
POWER CONSUMPTION
MODELING AND ESTIMATION FOR SOFTWARE

APPLICATIONS IN MODEL-DRIVEN
DEVELOPMENT OF EMBEDDED SYSTEMS

Marco Schaarschmidt

Dissertation zur Erlangung des Doktorgrades (Dr. rer. nat.)
des Fachbereichs Mathematik/Informatik

der Universität Osnabrück

Eingereicht am: 27.07.2023
Disputation am: 06.10.2023

Erste Gutachterin: Prof. Dr.-Ing. Elke Pulvermüller
Zweiter Gutachter: Prof. Dr.-Ing. Clemens Westerkamp
Dritter Gutachter: Assoc. Prof. Dr. Hany Elgala

Acknowledgments

Writing a thesis is surely an intense experience. Over the past years, I have had the honor and
joy of working with many inspiring, open-minded, and wise people who have always motivated
me to keep going and stick to my research ideas. I am very grateful for the help of every one
of them.

First and foremost, I would like to express my gratitude to Prof. Dr.-Ing. Elke Pulvermüller
for supervising this thesis, the trust I received from her, and our discussions over the past few
years. I am also grateful for all the scientific and methodical feedback on my work. I also want
to thank Prof. Dr.-Ing. Clemens Westerkamp for co-advising this thesis and the opportunity
to work on many exciting research projects, which helped me stay open-minded as a researcher
while maintaining a broad perspective. Next, I want to thank Assoc. Prof. Dr. Hany Elgala
for accepting the role of the third reviewer.

I extend my deepest gratitude to Prof. Dr.-Ing. Michael Uelschen for his trust and support
in writing this thesis and the work on scientific publications. It was fun - well, mostly. You
never stopped motivating and pushing me toward the end of this thesis. I am also grateful
for the valuable discussions and brainstorming sessions about research ideas and problem
statements. To use the wording of a computer scientist: I often experienced our conversations
as the needed break command to exit the 77 thought loops that have emerged. I truly hope
we can continue our research and tackle the following 50 ideas left on our list.

As part of the Software Engineering Lab, I enjoyed working with my colleagues on challeng-
ing research projects. I thank Alexander Grunwald and Timo Thurow for fruitful discussions
about physics, electrical engineering, and embedded systems. Next, I would like to thank
Jannis Budde and Simon Balzer, who refined some concepts and provided proof-of-work im-
plementations with their Master’s and Bachelor’s theses.

Additionally, I want to thank Lars Huning and Michael Spieker for many fruitful discussions
about ideas and concepts related to model-driven development.

Finally, I want to thank my parents, my brother Robin, Stephi, and Isabella, for their
endless faith, understanding, motivation, and support through all these years. There have
been many ups and downs along the way to this thesis, and I’m fully aware that my mood
hasn’t always been the best. But let’s be clear: This work would not have been possible
without you!

A big thank you to each and every one of you!

iii

Abstract

Nowadays, embedded systems are ubiquitous and inherent in almost all areas of life. In recent
years, trends like the Internet of Things (IoT) have been a primary driver for the growing
embedded systems market. Many of those IoT devices are battery-powered and more resource-
constrained. In addition to economic constraints like total costs and short time-to-market,
technical constraints lead to multiple challenges in embedded software development. For
battery-powered systems, electrical energy is one of the most critical constraints. For instance,
uncontrolled power consumption or an exhausted energy source caused by software applications
may lead to failure and costly damage to the device or the environment. Developers often lack
knowledge and suitable design concepts to specify, implement, and evaluate energy-efficient
software applications. Additionally, constantly changing technologies, extensive functionalities,
and various requirements further increase the complexity of embedded software applications
while making their development a critical and complex task. To manage the complexity
of software applications and the development process, methodologies such as Model-driven
Development (MDD) have gained importance. However, power-related non-functional aspects
are insufficiently considered in MDD.

This thesis addresses the aforementioned gaps and presents a novel framework for energy-
aware software design patterns. Developers and engineers may use the framework to specify
and describe design patterns addressing power-related issues of software applications. The
introduced design pattern template provides a set of metrics to describe possible energy savings
and the effort-saving ratio when applying a design pattern. The template also contains a
unified graphical representation to visualize the effects of design patterns. In addition, a first
catalog of energy-aware design patterns is provided, which may be used to design software
applications in MDD and traditional development.

To further enhance the development of energy-efficient software applications in MDD, this
thesis also introduces a novel power consumption estimation approach for models based on the
Unified Modeling Language (UML). The approach is specifically designed for early development
stages when optimizations are most effective. A concept for hardware component models is
presented, which can be integrated into the software application model. With the provided
UML profile, aspects related to power and timing can be modeled. In addition, methods for
indirect and direct power analysis are introduced. While the indirect power analysis is based
on simulated hardware behavior, the direct power analysis relies on a real hardware platform
and a measuring device. Along with the novel and formal description of energy bugs, software
applications can be evaluated and energy-related issues detected.

A real-world example of an IoT sensor node and a proof-of-concept implementation of
the power consumption estimation approach illustrate the application of proposed modeling
and estimation concepts. Moreover, the detection of energy bugs is demonstrated, and the
accuracy of the analysis methods is compared. Additionally, the overall performance of the
direct power analysis is investigated in depth. The results have shown that the concepts
and approaches are suitable for analyzing and predicting the power consumption of software
applications in early development phases. Furthermore, the process can be integrated into
existing development workflows to support developers using MDD to design energy-efficient
software applications.

Contents

1 Introduction 1
1.1 Motivation . 1
1.2 Problem Statement and Scope of Research . 4

1.2.1 Research Challenges . 6
1.2.2 Research Questions and Contributions 8

1.3 Limitations . 12
1.4 Thesis Outline . 14

2 Related Work and Background 17
2.1 Electrical Power Measurement . 17

2.1.1 Physical Fundamentals . 17
2.1.2 Metrics . 19
2.1.3 Measurement Techniques . 20

2.2 Embedded Systems . 21
2.2.1 Architecture and Characteristics . 22
2.2.2 Embedded Software . 24
2.2.3 Internet of Things . 26

2.3 Software Requirements . 27
2.3.1 Overview . 28
2.3.2 Non-functional Requirements . 29
2.3.3 Related Work in the Field of Energy-related Misbehavior 30

2.4 Software Design Patterns . 32
2.4.1 Formats and Classification of Patterns 32
2.4.2 Related Work on Power and Energy Aspects of Design Patterns 34

2.5 Model-driven Development (MDD) . 37
2.5.1 Modeling Languages . 38
2.5.2 Model Transformations . 40

2.6 Modeling of Embedded Systems with UML and MARTE 41
2.6.1 Overview . 41
2.6.2 Basic Structure and Profiles . 42
2.6.3 Value Specification Language (VSL) . 45
2.6.4 Non-functional Properties . 46

2.7 Software Testing Principles . 49
2.7.1 Dimensions . 51
2.7.2 Dynamic Testing . 53
2.7.3 Model-based Testing (MBT) . 55

vii

viii CONTENTS

2.7.4 X-in-the-Loop (XiL) Testing . 57
2.7.5 Performance Analysis and Runtime Monitoring 61
2.7.6 Related Work on the Integration of Virtual and Physical Hardware . . . 63

2.8 Related Work on Power Consumption Modeling and Estimation 65
2.8.1 Low-level and Source Code-based Approaches 67
2.8.2 Model-based Approaches . 68
2.8.3 UML-related Approaches . 70

2.9 Summary . 72

3 Overview 77
3.1 Developer Workflow . 77
3.2 Scenarios . 81
3.3 Energy Bugs . 84

3.3.1 Energy Misbehavior . 84
3.3.2 Classification . 86
3.3.3 Example . 87

4 Software Design Pattern Framework 89
4.1 Introduction . 89
4.2 Design Pattern Identification Process . 90
4.3 Adapted Design Pattern Template . 91
4.4 Energy-aware Design Pattern Catalog . 94

4.4.1 Energy-aware Sampling (EAS) . 95
4.4.2 Event-based Computing (EBC) . 98
4.4.3 PowerMonitor . 101
4.4.4 Direct Memory Access Delegation (DMAD) 104
4.4.5 Mirroring . 107
4.4.6 Race-To-Sleep . 111

5 Power Estimation Concept for MDD 115
5.1 Overview . 115
5.2 Hardware Modeling . 117

5.2.1 Characteristics . 117
5.2.2 Formal Definition of Hardware Component Models 119
5.2.3 Integration into Software Models . 122

5.3 Power Analysis Profile (PAP) . 124
5.3.1 Overview . 125
5.3.2 MARTE Extension . 126
5.3.3 Hardware Abstraction Package . 127
5.3.4 Hardware Behavior Package . 129
5.3.5 Modeling Dynamic Power-related Behavior 132

5.4 Power Analysis Methods . 135
5.4.1 Indirect Power Analysis (IPA) . 135
5.4.2 Direct Power Analysis (DPA) . 136

CONTENTS ix

6 Prototype Implementation 139
6.1 Model Transformation . 140

6.1.1 Textual Representation . 140
6.1.2 Enhancement of the MDD Tool . 144

6.2 Data Exchange . 145
6.2.1 Simulation Data eXchange Protocol (SDXP) 145
6.2.2 Messaging Framework . 148

6.3 Policy-oriented Hardware Abstraction Layer . 149
6.3.1 Overview . 149
6.3.2 Three-layered Architecture . 150
6.3.3 Model Representation . 152
6.3.4 Application Example . 153

6.4 Unit for Central Control and Estimation (UC2E) 155
6.4.1 Graphical User Interface . 155
6.4.2 Communication Principles . 157
6.4.3 Integration of Measuring Devices . 158
6.4.4 Power Consumption Estimation . 159

6.5 Hardware-based Model-Testbed . 161
6.5.1 Overview . 162
6.5.2 Software Layer . 163
6.5.3 Hardware Layer . 165
6.5.4 Model-RPC . 168

7 Evaluation 175
7.1 Setup . 175
7.2 Case Study: Beehive Microclimate Sensor Node 176

7.2.1 Overview . 176
7.2.2 Hardware Component Modeling . 178
7.2.3 Software Application Modeling . 183
7.2.4 Scenario Definition . 185
7.2.5 Power Consumption Estimation . 186
7.2.6 Detection of Energy Bugs . 189

7.3 Overall Performance of DPA . 191
7.3.1 Investigation of Time Delays . 191
7.3.2 Power and Timing Tradeoffs . 196

8 Conclusion 197
8.1 Summary . 197
8.2 Outlook . 201

Bibliography 205

Publications 243

List of Acronyms 247

List of Figures 251

x CONTENTS

List of Listings 255

List of Tables 257

List of Symbols 259

Appendix 263
A Supplemental Background . 263

A.1 Model-driven Architecture (MDA) . 263
A.2 Tool Support in Model-driven Development (MDD) 265
A.3 Unified Modeling Language (UML) . 266

B Complete List of Tags for PAP Stereotypes . 273
C Model Transformation Example . 275

C.1 Model-to-Text Transformation . 275
C.2 Model Mapping of Hardware Component Models 277

D Supplementary Information about Model-RPC 279
D.1 The configType Object Structure . 279
D.2 OpenRPC Schema Specification for the UART write Method 283

E Supplementary Information about Model-Testbeds 285
E.1 Power Modes . 285
E.2 NXP LPC54114 Breakout Board Schematics 287

F Prototype Implementation Details . 289

Chapter 1

Introduction

This chapter introduces the field of embedded systems and motivates the need for energy-
aware software applications. It also discusses how model-based approaches can overcome the
challenges of developing energy-aware software applications and explains the importance of
considering energy and power-related aspects in the early evaluation. The resulting problem
statement is framed by the elaboration of challenges from which this thesis’s scope of research
and research questions are derived. Furthermore, limitations are discussed, and the structure
of this thesis is outlined.

1.1 Motivation

The global market for embedded systems has grown steadily over the past few decades due to
the number of different applications. Nowadays, embedded systems are ubiquitous and can be
found in domains such as automotive, healthcare, industrial automation, telecommunication,
the Internet of Things (IoT), and the Industrial Internet of Things (IIoT). In particular,
IoT and IIoT, where embedded systems are used for smart homes, smart cities, agriculture,
smart factories, and environmental monitoring, have the highest expected growth [2, 105, 423].
Researchers assume a continuing expansion of IoT devices over the following years. A study
proposed in [400] expects an increase from 8 billion devices in 2020 to more than 25 billion
by 2030. The authors of [80, 401] forecast IoT devices to represent 50 % of all networked
devices in the year 2023 using short-range technologies, such as Wi-Fi, Bluetooth, and Zigbee.
In a study released by Transforma Insights [257], an increase from 13.2 billion IoT devices
in 2022 to 34.4 billion in 2032 is expected, corresponding to an annual growth rate of 10 %.
Friedli et al. (2016) [126] estimate the number of mains-powered IoT devices in categories
such as smart appliances, roads, lighting, and home assistants to reach 5.7 billion by 2025,
with an expected standby power consumption of 46 TWh. The number of battery-powered
IoT devices is expected to reach 23 billion units in the same year [395]. In addition, the trend
toward more electric-powered devices across all sectors and the change to alternative energy
sources raise the risk of power outages. This affects the overall availability of electrical power,
making it an increasingly important resource. As energy prices continue to rise [416], the
power consumption of these devices becomes a critical design constraint.

Embedded systems are generally resource-constrained, especially for domains relying on
low-power systems such as IoT. In addition to general economic-related constraints like
total costs and short time-to-market, functional safety and technical constraints such as the

1

2 CHAPTER 1. INTRODUCTION

processing power, memory size, or battery capacity lead to multiple challenges in software
engineering. Supplementary to the mentioned constraints and the increased functionality
of modern software applications, software developers and engineers have to deal with the
growing complexity of embedded system designs at a low level due to the variety of processor
architectures, communication interfaces, and the growing number of proprietary hardware with
distinct functionalities. Especially for battery-powered IoT devices, energy and power-related
Non-functional Requirements (NFRs) for hardware and software need to be defined at the
beginning of the development since the battery capacity is one of the most critical factors for
the operational lifetime of the device. The supply of power can be a major challenge if those
devices are placed in harsh environments or buried underground [146, 409]. From an economic
and technical perspective, replacing or recharging the power source for these devices is often
either impossible, impractical, or results in higher costs.

