 were chosen. It can be seen that for the transport bound
observables the expected ratio is obtained for both quantities. In the case of B̂, however, one
recognizes that the ratio deviates strongly from the expectation in the case of larger windows. This
can be explained by means of diagonal element variation (see Fig. 13): in the case of larger windows,
the change in those elements is dominated by the change in energy compared to static noise. This
conjecture is confirmed by the fact that the deviation of Σ becomes smaller for larger systems: Since
the energy states are denser for larger systems, the same number of states covers a smaller energy
range. Thus, the change of f(ω, Ē) in this range also decreases.

46For the case without energy filter, Λ(T = 0) = 1.
47In case these deviations decay exponentially with system size, this is also called weak ETH [56].
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The Gaussian nature of the elements will be studied by means of two indicators already introduced
in Subsection 2.6. First, consider the quantity Γ(ω) (see Eq. (2.6.8)). Let ∆ω = 0.05 be chosen as
frequency width. The investigation was performed in the energy window corresponding to half the
relaxation time. The results are shown in Fig. 15. It can be seen that even in this window, before
relaxation, the indicator corresponds to the expectations of the RMT. The only exception here is B̂
at ω = 0. This can be explained since the diagonal elements, which have to be considered for ω = 0,
are not fully random numbers, but shifted by A(Ē) (see Eq. (2.5.1)). In addition, it should be noted
that the number of measurement points for the slowest mode is much smaller than for the other
cases. This is due to the fact that τrel. is much larger there and thus the corresponding window is
much narrower.
Furthermore, in Fig. 16 the distribution of the rescaled transition strength is shown, which is also
an indicator sensitive to the Gaussian nature of the random numbers, but blind to MEC. The inves-
tigation was carried out in energy windows corresponding to the relaxation time. A large agreement
can be shown for systems of different magnitudes.
It should be pointed out again that even if all previous results are in agreement with the GOE
expectations (with potential deviations at the diagonal), the results are not conclusive for possible
correlations. For this purpose, the indicator r̄ (see Eq. (2.6.5)) will now be considered, since this
indicator does not only rely on the gaussian nature of the elements but also on the independence of
these (see Subsection 2.6). The values displayed in Fig. 17 show that that indicator already agrees
well with the expectations for GOE under one relaxation for all observables. The larger deviations
in the results for the slowest mode of energy transport are due to the very narrow energy windows,
which result in large statistical deviations. In comparison with the results of the Λ-indicator, the
large sensitivity of that new indicator becomes apparent; while r̄ already corresponds to the value
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of GOE (in the range of statistical fluctuations) at τrel.

2 , Λ shows a significant deviation from ΛGOE .
Even though the cases are not fully comparable, remember that in Subsection 2.6 r̄ also exhibits
some uncertainties.
Another common method for investigating randomness is to compare the spectra of the original
observables and a sign-randomized version48 of those (see Eq. (2.6.12) and therefore). In Fig. 18
B̂ can be seen. Here, 3 different energy windows were investigated, corresponding to time points
before, during, and after the relaxation time. It can be seen here that even at the time of relax-
ation the spectra still show strong differences, whereas after t = 25τrel. the spectra coincide. This
behavior can also be seen for ÊL/2 in Fig. 19. This reinforces the results of the Λ indicator, which
also still shows deviations from ΛGOE for the relaxation time point. In Fig. 20, the spectra of Ê1
are compared. A comparison long after the relaxation time is omitted, since the number of matrix
elements is already too small for the consideration of the distribution to be useful.
Furthermore, in connection with Out-Of-Time-Correlations (OTOC) [58, 59, 60] another conse-
quence of the randomness of the matrix elements will be shown. In this context, OTOC49 is defined
as the dynamics of

FT (t) = Tr
{︂
Â(t)ÂÂ(t)Â

}︂
(3.4.2)

=
∑︂

mnkl

AmnAnkAklAlme
−i(En−Em+El−Ek)t. (3.4.3)

48A trace-free variant is always considered, since otherwise the sign-randomization causes trivial changes.
49Note that OTOC is not always clearly defined within the literature. Thus, Tr

{︁
[A(t), A]2

}︁
is sometimes also

called OTOC.
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In the following, Â shall always correspond to the observables in the energy window associated to
T . As before in the derivation of the Λ-indicator, let now consider the case where the elements are
independent random numbers. Therefore, only the quadratic terms contribute to the sum, hence
the following applies:

FT (t) ≈
∑︂
m

(︄∑︂
n

|Anm|e−i(En−Em)t
∑︂

l

|Aln|e−i(El−Em)t

)︄
(3.4.4)

+
∑︂

n

(︄∑︂
m

|Anm|e−i(En−Em)t
∑︂

k

|Ank|e−i(En−Ek)t

)︄
(3.4.5)

=
∑︂
m

(︄∑︂
n

|Anm|2e−i(En−Em)t

)︄2

+ c.c. (3.4.6)

= 2
∑︂
m

R
[︂
⟨m|Â(t)Â|m⟩

2]︂
:= QT (t). (3.4.7)

This expression is only accessible via ED, so the inspection of that equivalence is also limited to
small systems. In Fig. 21, OTOC and QT (t) are shown for different energy windows. It can be seen
that that equivalence is given for very small energy windows, while in larger windows there still exist
MEC which breaks the equivalence. In Ref. [61], that difference between OTOC and QT is more
significant as part of an extended ETH (generalized ETH) [62], in which multi-point correlations are
taken into account.
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3.5 Conclusion
In the case of the Ising system used here, it was shown that the ETH properties are fulfilled except
for MEC. It was shown that the new Λ-indicator has advantages over the usual methods in two
respects: First, it is now possible to investigate much larger systems that are beyond the reach
of the ED. Furthermore, the new indicator is apparently more sensitive compared to the common
methods, so that the use of Λ could also be useful in areas of the ED.
In all systems considered, MEC could be determined long after the relaxation time, so that the
assumption often made that these regions can be described as GOE is contradicted here. The conse-
quence of MEC on real physical systems is at large extent not yet to be grasped and requires further
investigations. However, by means of the OTOC it is already to be recognized that correlations can
have an effect on the dynamics of systems.
Furthermore, the method introduced in Subsection 3.1 for the energetic filtering of states can also
be applied outside the investigation of MEC, for example for the determination of long-term values
of microcanonical states.
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Ê1
Sign-Rand.

−2 −1 0 1 20.0

0.1

0.2

0.3

0.4

0.5

λ

P
(λ

)

T = τ

Fig. 20: Spectra of the observable ÊL for L = 16 in different energy windows, as well as the spectra
of a sign-randomized version.

55



0 5 10 15 20
0

1000

2000

3000

a)

t

F
T

Fτ
2Cτ

0 100 200 300
0.00

0.05

0.10

0.15

b)

t
F

T

F25τ
2C25τ

0 50 100 150 200
0

200

400

600

800 c)

t

F
T

Fτ
2Cτ

0 500 1000 1500 2000
0.00

0.02

0.04

0.06

0.08
d)

t

F
T

F25τ
2C25τ

0 5 10 15 20
0

200
400
600
800

1000
1200 e)

t

F
T

Fτ
2Cτ

0 100 200 300
0.00

0.01

0.02

0.03

0.04

0.05

0.06

f )

t

F
T

F25τ
2C25τ

Fig. 21: OTOC for different energy windows corresponding to the time T for the observables a) &
d) Ê 1
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4 Typical perturbation theory: conditions, accuracy and com-
parison with a mesoscopic case

The TPT (see Subsection 2.7) could be a powerful tool within the framework of quantum mechan-
ics, since it has high universality and is able to make predictions about perturbed dynamics. In
Refs. [32, 33, 34] it has already been shown on various systems that the theory matches the numer-
ical results.
However, a thorough investigation of the necessary conditions (see Subsection 2.7) was omitted in
the papers. This was justified by the robustness of the theory. Within this section, these conditions
shall be investigated for different cases and whether a relation between the holding of the conditions
and the effectiveness of the theory can be seen. The systems studied here are all spin 1/2 systems
(see Subsection 2.9), which are also used as examples of where TPT yields good results in Ref [34].
The section is divided into 5 parts. In Subsections 4.1-4.3, three different systems are introduced
and in each case their (perturbed) dynamics are compared with the results of TPT. In addition, the
assumptions within these systems are also examined. Thereby, the investigations of the different
systems partly differ in order to take into account results from previous works. Since the investi-
gations also take place within different energy shells, Subsection 4.4 compares those energy ranges
with those expected in mesoscopic cases. Subsection 4.5 condenses all results to a conclusion.
The results of this section have been published in Ref. [P2]50.

4.1 Spin ladder with cross-perturbation
The first system corresponds to a spin ladder whose Hamiltonian Ĥ and perturbation V̂ has the
following form:

Ĥ0 = ĥ+
2∑︂

j=1

L∑︂
l=1

−→
ŝ l,j

−→
ŝ l+1,j +

L∑︂
l=1

−→
ŝ l,1

−→
ŝ l,2 (4.1.1)

ĥ = −0.16 · ŝz
1,1 + 0.2 · ŝz

4,2 + 0.1 · ŝz
5,2 (4.1.2)

V̂ =
L∑︂

l=1
ŝz

l,1ŝ
z
l+1,2 + ŝz

l,2ŝ
z
l+1,1 (4.1.3)

where the boundary conditions are periodic (−→ŝ L+1,j ˆ︁=−→
ŝ 1,j). Here −→

ŝ l,j denotes the vectorial spin
operator at the l-th rung and j the respective ladder leg. This system is illustrated in sketch form
in Fig. 22.

50To maintain a constant notation within this thesis ∆E denotes the full width of the energy window, while in the
published work it denotes the half of this width.
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perturbation 

unperturbed HamiltonianFig. 22: Sketch of the model from Subsection 4.1:
The gray circles symbolize the spin sites, the black lines represent the Heisenberg interaction of the
unperturbed Hamiltonian and the blue lines represent the perturbation. The dashed lines indicate
the periodic boundaries of this system.