Although energy consumption is an invisible property, it can be a significant bottleneck
of embedded systems [35]. Up to 80 % of the total energy consumption is generated by the
software application [231] since it drives and controls hardware components and, thus, directly
affects the energy-related behavior of the systems. In the past, energy and power consumption
aspects were addressed primarily at the hardware level, resulting in more energy-efficient
hardware components. So far, little attention has been given to the software layer that controls
and directs most hardware activities. In fact, as a property of hardware components, the
static energy demand can be addressed by improved hardware designs. In contrast, optimizing
the software application can address the dynamic energy demand during runtime. Energy
awareness is often completely ignored in the software development process [123] because
developers and engineers may be unaware of the causes of high energy consumption and
lack knowledge of how to reduce the energy impact of software applications [38, 289, 301].
Since the impact of the software application on energy consumption is often unknown, it
is essential to consider power-related NFRs in early design phases, where changes are more
effective [375]. However, even if the definition of NFRs related to energy and power in early
development phases prompts developers and engineers to design energy-efficient software
applications, the traditional software development process is not designed to address such
NFRs at an early development stage. The software development process typically focuses
on functional aspects, while non-functional aspects are tested and evaluated later in the
development cycle. At this point, the software application and hardware platform are close
to their final states, and the software application can be executed on the embedded system.
Addressing non-functional issues such as power consumption, energy efficiency, and real-time
in later development phases may lead to extensive re-design and re-implementation phases if
changes at the software architecture level or requirements level are needed [33]. These processes
may extend the development time and lead to higher costs, schedule delays, lost productivity,
damaged customer relations, or missed market windows [361]. In addition, no approaches
or tools exist for estimating the power consumption and detecting potential power-related
misbehavior of software applications in early development phases where the target hardware
platform may not be available or defined.

Indeed, model-driven approaches offer the opportunity to address and improve software
quality in early development phases [292]. As previous paradigm shifts in embedded software
engineering have led to higher levels of abstraction, approaches such as Model-driven Develop-
ment (MDD) for designing and developing software applications have received more attention.
MDD uses models and modeling techniques for the software development process to not only
achieve higher levels of abstraction but also to manage the complexity of software applications,

1.1. MOTIVATION 3

e.g., for embedded systems. Furthermore, MDD also increases the formalization of software
development activities and tasks so that processes can be automated [152, 369], which also
raises productivity [193]. Such automation allows developers and engineers to focus on the
application logic, behavior, and program flow of software applications and helps overcome
the challenges of the development process [56, 326]. Due to the formalization, models can be
exchanged between domains and reused with concepts like model-to-model and model-to-text
transformation, which increases developer productivity even further. Additionally, MDD en-
ables an evaluation of requirements at the architecture level in early stages of the development
process, e.g., using Model-based Testing (MBT) techniques. Exemplary for software appli-
cations used in airplanes, [153] compared an architecture-modeling approach with existing
development paradigms and found that 70 % of the software defects are located at the require-
ment or design level. While more than 50 % were identified during the hardware/software
integration as part of later development phases, less than 10 % of these defects were detected
in their respective phases. Due to this, the rework costs were 100 times higher than the costs
for correcting the errors at the levels they occurred.

McKinsey [92] confirms the increasing complexity of software development within embed-
ded systems and suggests the consequent application of Domain-driven Design (DDD) and a
ubiquitous language. As a ubiquitous language, the Unified Modeling Language (UML) [275]
may be used by both DDD and MDD [114]. As the most used modeling language in the embed-
ded software industry [7], UML provides concepts for object-oriented modeling of structural
and behavioral aspects of software applications and provides graphic notation techniques so
that software developers can focus on the application design, behavior, deployment, and pro-
gram flow. Additionally, with UML profiles, UML provides a generic extension mechanism to
include domain-specific concepts in the definition of models using stereotypes, tag definitions,
and constraints. Existing notations and specifications may be considered to introduce energy
awareness in UML. The Modeling and Analysis of Real-Time and Embedded systems (MARTE)
UML profile [278] extends the UML and provides a set of modeling concepts, data types, and
notations to support the modeling and analysis of real-time and embedded systems. MARTE
also enables the modeling of Non-functional Properties (NFPs), such as timing constraints,
performance, and schedulability, as well as basic power consumption and dissipation aspects
as static values.

It is crucial to consider both static and dynamic power and energy consumption aspects
for an energy-efficient system. Since the software application is responsible for hardware
activities during runtime, the advantage of addressing the software application to reduce the
(dynamic) energy consumption of an embedded system is obvious. In conjunction with the
fact that changes and optimizations of the software application are considered to be more
effective at higher levels of abstraction [375], design flaws and behavioral issues should be
identified early in development to minimize costs and development time. This is especially
true for energy- and power-related issues, which, as noted earlier, are typically discovered
in later phases of the development process. Although many efforts in the research areas of
software engineering and software development address energy-efficient software applications
and energy-aware development, there are still a number of unresolved high-potential topics.
In software engineering, for instance, such topics include the exploration of suitable design
concepts, models, patterns, and strategies to address energy- and power-related aspects [38].
MDD, however, lacks concepts, methods, and tool support for estimating power-related non-
functional aspects in early design and development phases. These unresolved topics will be
addressed within this thesis and further elaborated in the next section.

4 CHAPTER 1. INTRODUCTION

1.2 Problem Statement and Scope of Research

As motivated in the previous Section 1.1, developing software applications for embedded sys-
tems is a challenging task. In addition, developers and engineers have to deal with the increas-
ing complexity of embedded software applications caused by highly dynamic and constantly
changing technologies, extensive functionalities, protocols, and requirements [49, 282, 292, 369].
Especially for low-power and battery-powered embedded systems, energy and power efficiency
are the most critical quality attributes determining the operational lifetime of the device,
which has to be addressed by engineers and developers. This also implies that software appli-
cations play a central and critical role. For instance, the system will fail if the energy source
is exhausted too quickly due to a non-optimized software application or uncontrolled energy
consumption, which may result in costly damage, e.g., a loss of the device or harm to the
environment [202]. Regarding power consumption, Steve Furber, the designer of the original
ARM microprocessor, stated in an interview in 2010 [60]:

"If you want an ultimate low-power system, then you have to worry about energy
usage at every level in the system design, and you have to get it right from top to
bottom, because any level at which you get it wrong is going to lose you perhaps
an order of magnitude in terms of power efficiency. The hardware technology has
a first-order impact on the power efficiency of the system, but you’ve also got to
have software at the top that avoids waste wherever it can. [...] Do programmers
really have any understanding of how much energy their algorithms consume?"

This statement underlines the importance of optimization and evaluation at higher levels
of abstraction, e.g., the software architecture level, where changes are expected to be most
effective [143, 375]. This is also confirmed by researchers who argue that energy consump-
tion needs careful consideration [35] and should be studied across all software development
phases [123]. Understanding the impact of the software application on properties such as
power consumption and execution time requires developers to have in-depth information on
behavioral aspects of the software application, in particular hardware-software interactions.
The availability of energy-efficient hardware components indicates that power consumption is
well-addressed by developers and researchers at the hardware level. However, little attention
has been given to the software level that controls and directs most hardware activities, and the
energy-related impact of software applications is often unknown. In [38], the authors stated
that “[m]ost architects and developers are unaware of energy efficiency as a quality attribute
of concern, and hence do not know how to go about engineering and coding for it. More
fundamentally, they lack an understanding of energy efficiency requirements”. This statement
highlights important research gaps in energy-aware software engineering. For instance, new
concepts have to be developed to enhance the understanding of energy efficiency requirements,
how they are derived, and how they relate to software and system behavior. Developing
energy-efficient software encompasses many aspects of software development. This includes
the optimized use of compilers and (object-oriented) programming languages and the optimiza-
tion of the software architecture and behavior, e.g., the interaction between software modules
and hardware components. In software engineering, design patterns, as proven best practices,
might be used to overcome the complexity of applications and address energy-efficiency aspects.
However, there is an ongoing lack of suitable design concepts such as tactics or patterns [38].
Additionally, and to the best of our knowledge, only limited work towards software design

1.2. PROBLEM STATEMENT AND SCOPE OF RESEARCH 5

patterns exists, which directly describes the effect on energy efficiency and power consumption
when applied to the design of software applications.

With MDD as the main methodology used in this thesis, the software development process
is mainly driven by the use of models. Consequently, the consideration of power-related
aspects should be part of the MDD process and based on the defined models. Quantitative
results obtained by evaluations during the MDD process may be used to adapt the software
architecture and design to fulfill energy- and power-related NFRs already in early development
phases. Since the impact of software applications depends highly on the hardware platform,
an analysis of NFRs, especially for power- and energy-related aspects, is typically carried
out by engineers and developers in later development cycles where the software application
and the hardware platform are more advanced and functional testing has been completed
[235, 260, 367]. To still be able to perform early evaluations of, e.g., power constraints,
a suitable energy model has to be developed [35]. Additionally, to execute performance
evaluations w.r.t. energy and power consumption aspects, concepts to simulate and analyze
the behavior of software application models must be supported by MDD tools and integrated
into the development workflow of developers and engineers. Commercially available MDD
tools such as MathWorks MATLAB [380], MathWorks Simulink [383], and IBM Engineering
Systems Design Rhapsody – Developer1 [164] provide simulation environments and support
the execution of model-based test cases. Additionally, concepts and extensions for MathWorks
MATLAB [382] and IBM Rhapsody [165] exist, providing techniques to execute test cases
on, e.g., embedded systems. However, the evaluation provided by the aforementioned MDD
tools is focused on functional aspects of software applications and lacks support to analyze
and evaluate NFRs. Even while not directly mentioning MDD, Steve Furber also addresses
the lack of tool support during his interview [60]:

"[...] programmers will not be able to afford to be ignorant about the energy cost of
the programs they write. [...] You need tools that give you feedback and tell you how
good your decisions are. Currently the tools don’t give you that kind of feedback."

Currently, the evaluation of embedded software applications in MDD requires the inte-
gration of platform-specific source code. Moreover, it is based on repetitive steps, including
manual effort such as editing, compiling, and flashing the auto-generated source code for one
or multiple targets if, for instance, the most suitable system components, e.g., as sensors or
actuators, should be identified. This process is also denoted as edit-cross-compile-flash-debug
cycle [30, 393].

Besides the lack of tool support, the direct execution and evaluation of software applications
on target hardware platforms is part of later development phases when prototypes are available.
In early development phases, however, frequent hardware component changes still occur. The
effort necessary to evaluate non-functional aspects in this manner may result in a bottleneck
of the development process and may cause additional time delays and costs. This can be
compensated by a faster evaluation process in early phases, which may include, e.g., rapid
prototyping principles. It is essential to have a proper set of methods and tools that help
software developers in early design phases. These tools should enable the evaluation of
software applications regarding power-related NFRs by estimating the power consumption
and detecting possible power-related misbehavior. To the best of our knowledge, in MDD, no
approach exists for an early and straightforward power consumption estimation of software

1To improve readability, the abbreviation IBM Rhapsody is used in the following chapters of this thesis.

6 CHAPTER 1. INTRODUCTION

applications. Additionally, since embedded systems in domains such as IoT typically consist of
multiple sensors, actuators, and at least one communication interface, the power consumption
estimation approach should encompass the entire system.

With the right concepts, methods, and tools, developers and engineers are fully aware of the
software application’s system-wide energy footprint. They may be able to design and evaluate
energy-efficient software applications in an enhanced manner. Accordingly, the following thesis
statement emerges from considering open research subjects and the aim of this thesis.

Thesis Statement: “Developers and engineers are able to design energy-efficient
software applications and evaluate energy-related requirements in early develop-
ment phases of MDD if appropriate best practices exist and powerful analysis
methods with tool support are provided.”

The challenges resulting from the problem statement are addressed in the following Sec-
tion 1.2.1. The research questions derived from the identified challenges are presented along
with the scientific contributions of the thesis in Section 1.2.2.

1.2.1 Research Challenges

Modeling and estimating a software application’s impact on the overall system’s power con-
sumption is challenging, especially in early development phases, where the prototype hardware
platform may not be available or defined. Different challenges exist along the way to achieve
a power consumption estimation workflow for software applications in MDD, which can be
grouped into four broad categories:

Challenge 1: Definition of Power- and Energy-related Requirements
The description and differentiation of correct and faulty power- and energy-related behavior
is crucial for testing and evaluating the NFPs of embedded systems and, simultaneously, a
complex and challenging task due to the unique characteristics of these systems. Effective
testing and evaluation of power- and energy-related behavior requires a specific and more
formal definition of NFRs to determine whether the intended behavior meets the expectations.
In [34, 293, 295], a broad classification and definition of power-related misbehavior for certain
domains and device classes, e.g., smartphones, are provided. For example, Banerjee et al. (2014)
[34] mentioned that power-related misbehavior denoted as suboptimal resource binding is
defined as “binding resources too early or releasing them too late causes them to be in [a]
high-power state longer than required”. These and similar statements are primarily formulated
in a natural language, while a formal definition of such energy and power-related misbehavior
is missing. For the rest of this thesis, energy and power-related misbehavior are referred to
as energy bugs. A formal definition of energy and power-related NFRs would have a strong
interrelationship with energy bugs, where one may be derived from the other. In addition,
such a formal definition may significantly contribute to automatic analysis. It is not known
how to formally define energy and power-related NFRs and describe energy bugs so that they
can be interpreted and processed by both humans and machines.