The focus of the investigation is in the magnetization subspace where the total magnetization in
z-direction is 0. By using ĥ, all other symmetries in this system are broken, so the investigation can
be carried out into a single symmetry subspace. While this is not mandatory for TPT, symmetry
subspaces can complicate the application, since TPT would have to be applied individually to each
of these subspaces51. The TPT is to be examined here on the basis of the observable

ŝq =
L∑︂

l=1
cos
(︃

2π
L

· l
)︃(︁

ŝz
l,1 + ŝz

l,2
)︁
. (4.1.4)

ŝq is to be understood as the slowest mode of z-magnetization alongside the ladder legs. A similar
case was already examined in Ref. [63]. This was done under the consideration of the TPT as well as
the perturbation theory of the memory kernel [64]. Thereby the TPT showed up as less useful for the
description of the perturbed dynamics, however, an investigation of the conditions was renounced
to a large extent. A possible explanation for the failure of the TPT in this case is that the DOS
is not constant. Therefore, in this subsection it will be investigated whether the TPT gives good
results when the system is considered only in an energy window where the DOS is constant. For
this purpose, the energy filter P̂

Ec

∆E introduced in Subsection 3.1 is used, so that systems outside the
ED range can also be studied in an energy-filtered manner. The dynamics on which the TPT is to
be checked is represented by

⟨ŝq(t)⟩ = Tr {ρ̂ŝq(t)} (4.1.5)

with

ρ̂ ∝ P̂
Ec

∆E

(︁
ŝq − κ1̂

)︁
P̂

Ec

∆E . (4.1.6)

Here κ is the smallest eigenvalue of ŝq. To the energy filter it is to be mentioned that it refers
to the unperturbed Hamiltonian. This has two differences in contrast to the case that the filter
works in the perturbed Hamiltonian. First, in the former case, the initial state is independent of
the perturbation strength. Since the TPT is designed for equal initial states, this case is therefore
preferable. Secondly, the DOS in the perturbed case is no longer sharply cut off, but shows soft

51The special case that all subspaces have the same parameters for g is not ruled out, but it is not generally valid.
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edges, which depend on the perturbation strength. This can be seen in Fig. 23. In the limiting cases
λ → 0 or ∆E → ∞ this dynamics corresponds to a (shifted) autocorrelation function

Cŝq (t) =
Tr
{︂
ŝq(t)P̂

Ec

∆E ŝq(t)P̂
Ec

∆E

}︂
Tr
{︂

P̂
Ec

∆E

}︂ (4.1.7)

∝ ⟨ŝq(t)⟩ + C. (4.1.8)

4.1.1 Conditions

First, conditions i) and ii) are examined. For this purpose, the DOS/LDOS is investigated. The
system considered here is 26 spins large and thus exhibits a D = 10400600 large Hilbert space. Since
such a size makes ED impossible, the DOS (LDOS) is determined using the procedures explained in
Subsection 2.3. This is done for energy filters of different widths and different perturbation strengths,
where the central energy is always Ec = 0. The results can be seen in Fig. 23. It can be seen that for
the case without energy filter (∆E = ∞) the assumption that the DOS is constant is not fulfilled.
Furthermore, the smaller the width, the better this condition is met. Thus, there are different cases
in which the condition i) is satisfied differently well.
In the same figure, it should also be noted that condition ii) is always satisfied, since the DOS does
not show a large change for the perturbation strengths used. Condition iv) is investigated using the
sign-randomization method (see Subsection 2.6). Since the trace of the perturbation is not 0 and
thus under sign-randomization the spectrum would trivially change, here the investigation is done
using a trace-free version of the perturbation

V̂ tf = PEc

∆E V̂ PEc

∆E −
Tr
{︂

PEc

∆E V̂ PEc

∆E

}︂
Tr
{︂

PEc

∆E

}︂ · PEc

∆E . (4.1.9)

The spectra of both matrix versions of the perturbation are compared. The results are shown in
Fig. 24. It can be seen that even in the smallest energy window there is a clear difference between the
two spectra, which strongly indicates correlations between the matrix elements. This investigation
was done in a smaller system (L = 9,D = 48620) to use ED. An investigation of condition iii) is
omitted within this thesis, since it is assumed that the chosen perturbation strengths λ are sufficiently
large to provide for mixing.
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Fig. 23: LDOS for various perturbation strengths λ and energy windows in the system of Subsection
4.1. a) Full spectrum, b) ∆E = π, c) ∆E = 2π

5 and d) ∆E = π
5 . Scaled for better comparability.
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Fig. 24: Spectra of the (trace free) perturbation V̂ ∆E and the sign-randomized version Ṽ for different
energy windows ∆E, for L = 9. In addition, the results are compared with the Wigner-semicircle
law, which gives the distribution for a random matrix. D indicates what percentage of the total
system is in the chosen energy window.
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4.1.2 Comparison

To compare the TPT results with the direct numerical results for the perturbed dynamics, the
quantity

∆gl
(λ) = 1

τ ⟨ŝq(0)⟩2
num.

τ∫︂
0

⃓⃓⃓
⟨ŝq(t)⟩gl

− ⟨ŝq(t)⟩num.

⃓⃓⃓2
dt (4.1.10)

is introduced. ⟨ŝq(t)⟩num. is the numerically determined 52 perturbed dynamics, while ⟨ŝq(t)⟩gl
is the

prediction of TPT. τ is the relaxation time of the numerically determined dynamics. The relaxation
time is the time after which

C̃(t) = C(t) − C(t → ∞)
C(0) − C(t → ∞) < 0.01 (4.1.11)

is (and remains) valid. The long-term value C(t → ∞) is determined numerically by averaging over
the values for late times.
The difference between perturbed and unperturbed dynamics is defined in a similar way:

∆0(λ) = 1
τ ⟨ŝq(0)⟩2

num.

τ∫︂
0

⃓⃓
⟨ŝq(t)⟩0 − ⟨ŝq(t)⟩num.

⃓⃓2 dt (4.1.12)

where ⟨ŝq(t)⟩0 denotes the unperturbed dynamics. To illustrate these quantities, Fig. 25 shows
perturbed and unperturbed dynamics and their difference, which is with ∆0 = 43.4 ·10−4 the largest
in this system. In addition, Fig. 26 shows the perturbed dynamics compared to the unperturbed
dynamics for different perturbation levels and energy shells. Since the parameters (∆v, σ

2(0))
needed for the TPT cannot be determined without using ED, but the system considered is too large
for this, those parameters are used here as fitting parameters. It should be noted that proper results
using fitting is a necessary but not sufficient condition for the validity of the TPT, since the real
parameters could still yield poor results.
Since the parameters are independent of the interference strength λ, the fitting is performed so that
the

∆tot =
N∑︂

i=0

∆gl
(λi)
λi

(4.1.13)

is minimized. The deviations are weighted reciprocally to the perturbation strength λ, since the
TPT is supposed to be valid for weak perturbations53. Although alternative weights such as λ−2

i

would be also possible and useful, the results are qualitatively the same as for the weighting chosen
here. Since in any case the TPT exhibits a limiting case σ2(0) → 0 where the prediction of the
theory transitions to the unperturbed case, the worst case is that for every perturbation strength
∆gl

(λ) = ∆0(λ) holds54.

52via Chebyshev method, see Subsubsection 2.10.3
53Even g2 which is supposed to be valid for large λ is not valid for arbitrarily large λ, see Subsection 2.7.
54Individual dynamics may exhibit larger deviations than ∆0.
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Fig. 25: Example of the difference between perturbed (solid) and unperturbed (dashed) dynamics.
(∆E = ∞, λ = 1.0)

In addition to the g1,2,3(t) derived in Refs. [32, 33, 34], two arbitrary functions without theoretical
background are also considered:

gGau = exp(−α · (λt)2) (4.1.14)

gLor = 1
1 + α · (λt)2 (4.1.15)

where α corresponds here to a free parameter. These functions satisfy g(0) = 1 and g(∞) = 0, so that
trivial properties of perturbed dynamics are fulfilled. The results of this fitting are shown in Fig. 27.
It can be seen that the previously discussed worst case occurs for the three largest energy shells
and thus the TPT is unsuitable for these cases to make statements about the perturbed dynamics.
Only in the smallest energy window the predictions of the TPT are better than the worst case, but
this can be understood outside the theory: Since P̂ filters energy in the sense of the unperturbed
Hamiltonian Ĥ0, any perturbation causes a softening of that window. That softening results in
higher frequencies being available. Since the initial state is far from equilibrium, it is not surprising
that those frequencies accelerate the dynamics at the beginning. This is supported by the fact that
the acceleration of the dynamics appears only at small times. Since the TPT always accelerates the
dynamics (for σ2(0) ̸= 0), the softening of the window favors the TPT. However, without theoretical
justification, the two g achieve success to the same extent as g1. Better results yielded g1,3, but g3
with two parameters can also cover a wider range of functions than the other functions.
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Fig. 26: Dynamics for various perturbation strengths λ and energy windows in the system of Sub-
section 4.1. The dashed lines denote the unperturbed dynamics within the corresponding energy
window. The curves are normalized and shifted by 0.5.
a) Full spectrum, b) ∆E = π, c) ∆E = 2π

5 and d) ∆E = π
5 .
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4.1.3 Conclusion

Condition iv) does not seem to be fulfilled even for the smallest energy window, since there are
deviations between the sign-randomized version of the matrix and the original one. Conditions i)
and ii), on the other hand, are well satisfied for the smaller energy windows. Only in the smallest
energy window the TPT shows relevant results at all, but these can be explained outside the theory.
In addition, these results can as well be achieved with relatively arbitrary functions.
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Fig. 27: Deviation between the prediction of the perturbation theory and perturbed dynamics as
well as the deviation between the perturbed and unperturbed dynamics for various perturbation
strengths λ and energy windows in the system of Subsection 4.1.
a) Full spectrum, b) ∆E = π, c) ∆E = 2π

5 and d) ∆E = π
5 .

4.2 Spin chains to spin ladder
As shown in Fig. 28 the next model corresponds to two spin chains, which then transition to a spin
ladder by the perturbation. The Hamiltonian Ĥ0 and the perturbation V̂ have the form

Ĥ0 = ĥ+
2∑︂

j=1

L∑︂
l=1

−→
ŝ l,j

−→
ŝ l+1,j (4.2.1)

V̂ =
L∑︂

l=1

−→
ŝ l,1

−→
ŝ l,2 (4.2.2)
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perturbation 

unperturbed HamiltonianFig. 28: Sketch of the model from Subsection 4.2:
The gray circles symbolize the spin sites, the black lines represent the Heisenberg interaction of the
unperturbed Hamiltonian, the blue lines represent the perturbation. The dashed lines indicate the
periodic boundaries of this system.

where ĥ can be seen in Eq. (4.1.2) and is also used to break the symmetries in this case. The
investigation was carried out in the subspace with vanishing total z-magnetization, which can not
be subdivided in further subspaces. It is worth mentioning that this system is integrable without
ĥ and λ = 0. Therefore, this system is close to integrable without perturbation and turns into a
non-integrable system under perturbation. In Ref. [65], a system differing only by ĥ was studied
and in Ref. [32] these results were compared with the TPT.
The autocorrelation function of the spin current along the legs is taken as the dynamics

CĴ(t) =
Tr
{︂
Ĵ(t)Ĵ

}︂
D

(4.2.3)

with

Ĵ =
2∑︂

j=1

L∑︂
l=1

ŝx
l,j ŝ

y
l+1,j − ŝy

l,j ŝ
x
l+1,j . (4.2.4)

The autocorrelation function corresponds to the dynamics of a density operator

CĴ ∝ Tr
{︂
ρ̂Ĵ(t)

}︂
=: ⟨Ĵ(t)⟩ (4.2.5)

ρ̂ ∝ 1̂ + ζĴ (4.2.6)

with a sufficiently small ζ. Since it has already been shown in Ref. [32] that this dynamic yields good
results even without an energy filter, such a filter is not applied here. Those results were obtained
without determining the parameters, which were treated as fitting parameters there.

4.2.1 Conditions

From the consideration of Eq. (4.2.6), it can be seen directly that condition i) is not fulfilled, since
the dynamics takes place over the whole spectrum. Fig. 29 shows the DOS of the system with L = 13
for different perturbation strengths, which does not change much until λ = 1.0. Thus, condition ii)
is fulfilled for all smaller perturbation strengths.

65



−10 −5 0 5 10
E

Ω
λ = 0.00
λ = 0.20
λ = 0.25
λ = 0.33
λ = 0.50
λ = 1.00

Fig. 29: DOS at different perturbation strengths λ from the spin ladder described in Subsubsection
4.2. Scaled for better comparability.
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Fig. 30: Spectra of the (trace free) perturbation V̂ ∆E and the sign-randomized version Ṽ for different
energy windows ∆E, for L = 9. In addition, the results are compared with the Wigner-semicircle
law, which gives the distribution for a random matrix. D indicates what percentage of the total
system is in the chosen energy window.
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Even though the dynamics were determined without an energy filter, smaller energy windows are
considered to investigate correlations between the elements of the perturbation. This is done with the
same approach as before by comparing the spectra of the original perturbation and a sign-randomized
version of it. Systems with L = 9 are used, since ED is needed for the spectral investigation. The
results are shown in Fig. 30, where it can be seen that correlations between the elements exist even
for small energy windows. These are given by

∆E = {0.6, 0.4, 0.2} · 2σĤ (4.2.7)

= {0.6, 0.4, 0.2} · 2

⌜⃓⃓⎷Tr
{︂
Ĥ

2
0

}︂
D

(4.2.8)

≈ {0.6, 0.4, 0.2} · 4.48, (4.2.9)

so that those are small compared to the standard deviation of the unperturbed Hamiltonian.