Challenge 2: Best Practices of Energy-aware Design
When developers and engineers address power-related issues during software application de-
sign and implementation phases, the availability of documented best practices is essential to
implement the most appropriate solution. Such paradigms are typically referred to as software

1.2. PROBLEM STATEMENT AND SCOPE OF RESEARCH 7

design patterns. By using structural, creational, and functional design patterns, developers and
engineers can optimize and improve the software application in early phases while avoiding
time delays and increasing costs due to additional re-design and optimization cycles. However,
existing design pattern templates do not provide categories or fields to address non-functional
aspects such as power and energy consumption. To be able to calculate and estimate the effects
of a software design pattern, a design pattern template is needed to describe such energy-aware
software design patterns uniformly. With a focus on non-functional aspects, such a uniform
description allows the developer to compare the effects of different design patterns without
having to implement and test each variation and select the most suitable design pattern with
the highest positive effect.

Challenge 3: Design and Modeling of Power-related Properties
To model power-related aspects of the software application in MDD, properties of hardware
components and their dynamic behavior must be considered. Approaches found in the litera-
ture and discussed in Section 2.8 (p. 65 ff.) lack the capabilities to combine those power-related
aspects with the software application model. However, while focusing on the software per-
spective, the integration is necessary to consider the software application’s dynamic behavior
during simulation or execution and hardware-software interactions for the analysis process. So
far, it is unknown how software application models can be extended and which techniques are
suitable to model power-related aspects in MDD. The additional effort to model power-related
aspects should not force software developers to lose their focus on the software design and
their actual workflow of the software modeling process. Furthermore, power-related model
components must be integrated into the software model without the need to adapt existing
structures or restrict intended functionalities. They also have to be removed before the final
source code is generated. Therefore, the challenge is to define a lightweight extension for
software application models which can be used to estimate power consumption.

Challenge 4: Simulation and Evaluation of Software Application Models with
integrated Energy Models
For the evaluation in early development phases, the simulation of software application models
is a significant aspect. By performing simulations as early as possible during development,
developers may identify problems that would otherwise remain undetected and become visible
in later phases, e.g., field tests. While some tools in the MDD domain offer a simulation
environment for evaluation, they focus on functional aspects and do not support an evaluation
of non-functional aspects. Furthermore, the hardware behavior must also be part of the
simulation environment to reflect hardware-software interactions. So far, no method exists
to include power- and energy-related non-functional aspects in the simulation or execution of
software application models. Besides the simulation, the analysis of NFRs is also not addressed
by current MDD tools. Instead, the analysis is carried out and performed in later development
stages, where the time and effort needed to address the misbehavior is significantly higher.
However, it is unclear how the analysis may be performed during early modeling. Besides
defining concepts for the evaluation process and verification mechanisms, an analysis tool
has to be developed which can be integrated into the MDD process. For a proper analysis,
an optional solution would be aware of all hardware models and hardware accesses initiated
by the software application. Due to the lack of support from MDD tools, the evaluation
process must be executed separately, e.g., based on simulation logs. A more promising but

8 CHAPTER 1. INTRODUCTION

non-trivial approach would be to interconnect the simulation environment with the analysis
tool to realize runtime monitoring, which also requires proper instrumentation for a power
consumption estimation.

1.2.2 Research Questions and Contributions

To address the challenges introduced in Section 1.2.1, the following Research Questions (RQs)
have been derived, focusing on the engineering and evaluation of software applications in the
early development phases of MDD.

RQ1 – Formal Definition of Energy-related Behavior and Defects: How should
non-functional requirements for energy-related behavior be described?

Defining a clear and comprehensive set of NFRs is essential when designing energy-aware
embedded systems. During the design phase, it is important to precisely describe the expected
energy-related behavior so that developers are able to make comparisons during testing and
automate the evaluation process. RQ1 is related to Challenge 1.

The following contributions to address RQ1 provide fundamental concepts as a basis for
further approaches presented in this thesis. A novel formal description of NFRs is presented
to accurately specify the expected energy-related behavior of an embedded system. Addi-
tionally, a formal specification of energy bugs as the description of power-related misbehavior
w.r.t. embedded systems is provided. While the specification of energy-related NFRs and
the description of energy bugs as violations of such NFRs share the same underlying met-
rics, power-related misbehavior may be detected and classified during testing. Furthermore,
a precise specification of the environment and system properties by a set of conditions and
constraints has been elaborated to describe the range of validity of both NFRs and energy bugs
when executing test cases. The contributions are published in [341] and may be summarized
as follows:

• The introduction of the two metrics, energy quota Equ and the maximum current de-
mand Idmax , for the formal description of power- and energy-related NFRs and for the
specification of boundaries for an energy bug-free system or subsystem. Due to the
formal definition of energy bugs, they can be expressed using the same metrics. This
enables developers to perform a power analysis and evaluation of NFRs and facilitates
the application of automated processes.

• A novel and more comprehensive classification of energy bugs independent of specific
device types. The presented classification categorizes energy bugs based on their charac-
teristics and origin, e.g., hardware and software layers.

• The concept of scenarios as a set of conditions and constraints to specify aspects of
the environment and the system for the execution of test cases that apply for a specific
amount of time. As a modeling approach of the environment and the context for testing,
the concept of scenarios also addresses RQ4.

1.2. PROBLEM STATEMENT AND SCOPE OF RESEARCH 9

RQ2 – Best Practices and Design of Energy-aware Software Applications: What
are the best practices for energy-aware software applications, and how can they be uniformly
described and formalized as design patterns?

This RQ is related to Challenge 2 and addresses the problem of how aspects related to
power and energy consumption as NFPs of a system may be considered when designing soft-
ware applications. Furthermore, RQ2 aims to investigate whether design patterns for software
applications focusing on power and energy consumption can be described uniformly so that
software developers can identify and apply best-practice solutions for their problems.

By applying energy-aware software design patterns, it is expected that the misbehavior of
software applications may already be addressed at an early stage of development. The idea to
address RQ2 is to provide software developers with a catalog of behavioral design patterns for
software applications as reusable paradigms at the design and architecture level, focusing on
power-related aspects. For this, a novel framework has been defined to identify and describe
energy-aware software design patterns. The contributions are published in [337, 338, 392] and
may be summarized as follows:

• The development of a novel framework and a design pattern template for the identifica-
tion and uniform description of software design patterns. The design pattern template
introduces a new section to address the impact and side effects on NFRs, the two metrics
energy balance EBP and efficiency factor ηP , and a uniform graphical representation to
outline the power-related and computational behavior of design patterns.

• A catalog of energy-aware design patterns to demonstrate and prove the applicability
and expressiveness of the framework. The catalog contains novel and existing design
patterns from different areas of software and hardware development.

RQ3 – Joint Modeling of Functional Software Application Models and Energy
Behavior: How can software application models be extended with energy-related hardware
characteristics to make the software-related impact visible and traceable?

RQ3 addresses Challenge 3 and aims to discover concepts and mechanisms for enhancing
software application models to make energy-related features visible during analysis. Addition-
ally, RQ3 refers to the necessary level of detail and characteristics when modeling hardware
components and how they may be seamlessly integrated into the software application model.

To model power-related aspects of the system, a description of hardware components and
their power-related behavior is required. For this, a specification of hardware component
models is introduced, which also incorporates an energy model to specify the temporal power-
related behavior of a hardware component model. For the description of power-related aspects,
the novel Power Analysis Profile (PAP) is introduced as a domain-specific customization of
UML to provide an energy-modeling and, e.g., to integrate the concepts of energy models for
UML state machines. For this, the PAP provides additional stereotypes and tagged values to
specify, for instance, the electric current consumption and execution time. Since the concept
of hardware component models can be mapped to UML elements, e.g., by the aid of the PAP,
a seamless integration into the software application model can be performed, resulting in a
system model which addresses RQ3.

10 CHAPTER 1. INTRODUCTION

The main contributions are published in [336, 339, 340, 341, 391] and can be summarized as
follows:

• A novel system-wide modeling approach based on hardware component models covering
Microcontroller Units (MCUs) and connected peripheral devices.

• A UML-based description of hardware components that can be combined with a software
application model to define a system model. Composed of an energy model as a UML
state machine for energy-related non-functional aspects and a UML class for functional
aspects, hardware component models provide interfaces for their utilization by software
application models in MDD.

• The PAP UML profile to model energy-related aspects. The UML profile is based on
the MARTE profile and provides stereotypes to extend hardware component models and
introduces new data types to describe the electric current and voltage as NFPs.

RQ4 – Early Evaluation of Energy-aware Software Applications in MDD: How
can the energy-related impact of software application models be determined, and energy-related
misbehavior be identified when the hardware platform is not available or only partially available?

The execution of software application models is based on simulations. Since MDD tools
and simulation environments differ strongly w.r.t. their general functionality, an external anal-
ysis process has to be developed. For the evaluation of energy-related aspects, concepts to
cope with the different conditions in early development stages have to be defined.

To answer RQ4 and overcome Challenge 4, the MDD tool used in this thesis is enhanced
to transform hardware component models for a tool-independent approach. The simulation
environment of the MDD tool has also been extended to allow data exchange with external
analysis tools during execution. Moreover, power analysis methods have been developed for
the early evaluation of energy-aware software applications in MDD. The main contributions
to address RQ4 are published in [339, 340, 341] and may be summarized as follows:

• The Indirect Power Analysis (IPA) method provides a simulation-based rapid power
analysis with a virtual hardware platform based on hardware models. This method may
be used to test software application models without physical hardware, for example, in
early development phases.

• The Direct Power Analysis (DPA) method, a superset of IPA, defines a novel in-the-loop
testing approach and utilizes a physical embedded system (testbed) for the estimation
process. To achieve an early power consumption estimation, DPA and IPA are based on
the same set of communication protocols and a centralized tool to simulate hardware
components (IPA) and to enable communication between the software application model
and the testbed (DPA) during simulation. With DPA, software application models
executed within a simulation environment can interact with the testbed to obtain, for
example, real sensor data.

• A case study of an IoT application for a beehive microclimate sensor node as a proof-
of-concept intended to demonstrate the applicability and potential of the overall power
consumption estimation approach. The proof-of-concept includes the specification of

1.2. PROBLEM STATEMENT AND SCOPE OF RESEARCH 11

Hardware Models

with integrated

Energy Model

Energy-aware

Software

Application Models

Power-related

Behavior

improvement improvement

Energy-aware

System Model

RQ4RQ1

RQ2 RQ3

Simulation

Power Analysis

and Estimation

Figure 1.1: Framing and associated RQs of this thesis. Notation according to [197, 198].

software and hardware models, the elaboration of scenarios, and the definition of energy-
related NFRs. By this, the provided case study also contributes to the evaluation of
RQ1 and RQ3.

Figure 1.1 sketches the overall approach depicted as a Y-chart2 with associated RQs as notes.
For example, contributions to answer RQ1 provide fundamental concepts for the power analysis
process, which may be used to improve software application models. Note that the improvement
of hardware models may also be achieved but is not in the scope of the presented thesis.
Software models may become energy aware when contributions to address RQ2 are applied.
Hardware models are defined by concepts resulting from answering RQ3 and are combined with
the energy-aware software model into a system model. Contributions to address RQ4 cover
parts of the simulation and the power analysis concept to achieve early power consumption
estimation.

The introduced contributions to answer RQ1 to RQ4 have been part of different publications.
The following Table 1.1 contains a list of core publications addressing the four presented RQs.
A complete list of related publications that resulted from this thesis is presented in Chapter
Publications (p. 243 ff.).

2The term Y-chart refers to the shape of the diagram and is not related to the well-known representation
to visualize design views and hierarchies introduced by Gajski and Kuhn (1983) [130].

12 CHAPTER 1. INTRODUCTION

Publication Title RQ1 RQ2 RQ3 RQ4

As Lead Author

Framework of software design patterns for energy-aware embedded
systems. [337] ✓

Energy-aware pattern framework: The energy-efficiency challenge for
embedded systems from a software design perspective. [338] ✓

Power consumption estimation in model driven software development for
embedded systems. [339] ✓ ✓

Towards power consumption optimization for embedded systems from a
model-driven software development perspective. [340] ✓ ✓

Hunting energy bugs in embedded systems: A software-model-in-the-loop
approach. [341] ✓ ✓ ✓

As Co-Author with equal contributions

Rapid-prototyping and early validation of software models through
uniform integration of hardware [393] ✓

PowerMonitor: Design pattern for modeling energy-aware embedded
systems: Work-in-progress. [392] ✓

Software design of energy-aware peripheral control for sustainable
internet-of-things devices. [391] ✓

Table 1.1: Relationship between core publications and introduced RQs.

1.3 Limitations

This thesis aims to provide novel approaches for the estimation of power consumption as
well as the description of energy-aware software design patterns. The introduced concepts
of energy bugs, scenarios, and energy-aware software design patterns are specified at a high
level of abstraction. Therefore they can be extended, modified, and applied to other domains.
However, the power consumption estimation concept has more specific requirements. To
provide a proof-of-concept, the presented work is limited in several areas:

• Type of embedded systems: We target software application models for embedded systems,
especially IoT devices with limited resources and computing power that collect data and
send information using specific wireless communication protocols. We specifically do
not consider high-performance computing or desktop applications, desktop and server
systems, and distributed systems with intensive network communication. The presented
concept may be applied to the aforementioned domains. However, no feasibility studies
have been conducted on this topic. Additionally, it is not in the scope of this thesis to
provide a network simulator.

• MCU Support: Another limitation is the support for different MCUs. As an execut-
ing platform for the evaluation process, we have developed three prototypes based
on the Espressif Systems ESP32 [111], NXP LPC54114 [269], and STMicroelectronics
STM32L476 [371] MCUs specifically designed for power measurement and rapid prototyp-
ing. The software has been ported for all three platforms. However, the proof-of-concept

1.3. LIMITATIONS 13

presented in this thesis does not aim to provide a direct comparison between or a detailed
performance analysis of these MCUs.

• Modeling Languages: As the most widely used modeling language in the embedded soft-
ware industry [7], UML is used to specify models of software applications and hardware
components. The concepts presented in this thesis may be applied to other model-
ing languages providing mechanisms for extending models and describing NFPs. First
results for the adaptation of the proposed approach to enable functional testing in Math-
Works Matlab/Simulink were submitted as new research and accepted as a scientific
publication [393].

• Quality of Hardware Components Models: The power consumption estimation process
can only be as good as the models used in the estimation process. Generally, the quality
of a hardware model depends on multiple factors, e.g., the availability of data sheets,
measuring instruments, and the experience of developers. However, the introduced power
estimation approach is limited if a hardware component to be modeled has at least one
or more of the following properties:

– Black Box Model and Behavior : If hardware components are described as a black
box, the power-related behavior can only be deduced from observations, whereby
it is not always clear which operations lead to a changed power-related behavior.
Additionally, if the current state of the component cannot be queried or determined,
the present concept can only assume the expected behavior during a simulation.
However, assumptions can lead to significant differences and inaccuracies in the
power consumption estimation process.

– Environmental Impact: The presented concepts in this thesis are not designed
to include (randomly occurring) environmental effects in the estimation process,
leading to a change in the power-related behavior of hardware components. This
thesis introduces the concept of scenarios to define a subset of possible environmental
impacts for specific use cases. To fully include the effect of the surrounding, an
environmental model and simulator or a highly specific laboratory environment
are necessary to control, for example, interference in wireless communications or
particle changes in the air during simulation. However, such approaches may be
coupled with the presented concepts.

Additionally, power-saving techniques such as Dynamic Voltage and Frequency Scal-
ing (DVS) and Dynamic Voltage Scaling (DVFS) may, theoretically, also be modeled
abstractly but are also not in the scope of this thesis.

• Code Generation and Optimization: The thesis aims to estimate power consumption
in early development phases. This also includes stages in which the hardware platform
is not defined, currently being evaluated, or only partially available. The concepts in
this thesis are focused on behavioral and architectural aspects of software application
models and not on the characteristics of specific programming languages. However,
according to the MDD methodology, the hardware-specific source code of such software
applications models is obtained by automatic code generation techniques provided, e.g.,
by MDD tools. In order to be independent of programming languages, our approach is
limited to the simulation of software application models, while source code generation
or power-related optimizations on the source code level are not considered.

14 CHAPTER 1. INTRODUCTION

1.4 Thesis Outline

This section outlines the remaining structure of the thesis. Related topics have been grouped
thematically into individual chapters to enhance the readability and the common thread.
Unless stated otherwise, the color coding in figures presented in the following chapters enhances
the illustration and has no semantic meaning. Figures without references in their caption were
developed by the author.

Chapter 7
Evaluation: Power Consumption Estimation for IoT Case Study

Chapter 3
Developer Workflow, Scenarios, and Energy Bugs

Chapter 4
Software Design Pattern Framework

Chapter 6
Prototype Implementation

RQ1

How should non-functional requirements for energy-related

behavior be described?

RQ2

What are the best practices for energy-aware software

applications, and how can they be uniformly described and

formalized as design patterns?

RQ3

How can software application models be extended with

energy-related hardware characteristics to make the

software-related impact visible and traceable?

RQ4

How can the energy-related impact of software application

models be determined, and energy-related misbehavior be

identified when the hardware platform is not available or only

partially available?

Chapter 5
Power Estimation Concept for MDD

Figure 1.2: Relations between main chapters with addressed research questions. Arrows
indicate usage relationships.

Figure 1.2 provides a graphical overview of the relations between the main chapters of this
thesis and their associated RQs. Each chapter focuses on one RQ but may also contribute to
answering additional RQs. The remainder of this thesis is organized as follows:

Chapter 2 (p. 17 ff.) presents related work and background closely related to the challenges
and contributions of this thesis. This includes background in the field of software and systems
engineering, including electrical power measurement, embedded systems, embedded software,
IoT, requirements engineering, and MDD. Related work is discussed on energy bugs, software
design patterns and their correlation to power and energy consumption, the integration of
virtual and physical hardware devices, and power consumption modeling and estimation. To
further enhance the understanding of methodological, technological, and design choices, this
chapter concludes with an additional section to summarize findings and remarks.

Chapter 3 (p. 77 ff.) outlines the overall approach of this thesis and describes how the
presented concepts are related and interconnected. In addition, this chapter introduces the
basic concepts of scenarios and energy bugs as contributions to answering RQ1, which form
the basis for other concepts in subsequent chapters of the thesis.

1.4. THESIS OUTLINE 15

Chapter 4 (p. 89 ff.) presents the software design pattern framework for identifying and
describing energy-aware software design patterns. To overcome RQ2, the framework describes
the design pattern identification process and introduces a novel design pattern template. This
chapter also provides the first energy-aware design pattern catalog, containing five design
patterns reusing existing solutions and one newly developed design pattern. All energy-aware
design patterns are uniformly described with the presented design pattern template.

Chapter 5 (p. 115 ff.) introduces the power consumption estimation concept for software
applications models in MDD to answer RQ3 and parts of RQ4. In addition to the presentation
of the concept vision, this chapter describes the hardware modeling process and introduces
a UML profile to model power-related aspects as contributions to address RQ3. To answer
parts of RQ4, two power analysis methods are proposed.

Chapter 6 (p. 139 ff.) introduces a prototype implementation of the power estimation
methods presented in Chapter 5 as a proof-of-concept. The implementation also includes
the development of a policy-oriented Hardware Abstraction Layer (HAL), an external and
independent estimation tool, communication protocols, and a set of hardware platforms for
the power estimation of system models during simulation.

Chapter 7 (p. 175 ff.) provides the evaluation of the power consumption estimation
approach based on the prototype implementation introduced in Chapter 6. A case study
of a beehive microclimate sensor IoT node example illustrates the application of the model-
driven concepts introduced in Chapter 5. The case study covers the definition of hardware
component models in UML for each component of the sensor node and also demonstrates
the use of the PAP UML profile to model static and dynamic power-related NFPs. Besides
the case study evaluation, the overall performance of the power estimations method with a
connected hardware platform is discussed.

Finally, Chapter 8 (p. 197 ff.) concludes this thesis and summarizes the contributions
and findings to overcome the introduced RQs. This chapter also provides a conclusion of this
thesis and an outlook with open and new ideas for future research.

Chapter 2

Related Work and Background

This chapter presents the related work and background regarding the proposed concepts and
approaches to increase the understanding of this thesis. Since the proposed contributions
consider and combine various fields to answer RQ1 to RQ4, the related work and background
presented in this chapter cover a wide range of topics. An outline of electrical power measure-
ment fundamentals, metrics, and techniques are presented in Section 2.1. Section 2.2 presents
an overview of embedded systems, embedded software applications, and IoT as the basis for
the case study presented in Chapter 7 (p. 175 ff.). Aspects of requirements engineering are
discussed in Section 2.3. An overview of pattern descriptions and related work on patterns
with correlation to power and energy consumption are provided in Section 2.4. Section 2.5
introduces concepts of MDD, while Section 2.6 covers selected aspects of MARTE as a basis
UML profile to model non-functional aspects. Section 2.7 gives an overview of software testing
principles. Finally, Section 2.9 discusses further findings and remarks, as well as technology
and design decisions based on the presented work.

2.1 Electrical Power Measurement
This section presents the physical background on topics related to electrical power, electrical
energy, and power consumption measuring techniques. The topics in this section provide
basics for modeling power- and energy-related requirements and properties and for measuring
embedded systems as part of the power estimation process.

Section 2.1 briefly introduces the terminology and fundamentals of voltage and electric
current, as well as power and energy as characteristics of hardware components used, for
example, in embedded systems as described in Section 2.2 (p. 21 ff.). Metrics based on the
introduced fundamentals, which can be used for requirement evaluation within the concepts
presented in Chapter 5 (p. 115 ff.), are covered in Section 2.1.2. Section 2.1.3 discusses different
power measurement techniques along with their advantages and disadvantages.

2.1.1 Physical Fundamentals

The first term introduced is the electric charge (Q), which defines a property of matter. It is
responsible for a certain force that the matter experiences in an electromagnetic field. The unit
of electric charge is defined as coulomb (C). The electric charge can be positive or negative
and is carried by subatomic particles, for example, as the elementary charge of an electron
which is ∼ 1.602 · 10−19 C. An electric field is a structure that surrounds electrically charged

17

18 CHAPTER 2. RELATED WORK AND BACKGROUND

elements. Electric potential refers to the amount of work needed, e.g., energy, to move a unit
of electric charge Q from one point in the direction of another point within the electric field.
The unit of electric potential is volt (V), which is equal to J · C−1, and describes the ratio
between potential energy in joules (J) and electric charge in coulomb (C).

Voltage, denoted as U , can be described as the difference in electric potential between two
points and, thus, as the quantitative measure of the potential difference. Electric current, also
referred to as current in this thesis, is defined as Q · t−1 and defines the flow of the electric
charge Q across an electrical conductor or space at the rate of one C during an interval of
time t. As stated by Ohm’s law, the electric current between two points in a conductor is
directly proportional to voltage. The electric current is formally denoted as I and measured
in ampere (A).

Electric power, denoted as P and also known as power consumption, describes the rate at
which an electric circuit transfers electrical energy. For non-constant parts whose characteristics
may vary over time, the electric power P is defined as:

P (t) = U(t) · I(t) (2.1)

The electric power is measured in watts (W), which is equal to J ·s−1 and V ·A. The dominant
technology used for integrated circuits, such as MCUs and other peripheral devices, e.g., sensors,
is Complementary Metal-Oxide-Semiconductor (CMOS). The structure of CMOS-based parts
consists of p-type and n-type Metal-Oxide-Semiconductor Field-Effect Transistors (MOSFETs)
as building blocks to implement internal logic. The two types differ on the doping element used
and thus types of charge carriers, such as holes for p-type and electrons for n-type MOSFETs.
As a variant of field-effect transistors, MOSFETs use an electric field to control the flow of
current. The three pins of a MOSFET are labeled as Source, Drain, and Gate. While the
Drain is connected to the load, the Source is typically connected to a positive voltage for p-type
or to ground in the case of n-type MOSFETs. The Gate is used to control the flow of current,
which has to be a high state for p-type and a low state for n-type MOSFETs to enable current
flows. For more detailed information about MOSFETs, the reader may refer to [195, 196, 298].
The power consumption of CMOS-based parts is defined as [157, 196, 297, 425]:

P = Pshort + Pswitch + Pstatic (2.2)

The instantaneous power consumption shown in Equation (2.2) can be subdivided into short-
circuit (Pshort), switching (Pswitch), and static power consumption (Pstatic). The terms Pshort

and Pswitch are both related to the dynamic power consumption of CMOS-based components
being active and values of signals are changing so that:

Pdyn = Pshort + Pswitch (2.3)

The term Pshort in Equations (2.2) to (2.3) results from the short-circuit current Ishort, which
occurs when the p-type and n-type MOSFETs are simultaneously active during the switching
event. In this case, the CMOS conducts current directly from the supply voltage (Vdd) to the
ground for a short time. Pshort can be defined as:

Pshort = Ishort · Vdd (2.4)

Pswitch defines the power consumption during the switching activity of the CMOS and is
defined as:

Pswitch = α · CL · Vdd
2 · f (2.5)

2.1. ELECTRICAL POWER MEASUREMENT 19

with CL as the load capacitance of the CMOS logic and f as the operating or clock frequency.
The activity factor α ∈ [0, 1] defines the fraction of the circuit that is currently switching [200]
or, in other words, the average of the total capacitance of a circuit charged and discharged each
cycle at the clock frequency f [195]. The value of Pshort in Equation (2.4) can be considered as
low compared to the power consumption originating from the switching activity because it only
occurs for a short time during each transition, which is why Pshort is often neglected [196]. The
static power consumption Pstatic in Equation (2.2) describes a constant power consumption
of CMOS-based circuits without any switching activity, which is also called leakage power
consumption. In a simplified manner, Pstatic can be defined as:

Pstatic = Ileak · Vdd (2.6)

with Ileak as the leakage current. However, the definition of Ileak is complex since various
effects lead to different types of leakage, including sub-threshold leakage, gate leakage, reverse-
biased-junction leakage, gate-induced-drain leakage, gate-oxide leakage, gate-current leakage,
and punch-through leakage [157, 195, 196].

Energy defines the ability to do work. Electric energy E is measured in Joule (J) with
J = V · A · s = W · s and is related to the fraction of potential energy required to move
a charged element Q between two points in an electric field. As defined in Equation (2.7),
electric energy can be calculated by considering the rate of energy transfer (electrical power)
over a given time.

E =
∫︂

t
P (t) dt (2.7)

2.1.2 Metrics

If questions about the performance and characteristics of a system have to be answered, metrics
come into play. Generally, a metric can be defined as a function used to map a property or
characteristic of a system to a numerical value, denoted as a measure. This measure can
be used as a performance indicator to achieve comparability, e.g., to evaluate the quality or
effectiveness of improvements, to identify the most suitable solution, and to decide if functional
and non-functional requirements have been fulfilled. In addition to metrics, methods may
be defined describing how to perform the investigations and measurements from which the
measures are derived. The two basic metrics of power P and energy E (cf. Section 2.1.1,
p. 17 ff.) may be used for the power consumption estimation concept presented in this thesis.

With P as the metric for power, the peak and average power consumption of a system
may be measured and used to predict properties related to heat dissipation and cooling, for
instance. In addition, this metric may also be used to express power supply constraints and
maximum battery loads. Using the energy consumption E as a metric allows an estimation of
the battery consumption and expected lifetime of the system or the dimensioning of critical
components such as batteries.