4.2.2 Comparison

Since the dynamics studied were for system sizes outside the range of the ED, the parameters
required for the TPT are not determined here. Instead, those parameters are considered as fitting
parameters. It should be noted again that good results from those fitting parameters are necessary
but not sufficient for the validity of the TPT. The (un)perturbed dynamics are shown in Fig. 31.
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Fig. 31: Dynamics for various perturbation strengths λ in the system of Subsection 4.2. The dashed
lines denote the unperturbed dynamics. The curves are normalized and shifted by 0.4.
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By comparison with the unperturbed dynamics, it can be seen that large deviations occur even with
weak perturbations. Those large deviations can be understood by means of prethermalization [66].
This occurs when systems are close to integrability. This is the case for the unperturbed system.
Prethermalization describes that the dynamics consists of two parts, first the dynamics decays rel-
atively fast to a point close to the long term value. Then the second part of the dynamics occurs,
which describes a slow approach to that long term value. If the system is perturbed, then the prop-
erty of prethermalization is lost as the system has been moved further away from integrability. Due
to the absence of the second part of the dynamics, the perturbed dynamics is strongly accelerated,
which can be well described by the TPT.
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Fig. 32: Deviation between the prediction of the perturbation theory and perturbed dynamics, as
well as the deviation between the perturbed and unperturbed dynamics in the system of Subsection
4.2.

In Ref. [32] the system is described without ĥ (see Eq. (4.1.2)), so the integrable case is described
there. In this case the prethermalization does not occur, but the long term value changes when the
perturbation breaks the integrability. This is a free fitting parameter in the TPT, which cannot be
determined by the theory. Thus, both cases (near and true integrable) are particularly well suited for
the TPT to yield good results, whereas in the latter case this is only possible by a free parameter.
The indicators of the deviations can be seen in Fig. 32. It is visible that the TPT is at least
an improvement on the unperturbed case. However, functions without a theoretical basis yield
equally good or even better results than the functions belonging to TPT. This underlines that the
accelerating effect of the perturbation is advantageous for TPT as long as the associated function
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decays quickly and the long term value can be chosen freely. g3 yields the best results, but it also has
the largest range of possible functions with two free parameters (plus long term value). Moreover,
it is to be recognized that, contrary to the expectation, g2 yields better results than g1 in the case
of the weakest perturbation.

4.2.3 Conclusion

Even though a very similar system in Ref. [34] serves as an example that the TPT yields good
results, it is evident, even without numerical investigation, that at least one condition of the TPT
is not satisfied. Thus, the DOS is not constant in the range relevant for the dynamics, which
violates condition i). Condition ii) is well fulfilled in most cases, only at the maximum perturbation
strength the DOS is changed. Since even in small energy windows larger deviations between random
matrices and the perturbation can be detected, condition iv) is never fulfilled. Even though the
TPT yields good results, it can be seen that the perturbation is particularly favorable to the TPT
in this system. For the case studied here, this can be understood by the prethermalization of the
unperturbed system, while in the integrable case it can be explained by a change in the long-term
value.

4.3 Spin lattice
The last system investigated by TPT is a lattice of spin-1/2 particles with open boundary conditions
(see Fig. 33). The corresponding Hamiltonian and perturbation are given by

Ĥ0 = 0.16ŝz
1,2 + 4 ·

L−1∑︂
i,j=1

−→
ŝ i,j

−→
ŝ i,j+1 + −→

ŝ i,j
−→
ŝ i+1,j (4.3.1)

V̂ = 4
∑︂

α=x,y

L−1∑︂
i,j=1

(︁
ŝα

i,j ŝ
α
i+1,j+1 + ŝα

i+1,j ŝ
α
i,j+1

)︁
. (4.3.2)

The dynamics considered is the expectation value of the observable

Ô = 4ŝz
2,2ŝ

z
3,3, (4.3.3)

which corresponds to the correlation of the z-magnetization between the spins marked in green in
Fig. 33. At the beginning, the initial state

ρ̂ ∝ e
− Ĥ2

2σ2
E P+

2,2P+
3,3e

− Ĥ2

2σ2
E (4.3.4)

is assumed,

P+
i,j = ŝz

i,j + 0.5 · 1̂ (4.3.5)

is a projection operator which ensures that the corresponding spin is up. Moreover, this state is
energetically bounded by the Gaussian filters on the sides. For the filters σE = 2 was chosen. It
should be mentioned that those filters are less sharp compared to the filters used before.
This results in

CÔ(t) = Tr
{︂
ρ̂Ô(t)

}︂
(4.3.6)

69



perturbation 

unperturbed Hamiltonian

i

j
Fig. 33: Sketch of the model from Subsection
4.3: The gray circles symbolize the spin sites,
the black lines represent the Heisenberg inter-
action of the unperturbed Hamiltonian, the
blue lines represent the perturbation. The
dashed lines indicate the periodic boundaries
of this system. The green circles indicate the
spins which are important for the observable.

for the dynamics. Apart from the symmetry breaking term of the Hamiltonian, that system has
already been studied in Refs. [32, 34]. It was shown that the predictions of the TPT agree with the
numerical results. It should be mentioned that in this study, however, the dynamics of the density
operator ρ̂ from Eq. (4.3.4) was not investigated directly, but was treated by means of typicality, so
that pure states of the form

|ψ⟩ ∝ e
− Ĥ2

2σ2
E P+

2,2P+
3,3 |φ⟩ (4.3.7)

were used there as initial states. |φ⟩ is a Haar-distributed random vector. Thereafter, the time
evolution of the individual states is averaged. With the use of the typicality (see Subsection 2.3),
however, it can be seen that the differences between these two cases are negligible.
In Ref. [32], it was shown that the predictions of the TPT using g1,2 agree well with the numerical
data. In addition, the transition between g1 and g2 was also clear as the perturbation strength
increased. The system was investigated in the magnetization subspace and with a size of L = 4,
which allowed the ED to be applied. Therefore, in contrast to the systems discussed so far, a
determination of the parameters is possible. Further investigations of the system in Ref. [34] showed
that g3 also yields good results.

4.3.1 Conditions

The system size is L = 4, which is the same as in the previous work [32, 34]. Thus, all investigations
can be performed using the ED.
Fig. 34 a) shows the DOS for different perturbation strengths. It can be seen that with the exception
of λ = 1.6, the DOS hardly changes, so that condition i) is fulfilled in most cases.
The LDOS for the initial state ρ̂ given in Eq. (4.3.4) is shown in Fig. 34 b). It can be seen that
even for λ = 0.8 the LDOS is not negligible in the range of nonconstant DOS. As a consequence,
condition ii) is not always fulfilled. To investigate condition iv), the sign-random method is again
used. Three energy windows with different widths ∆E = 2, 4, 6 are chosen. Thus, both energetic
ranges are investigated, which are smaller, larger and equal to the standard deviation of the Gaussian
filters. The resulting spectra can be seen in Fig. 35, where it is clear that even within those energy
ranges there are deviations between sign-random and the original spectrum. This indicates that
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Fig. 34: DOS a) or LDOS b) at different perturbation strengths λ from the spin lattice. Scaled for
better comparability.

correlations exist between the matrix elements. Thus, condition iv) is not fulfilled. In contrast to
the systems considered above, the parameters of the TPT are not used for fitting. Instead, the
values of the parameters determined in Ref. [33] are used. For this σ2(ω) was calculated for 7722
central states (60% of the spectrum) and then fitted with

fexp(ω) = σ2(0) · e− ω
∆v . (4.3.8)

Fig. 36 shows both the data for σ and the fitting, with good agreement between the two. A coarse
grained version of the data is also shown.
It should be noted that although the results for g3 in Ref. [34] yielded good results, σ2(ω) is better
described as an exponential function than by a Lorentzian curve. This is in contradiction with the
fact that a Lorentzian curve was assumed to derive g3. For comparison, a Lorentzian curve

fLor(ω) = σ2(0)

1 +
(︂

πω
2∆v

)︂2 (4.3.9)

was also used in Fig. 36, which leads to the same parameters as the exponential function. Both
fittings show deviations close to ω = 0. This is to be emphasized, since this value has a central role
in the TPT. From this fitting in Ref. [33] the parameters

σ2(0) = 0.00502 ∆v = 7.32 (4.3.10)

were obtained.
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Fig. 35: Spectra of the (trace free) perturbation V̂ ∆E and the sign-randomized version Ṽ for different
energy windows ∆E. In addition, the results are compared with the Wigner-semicircle law, which
gives the distribution for a random matrix. D indicates what percentage of the total system is in
the chosen energy window.
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Fig. 36: The perturbation-profile σ2(ω) for the perturbation in Eq. (4.3.2), with a coarse grained
version. In addition, two fits can be seen, with parameters taken from Ref. [33]. The inset shows
the variance of the low frequency elements, which are much larger than the other elements.

4.3.2 Comparison

In addition to the two parameters mentioned above, the application of TPT without free parameters
(outside the long-term value) also requires the mean level spacing, which is also taken from Ref. [33]
with

ϵ = 0.0019. (4.3.11)

The (un)perturbed dynamics can be seen in Fig. 37. The deviations between the dynamics and
the predictions of the TPT can be seen in Fig. 38. Here, a comparison with the functions without
theoretical basis (Eq. (4.1.14) and (4.1.15)) was omitted, since those would exhibit a free parameter
due to their arbitrary nature. Moreover, since the parameters of the perturbation are known, the
transition perturbation strength λc (Eq. 2.7.13) can be determined, above which g2 should provide
better results than g1. This transition can also be seen in Fig. 38. Of all the variants of TPT studied,
g3 yields the best results. Moreover, g1 and g2 show the expected behavior that the former is more
suitable for weak perturbations. This expectation has not been fulfilled by the previous schemes.
Since for those the investigations were done by fitting, a possible explanation could be that it is an
artifact of the fitting.