Metrics can also be combined with other metrics and properties of the system in order to
define more complex metrics, e.g., for CMOS circuits. The power-delay product, for example,
is an indicator of the energy consumed per switching event and is defined as the product of
the average power consumption times the input-output delay, propagation delay, or duration
of the switching event. The energy-delay product is another metric in the CMOS domain for
energy and performance which is specified as the product of the power-delay product times

20 CHAPTER 2. RELATED WORK AND BACKGROUND

the delay. However, the concept of the energy-delay product has been adapted in the past,
e.g., as an indicator of the efficiency of programming languages [136] or high-performance
computing applications [363]. It might also be suitable for the consideration of the load on the
battery. Additionally, different variants of the energy-delay product exist where single factors
are potentiated by integer values and, thus, introduce a weighting to increase the significance
of either the energy or the execution time.

The basic metrics are sufficient for estimating power consumption as described in Chap-
ter 5 (p. 115 ff.). It should be noted that the definition of energy-related NFRs (cf. Section 2.3.3,
p. 30 ff.) and the resulting concept of energy bugs (cf. Section 3.3, p. 84 ff.) are not limited
to specific metrics and may be extended to consider additional or different metrics, such as
the power-delay product.

2.1.3 Measurement Techniques

Different techniques exist to measure the electric current consumption of a System Under
Test (SUT) consisting of a single hardware component or a full-fledged embedded system [128,
418, 428]. Resistance-based and charge-based measurements are two of the most common
principles for measuring direct current in an electric circuit. Alternative approaches based on
current transformers, Rogowski coils, or Hall-effect sensors that measure current indirectly via
magnetic fields or inductions are neglected because their underlying physical principle may
only work in alternating current circuits, may be used in much higher current scenarios, or
may have low accuracy.

R_Shunt Amplifier

VDD

R_SUT

ADC MCUU_Shunt

I_SUT

Amplifier ADC

Figure 2.1: Schematic for a shunt-based current measurement. Notation based on [169].

For the resistance-based current measurement, a resistor with low resistance, also called a
shunt resistor, is used in parallel with an ammeter or multimeter. The measured voltage across
the shunt resistor, also referred to as voltage drop, is proportional to the current. Figure 2.1
shows a simplified circuit design for shunt-based measurements. By using Ohm’s Law, the
actual electric current value can be calculated as follows:

I_SUT = U_Shunt

R_Shunt
(2.8)

The SUT is considered as a variable resistance in the circuit diagram shown in Figure 2.1. A
shunt resistor is placed in series to the SUT so that the current which passes the SUT also has

2.2. EMBEDDED SYSTEMS 21

to flow through the shunt resistor. As indicated in Figure 2.1, an amplifier and an Analog-to-
Digital Converter (ADC) are typically used to sample the current value. A high resistance of
the shunt resistor results in a greater voltage drop, and by this, effects of the circuit, e.g., due
to static and thermal noise, will be minimized, and the overall measurement will be improved.
However, a high voltage drop negatively affects other components in the circuit. Based on
the expected electric current to be measured, selecting the best suitable shunt resistor is a
tradeoff between measurability and minimizing negative effects. The voltage drop can be
addressed if the measuring device is connected to a regulated power supply in a closed-loop
manner to dynamically adjust the voltage powering the device. In this configuration, it can be
ensured that the SUT always receives the intended operating voltage [240]. For a fine-grained
current measurement, a high sample rate is required. Because this technique is based on
sampling, values between two samples remain unnoticed. As the time difference between two
samples increases, more data, such as peaks in both directions, cannot be sampled, making
the measurement less accurate.

A technique that solves the sampling problem is denoted as charge-based measurement. For
instance, a concept presented in [160] uses a transistor-based current mirror circuit designed
with two capacitors. The basic principle of this technique is that the transistor mirrors
the current drawn by the SUT while a capacitor, acting as a short circuit, is charged. As
exemplary concepts presented in [160, 206], a RS flip-flop switches between the capacitors
if one is fully charged and initiates a discharge while the next capacitor starts charging
simultaneously. Since the capacitance and the voltage are known, the power consumption can
be calculated by counting the charge-discharge events as another form of sampling. While
sampling problems do not directly affect this technique, other disadvantages exist. First,
the transistor’s characteristics must match the SUT’s characteristics in terms of the electric
current consumption range. Due to the increased complexity of the current-mirror circuit
design, adaptions are harder to achieve compared to the introduced resistance-based technique.
Second, the capacitors have to be scaled so that they are small enough to get a high resolution
but still be able to collect sufficient data since the capacitor is not collecting any charges while
discharging. If the capacitance is chosen too large, this approach may be unable to locate peak
currents time-wise. When neglecting the switching time, this technique is able to accurately
measure the average current used by the SUT.

2.2 Embedded Systems

It is expected that over 95 % of software applications developed are aimed to be executed on
embedded systems [285]. As a “combination of computer hardware and software, and perhaps
additional mechanical or other parts, designed to perform a dedicated function” [132], embedded
systems have become ubiquitous and can be found in domains such as automotive, aerospace,
agriculture, robotics, consumer electronics, healthcare, IoT, and IIoT [36, 146, 261]. This
section introduces background on embedded systems as a target platform for the presented
early power consumption estimation of software applications in MDD. Section 2.2.1 introduces
the architecture, characteristics, and challenges of embedded systems, while Section 2.2.2
focuses on software applications for embedded systems and describes their impact on power
consumption. Section 2.2.3 introduces IoT as the field of application for embedded systems
considered in this thesis.

22 CHAPTER 2. RELATED WORK AND BACKGROUND

2.2.1 Architecture and Characteristics

This section discusses the architecture of embedded systems from a hardware perspective,
their characteristics, and the typical challenges such systems have to overcome. Figure 2.2
illustrates the generic architecture with typical components of an embedded system consisting
of a Central Processing Unit (CPU), a fixed amount of volatile and non-volatile memory such
as Random-access Memory (RAM), flash memory, and Read-only Memory (ROM), General
Purpose Input/Outputs (GPIOs), ADCs, and Digital-to-Analog Converters (DACs). In modern
embedded systems, MCUs are used that combine the aforementioned components within a
single integrated circuit and may include other serial communication interfaces such as Serial
Peripheral Interface (SPI), Universal Asynchronous Receiver Transmitter (UART), and Inter-
Integrated Circuit (I2C) [298]. Embedded systems, such as the example in Figure 2.2, are
heterogeneous and distributed by design. Different types and numbers of MCUs can be
combined into a System-on-Chip (SoC). An embedded system may also consist of various
sensors, e.g., measuring temperature, humidity, light, pressure, audio, or gas, and actuators
interacting directly with the environment, such as displays and motors. Moreover, wireless
and wired communication interfaces enable interaction with other systems.

P
o

w
e

r
S

o
u

rc
e

R
O

M
R

A
M

C
P

U

A
D

C
D

A
C

S
e

ri
a

l
In

te
rf

a
c
e

s

(I
²C

,
S

P
I,

 U
A

R
T

)

G
P

IO
 M

a
tr

ix

S
e

n
s
o

rs
A

c
tu

a
to

rs
C

o
m

m
u

n
ic

a
ti
o

n

In
te

rf
a

c
e

s

E
n

v
ir

o
n

m
e
n

t

Embedded System

F
la

s
h

Figure 2.2: Generic block diagram of an embedded system architecture. Horizontal arrows
describe bi-directional communication between components, while the vertical arrow represents
a communication bus.

Compared to general-purpose systems, for instance, workstations designed to interact with
other devices and users to perform various tasks, an embedded system is intended to be used
for a limited but highly specific task while interacting with the physical environment [35].
Embedded systems have to be fault tolerant, robust, and resilient to spontaneous events,
condition changes, and extreme conditions such as humidity, temperature, or radiation of
the environment in which they are placed [59, 222]. As an additional characteristic, they
are required to perform the intended tasks without maintenance, have restricted resources
in terms of processing power, memory size, and operating system support, as well as a large
number of constraints, including real-time, efficiency, safety, costs, weight, size, reliability, and

2.2. EMBEDDED SYSTEMS 23

Class Data Size Code Size

Class 0 ≪ 10 KiB ≪ 100 KiB

Class 1 ∼ 10 KiB ∼ 100 KiB

Class 2 ∼ 50 KiB ∼ 250 KiB

Table 2.1: Classification of restricted devices based on RFC 7228 [51].

energy consumption as one of the most important constraints [240, 261, 278]. A definition and
classification1 of constrained devices is provided by RFC 7228 [51] and shown in Table 2.1. It
consists of three classes for devices with much less than 10 KiB data size and 100 KiB code
size (Class 0) to devices with 50 KiB and 250 KiB for data and code size (Class 2).

Embedded systems can also be distinguished, for instance, by the power source (Figure 2.2),
which may be a static power supply connected to a main or a battery that may or may not be
rechargeable. As a categorization, the RFC 7228 also defines classes of energy limitation and
general power usage strategies, such as always-on, normally-off, and low-power devices [51].

Considering the characteristics of an embedded system, various factors, such as thermal
effects, can lead to energy awareness for hardware components and software applications [240].
Due to shrinking processes of the circuits and reduced transistor threshold voltages, static
power consumption (cf. Section 2.1.1, p. 17 ff.) has gained importance and is now responsible
for up to 40 % of the total power consumption [297, 425]. Higher temperatures lead to
increased power consumption while reducing the reliability of the embedded system. Imagine,
for example, size or cost constraints that prevent the use of active and passive cooling systems.
To deal with such design constraints, it might be necessary to lower the frequency (clock
gating) or the supply voltage (power gating) [195] for the hardware components such as MCUs
or SoCs. Power gating, for instance, might lead to a quadratic decrease of the dynamic power
consumption (cf. Equation (2.5), p. 18). Specific segments and functional blocks can be
powered down entirely to address the static power consumption. Phenomena such as the
utilization wall [405] and the power wall [297] refer to these limitations from a slightly different
perspective. The utilization wall is closely related to the definition of dark silicon [107, 194, 240].
Both refer to the number of functional blocks that can or can not be powered simultaneously
for a given thermal design power constraint. The power wall is quite similar and refers to
power density and heat dissipation limits which have reached the practical power limit for
cooling systems.

However, if energy is a limited resource, the selection of hardware components based on
power consumption and the software application, as the behavior of the embedded system,
is becoming more important when building power-efficient battery-operated embedded sys-
tems [285]. As shown in Table 2.2, the MCU may not be the main consumer within an
embedded system. For the power consumption estimation, it is therefore insufficient to con-
sider MCUs without peripheral devices, the intended use case, and the software application
that controls and directs most hardware activities.

1The classes have been defined based on commercially available products in 2014. The author expects that
the borders have to be adjusted to cover today’s standard. However, the RFC 7228 has not been updated since.

24 CHAPTER 2. RELATED WORK AND BACKGROUND

Device Cur. Consumption Voltage Power

NXP LPC54114 MCU [269]
(Cortex-M4 & Cortex-M0+ @ 96 MHz)

Active: 9.9+8 mA 3.3 V 59,07 mW
Sleep: 3.0 mA 3.3 V 9.90 mW

STMicroelectronics STM32L476RG MCU [371] (80
MHz)

Active: 10.2 mA 3.3 V 33.66 mW
Sleep: 2,96 mA 3.3 V 9.77 mW

ams Osarm TSL25911 Ambient Light Sensor [17] 275 µA 3.0 V 0.875 mW

Bosch BME280 Environmental Sensor [53]
(Indoor Navigation) 633 µA 1.8 V 1.14 mW

Bosch BMM150 Geomagnetic Sensor [52]
(High Accuracy Preset) 4.9 mA 2.4 V 11.76 mW

Kingbright AP2012EC Red LED [201] (0805) 20 mA 2.0 V 40.00 mW

Melexis MLX90640 Infrared Thermal Sensor [243] 20 mA 3.3 V 66 mW

Microchip ATWINC15x0-MR210xB 802.11 b/g/n
IoT Module [250] (802.11g 6 Mbps code rate) 291 mA 3.3 V 960.30 mW

Plantower PMS1003 Particle Sensor [302] 100 mA 5 V 500 mW

Table 2.2: Exemplary hardware devices with their average energy characteristics.

2.2.2 Embedded Software

The amount of embedded software has grown faster than Moore’s law [285] and makes up a
significant part of the embedded system engineering. At a consistently high level over previous
years, around 60 % of the resources, e.g., time, costs, and developer efforts, are spent in
the software development process [26]. The need for more extensive technologies, algorithms,
protocols, and standards, as well as the increasing amount of software required, makes the
development of software applications for embedded systems a complex and challenging task.
Embedded software is typically developed at a low level of abstraction, while programming
languages such as C, C++, or Assembly (ASM) are used to gain direct control over specific
hardware components [26, 285, 298]. Software is also a key component in any embedded
system that must be fault-tolerant and implement concepts for handling hardware failures.
Due to this, the software application has to be platform specific to meet high-performance
requirements while dealing with limited resources. Still today, the software is involved in many
serious failures of embedded systems [162, 202].

In addition to functional requirements, embedded software applications are required to
fulfill important and restrictive NFRs, such as reliability, real-time, and power consumption,
among others described, e.g., in [332]. Note that for embedded systems in specific domains, the
number of NFRs the system has to satisfy exceeds the number of functional requirements [247].
Reliability, for instance, defines the probability that a system works as intended. Since the
software application is affected by the non-deterministic physical environment and may react
to spontaneous events and condition changes [35, 36], reliability is important in the embedded
domain. Soft or hard real-time NFRs [285] are especially important for safety-related systems
if, for instance, the execution time between data sampling and analysis and the reaction of the
system should not exceed a predefined time limit. Power consumption is an important aspect
that can be a critical bottleneck for embedded systems [35]. A violation of such requirements
can lead to disastrous consequences.

2.2. EMBEDDED SYSTEMS 25

The software application itself does not consume any power. However, the power and
energy consumption of an embedded system can be interpreted as the result of the software
application’s execution and behavior. This connection can also be interpreted as a cause-
effect relationship between the software level and the hardware level [160]. Actions taken by
the software application, for instance, executing commands on the MCU or interacting with
a sensor to obtain readings, are causing effects, e.g., increased power consumption, on the
hardware component due to the execution of the requested action. As mentioned in [160],
improved hardware designs aim to lower the static portion of the power consumption (cf.
Section 2.1, p. 17 ff.). In contrast, the dynamic power consumption caused by the software
application during runtime may be optimized on the software level. However, while this
statement is valid and the software level cannot change the physical properties of electronic
parts, it is worth mentioning that on a higher view, the software application might be able to
power off hardware components at exact points during execution to lower the overall static
power consumption. To address the power consumption of individual hardware components,
software applications may affect the following parameters as part of the introduced equations
in Section 2.1 (p. 17 ff.):

• Voltage: By adjusting the voltage of the system and single components, the power
consumption may be lowered. This concept is also called DVS and DVFS [65, 223, 300].
Alternatively, the power from separated parts of the system can be turned off, which
requires hardware layer support. Software applications do not always have control over
those features.

• Frequency: The software application may adjust the operating frequency of components,
e.g., the MCU, in particular situations to reduce power consumption. Techniques such as
Dynamic Frequency Scaling (DFS) and DVFS [300] are not or only partially supported
by low-cost and low-end MCUs like the ARM Cortex-M family, which are often used in
battery-powered embedded systems. On a higher abstraction level, software applications
can also adjust the sample rate to reduce the power consumption of specific sensors.

• Capacity: Functional units can be completely disabled to lower the power consumption
of a component and avoid thermal issues (dark silicon). Strategies must be implemented
to control the active states of hardware components and functional units.

• Time: The time a system or component operates in active mode with high power
consumption can be minimized if the software application’s workflow is optimized, and
effective algorithms are used.

The growing complexity of embedded software applications leads to increased software-
based quality problems in the industry [222] and, thus, the non-fulfillment of quality attributes,
expressed as functional and non-functional requirements [14, 137]. To manage the complexity
and shift the focus of developers on the essential complexity, MDD, as introduced in Section 2.5
(p. 37 ff.), has been used for decades as a development methodology for software applications
in the embedded domain [222, 244, 349]. In MDD, a model representation of the software
application as a higher level of abstraction is used. The methodology also copes with the ability
to use code-generation approaches to derive source code from models to native programming
languages such as C and C++. Therefore, MDD can increase the software quality due to
more expressive notations and automation while reducing the overall development costs and
the time-to-market.

26 CHAPTER 2. RELATED WORK AND BACKGROUND

2.2.3 Internet of Things

The Internet of Things (IoT) is an important and one of the fastest-growing technologies where
embedded systems play a significant role [26]. The actual estimation of active devices and the
annual growth rate may vary depending on the type of research and institution. As shown
in Figure 2.3, starting from 2022 with 13.2 billion devices, [257] predicts almost a threefold
increase to more than 34.4 billion active IoT devices in 2032, a compound annual growth rate
of 10 %.

8.6
9.7

11.3
13.2

15.1
17.0

19.0
21.1

23.2

25.4

27.7

29.9

32.1
34.4

0.0

5.0

10.0

15.0

20.0

25.0

30.0

35.0

40.0

2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032

N
u

m
b

e
r

o
f

c
o

n
n

e
c

te
d

 I
o

T
 d

e
v
ic

e
s

(b

il
li

o
n

s
)

Year

Figure 2.3: Number of worldwide active IoT devices in billion from 2019 to 2022 and forecasts
to 2032, adapted from [257, 401].

The term IoT does not have a universally accepted definition and is interpreted differently in
research and industry depending on the view and scope, for example, w.r.t. domains, devices,
platforms, and communication protocols [47, 142, 354]. However, common to most of the
significant definitions, the concept of IoT describes a network with the ability to connect
smart objects which can interact with the environment, humans, and other smart objects and
compute and share information across platforms. As a key technology of Industry 4.0 [215],
IIoT [333] describes a subset of IoT in which solutions are used in industrial environments, e.g.,
for manufacturing machines in production facilities [218]. A broad overview of the application
domains of IoT is pictured in Figure 2.4. It contains domains like smart city, smart agriculture,
healthcare, and manufacturing, which can be further subdivided into various subcategories as
proposed, for example, in [28, 218]. One of the main goals of IoT and IIoT is the transformation
of objects, such as consumer products, machines, or plants, into smart objects. The concept
of smart objects was introduced by Kallmann and Thalmann (1999) [192] as a definition for
objects able to describe their possible interactions with virtual human agents in a virtual world.
However, smart objects have become a key component in the IoT concept [208]. They are
defined as physical objects with unique identities and decision-making capabilities that can
sense the environment, store data, and communicate autonomously with other participants.

The transformation of an object into a smart object is typically realized using embedded
technology, as introduced in Figure 2.2 (p. 22). Such embedded systems are considered

2.3. SOFTWARE REQUIREMENTS 27

IoT

Smart Grid

Traffic &

Transportation

Logistics

Smart Home

Smart City

Manufacturing

Smart

Agriculture

Healthcare

Automotive

Security &

Safety

Wearables Aerospace

Figure 2.4: Common application domains of IoT [28, 187, 218, 257].

particularly constrained and have a stronger focus on security and privacy. Additionally,
constraints in size may result in smaller batteries being used. As a result, the embedded
system must be operating even more energy-efficient to reach the expected lifetime. Especially
the power consumption of wireless transmission interfaces often exceeds the power consumption
of the remaining components of the embedded system (cf. Table 2.2, p. 24). Imagine a battery-
powered embedded system that is inaccessible, for instance, buried in the soil, as described
in [146]. Specific Low Power Wide Area Network (LPWAN) protocols for small data volumes
and large ranges have been developed to achieve a long battery life. For instance, Long Range
Wide Area Network (LoRaWAN) [230] and Narrowband Internet of Things (NB-IoT) [1] are
frequently used in IoT [256, 415].

This work refers to IoT concentrates on areas where embedded systems are utilized, such
as smart devices. A more in-depth description of the other main parts included in the IoT
ecosystem, such as technologies, platforms, infrastructures, cloud solutions, and applications
of IoT, may be found in [25, 76, 218, 219, 240].

2.3 Software Requirements

This section introduces requirements as an essential part of software development and testing.
In this thesis, requirements are used to document non-functional aspects related to electric
current, power, and energy consumption. A definition and a classification of requirements in
software engineering are introduced in Section 2.3.1. Section 2.3.2 discusses Non-functional
Requirements (NFRs) as the main type of requirements used in this thesis. Section 2.3.3
covers the energy-related misbehavior of a system, which can be detected if corresponding
NFRs are violated during testing. In addition to documentation, the analysis and validation
of requirements are further steps in the requirements engineering process covered by software
testing, which is discussed in Section 2.7 (p. 49 ff).

28 CHAPTER 2. RELATED WORK AND BACKGROUND

2.3.1 Overview

Requirements define capabilities that the system should meet or conditions under which the
system should operate. For embedded systems, requirements may be based on electric current,
power, and energy consumption. Therefore, energy-aware design patterns (cf. Chapter 4,
p. 89 ff.) may be applied to the software application to satisfy a given NFR. In addition,
energy bugs (cf. Section 3.3, p. 84 ff.) may also be detected if corresponding NFRs are violated.

Requirements engineering describes a systematic approach in the software engineering
process consisting of the four main activities of eliciting, documenting, validating, and man-
aging requirements [303]. A requirement itself can be defined as a “provision that contains
criteria to be fulfilled” or, in more technical terms, as a “condition or capability that must be
met or possessed by a system, system component, product, or service to satisfy an agreement,
standard, specification, or other formally imposed documents” [174]. According to Pohl and
Rupp (2015) [303], elicitation describes the process of obtaining requirements from stakehold-
ers and other sources and refining requirements in greater detail. Validation refers to the
validation process of requirements, while management refers to structuring and preparing
requirements so that different stakeholders can use and interpret them. The scope of this
thesis is limited to the documentation and validation activities, and it is assumed that the
requirements are already defined by other stakeholders earlier in the software development
process. A common classification approach of requirements in software engineering [303] is
the division into functional requirements, NFRs, and constraints, as illustrated in Figure 2.5.
According to Sommerville (2016) [362], requirements can be defined more generally on a higher

Software

Requirements

Functional

Requirements

Non-functional

Requirements
Constraints

Figure 2.5: Classification of requirements in software engineering.

level, denoted as user requirements, and more detailed on a lower level in the form of system
requirements. Functional requirements define the behavior and functionality of the system
and, thus, describe the most intuitive requirements for software developers on which most
testing approaches focus. An example of a functional requirement may be: The system shall
be able to assign a unique identifier to each temperature measurement of the environment.
Constraints may not be part of the software application and are defined for the system or
software development process. The main purpose of constraints is to limit the solution space,
for instance, by defining a constraint such as the software should be implemented using C++
to restrict development to a specific programming language. NFRs2, as the third class of
requirements shown in Figure 2.5, are essential in the context of this thesis and are introduced
in more detail.

2In the literature, NFRs are also defined as quality requirements, e.g., in [137, 303, 332] and extra-functional
requirements, e.g., in [284, 290].

2.3. SOFTWARE REQUIREMENTS 29

2.3.2 Non-functional Requirements

Instead of a generally accepted and used definition, different definitions of the term NFRs can
be found in the literature [137]. A definition that corresponds to the context of the thesis
is given in [185], where NFRs specify “[...] system properties, such as environmental and
implementation constraints, performance, platform dependencies, maintainability, extensibil-
ity, and reliability ” and additionally “[...] physical constraints on a functional requirement”.
Where functional requirements address the system’s behavior and, thus, targeting on what the
system has to do, NFRs, according to the provided definition, refer to how the system should
perform w.r.t. observable attributes [214]. Such observable attributes are denoted as quality
attributes. Therefore, a system must have certain quality attributes for which NFRs define
the evaluation criteria. However, there exists no unified description for quality attributes.
Instead, as described in [235], several software quality models exist to define, group, and

Percentage of platform dependent statements

Adaptability to different hardware and software environments

Capability to interface with external hardware and software

Performance

Portability

Quality Attribute

Category Attribute

Efficiency

Durability

Maintainability

Testability

Reliability

Security

Safety Operating without danger for humans and the environment

Self-protection from accidental and planned external attacks

Confidentiality

Integrity

Availability

Power Consumption | Energy Consumption

Resource Utilization

Run-Time

Code Size

Costs

Risk of the failure

Fault-Tolerance

Probability to work correctly within a specific time period

Effectiveness & efficiency of functional testing | performance testing

Levels of test coverage

Quality of test reports

Probability to remain functional without maintenance or repair

Degree of maintenance required

Analyzability

Extensibility

Changeability

Modularity

Reusability

Power Consumption | Energy Consumption

Execution Time

Real-Time

Response Time

Figure 2.6: Categories of quality attributes to define NFRs [36, 235, 332, 362].

30 CHAPTER 2. RELATED WORK AND BACKGROUND

describe the characteristics or quality factors of software applications. Figure 2.6 illustrates
typical categories of quality attributes used to define NFRs.

In general, non-functional behavior refers to the aspects of the SUT that are not directly
related to its primary function but rather to its performance, reliability, and other quality
attributes illustrated by Figure 2.6. However, depending on the nature of the problem and the
complexity of the SUT, detecting non-functional misbehavior may be challenging and requires
domain knowledge, specialized tools, and techniques. It also may be harder to detect and
reproduce non-functional misbehavior than functional misbehavior since complex interactions
between different components of the SUT and factors such as hardware configuration or system
workload may be involved. The power consumption level, for instance, may not affect the
functional behavior of a mains-powered SUT. However, battery-powered SUTs may suffer
from high power consumption leading to downtimes or errors, directly affecting the system’s
functionality. Therefore, it is crucial to use NFRs to specify the expected non-functional
behavior as accurately as possible.

Quality attributes considered in this thesis are related to the performance, efficiency, and
reliability aspects of the system. Power and energy consumption are generally related to
performance and efficiency NFRs in systems engineering:

• As a performance requirement, power and energy consumption directly affect the ability
of a SUT to function effectively. For instance, the power consumed by an embedded
system SUT may affect the response time or processing speed and, thus, the overall
performance.

• As an efficiency requirement, power and energy consumption are concerned with how effi-
ciently the SUT uses this resource to perform its tasks. By reducing power consumption,
the SUT may operate for longer periods or generate less heat, which also contributes to
the overall system efficiency.

In [207], power and energy consumption are also associated with security issues, for instance,
when attackers infiltrate a battery-powered embedded system to cause system failures by
attempting to drain the battery. Terms such as software energy consumption and energy con-
sumption of software [18, 289, 301, 360] indicate that power- and energy-related requirements
can also be defined for software applications w.r.t. the utilization of hardware resources and
behavior-related aspects. The impact of software applications on power consumption has been
discussed in-depth in Section 2.2.2 (p. 24 ff.).

2.3.3 Related Work in the Field of Energy-related Misbehavior

This section presents related work in the field of energy-related misbehavior that has been
considered during the elaboration of the novel energy bug and scenario definitions described
in Chapter 3 (p. 77 ff.) to answer RQ1. As illustrated in Figure 2.6, power and energy
consumption can be both a performance and efficiency quality attribute of the SUT. The
violation of corresponding NFRs may indicate the existence of energy-related misbehavior.

The behavior of a system to consume more energy than required to fulfill the intended task
is already known. The term energy bug to describe such behavior has gained more attention
due to the increasing number of battery-powered embedded systems over the last few years.
Researchers have published numerous works [83, 101, 221, 424] to analyze energy consumption
and to detect and describe energy bugs for smartphones and mobile applications [34, 294, 293].