4.3.3 Conclusion

Conditions i) and ii) are not fulfilled for the larger perturbation strengths. In addition, correlations
between matrix elements can be seen for different energy windows, so that condition iv) is not
fulfilled. Nevertheless, all variants of the TPT yield good results even without free parameters.
Moreover, it can be seen that the profile of the perturbation does not fulfill the additional condition
for g3. Whether this is an indication that the TPT yields merely randomly proper results or should
be interpreted as a sign of the robustness of the TPT (as in Ref. [34]) remains open.
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4.4 Comparison of the energy windows with a mesoscopic case
Since the fulfillment of the conditions strongly depends on the considered energy window and in the
first system the TPT only fulfilled good results in the smallest energy window, the question arises
to what extent these energy windows are relevant. For this purpose, the previously used energy
windows shall be compared with a simple mesoscopic case.
For this purpose, imagine two iron blocks, each with a mass of 0.5g and different temperatures at
the beginning. If both blocks are now brought into contact, an average temperature is reached after
a few seconds, which in this case shall be T = 273.15K.
The variance of the energy then takes the form [67]

σ2
E = kBCv · T 2. (4.4.1)

Cv ≈ 0.45J K−1 is the heat capacity of the iron blocks[68] and kb = 1.380649 · 10−23J K−1 is the
Boltzmann constant. Such an energy range results in a corresponding relevant frequency of

ωrel. = 2 ·
√
kBCvT

ℏ
. (4.4.2)

Since this estimation considers a real case, ℏ = 1 cannot be used here. The literature value of
ℏ ≈ 1.05 · 10−34J s−1 must be used. Consequently, for the frequency ωrel. = 1.30 · 1025s−1. If this is
related to the relaxation time τ , which is estimated here to be a few seconds, it is shown that

ωrel. · τ ≫ 1 (4.4.3)

is valid.
For the system in Subsection 4.1, a relaxation time55 of τ = 26.7 was determined in the unperturbed
and unfiltered case. Using the relation ∆E = ωrel., it can be concluded for the ratios of the different
energy windows

∆E · τ = 26.7 ·
{︃
π,

2π
5 ,

π

5

}︃
(4.4.4)

≈ {83.88, 33.55, 16.78} . (4.4.5)

It is readily apparent that these results differ greatly from the mesoscopic estimate. Moreover, it
can be seen that the case in which the TPT yields the best results (∆E = π

5 ) deviates the most from
the mesoscopic case. Therefore, it is questionable whether those results are relevant for everyday
situations.
Since the system in Subsection 4.2 is not energy filtered, the standard deviation of the Hamiltonian
σĤ ≈ 2.24 is taken as the relevant energy window. Thus, the associated frequency is given by
ωrel. ≈ 4.48.
The determination of the product on relevant frequency and relaxation time in this system is more
difficult due to the phenomenon of prethermalization. As explained above, this phenomenon is
shown by the fact that a large part of the relaxation takes place quickly, but is followed by a phase
in which the system approaches the long-term value very slowly. Therefore, both timescales will be
used for the investigation here. For the definition of the relaxation time used so far, τ = 186.4 is
obtained. However, if the dynamics shown in Fig. 31 are considered, it becomes apparent that the
main part of the relaxation has already occurred at time t = 30. This time shall be used as a typical

55For the definition of the relaxation time, see Eq. (4.1.11).

75



timescale of the prethermalization τpre. = 30.
These two timescales then yield the products

ωrel. · τ ≈ 835.0 (4.4.6)
ωrel. · τpre. ≈ 134.4. (4.4.7)

Both cases are closer to the mesoscopic value than the previous system, but still far from the
estimation of the iron blocks.
The last system studied, shown in Subsection 4.3, has a relaxation time of τ = 1.34. The relevant
frequency can be given by means of the standard deviation σE = 2 in the Gaussian filter with
ωrel. = 4. From this follows for the product ωrel. · τ = 5.36. Thus, this system shows both the largest
deviation from the mesoscopic estimation and the best results for the TPT.

4.5 Conclusion for the TPT results
In summary, none of the investigated systems fulfills all conditions of the TPT. For instance, discrep-
ancies between sign-random and original spectra of the perturbation were always found, indicating
correlations between matrix elements and thus violating condition iv). However, the effect of those
correlations are difficult to grasp.
In the first system, good results could be generated only for small energy windows. In that case,
conditions i) and ii) were well fulfilled. However, the good results can be interpreted without the
TPT by means of a softening of the energy window. A comparison with a mesoscopic case also
shows that it is at least questionable whether the results can be transferred to mesoscopic systems.
The TPT also yielded good results in the second system, although it does not fulfill condition i) nor
iv). Due to the fact that the long term value, which is a free parameter within the theory, changes,
this system is, however, also well suited to obtain good results. Moreover, relatively arbitrary func-
tions could also obtain equally good results.
In addition, these results were produced using fitting, so there is a possibility that the real parame-
ters would still yield poor results.
Since for the last system the parameters were determined numerically, this source of error is ex-
cluded.
Even if the system shows correlations between matrix elements of the perturbation, the TPT yields
good results. The conditions i) and ii) are mostly fulfilled. Also the variant with g3 shows good
results, although the additional condition for the application is not strictly fulfilled, since the profile
of the perturbation is more exponential than Lorentzian. Moreover, a comparison with the meso-
scopic case shows that this system has the largest deviations from this case of all systems treated.
In summary, a correlation between fulfilling the conditions and the validity of the TPT cannot be
revealed. Only the tendency emerges, that smaller energy windows improve the results, but this
behavior can also be understood without the TPT.
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5 Lanczos Coefficient
In the following part of the thesis several results and approaches are explained, which are based on
the perspective in the spirit of the Mori chain (see Subsection 2.8). At the time of writing, these
results have not yet been published and are still part of active and intensive research.
Even though the Lanczos coefficients have been known for a long time, there has been an increased
interest in this method in the last years, which is motivated on the one hand by the fact that
these coefficients can be determined much more efficiently through better software and hardware
(even so the number of determinable coefficients is still very limited). On the other hand, the
OGH yields an expectation of how these coefficients behave, so that a justifiable continuation of the
known coefficients is possible. In the following, that linear continuation is used for the numerical
calculations, as long as not otherwise mentioned.
In Subsection 5.1, a model is introduced on which the research of this thesis is tested as an example.
The results are presented in three parts: In Subsection 5.2 a method for breaking the semi-infinite
chain is motivated. Moreover, it is shown that this truncation always yields superpositions of damped
oscillations.
A particular case of the termination will be given special attention in Subsection 5.3, since it allows
an estimation of the time integral of the AC.

5.1 Test system
For a better illustration and verification of the results, a test system will be introduced first. For this
purpose, a mixed-field Ising model (see Subsection 2.9) is used, whose Hamiltonian can be described
by

Ĥ =
L=24∑︂
l=1

ĥl (5.1.1)

with

ĥl = 1
2 σ̂

x
l σ̂

x
l+1 − 1.05σ̂z

l +Bxσ̂
x
l . (5.1.2)

Periodic boundaries conditions are considered. For Bx = 0 this system is integrable [42]. By
changing that parameter, this integrability can be broken gradually. Since for the determination of
the Lanczos coefficients besides the Hamiltonian also an observable is necessary, consider

Ê12 ∝
L=24∑︂
l=1

cos (π · l)ĥl. (5.1.3)

This observable corresponds to the fastest mode of energy transport for the chosen system size
of L = 24. The proportionality sign here indicates that the prefactors are not relevant to the
results within this section and are always chosen so that the associated autocorrelation function is
normalized to C(t = 0) = 1.
Using the procedure explained in Subsubsection 2.10.4, the first 30 coefficients can be determined
in this system. The results for different Bx can be seen in Fig. 39. It can be seen that, with the
exception of the integrable case, there is always a linear increase within the coefficients. Motivated
by the OGH (see Subsubsection 2.8.1), the last 15 coefficients are used for a linear continuation.
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Fig. 39: Lanczos coefficients of the mixed-field Ising model for different values of Bx. The colored
symbols are the numerically determined values while the others correspond to the linear continuation.
The dotted lines illustrate the linear behavior. For Bx = 0 a linear continuation was omitted, instead
the pattern found up to n = 30 was extended. For a better overview, the curves have been shifted
upwards by 2.0.

The exception of the integrable case is taken into account by continuing the existing pattern. This
pattern can be continued as

bInt
n =

{︄
b1 for mod (n, 4) + 1 > 2
b3 else

. (5.1.4)

Using those continuations the systems are extended to a dimension D = 100056. It should be men-
tioned that this is far from the size of the real system in Liouville space, which, however, would
also be too large to perform the following investigations. Nevertheless, this size allows simulations
on reasonable timescales before the end of the chain has a greater influence on the course of the
autocorrelation function57. To avoid the influence of such boundary effects, simulations are termi-
nated if |xD(t)| > 10−2 holds. This time shall be denoted here as τb, which can be approximated by

56This corresponds to 999 coefficients.
57This manifests itself mostly by recurrent dynamics.
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considering the local current operator58

JR =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 · · ·

0 0
. . . . . .

0
. . . . . . bR

...
. . . bR 0

0
. . .

. . .

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
. (5.1.5)

The expectation value of the current operator is given by

JR(t) = 2bRx(t)RxR+1(t). (5.1.6)

Using the interpretation of xR(t)2 as local density, the local velocity

vR(t) = 2bR
xR(t)xR+1(t)

x2
R(t) (5.1.7)

is obtained. This results in a maximum velocity

vmax
R = 2bR (5.1.8)

which can be reached if xR(t) = xR+1(t). From that maximum speed results the time, which is
needed at least to reach the end of the chain

τa = 1
2

D∑︂
n=1

1
bn
. (5.1.9)

A comparison of this approximated time limit with the numerical determinate boundary time τb for
different Bx and dimensions D is shown in Fig. 40. It is clearly visible that the two values are nearly
equivalent to each other. This equivalence especially becomes better for larger dimensions. Even
though τa increases with larger dimensions D, this increment decreases reciprocally for the cases of
linear bn. For large n, the boundary time exhibits a logarithmic behavior, which can be seen in the
inset of Fig. 40. Thus, on the one hand, increasing the size of the chain (using linear continuation)
ensures only a slightly larger simulated time, on the other hand, the numerical investigations in this
section are done with ED, which scales with O(D3), so that the effort would increase substantially59.

58This is the current of |xn(t)|2 within the Mori chain and should not be confused with the spin current operator
in Heisenberg models.

59Also, the iterative methods introduced in Subsection 2.10 scale with O(D2), so that the numerical effort would
increase substantially there as well.
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The colors denote the magnetic field Bx while the dimension increases with τa (see Eq. (5.1.9)). The
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Moreover, to check whether the linear continuation alters the dynamics strongly, the autocorrelation
functions are determined in the common manner using Chebyshev method and DQT (see Subsections
2.10 and 2.3). In Fig. 41 these comparisons are shown. It can be seen that in some cases the boundary
effects already come into play, although the dynamic itself is not yet fully relaxed. This happens for
the smallest and the largest Bx. This can be caused by fast increasing bn, such that the boundary of
the chain will be reached more quickly (this can be seen for large Bx), or by long lasting dynamics,
which is most likely the case for small Bx.
Even before the boundaries are reached, some deviation of the curves are clearly visible. A possible
explanation for this is that the linear continuation neglects some small but important features of the
coefficients. Since the focus here is on statements of the representation and the system is to serve
here only as a test balloon, despite these deviations further with the linear continuation is used.
It is assumed, however, that the determination of even more coefficients could allow more accurate
continuation.
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Fig. 41: Comparison of the autocorrelation function of Ê12 by usual methods and the linear contin-
uation of Lanczos coefficients. The dashed lines denote the data for the linear continuation and stop
when the boundary is reached (D = 1000). The solid lines are determined by the usual Chebyshev
method. For a better overview, the curves have been shifted upwards by 0.25.

5.2 Reduction of the Mori chain from several points of view
Within this subsection a possible break of the semi-infinite Mori chain shall be motivated and
furthermore investigated.
Since the Recursion Method is not new, it is not surprising that there are already numerous attempts
for the rather early truncation of this representation [69, 70]. The focus was often on the spectral
representation of the chain in the direct image of the Continued Fraction (see Eq. (2.8.24)). This
points out the first difference to the investigations described here, since the truncations within this
thesis are more focused on representing the dynamics of a chain and thus take place in the time
domain rather than the frequency domain. In addition, different new equivalent views are to be
emphasized here, allowing to interpret more easily the meaning of a break-off. In contrast to the
references mentioned above, no concrete proposal for the exact type of truncation is made within
this subsection, instead a numerical method for the determination of an optimized truncation is
briefly explained.
Some equations already introduced in Subsection 2.8 will be repeated here for a better overview.
First, let consider the dynamics of that chain, which can be described by

x⃗(t) = eL̂ te⃗0. (5.2.1)
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Here e⃗0 is the 0-th unit vector60 and L̂ is the Liouvillian61, which can be expressed by

L̂ =

⎛⎜⎜⎜⎜⎜⎝
0 −b1 0 · · ·

b1 0 −b2
. . .

0 b2
. . . . . .

...
. . . . . .

⎞⎟⎟⎟⎟⎟⎠ . (5.2.2)

bn denotes the Lanczos coefficients and xn = x⃗ · e⃗n corresponds to the value of the n-th chain link.
In this case, the dynamics fulfill the differential equation

ẋn(t) = bnxn−1(t) − bn+1xn+1(t), (5.2.3)

where b0 = 0 applies.
These equations reveal a simple method for determining the derivatives of those dynamics

dj

dtj
x⃗(t) = L̂

j
x⃗(t). (5.2.4)

Various numerical investigations showed that the xn seemed to exhibit a certain smoothness (in
the context of n). This behavior shall be considered here as an assumption, since there are known
cases in which this smoothness is not present, for example if the bn exhibits strong even-odd effects.
However, these structures occurred only sporadically in the coefficients of the models examined here,
so that it is at least reasonable that this assumption is fulfilled in some cases. For better illustration,
two cases are considered here, one where the smoothness is well fulfilled and one where it is not. For
this purpose, instantaneous images of the xn at two different times are shown in Fig. 42.
Motivated by that finding of smoothness, it seems reasonable to consider xR as a function of the
preceding chain links,

xR(t) ≈
R−1∑︂
n=0

γnxn(t). (5.2.5)

Thereby the γn are time-independent. For the differential equation Eq. (5.2.3) follows thus

ẋn(t) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
bnxn−1(t) − bn+1xn+1(t) for n < (R− 1)

bnxn−1(t) −
R−1∑︁
n=0

γnxn(t) for n = (R− 1)

0 else

. (5.2.6)

That differential equation can be represented as a R × R matrix. For the case R = 3 the matrix
then has the form

L̂ 3 =

⎛⎝ 0 −b1 0
b1 0 −b2

−b3γ0 b2 − b3γ1 −b3γ2

⎞⎠ . (5.2.7)

60The nomenclature within this subject area is generally far from clear, however it is common to refer to the chain
link at the edge as 0.

61It should be noted that this expression does not correspond to the usual Liouvillian, but an additional one has
been multiplied by the complex number i. Nevertheless, for the sake of simplicity, this expression shall be called
Liouvillian here.
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Fig. 42: Values of the first 40-chain links for dynamics of the system explained in Subsection 5.1
with Bx = 0.5 (Bx = 1.0) for a and b (c and d). Here, in a and c (b and d) are snapshots for t = 1.0
(t = 2.0).

In the further remainder of the thesis L̂ R shall always denote a R × R matrix, which was created
by means of the smoothness argument.
Another consideration of the derivation from Eq. (5.2.5), is the interpretation over vector s⃗, which
should be avoided as far as possible. For this, let be the scalar product

s⃗ · x⃗(t) =
R∑︂

n=0
snxn(t) (5.2.8)

(5.2.9)

with s⃗ · e⃗n = 0 for n > (R+ 1). Using the above approximation, it follows that

s⃗ · x⃗(t) ≈
R−1∑︂
n=0

snxn(t) + sR

R−1∑︂
n=0

γnxn(t) (5.2.10)

=
R−1∑︂
n=0

(sn + sRγn)xn(t). (5.2.11)

From this consideration, it is evident that to any good approximation in the form of Eq. (5.2.5),
there is a vector s⃗ with

sn = s⃗ · e⃗n =

⎧⎪⎨⎪⎩
−γn for n < R

1 for n = R

0 for n > R

(5.2.12)
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Fig. 43: Approximation of the dynamic via
truncation of the chain with an orthogonal
vector s⃗ with different sizes R for a) Bx = 0.3,
b) Bx = 0.5 and c) Bx = 1.0.

which is at any time (approximately) orthogonal to x⃗, thus fulfilling s⃗ · x⃗(t) ≈ 062. This approach
is numerically useful, since it results in an optimization problem: If the dynamics x⃗(t) in single
time steps are known (by previous simulations using ED or iterative methods), an optimized s⃗ can
be found for each R by determining a R × T matrix X̂ from the first R chain links at T different
times and multiplying that matrix by its transpose X̂ · X̂

T
. The eigenvector with the smallest

eigenvalue of that matrix corresponds to the vector which is most orthogonal to x⃗ over all times.
Such an optimized s⃗ does not necessarily yield good results, since there are cases where no such
an orthogonal vector exists at all. Whether good s⃗ exist for each system is a question of ongoing
research.
To demonstrate that at some cases good orthogonal vectors can be found (where "good" is to be
understood in the sense of the description of the dynamics by means of a reduced chain), Fig. 43
shows the resulting dynamics in comparison to the dynamics of the chains with D = 1000. The
orthogonal vectors, which are displayed in Fig. 44, were determined by the method described above.
This was done for the test system for different magnetic field strengths as well as for different break-
off points. It can be seen that by means of the truncation the dynamics were hit relatively precisely,
although a maximum of 5 chain links were effectively available. Moreover, at least for very early
truncations, the exponential or damped harmonic nature of the resulting curves can be seen. It also
shows that the result works differently well for different magnetic field strengths.
Besides the approach via orthogonal vectors or continuation from previous components, there is
another equivalent view by means of approximations of the dynamics by damped oscillations. In
order to recognize this, let first recall that every unit vector e⃗n can be expressed by superposition

62Note that for complete orthogonality s⃗ is indeterminate on a prefactor.

84



0 1 2 3 4 5 6

−2

−1

0

1

2

3
a)

n

s n

1
2
3
4
5

0 1 2 3 4 5 6

−2

−1

0

1

2

3
b)

n

s n

0 1 2 3 4 5 6

−2

−1

0

1
c)

n

s n

Fig. 44: Orthogonal vectors s⃗ with different
sizes R for a) Bx = 0.3, b) Bx = 0.5 and
c) Bx = 1.0, corresponding to the dynamics
shown in Fig. 43. Note that these vectors
are indeterminate up to a prefactor, which is
chosen such that the last element equals 1.

via

e⃗n =
n∑︂

j=0
cj,nL̂

j
e⃗0. (5.2.13)

This is given by the structure of the Liouvillian: Since that application of the operator corresponds
to hopping (back and forth), the j-fold application to e⃗0 is to be described by the first j unit vectors.
Thus, conversely, these first j basis vectors are also to be constructed by the j-fold application of
L̂ . The calculation of this cn,j is explained in the Appendix A. Now let scalar product

s⃗ · x⃗(t) =
R∑︂

n=0
s⃗ · e⃗ne⃗n · x⃗(t) (5.2.14)

=
R∑︂

n=0
sn

n∑︂
j=0

cj,n

(︂
L̂

j
e⃗0

)︂
x⃗(t) (5.2.15)

be considered again. From the representation of the Liouvillian in Eq. (5.2.2), it can be seen that

L̂
†

= −L̂ . (5.2.16)

From this follows

s⃗ · x⃗(t) =
R∑︂

n=0
sn

n∑︂
j=0

cj,ne⃗0(−L̂ )j x⃗(t). (5.2.17)
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Using Eq. (5.2.4), it further follows that

s⃗ · x⃗(t) =
R∑︂

n=0
sn

n∑︂
j=0

cj,n(−1)j e⃗0
dj

dtj
x⃗(t) (5.2.18)

=
R∑︂

n=0
sn

n∑︂
j=0

cj,n(−1)j d
j

dtj⏞ ⏟⏟ ⏞
D

x0(t) (5.2.19)

= Dx0(t) (5.2.20)

is equivalent, where D is a linear differential operator of R-th order. Now, if s⃗ is orthogonal to x⃗(t),
then

Dx0(t) = 0 (5.2.21)

is valid, where the solution takes the form
R∑︁

n=1
αneλnt.

Since the corresponding matrix L̂ R is real, the solution must be real too, so for every λn ∈ C there
must be another λm with λn = λ⋆

m. Thus, the solution corresponds to a superposition of damped
oscillations (exponential decay also belongs to that group of functions as a special case R = 1).
Moreover, this is also possible in the opposite way: If the dynamic corresponds to a superposition
of damped oscillations, then there must also be an orthogonal s⃗.
The determination of s⃗ from already known λn is significantly easier than the reverse conclusion.
This is due to the fact that for the conversion in one direction the zeros of a polynomial of order R
have to be determined, while in the reverse case only a coefficient comparison of such a polynomial
is necessary.
Since many relaxation dynamics have the form of damped oscillations (or even exponential decays),
it can be assumed that the Lanczos coefficients of those dynamics have a structure which allows
very short orthogonal vectors. A possible link for further research is to investigate which coefficients
allow short orthogonal vectors. The goal of this further research could be, stability investigations
on such coefficients, which could be used as a justification for the frequent finding of those curves in
everyday systems (see Ref. [2]). Should a criterion for the coefficients be found which favors such a
truncation, one could infer the dynamics directly from the coefficients, which is not possible in the
general case.
Thus, it was found that all three perspectives described here are equivalent to each other: A smooth
behavior of the chain links xn are equivalent to an orthogonal vector s⃗ and a good fitting using
damped oscillations.
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5.3 Approximation of the integral via truncation of the chain
Another advantage of the previously described truncation is that it allows the expression

A = lim
τ→∞

∫︂ τ

0
C̃(t)dt (5.3.1)

to be estimated. Note that although τ should approach ∞, for finite systems the part of the echo
should be neglected in the sense of the Poincare return [12]. This quantity plays a significant role
in particular in transport theory, provided that C̃(t) is the autocorrelation function of currents [4].
If that quantity diverges for larger times, then non-vanishing currents corresponding to ballistic
transport are evident. That quantity is thus closely related to the concept of Drude weight [71, 72].
If and when such a Drude weight is non-vanishing in the thermodynamic limit is still part of ongoing
research. Thus, an estimation of that quantity could be proof of use. For estimation, the special
case

γn = δ(R−1)n (5.3.2)

is used, where δij is the Kronecker delta. This corresponds to the approximation

xR(t) ≈ xR−1(t). (5.3.3)

This results in a R×R matrix

L̂ R =

⎛⎜⎜⎜⎜⎜⎜⎜⎝

0 −b1 0 · · · 0

b1 0 −b2
. . .

...