2.3. SOFTWARE REQUIREMENTS 31

Besides energy bugs, energy hotspots, as a further term, are often mentioned when considering
the energy-related behavior of software applications. However, the term is interpreted differ-
ently by researchers. In [264, 265], energy hotspots describe parts of the software application
where (the most) energy is being consumed. The authors of [264, 265] focus on Java-based
applications for general-purpose systems. For such a definition, it is important to note that
energy hotspots may not be understood as bugs but may indicate abnormal functional behavior.
In [34], an energy hotspot for mobile systems, e.g., smartphones, is described as a scenario
where the software application causes the systems to consume an abnormally high amount
of battery power, even if the utilization of hardware resources is low. This kind of behavior
is more related to energy bugs. The first taxonomy of energy bugs is presented in [293]. It
distinguishes between hardware-related (e.g., faulty battery and damaged hardware), software-
related (e.g., no-sleep bugs and configuration changes), external (e.g., wireless signal strength),
and unknown types of energy bugs. Another type of bug is denoted as an energy leak bug [226]
describing the cost-ineffective use of peripheral devices or network data.

In [295], the no-sleep bug as a variant of an energy bug is analyzed through a static
source code analysis. The identified main causes, e.g., programming errors and higher-level
conditions, prevent the system from entering a lower power mode. Wakelocks, a type of
energy bug common in mobile software applications, are analyzed in [8, 227, 296]. A wakelock
describes the behavior of the software application or the underlying operating system to keep
certain hardware components in an active operating state, even if they are currently not being
used, leading to unnecessary power consumption.

In [34], a classification of energy bugs and energy hotspots for smartphones is presented.
The classification includes four different classes:

1. hardware resources

2. sleep-state transition heuristics

3. background services

4. defective functionality

Each class can be divided into energy bugs and hotspots describing resource leaks, wakelocks,
and suboptimal resource bindings. However, the proposed definition of an energy bug is
limited to scenarios in which a malfunctioning application prevents parts of the system “[...]
from becoming idle even after it has completed execution” [34]. Banerjee et al. (2014) [34] also
measure the energy inefficiency of an application by introducing an energy-consumption-to-
utilization ratio. A high ratio during the execution of the software applications defines an
indicator for an energy hotspot. In contrast, a persistently high ratio, even after the software
application has completed the execution, is interpreted as the presence of an energy bug.

Related work considering energy bugs discussed in this section provides an informal de-
scription in a natural language while focusing more on their effects rather than their causes.
Instead, this thesis follows a different approach. To address RQ1, the energy-related behavior
of the SUT is formally defined by the use of energy-related NFRs. The non-compliance of the
defined energy-related NFRs during testing leads to the derivation of energy bugs, for which a
more comprehensive categorization will be introduced. Furthermore, related work does not con-
sider the environment as an essential factor affecting the energy-related behavior of embedded
systems, which will be addressed by further concepts presented in Chapter 3 (p. 77 ff.).

32 CHAPTER 2. RELATED WORK AND BACKGROUND

2.4 Software Design Patterns
This section presents background on design patterns related to the definition of the novel
framework for describing energy-aware software design patterns introduced in Chapter 4
(p. 89 ff.). In Section 2.4.1, pattern formats and pattern classifications are discussed. Power-
and energy-related aspects in design patterns as related work are presented in Section 2.4.2.

2.4.1 Formats and Classification of Patterns

This section briefly discusses formats and descriptions of software design patterns while focusing
on the form of presentation instead of single design patterns or design pattern characteristics.

Christopher Alexander first introduced the term design pattern in [10] as a concept that
aims to describe a “problem that occurs over and over again in our environment, and then
describes the core of the solution to that problem, in such a way that you can use this solution
a million times over, without ever doing it the same way twice.”. As problem-solution pairs,
design patterns describe best practices for particular recurring design problems. They provide
a well-proven generic scheme for their solution of the design problem, typically originating
from design knowledge gained by experienced practitioners [67]. With the first catalog of
well-described design patterns, the work proposed by Gamma et al. (1994) [131] has become
one of the most common and widely accepted sources of software design patterns in software
engineering of object-oriented software applications. However, design patterns and design
pattern catalogs have been defined for several sub-domains related to the engineering and
design of software and systems, including cloud computing [121], human-machine interac-
tion [40, 50, 386], security [345], enterprise applications [124], software architecture [67, 68],
messaging systems [159], real-time systems [98], embedded systems [99], or programming
language-specific design patterns [41, 82]. Various key aspects may be identified to define
design patterns uniformly. This section further presents formats to describe patterns and dis-
cusses classifications of design patterns based on their granularity, level of abstraction, scope,
and purpose.

Pattern Formats

A pattern format3 is a uniform and detailed structure in which essential elements of a design
pattern can be described. Such a uniform description of patterns within the same catalog
or domain enhances the understanding of developers and engineers. It also enables a direct
comparison between patterns, e.g., to identify alternative solutions for a design problem. As
stated in [10, 67], a pattern consists of the elements context, problem, and solution. By this, a
pattern construct creates a relationship “between a given context, a certain problem arising in
that context, and an appropriate solution to the problem” [67]. In [131], patterns are defined
by the four essential elements of a pattern name, a problem description, a solution description,
and consequences to describe tradeoffs. Since no domain-specific or universal pattern format
exists, several domain and author-specific representation formats have been proposed in the
previous decades. However, certain pattern formats, such as the Alexandrian form [45], GOF
form [131], or POSA form [67], have become widely accepted and used by other authors either
unchanged, adapted, or extended [98, 99, 121, 124, 159].

3Depending on the author, the pattern format is also referred to as pattern form [45, 159] or pattern
template [67, 131].

2.4. SOFTWARE DESIGN PATTERNS 33

The Alexandrian form follows a narrative style and contains the following sections [10, 45]:
• A picture to show a typical example of the pattern.

• An introduction to set the context for the pattern.

• A headline to explain the problem in one or two sentences.

• A problem body to describe the empirical background of the pattern, the range of ways
to manifest the pattern, the evidence for its validity, and a set of forces involved in
resolving the problem. Forces can be interpreted as requirements and constraints that
the pattern must be balanced within its context [67].

• A solution described in the form of instructions.

• A diagram with labels to illustrate the solution and the main components of the pattern.

• A discussion of how the pattern is connected and related to other patterns in the pattern
language.

In addition to the elements, each pattern is associated with a name describing what the pattern
accomplishes. Compared to the Alexandrian form, the GOF form focuses on design patterns
that describe “communicating objects and classes that are customized to solve a general design
problem in a particular context”. By defining a larger number of elements, the pattern format
becomes more structured. The sections building the GOF form are [131]:

• Pattern name and classification.

• Intent: Statement about the goal and design issue addressed.

• Also Known As: Other names of the design pattern.

• Motivation: A scenario to illustrate the design problem and how it will be solved.

• Applicability: Description of the situation in which the design pattern can be applied.

• Structure: A graphical representation to illustrate the structure of the design pattern.

• Participants: Classes or objects that are part of the design pattern along with their
responsibilities.

• Collaborations: Description of participants collaborating to fulfill their responsibilities.

• Consequences: Tradeoffs and results when applying the design pattern.

• Implementation: Description of pitfalls, hints, or techniques.

• Sample Code: Example source code to illustrate the implementation.

• Known Uses: Examples of successfully applied design patterns.

• Related Patterns: Relations between the described pattern and other design patterns.
The POSA form is structured similarly to the GOF form but uses different section names

with similar meanings. The elements of the POSA form are: name, also known as, example,
context, problem, solution, structure, dynamics addressing runtime aspects, implementation,
example resolved, variants, known uses, consequences, and see also. A more detailed comparison
and discussion of different design pattern formats can be found in [21, 67, 68].

34 CHAPTER 2. RELATED WORK AND BACKGROUND

Pattern Classifications

Different types of patterns in software development and engineering exist, which vary in their
granularity, level of abstraction, scope, and purpose. Some patterns may address domain-
specific design issues for a particular programming language, whereas others are domain and
programming language-independent. In order to group related patterns, pattern classifications
have been introduced, for example, in [67], where patterns are categorized into architectural
patterns, design patterns, and idioms as follows:

• Architectural patterns refer to a category with the highest abstraction providing tem-
plates for concrete software architectures, e.g., predefined subsystems with rules and
guidelines for organizing their relationships.

• Design patterns provide solutions for refining subsystems or components of a software
system along with their relationships between them. Typically, design patterns are
independent of a particular programming language or paradigm.

• Idioms represent low-level, programming language-specific patterns that deal with the re-
alization of particular design issues. The introduced programming and design techniques
are often applicable to a particular programming language, such as C++ [82].

Design patterns are further classified in [131] based on their purpose and scope. A design
pattern’s purpose can be either creational, structural, or behavioral. Creational design patterns
describe problems and solutions related to object creation mechanisms, while structural design
patterns consider the composition of classes or objects. Behavioral design patterns provide
solutions for the interaction and distribution of responsibilities between classes and objects.
Additionally, the scope specifies whether the pattern addresses classes or objects.

2.4.2 Related Work on Power and Energy Aspects of Design Patterns

This section provides an overview of existing work related to the energy-aware design pat-
tern framework presented in Chapter 4 (p. 89 ff.). Existing research considers power- and
energy-related aspects of software design patterns from two orthogonal perspectives. The
first perspective focuses on improving design patterns w.r.t. their impact on power and en-
ergy consumption. The second perspective focuses on enhancing software applications by
domain-specific design patterns addressing power- and energy-related aspects.

Improvement of Design Patterns

Several approaches aim to analyze the effect of structural software design patterns described
in [131] on power consumption when applied to software applications. In [224], the power
consumption and performance of software applications for embedded systems are analyzed
before and after design patterns such as factory method, observer, and adapter have been
applied. Another approach by Maleki et al. (2017) [234] compares the power consumption
of object-oriented programming concepts, e.g., inheritance, polymorphism, dynamic binding,
and overloading, as well as different software design patterns, such as decorator, flyweight, and
facade, which are utilizing or based on those concepts. Other publications have also dealt
with the impact of various software design patterns defined in [131] on power consumption
using C++ [331] and Java [64] as programming languages. For instance, Feitosa et al. (2017)

2.4. SOFTWARE DESIGN PATTERNS 35

[122] analyzed the impact of different well-known behavioral design patterns, e.g., template
method and strategy, on energy consumption and implemented respective alternative design
solutions for comparison with expected lower power consumption. Approaches such as [263]
aim to optimize software design patterns automatically at compile time and, thus, close to
the instruction level by optimizing object creations, function calls, and memory accesses while
taking compiler optimizations automatically into account.

The analyzes of design patterns presented in [64, 122, 224, 234, 331] focus on implementation-
specific issues based on mechanisms of object-oriented languages such as inheritance, poly-
morphism, and overloading. Since the realization and the effects of such mechanisms may
differ for specific programming languages such as C++ and Java, the approaches consider the
realization of the design pattern, e.g., as idioms, rather than the concept of the design pattern
itself. However, the impact on power consumption can vary widely for different programming
languages and concepts. Since the compiler, e.g., settings and optimization levels, also directly
affects power consumption, these findings cannot be generalized. This is confirmed in [4],
where results showed that the change of programming languages and compiler settings heavily
influence the overall performance and the impact of the software on power consumption in
particular. Bunse and Höpfner (2008) [63] stated that source code optimization during compile
time is often inefficient since the usage of existing resources cannot be predicted. Moreover,
accessing and using connected resources, such as peripheral devices, is an important factor of
power and energy efficiency considerations for embedded systems, which is not covered by the
analyzed design patterns in related work.

Related work discussed in this section focuses on the MCU and low-level aspects of object-
oriented programming languages, which are not generalizable due to the variance of program-
ming languages and compiler setting possibilities. The energy-aware design patterns specified
with the novel design pattern template as part of the framework presented in Chapter 4
(p. 89 ff.) do not represent language-specific design pattern implementations or idioms but
rather common solutions to design issues related to energy and power. Due to this, discussed
related work is considered out of the scope of this thesis.

Enhancement by Design Pattern

This section deals with design patterns and pattern templates aiming to enhance a quality
aspect of the system, such as power consumption. The main drawback of behavioral software
design pattern templates introduced in Section 2.4.1 (p. 32 ff.) is the lack of sections to cover
quality aspects used in typical NFRs, e.g., power consumption and time behavior as important
aspects of embedded systems.

The general relationship between software design patterns and NFRs is discussed in [145].
The authors propose goal graphs for design patterns as a systematic approach to describe
properties and a reasoning structure of design patterns with NFPs as goals. The traces defined
in [145] between the non-functional goals of a pattern may be used to evaluate, analyze, and
discuss NFP-related design decisions during the system design phase.

In [204], the authors introduce the concept of requirements patterns. Based on a modified
variant of the design pattern template introduced in Section 2.4.1 (p. 32 ff.), sections covering
constraints have been added, while other sections, such as implementation and sample code,
have been removed from the template. The constraints section contains functional or non-
functional restrictions that are applied to the system. Examples listed in [204] include hardware,
timing, and environmental constraints. The basic concept has also been applied to object

36 CHAPTER 2. RELATED WORK AND BACKGROUND

analysis patterns in follow-up work [205], in which the constraints section includes specifications
of different property types written in a temporal-logic-based format that should be fulfilled
when using a given pattern.

In common representations introduced in Section 2.4.1 (p. 32 ff.), only time-related aspects
are briefly addressed for a subset of patterns, e.g., in [98]. However, none of the aforementioned
approaches considers the impact on NFRs as part of the software design pattern template.
The approach in [21] extends common representations to consider safety aspects as part of
NFRs in the pattern description for safety-critical applications. It also provides a quantifiable
measure for safety-related NFRs, such as reliability, safety, costs, modifiability, and execution
time. However, power- and energy-related aspects are not part of the proposed template.