0 b2
. . . . . . 0

...
. . . . . . . . . −bR−1

0 · · · 0 bR−1 −bR

⎞⎟⎟⎟⎟⎟⎟⎟⎠
. (5.3.4)

Thus, for those new replacement dynamics, it follows

χ⃗(t) = eL̂ Rte0⃗ (5.3.5)

which satisfies the differential equation
−→χ̇ (t) = L̂ Rχ⃗(t). (5.3.6)

By using Laplace transformation it can be seen that

sL {χ⃗(t)} (s) − χ⃗(t = 0) = L̂ RL {χ⃗} (s) (5.3.7)

with

L {f(t)} (s) =
∞∫︂

0

f(t)estdt (5.3.8)

holds. Since the above expression yields the desired integration for s = 0, this is substituted into
Eq. (5.3.7). It follows

−e⃗0L̂
−1
R e⃗0 = L {χ0} (s = 0) (5.3.9)
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where the right-hand side corresponds to the wanted integration. Thus, the determination of the
integration of the substitute dynamics is rather simple with the negative first element of the inverted
substitute matrix. This procedure is generally possible for other choices of γn

63 as well, but the
simple choice from Eq. (5.3.2) allows the expression for the inverted element to be given explicitly:

−e⃗0L̂
−1
R e⃗0 = 1

b1

R−1∏︂
n=1

(︃
bn

bn+1

)︃(−1)n

:= AR. (5.3.10)

Two different derivations of this expression are shown in Appendix B. Note that AR is always finite
for an arbitrary but fixed R64. Since this kind of truncation results in substitute dynamics, which
are superpositions of damped oscillations, one can conclude that all damping coefficients are non-
negative. Thus, there is no exponential increase. From the Mori chain model, it is also apparent
that divergences between the replacement dynamics and the original can only occur when the chain
termination is reached. The larger R is, the latter is that point in time. It follows that for arbitrarily
long time periods, one can create good substitute dynamics by letting R → ∞ go. Applying the
logarithm to the above expression, yields the equation

ln (AR) = − ln (b1) +
R−1∑︂
n=1

ln
(︄(︃

bn

bn+1

)︃(−1)n)︄
(5.3.11)

= − ln (b1) +
R−1∑︂
n=1

(−1)n ln
(︃

bn

bn+1

)︃
(5.3.12)

As long as bn > 0 holds for all n 65, ln(AR) is a finite value. In this form, the alternating sign shows
that the Leibniz criterion is suitable for an investigation of convergence. That criterion states that
series of the form

∞∑︂
n=0

(−1)nαn (5.3.13)

converge if αn is monotonically increasing (or decreasing) towards zero. Considering Eq. (5.3.12),
it is to prove that ln

(︂
bn

bn+1

)︂
is such a sequence. Since ln (x) is monotonically increasing, this holds

when bn

bn+1
is a monotone function with lim

n→∞
bn

bn+1
= 1. This is the case, for example, for bn = αnγ as

long as α > 0 holds (since for finite R the values are always convergent, it suffices if above a certain
R∗). For these cases, it follows that lim

R→∞
ln(AR) = ln(A∞) converges to a finite value. Moreover,

the Leibniz criterion also yields convergence bounds; it holds

ln(AR) < ln(A∞) < ln(AR+1) for ln(AR) < ln(AR+1) (5.3.14)
ln(AR+1) < ln(A∞) < ln(AR) for ln(AR+1) < ln(AR), (5.3.15)

that is, the convergence value lies between two following partial sums. Since the exponential function
does not have a definition gap and is monotone increasing, convergence also follows for the integral
and the above estimations can be transferred, too, from which follows

AR < A∞ < AR+1 for AR < AR+1 (5.3.16)
AR+1 < A∞ < AR for AR+1 < AR. (5.3.17)

63As long as the substitute matrix is invertible.
64There exists an exception at bn = 0, but in that case the chain is broken anyway.
65This is assumed throughout the following, since this corresponds to a natural termination of the chain anyway.
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Since, as argued above, the substitute dynamics and the real dynamics yield equivalent results for
R → ∞ of arbitrary length, the logical conclusion is that A∞ = A holds. Thus, it is shown that a
monotone continuation of the coefficients always suppresses ballistic transport.
Since A∞ is always between two neighboring AR, the averaging of two such values seems reasonable.
Here, the geometric mean is used, which is hereby introduced as

AGM
R =

√︁
AR ·AR−1. (5.3.18)

If one now inserts Eq. (5.3.10), one obtains

AGM
R =

⌜⃓⃓⎷ 1
b1

R−1∏︂
n=1

(︃
bn

bn+1

)︃(−1)n

· 1
b1

R−2∏︂
n=1

(︃
bn

bn+1

)︃(−1)n

(5.3.19)

=

⌜⃓⃓⎷b2

b3
1

R−2∏︂
n=1

(︃
bnbn+2

b2
n+1

)︃(−1)n

. (5.3.20)

To determine the convergence of that expression, consider the logarithm in a similar way as above;

2 · ln
(︁
AGM

R

)︁
= ln

(︃
b2

b3
1

)︃
+

R−1∑︂
n=1

(−1)n ln
(︃
bnbn+2

b2
n+1

)︃
(5.3.21)

which again shows a possible application of the Leibniz criterion. Thus, this geometric mean con-
verges if bnbn+2

b2
n+1

is a sequence which is monotonically approaching 1.
The geometric mean in Eq. (5.3.18) was already used in Ref. [73]. There, no statement could be
made about the individual AR, because it contains an unknown prefactor kR depending on R66.
However, it was assumed that limR→∞

kR

kR+1
= 1 should hold67. Moreover, the convergence has been

checked for various systems which can be studied analytically and yields good results.
However, no proof of convergence was shown in that paper, moreover, there is also a strict distinction
between even and odd R within the notation, while the notation within this thesis is uniform for
both cases.
By the similarity of the convergence conditions of AR as well as its geometric mean, the question
arises whether a repeated geometric mean also allows a form which is to be examined again by means
of Leibniz. Indeed, such an averaging is always possible, resulting in the averaged area of

AF
R = 2(F −1)

⌜⃓⃓⎷cF ·
R−F∏︂
n=1

b(−1)n

n,F (5.3.22)

with

cF =
F∏︂

j=1
b

(−1)j ·(2F −
j−1∑︁
l=0

(F
l ))

j (5.3.23)

bn,F =
F +n∏︂
j=n

b

(︁
(−1)(j−n)·( F

j−n)
)︁

j . (5.3.24)

66The approximation in this thesis results in kR = bR.
67Remark that this is also a necessary requirement for the usage of the Leibniz criterion.
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Here F is the order of the averaging (F = 1 is for example without geometric averaging, F = 2
corresponds to the above case of simple geometric averaging etc.).

(︁
n
k

)︁
corresponds to the binomial

coefficient.
The derivation is done by complete induction and can be taken from Appendix C.
cF is not relevant for the convergence itself, because this only leads to a constant prefactor68. By
means of logarithm and Leibniz criterion, it can be seen that the surface converges if bn,F approaches
monotonically towards 1.
In the following, a few cases are discussed, in which the resulting area and the coefficients are known.
The exact derivations can be found in Ref. [73] and the sources therein. The cases can be seen in
Tab. 2.
It is easy to see that every possible estimation of the area of the kind mentioned above always yields

Nr. Coefficient Dynamic Analytical integral

1 bn = 1 C(t) = J1(2t)
t A∞ = 1

2 bn = n C(t) = sech(t) A∞ = π
2

3 bn =
√
n C(t) = e− t2

2 A∞ =
√︁

π
2

4 bn =
{︄√︂

n+2
3 n odd√︁

n
3 n even

C(t) = (1 − 1
3 t

2) · e− t2
6 A∞ = 0

Table 2: Analytically known cases of Mori chains and the resulting integration of the autocorrelation
function.

a perfect estimation for the first case, since these estimations always consist only of products of the
coefficients. In the case that those are all 1, every result is 1 and thus exactly equal to the analytical
result.
Since the other cases are not trivial, the investigations here will be numerical, where a symbolic
treatment provides very high accuracy. For this reason the quantity

∆AR = |AR −A∞|
A∞

(5.3.25)

is introduced, whereby A∞ is the exact value of the integral69. For the case 4 in Tab. 2, |AR −A∞|
is considered as an indicator, since A∞ = 0 makes the usage of ∆AR impossible.
Now consider the second case, bn = n. Firstly, it shall be shown that

lim
n→∞

bn,F = 1 (5.3.26)

holds. A useful property of the binomial coefficients for this reason is∑︂
j=1

(︃
F

2j − 1

)︃
= 2F −1 =

∑︂
j=1

(︃
F

2j

)︃
. (5.3.27)

68In the logarithmic representation this corresponds to an offset.
69If the exact value is not known, a common numerical integration is chosen for comparison.
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With this knowledge, it is easy to see that in Eq. (5.3.24) the denominator and the nominator
contain the same number of Lanczos coefficients. For the considered special case, all coefficients
have the form of (n + j), such that the resulting fraction is a fraction of two polynomials of order
2F −1 without any prefactor. Since for large n the highest order dominates the fraction, the fraction
approaches 1.
In addition to this limit, it is also necessary that the series is monotone, which is shown in Appendix D.
This is also displayed for the F ≤ 5 in Fig. 45 a). Thereby it can be seen that repeatedly averaging
yields better results as long R is a bit larger than F . However, a very high precision is already
reached after a few averages, so that large F are not necessary in this case.
The convergence of the third case is equivalent to the convergence of the second case, since the
coefficients differ only by an exponent, which in the logarithmic representation corresponds only to
a prefactor, which is not relevant for the convergence70. Thus, the results in Fig. 45 c) are quite
similar as in b). Note that the comparison is made with the same amount of bn used. This shows
that averaging often yields better results without having to determine more coefficients. Since the
determination of those coefficients is very time-consuming for many models and the number of those
is strongly limited by the numerics, this insight could be helpful to achieve nevertheless quite precise
results.
The last case in Tab. 2 does not fulfill the conditions of the Leibniz criterion due to a strong even-odd
effect, so that convergence is not necessarily present here. Nevertheless, it was shown in Ref. [73]
that the one-time geometric mean (F = 2) converges to the analytically known value. This is also
shown in Fig. 45, but this convergence is much slower than in the other cases. In addition, it can be
seen that further geometric averaging slows down the convergence. This could indicate an increasing

70Note that if bn are convergence that all α · bγ
n are also convergence, as long all parameters are positive.
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sensitivity to even-odd effects at higher F . Furthermore, the estimation of integrals without aver-
aging yields the best results, so that the method introduced here allows an improved estimation.
Furthermore, it can be seen that although the system appears to converge, A∞ is not between two
consecutive AR. This is not surprising since that property follows from the Leibniz criterion, but
it is still worth mentioning since that situation does not allow for an upper and lower bound of the
limit.
Furthermore, the area estimation is to be examined also on the basis of the test system. Since no
analytical expression of the integral is known in this case, the integral is determined numerically,
so that the comparison value can already contain numerical uncertainties. Thereby in Fig. 46 the
convergence for different Bx, R and F is displayed. In the latter, it can be seen that the approxi-
mation is close to the comparison value even before the range of linear continuation. In addition, it
shows that the geometric mean improves the results strongly, but further averaging does not bring
any further advantage. The cases with very weak magnetic fields (Bx ≤ 0.1) are neglected, since the
dynamics of these systems are still far from over by the time the end of the chain is reached. Thus,
it is not possible to determine the integral by numerical means. This finding is purely numerical
and is counterintuitive, since these systems actually have a larger time τb due to the smaller slope.
Convergence seems to be approached much slower in all treated cases of the Ising model than in
the analytical cases. Nevertheless, an estimate is possible, which deviates only a few percent from
the comparison value. At this point, however, it should also be mentioned that the comparison
value is also based on the linear continuation. An analysis of how sensitive this estimation reacts to
perturbations is an interesting question for further research and represents a possible continuation
of this work. Also the investigation under which conditions the individual bn,F satisfies the Leibniz
criterion, as well as under which conditions the averaging represents an improvement of the results
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could be further starting points.

5.4 Conclusion
Altogether, it is shown that the consideration of the Mori chain offers promising and manifold
grounds for tackling unsolved problems of quantum thermodynamics, despite the age of that repre-
sentation. In particular, although the OGH does not provide a way to exactly increase the strongly
limited number of coefficients, it does provide a general way to justifiably continue the already known
coefficients.
Especially since the investigations discussed here strongly show one of the core properties of thermo-
dynamics, namely the reduction of the necessary parameters for the description of systems. However,
it should not be concealed that the results shown here are far from being really understood. Thus,
it is still questionable when the breaking of the chain is well possible and, moreover, whether such
breaking follows general laws, so that knowledge of the dynamics would no longer be necessary to
produce a well-behaved breaking of the chain. Also, a possible linkage of the stability of some types
of dynamics is a promising continuation.
Although the estimation of the integral has shown excellent results for the analytic cases and has
also given good results in the test system, there are still some open questions: Can better results
possibly be obtained with other types of chain termination? How does the estimation react to per-
turbations? Can statements be made about an optimal number of averages?
Other ways of reducing the Mori chain are discussed in Ref. [74] where it was shown in some cases
that already the first two Lanczos coefficients contain a lot of information about the form of the
actual dynamics.

93



6 Conclusion and outlook
The results of this work can be summarized in two categories.
In the first category the results of Sections 3-4 can be placed. Specifically, in the former, a method
has been developed which allows the detection of correlations between matrix elements in observables
in the energy eigenbasis. Thus, it is shown that considering those observables as random matrices is
inaccurate. In particular, since many previous studies of systems have failed to find deviations from
random matrices even in energy/frequency windows, this result is relevant. This relevance is also
shown in Section 5, where a theory based on the randomness of the matrix elements was tested. It
was found that TPT either did not yield good results in the systems studied or that these results
could be explained outside the theory.
The results of Section 3, in particular, are part of continuing research: Even if it has been shown
that comparisons with pure random matrices are invalid, the question still arises as to why so many
indicators have previously failed to distinguish between random matrices and observables. The exact
nature of the correlations remains unexplained; the implications of those correlations also have yet
to be determined. Especially in the context of TPT, the question arises whether that theory can be
adapted to account for the existing correlations.
The second category is to be understood in the sense of the so far unpublished results in Section 5.
In particular, it shows the potential of a benign truncation of the Mori chain. Should a general
break-off be possible, statements could be made about the form of the dynamics itself. In addition,
links to the investigation of stable dynamics can be found. Furthermore, it could be shown that
statements about the integral of the curve can already be made under relatively mild assumptions.
An extension of these statements and further softening of the conditions seems to be desirable for
the investigation of transport properties of diverse systems.
In addition, a technical result of this work should be pointed out, which itself does not provide
any new physical knowledge, but shows new possibilities of investigations: The method of filtering
energy introduced in Subsection 3.1 offers the possibility to consider future investigations in energy
windows, even outside the ED domain.
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A Calculation of the coefficients for the developing the ba-
sisstates via usage of the Liouvillian

To determine the coefficients in Eq. (5.2.13), firstly multiply e⃗m from left on the equation;

δnm =
n∑︂

j=0
cj,ne⃗mL̂

j
e⃗0. (A.1)

Since the Liouvillian only connects neighboring states, it follows consequently that

e⃗mL̂
j
e⃗0 = 0 for m > j (A.2)

holds. Thus, the equation can be simplified to

δnm =
n∑︂

j=m

cj,ne⃗mL̂
j
e⃗0, (A.3)

which reduces even more for the case m = n. Then

1 = cn,ne⃗nL̂
n
e⃗0 (A.4)

⇒ cn,n = 1
e⃗nL̂

n
e⃗0

(A.5)

holds. All other coefficients can be calculated iterative, since for m < n

0 =
n∑︂

j=m

cj,ne⃗mL̂
j
e⃗0 (A.6)

⇒ cm,n = −
n∑︂

j=m+1
cj,n

e⃗mL̂
j
e⃗0

e⃗mL̂
m
e⃗0

(A.7)

holds. Thus, one can determine all coefficients in an iterative way.
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B Derivation of the area approximation via Continued Frac-
tion and inversion of the reduced Liouvillian

Two derivations of Eq. (5.3.10) shall be shown in this section.
The first derivation is based on the matrix notation. Hereby

L̂
−1
R = 1

det(L̂ R)
adj(L̂ R) (B.1)

shall be used as a starting point. adj(•) denotes the adjunct of the matrix and det(•) is the deter-
minant. Since only the 0-th element on the diagonal71 is needed, one obtains

e⃗0L̂
−1
R e⃗0 = 1

det(L̂ R)
e⃗0adj(L̂ R)e⃗0. (B.2)

Focus on the determinant

det(L̂ R) =

⃓⃓⃓⃓
⃓⃓⃓⃓
⃓⃓⃓⃓
⃓⃓⃓⃓
⃓⃓⃓⃓
⃓⃓⃓⃓

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 −b1 0 · · · 0

b1 0 −b2
. . .

...

0 b2
. . . . . . 0

...
. . . . . . . . . −bR−1

0 · · · 0 bR−1 −bR

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⃓⃓⃓⃓
⃓⃓⃓⃓
⃓⃓⃓⃓
⃓⃓⃓⃓
⃓⃓⃓⃓
⃓⃓⃓⃓

(B.3)

= b1 ·

⃓⃓⃓⃓
⃓⃓⃓⃓
⃓⃓⃓⃓
⃓⃓⃓⃓
⃓⃓⃓⃓
⃓⃓⃓⃓

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

−b1 0 0 · · · 0

b2 0 −b3
. . .

...

0 b3 0
. . . 0

...
. . . . . . . . . bR−1

0 · · · 0 bR−1 −bR

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⃓⃓⃓⃓
⃓⃓⃓⃓
⃓⃓⃓⃓
⃓⃓⃓⃓
⃓⃓⃓⃓
⃓⃓⃓⃓

= b2
1

⃓⃓⃓⃓
⃓⃓⃓⃓
⃓⃓⃓⃓
⃓⃓⃓⃓
⃓⃓⃓⃓
⃓⃓⃓⃓

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 −b3 0 · · · 0

b3 0 −b4
. . .

...

0 b4
. . . . . . 0

...
. . . . . . . . . −bR−1

0 · · · 0 bR−1 −bR

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⃓⃓⃓⃓
⃓⃓⃓⃓
⃓⃓⃓⃓
⃓⃓⃓⃓
⃓⃓⃓⃓
⃓⃓⃓⃓
. (B.4)

71Note that in the Lanczos notation all indices started with 0.
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It is easy to see that now this method can be repeatedly used until either the determinant of a 3 × 3
or a 2 × 2 matrix is the only thing left to calculate. This two cases results in

⃓⃓⃓⃓
⃓⃓⃓⃓
⃓

⎛⎜⎜⎜⎝ 0 −bR

br −bR

⎞⎟⎟⎟⎠
⃓⃓⃓⃓
⃓⃓⃓⃓
⃓ = b2

R

⃓⃓⃓⃓
⃓⃓⃓⃓
⃓⃓⃓⃓
⃓⃓

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 −bR−1 0

bR−1 0 −bR

0 bR −bR

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠

⃓⃓⃓⃓
⃓⃓⃓⃓
⃓⃓⃓⃓
⃓⃓

= −b2
R−1 · bR. (B.5)

Thus in total one obtains

det(L̂ R) =
⌈R/2⌉∏︂
n=1

b2
2n−1 ·

{︄
1 for R odd
−bR for R even

(B.6)

= (−bR)
1+(−1)R

2 ·
R∏︂

n=1
(bn)1−(−1)n

(B.7)

where the exponents ensure the even-odd effect.
The knowledge of these kinds of determinants are helpful, also for calculating the 0-th element of
the adjunct, since this is equivalent to the determinant for the matrix just without the 0-th row and
column. This new matrix has the same structure as the original one, thus one obtains via the same
approach as before

e⃗0adj(L̂ R)e⃗0 = (−bR)
1−(−1)R

2 ·
R∏︂

n=2
(bn)1+(−1)n

. (B.8)

Note that the exponents, which cause an even-odd effect, are now shifted by 1. Thus, the 0-th
diagonal element of the inverse reduced Liouvillian is given by

L̂
−1
R = (−bR)

1−(−1)R

2

(−bR)
1+(−1)R

2

∏︁R
n=2(bn)1+(−1)n∏︁R
n=1(bn)1−(−1)n

(B.9)

= − 1
bR

(−1)R R∏︂
n=2

(︁
b2

1
)︁(−1)n

. (B.10)

By rearranging the elements of the product series one receives

L̂
−1
R = − 1

b1

R∏︂
n=1

(︃
bn+1

bn

)︃(−1)n

. (B.11)

In combination with Eq. (5.3.9) this results in

L {χ0} (s = 0) = 1
b1

R∏︂
n=1

(︃
bn+1

bn

)︃(−1)n

. (B.12)

χ0(t) denotes the dynamic of the reduced system.
In addition to this matrix-based derivation, also a second derivation via the Laplace transform shall
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be given. Starting by the Continued Fraction of the dynamic caused by the full Liouvillian (see
Subsection 2.8)

x0(s) = 1
s+ b2

1

s+
b2

2

s+
b2

3

s+
...

, (B.13)

which was constructed by inserting the equations

x0(s) = 1
s+ b1

x1(s)
x0(s)

for n = 0 (B.14)

bn
xn−1(s)
xn(s) = s+ bn+1

xn+1(s)
xn(s) for n ̸= 0 (B.15)

into each other recursively. Since the reduced Liouvillian was created based on the assumption
xR(t) = xR−1(t) for the Laplace transform

xR(s) = xR−1(s) (B.16)

holds. Thus, one obtains three equations for the Laplace transform of the reduced dynamic (which
is denoted by χn(s)):

χ0(s) = 1
s+ b1

χ1(s)
χ0(s)

for n = 0 (B.17)

bn
χn−1(s)
χn(s) = s+ bn+1

χn+1(s)
χn(s) for 0 < n < R− 1 (B.18)

bR−1
χR−2(s)
χR−1(s) = s+ bR for n = R− 1 (B.19)

The last line causes an end of the otherwise infinite Continued Fraction, which can be expressed as

χ0(s) = 1
s+ b2

1

s+
b2

2

s+
b2

3

...
s+

b2
R−1

s+bR

. (B.20)

For the case s = 0 (which is the main interest here) this results in

χ0(s = 0) =
(︃

1
bR

)︃(−1)R R−1∏︂
n=1

(︁
b2

n

)︁(−1)n

(B.21)

which is equivalent to the expression one obtains via the matrix-based derivation.
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C Derivation of the area approximation via repeatedly geo-
metric averaging

Within this Appendix the Eq. (5.3.22), (5.3.23) and (5.3.24) shall be derived. This derivation is
done by means of complete induction. For a better clarity, the equations, which will be derived, will
be presented again:

AF
R = 2(F −1)

⌜⃓⃓⎷cF ·
R−F∏︂
n=1

b(−1)n

n,F (C.1)

cF =
F∏︂

j=1
b

(−1)j ·(2F −
j−1∑︁
l=0

(F
l ))

j (C.2)

bn,F =
F +n∏︂
j=n

b

(︁
(−1)(j−n)·( F

j−n)
)︁

j (C.3)

For the usage of induction, one considers a basic case, here F = 1[P1]

AR = c1 ·
R−1∏︂
n=1

b(−1)n

n,1 (C.4)

c1 = 1
b1

(C.5)

bn,1 =
1+n∏︂
j=n

b

(︁
(−1)(j−n)·( 1

j−n)
)︁

j = bn

bn+1
(C.6)

which corresponds with the results of the case without averaging.
Since AF

R are determined by repeatedly geometric averaging, one can determine all higher AF
R (in

the sense of larger F ) approximation recursively by

AF +1
R =

√︂
AF

R ·AF
R−1. (C.7)

Through this recursive relation, the induction step can now be verified:

√︂
AF

R ·AF
R−1 =

⌜⃓⃓⃓
⎷ 2(F −1)

⌜⃓⃓⎷cF ·
R−F∏︂
n=1

b(−1)n

n,F · 2(F −1)

⌜⃓⃓⎷cF ·
R−1−F∏︂

n=1
b(−1)n

n,F (C.8)

= 2F

⌜⃓⃓⎷c2
F ·

[︄
R−F∏︂
n=1

b(−1)n

n,F

]︄
·

[︄
R−1−F∏︂

n=1
b(−1)n

n,F

]︄
(C.9)

= 2F

⌜⃓⃓⎷ c2
F

b1,F
·

[︄
R−1−F∏︂

n=1
b(−1)n+1

n+1,F

]︄
·

[︄
R−1−F∏︂

n=1
b(−1)n

n,F

]︄
(C.10)

= 2F

⌜⃓⃓⃓
⎷ c2

F

b1,F
·

⎡⎣R−(F +1)∏︂
n=1

b(−1)n+1

n+1,F b(−1)n

n,F

⎤⎦ (C.11)
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At this point a separation of the different parts of the equation is useful for clarity. Thus, one focus
first on the product within the row of products:

b(−1)n

n,F · b(−1)n+1

n+1,F =

⎡⎣F +n∏︂
j=n

b
(−1)j ·( F

j−n)
j

⎤⎦ ·

⎡⎣F +n+1∏︂
j=n+1

b
(−1)j ·( F

j−(n+1))
j

⎤⎦ (C.12)

= b(−1)n

n b
(−1)F +n+1

F +n+1

⎡⎣ F +n∏︂
j=n+1

b
(−1)j ·( F

j−n)
j

⎤⎦ ·

⎡⎣ F +n∏︂
j=n+1

b
(−1)j ·( F

j−(n+1))
j

⎤⎦ (C.13)

= b(−1)n

n b
(−1)F +n+1

F +n+1

⎡⎣ F +n∏︂
j=n+1

b
(−1)j ·

(︁
( F

j−n)+( F
j−(n+1))

)︁
j

⎤⎦ (C.14)

= b(−1)n

n b
(−1)F +n+1

F +n+1

⎡⎣ F +n∏︂
j=n+1

b
(−1)j ·(F +1

j−n)
j

⎤⎦ (C.15)

=
F +1+n∏︂

j=n

b
(−1)j ·(F +1

j−n)
j = b(−1)n

n,F +1. (C.16)

Within this derivation, the relation(︃
n

k

)︃
+
(︃

n

k + 1

)︃
=
(︃
n+ 1
k + 1

)︃
(C.17)

was used.
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Second, one considers the expression

c2
F

b1,F
=
∏︁F

j=1 b

2·(−1)j ·(2F −
j−1∑︁
l=0

(F
l ))

j∏︁F +1
j=1 b

(︁
(−1)(j−1)·( F

j−1)
)︁

j

(C.18)

= 1
b

(−1)F

F +1

F∏︂
j=1

b

2·(−1)j ·(2F −
j−1∑︁
l=0

(F
l ))

j

b

(︁
(−1)(j−1)·( F

j−1)
)︁

j

(C.19)

= 1
b

(−1)F

F +1

F∏︂
j=1

b

2·(−1)j ·(2F −
j−1∑︁
l=0

(F
l ))−

(︁
(−1)(j−1)·( F

j−1)
)︁

j (C.20)

= 1
b

(−1)F

F +1

F∏︂
j=1

b

(−1)j ·

[︃
2F +1+( F

j−1)−2
j−1∑︁
l=0

(F
l )
]︃

j (C.21)

= 1
b

(−1)F

F +1

F∏︂
j=1

b

(−1)j ·

[︃
2F +1−

j−2∑︁
l=0

(F
l )−

j−1∑︁
l=0

(F
l )
]︃

j (C.22)

= 1
b

(−1)F

F +1

F∏︂
j=1

b

(−1)j ·

[︃
2F +1−

j−1∑︁
l=0

( F
l−1)−

j−1∑︁
l=0

(F
l )
]︃

j (C.23)

= 1
b

(−1)F

F +1

F∏︂
j=1

b

(−1)j ·

[︃
2F +1−

j−1∑︁
l=0

(︁
( F

l−1)+(F
l )
)︁]︃

j (C.24)

= 1
b

(−1)F

F +1

F∏︂
j=1

b

(−1)j ·

[︃
2F +1−

j−1∑︁
l=0

(F +1
l )
]︃

j (C.25)

=
F +1∏︂
j=1

b

(−1)j ·

[︃
2F +1−

j−1∑︁
l=0

(F +1
l )
]︃

j = cF +1. (C.26)

In addition to Eq. (C.17) also (︃
n

k

)︃
= 0 for k < 0 (C.27)

was used.
By substituting in Eq. (C.11)

AF +1
R = 2F

⌜⃓⃓⎷cF +1 ·
R−(F +1)∏︂

n=1
b(−1)n

n,F +1 (C.28)

thus one can see that Eq. (5.3.22), (5.3.23) and (5.3.24) can be proven by induction and are valid.
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D Monotonic behavior of linear growing coefficients for ar-
bitrary averaging

To show that the coefficients in Eq. 5.3.24 are monotonic for the special case bn = n, one applies
first the logarithm on this equation

ln (bn,F ) =
F∑︂

j=0
(−1)j

(︃
F

j

)︃
ln (bn+j). (D.1)

In the next step, the derivative of that expression is determined

b′
n,F

bn,F
=

F∑︂
j=0

(−1)j

(︃
F

j

)︃
b′

n+j

bn+j
(D.2)

⇒ b′
n,F = bn,F ·

F∑︂
j=0

(−1)j

(︃
F

j

)︃
b′

n+j

bn+j
(D.3)

where •′ denotes the derivative.
By inserting the special case, one obtains

b′
n,F = bn,F ·

F∑︂
j=0

(−1)j

(︃
F

j

)︃
1

n+ j
. (D.4)

It can be shown that for the sum
F∑︂

j=0
(−1)j

(︃
F

j

)︃
· 1
j + n

=
∫︂ 1

0

F∑︂
j=0

(−1)j

(︃
F

j

)︃
xj+n−1dx (D.5)

=
∫︂ 1

0
xn−1

F∑︂
j=0

(−1)j

(︃
F

j

)︃
xjdx (D.6)

=
∫︂ 1

0
xn−1(1 − x)F dx (D.7)

= B(n, F + 1) (D.8)

holds, whereby B(n,m) denotes the beta function (or Euler integral of the first kind) [75]. In the
first line the integral ∫︂ 1

0
xj+n−1dx = 1

j + n
(D.9)

was used. In addition, the identity

F∑︂
j=0

(−1)j

(︃
F

j

)︃
xj = (1 − x)F (D.10)
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was used in the third line.
Furthermore, it follows that

B(n, F + 1) = n+ F + 1
n · (F + 1) ·

(︁
F +n+1

n

)︁ (D.11)

= n+ F + 1
n · (F + 1)

n!(F + 1)!
(F + n+ 1)! (D.12)

= 1
n

n!F !
(F + n)! (D.13)

= 1
n
(︁

F +n
n

)︁ (D.14)

holds. This results in

b′
n,F = bn,F

n
(︁

F +n
n

)︁ . (D.15)

Since F and n are natural numbers and bn,F > 0 if bj > 0 for all j, it is easy to see that the
derivative is always positive for all F and n. Thus, the Leibniz criterion is fulfilled since the series
is monotonic increasing.

109



Acknowledgment
In my long time at the University of Osnabrück, there are many people who have supported me in
my studies, doctoral studies and also outside of academic life.
First of all, I thank Prof. Jochen Gemmer, who supported me since my undergraduate studies and
was always available for questions and discussions even in stressful times. I would also like to thank
him for giving me the freedom in research without ever losing contact.
As another longtime supporter, I thank Prof. Robin Steinigeweg, who had also supervised me partly
since the bachelor thesis and always had an eye for possible improvements and probably knows
better about the strengths and weaknesses of my work than I do myself.
I also thank Dr. Christian Bartsch, who helped me during the bachelor thesis and with whom I was
thankfully able to work again during the PhD period, for a lot of professional support, especially
for the supervision necessary at the beginning.
For good cooperation and always good improvement suggestions, I thank Dr. Jonas Richter.
I would also like to thank Dr. Robin Heveling for very good initial support, who gave me a good
start to my PhD period and ensured that I was not overwhelmed by the daily routine here.
I thank Dr. Jiaozi Wang for many interesting discussions as well as for an almost inhuman amount
of data.
I thank Merlin Füllgraf, the newest member of the working group, for his willingness to build up my
work. I can only hope that I could give him a decent starting point.
For enough computing power for the simulations presented in the thesis, I thank Dr. Lars Knipschild.
Furthermore, I thank Dr. Anatoly Dymarsky, who has always pushed the research with his tireless
interest.
I also thank the “Fachschaft” and all its members, who I got to know during my time here, and also
for the many “Feierabendbier” in the student council room after work.
Many thanks are going to my family for always supporting me on my own path.
Finally, I would like to thank Dani, who was probably the biggest support for me in many years,
and just by the fact that she never took a vacation from it. Thank you for always being there for
me when I need you and for giving me space when I need it.

110



Erklärung über die Eigenständigkeit der erbrachten
wissenschaftlichen Leistung
Ich erkläre hiermit, dass ich die vorliegende Arbeit ohne unzulässige Hilfe Dritter und ohne Be-
nutzung anderer als der angegebenen Hilfsmittel angefertigt habe. Die aus anderen Quellen direkt
oder indirekt übernommenen Daten und Konzepte sind unter Angabe der Quelle gekennzeichnet. Bei
der Auswahl und Auswertung folgenden Materials haben mir die nachstehend aufgeführten Personen
in der jeweils beschriebenen Weise entgeltlich / unentgeltlich geholfen.

1.

2.

3.

Weitere Personen waren an der inhaltlichen materiellen Erstellung der vorliegenden Arbeit nicht
beteiligt. Insbesondere habe ich hierfür nicht die entgeltliche Hilfe von Vermittlungs- bzw. Be-
ratungsdiensten (Promotionsberater oder andere Personen) in Anspruch genommen. Niemand hat
von mir unmittelbar oder mittelbar geldwerte Leistungen für Arbeiten erhalten, die im Zusam-
menhang mit dem Inhalt der vorgelegten Dissertation stehen. Die Arbeit wurde bisher weder im
In- noch im Ausland in gleicher oder ähnlicher Form einer anderen Prüfungsbehörde vorgelegt.

Ort,Datum Unterschrift

111


	Introduction
	Theoretical Background
	Dynamics in Quantum Systems
	Correlation functions
	Dynamical Quantum Typicality
	Equilibration & thermalization in isolated Quantum Systems
	Eigenstate Thermalization Hypothesis
	Random Matrix Theory and indicators
	Typicality Perturbation Theory
	Recursion Method
	Models
	Numerical methods

	Eigenstate Thermalization Hypothesis and its deviations from Random-Matrix Theory beyond the thermalization time
	Energy filter
	The Λ-indicator
	Numerical results
	Comparison with other indicators
	Conclusion

	Typical perturbation theory: conditions, accuracy and comparison with a mesoscopic case
	Spin ladder with cross-perturbation
	Spin chains to spin ladder
	Spin lattice
	Comparison of the energy windows with a mesoscopic case
	Conclusion for the TPT results

	Lanczos Coefficient
	Test system
	Reduction of the Mori chain from several points of view
	Approximation of the integral via truncation of the chain
	Conclusion

	Conclusion and outlook
	Calculation of the coefficients for the developing the basisstates via usage of the Liouvillian
	Derivation of the area approximation via Continued Fraction and inversion of the reduced Liouvillian
	Derivation of the area approximation via repeatedly geometric averaging
	Monotonic behavior of linear growing coefficients for arbitrary averaging