In [307], the authors identify energy-efficient software solutions, which are transferred
into a catalog of green architectural tactics in subsequent work [308, 309]. These tactics
refer to domains such as energy monitoring, self-adaptation, and cloud federation specifically
to address cloud software architectures. The design pattern template includes the fields
motivation, description, constraints, example, and dependency for the textual description.

An analysis and a catalog for synchronization design patterns for multi-threaded software
applications are presented in [228]. The main idea is to use DVFS for each design pattern to
achieve a more energy-efficient solution. The pattern template includes fields for the pattern
name, a figure, the main strategy, and example scenarios. However, the proposed design
patterns are limited to MCUs with DVFS support.

Reinfurt et al. (2016) [321] propose a pattern framework and catalog describing abstract
design patterns for IoT. In later work, the authors also presented general design patterns for
IoT devices [322], for powering, operating, and sensing of IoT devices [323], bootstrapping and
registration [324], and communication and management in IoT [325]. The catalog includes
categories partly based on [51], like device operating modes, energy supply types, e.g., event-
based harvesting and battery- or mains-powered, communication, management, and sensing
for design patterns that address the characteristics and the behavior of IoT devices. Exemplary
IoT design patterns of the catalog schedule-based sensing, normally-sleeping device, and device
wakeup trigger. The proposed design pattern template includes fields such as the name, aliases,
icon for a graphical representation, context, problem, forces to describe considerations that must
be taken into account, solution, variants, related patterns, and an example implementation as
key aspects of the design pattern. Energy efficiency is considered w.r.t. energy harvesting and
energy-saving approaches in system architectures of IoT ecosystems, such as server systems
and infrastructure. However, to the best of our knowledge, the aforementioned work does
not consider the actual software application of IoT nodes and their close connection to the
hardware layer.

Further work related to this thesis is presented in [85, 86]. The authors propose design
patterns to develop more energy-efficient software applications for mobile devices. Examples
of proposed design patters are WakeLock: Incorrect wake lock usage, UnusedResources, Push
over Poll, and Cache.

Although energy-aware source code optimization is not in the scope of this thesis, it should
be noted that design patterns may also be expressed as a set of design rules for specific
hardware components. For instance, the Ultra-Low Power Advisor [378] is a tool released by
Texas Instruments to assist software developers in creating more energy-efficient source code
for the MSP430 MCU family [379]. The tool provides a set of rules, for example, to reduce
excessive cycles of the MCU, to encourage the use of specific functional blocks such as the
Direct Memory Access (DMA), and to avoid uninitialized interfaces such as GPIOs. While

2.5. MODEL-DRIVEN DEVELOPMENT (MDD) 37

some rules are generally applicable and independent of the MCUs architecture, others may
be product-line or vendor specific. However, the design rules are limited to MCUs, which are
not necessarily the primary source of energy consumption within an embedded system [294].

The approaches discussed in this section, e.g., [85, 86, 228, 323], address the impact
of design patterns on the power consumption of the system. However, to the best of our
knowledge, related work does not include power consumption and execution time as closely
related aspects in the description of software design patterns. Additionally, the approaches
lack metrics to specify the impact of design patterns on NFPs, especially power consumption,
as the subject of NFRs. To address this gap and answer RQ2, Chapter 4 (p. 89 ff.) proposes a
novel software design pattern framework to describe best practices as energy-aware software
design patterns in a comprehensive, quantifiable, and comparable manner.

2.5 Model-driven Development (MDD)

This thesis aims to provide a workflow for an early power consumption estimation of software
application models in Model-driven Development (MDD). As a methodology for a software
development process, MDD is often also referred to as Model-driven Software Development
(MDSD) [369]. However, since the term MDD is more common than MDSD, MDD will be
used in the remainder of this thesis. It describes a software development methodology that
uses models as the primary artifact of the development process and not just for documentation
purposes [56]. The increasing complexity of software applications makes the development
process error-prone and costly [282]. Compared to traditional code-centric approaches, MDD
provides advantages such as increased development speed and productivity [193] and enhanced
software quality due to the partial or complete generation of source code. Furthermore, MDD
may improve the manageability of complexity through abstraction [369]. The code generation
process is automated in theory, but in practice, it is often semi-automated with manual
post-processing. MDD is related to other model-driven concepts, as shown in Figure 2.7.

MDA

Specific interpretation of MDD.

Relies on OMG standards.

MDD

MDE

MBE

Models are key artifacts and

source code is (automatically)

generated.Includes add. software

engineering processes, e.g.,

reverse engineering.
Models are no key artifacts and

do not drive the process.

Figure 2.7: Relations between the model-driven concepts, adapted from [56].

In Model-based Engineering (MBE), also denoted as Model-based Development (MBD),
models are not the key artifacts and are used, e.g., in the analysis phase, to define the
system while they serve as templates for manual code-writing activities [56]. Model-driven
Engineering (MDE) is a superset of MDD and includes other aspects of the engineering process,
such as model-driven reverse engineering [56]. A concept closely related to MDD is Model-
driven Architecture (MDA). Since MDA relies on standards for modeling and transformation

38 CHAPTER 2. RELATED WORK AND BACKGROUND

languages introduced by the Object Management Group (OMG), such as the Meta Object
Facility (MOF) (cf. Appendix A.1.2, p. 264 ff.) and the UML (cf. Appendix A.3, p. 266 ff.), it
can be considered as a subset of MDD and a particular vision of the OMG [272]. However, the
terminology for MDA introduced by the OMG is suitable to further explain the basic concepts
of MDD.

Section 2.5.1 discusses modeling languages used in MDD, while Section 2.5.2 summarizes
the concept of model transformations. Additional background on the architectural layer and the
abstraction levels of MDD, including the definition of Computing Independent Model (CIM),
Platform Independent Model (PIM), and Platform Specific Model (PSM) and the relation
between models, metamodels, and meta-metamodels, can be found in Appendix A.1 (p. 263 ff.).

2.5.1 Modeling Languages

This section discusses modeling languages in MDD, focusing on characteristics such as extensi-
bility, domain independence, and popularity. Extensibility targets the property of a modeling
language to provide mechanisms for extending the modeling language itself or specific concepts
of the language. The extensibility of a modeling language is especially important for addressing
RQ3 (cf. Section 1.2.2, p. 8). Modeling languages can be domain-dependent, with concepts
only applicable within the specific domain. A more general intention of this thesis is domain
independence and, thus, the ability to adapt the presented concepts to different domains.
Because of this, a general-purpose modeling language is preferred, which also impacts RQ3
and RQ4. The popularity, however, indicates a modeling language’s suitability in academic
and industrial fields. While being a more tenuous criterion, the popularity of a modeling
language is correlated to its tool support. A comparison of MDD tools for UML and their
modeling languages support is provided in Appendix A.2 (p. 24 ff.) since tool support is not
directly related to any characteristic of the modeling language itself. In the following, the
criteria and characteristics mentioned above are discussed for a selection of available modeling
languages.

The Unified Modeling Language (UML) [275] is a general-purpose modeling language
standardized by OMG used to specify, design, implement, and analyze software-based systems.
The UML specification provides a standardized semi-formal metamodel for modeling object-
oriented systems and a set of human-readable diagram types as a graphical notation to visualize
elements and aspects of such models. With a focus on software engineering and software-based
systems, the UML diagram types may be applied in different phases of the engineering process
to describe structural and behavioral aspects of a software-based system. Moreover, UML is
independent of any specific domain, programming language, target platform, or development
tool by definition. With profiles, however, UML provides a generic mechanism for extensions,
which may be used to refine the standard notation of the UML metamodel and, e.g., to add
domain-specific concepts and notations. For this, profiles contain stereotypes, tagged value
definitions, and constraints that can be applied to various UML elements. UML has been
identified as the de-facto standard language for modeling software-based systems [74, 213] and
also as the most widely used modeling language in the embedded software industry [7, 407].

The Foundational UML (fUML) [281] is another standard specified by the OMG
and specifies foundational execution semantics. As a subset of the UML, fUML contains
parts of the UML packages for composite structures and classes to model the structure of a
system as well as activities, common behavior, and actions for the behavior of the system.
Along with the Action Language for Foundational UML (ALF) [277] to specify executable

2.5 MODEL-DRIVEN DEVELOPMENT 39

behaviors using primitive types, actions, and control flow mechanisms, fUML provides precise
semantics for executing the UML-based model within a virtual machine. Profiles and, therefore,
stereotypes are stated as out of scope in the specification [281], which limits the extensibility
of fUML to model domain-specific and non-functional aspects. The fUML specification does
not cover UML state machines, but a definition of the execution semantics is available through
extensions [280]. The lack of support for profiles and stereotypes has been addressed by
researchers, i.e., in [44, 377]. However, the OMG has not considered the proposed solutions for
inclusion in the specification, nor have they been adopted by vendors or developers of MDD
tools.

The Systems Modeling Language (SysML) [279] is a general-purpose modeling lan-
guage for systems engineering applications adopted and further refined by the OMG. Utilizing
the profile mechanism of UML, SysML is itself defined as a profile and therefore adopts parts
of the specification and semantics of UML. SysML reuses some UML diagrams (e.g., state
machine diagram and package diagram) and introduces modified diagram types, such as the
block definition diagram, which is based on the UML class diagram. While UML focuses on
software engineering, the scope of SysML is systems engineering, which includes areas such
as requirements engineering and system modeling, e.g., hardware, mechanical, and software
parts. For this, SysML introduces two new diagrams: the requirements diagram and the
parametric diagram. According to Akdur et al. (2018) [7], SysML is less common in the
embedded software industry than traditional UML and UML profiles such as MARTE.

The Modeling and Analysis of Real-Time and Embedded systems (MARTE) [278]
UML profile is an extension of UML and a Domain-specific Language (DSL) specified by the
OMG intended to support the modeling and analysis of real-time and embedded software appli-
cations in MDD. UML has a software-centric view from a logical perspective while lacking the
ability to describe the properties and characteristics of the underlying embedded systems [348].
MARTE fills this gap and provides extensions, e.g., for real-time modeling and performance and
scheduling analysis of system designs in a standardized format. More interestingly, MARTE
introduces the specification and modeling of NFPs based on energy consumption, provides
time modeling aspects, and enables a high-level analysis, e.g., of software-related behavior on
aspects such as timing, power, and energy. The specification offers a set of predefined NFP
definitions while the definition of custom NFPs is also supported. MARTE can be applied to
both UML and SysML. Further aspects of MARTE related to the concepts presented in this
thesis are discussed in-depth in Section 2.6 (p. 41 ff.).

Simulink & Stateflow are parts of the MATLAB platform developed by MathWorks [380].
Simulink [383] is a graphical modeling language for the model-based development of dynamic
systems. Models in Simulink are defined as hierarchical block diagrams and can be simulated
by a simulation engine. The main concepts of Simulink are signal flows for time-continuous
and time-discrete systems, whose models consist of, e.g., differential equations and difference
equations, respectively. The simulation is based on so-called solvers to compute the states of a
model. Stateflow [384] is another modeling language that extends Simulink and provides event
modeling for discrete systems. To achieve this, Stateflow introduces state transition diagrams
and flow charts. Simulink and Stateflow are proprietary modeling languages with graphical
programming environments based on and provided by MATLAB [380]. Both languages are
not restricted to a specific domain. Since they are proprietary and part of MATLAB, the
extensibility of both languages is limited. However, there are attempts in research [149,
210, 376] to achieve a model transformation (cf. Section 2.5.2, p. 40 ff.) between UML and
Simulink/Stateflow models.

40 CHAPTER 2. RELATED WORK AND BACKGROUND

2.5.2 Model Transformations

Besides the definitions of models, model transformations are also an important aspect of MDD
and MDA, which allow the definition of mappings between different models, e.g., PIM to PIM
or PIM to one or more PSMs. In general, MDA distinguishes between model-to-model and
model-to-text transformations. The following formal description of model transformations is
based on a unified notation originally published in [69, 70] and [229].

Let s be a system, m a model, and fm a formalism so that m(s)/fm defines a model of a
system using the specific formalism fm. To describe a formalism’s model, a metamodel may
be defined as mm1(fm1)/fm2 to denote a metamodel mm1 of the formalism fm1 expressed
in the formalism fm2. For instance, the metamodel mm(UML)/MOF uses the MOF to
define and describe the meaning of any model m(s)/UML. For more information about the
architectural layer of MDD and metamodels, see Appendix A.1 (p. 263 ff.).

Model transformations allow the definition of mappings between different models. In
general, transformations are defined at the metamodel level and applied on the model level,
which enables the reuse of the transformation for all models that conform to the metamodel
addressed by the transformation. A mapping between m1/fm1 and m2/fm2 is expressed
as m1/fm1 → m2/fm2 and requires a set of mapping rules Rmm1→mm2/fmR, which are
also described using a formalism fmR. Note that transformations may be considered as
models themselves and can be expressed as m(t)/fmt with t as an instance of a transfor-
mation and fmt as the formalism, e.g., the Atlas Transformation Language (ATL). Due
to this, the execution of a transformation between two models may be defined as a func-
tion t(m1/fm1, Rmm1→mm2/fmR) → m2/fm2, where a transformation instance executes
the transformation process based on the mapping rules. The concept of model transforma-
tion is shown in Figure 2.8. According to [246], model transformations may be defined as a
multi-dimensional process, where the most common dimensions describe:

• The number of source and target models involved.

• The type of metamodel used, denoted as endogenous and exogenous transformation.

• The abstraction level, described as horizontal and vertical transformation.

Model

MA

Model

MB

Metamodel

MMA

Metamodel

MMB

Model

Transformation

Definition

Model

Transformation

Language

Meta-

Metamodel
(e.g., MOF)

<<conformsTo>>

<<conformsTo>>

<<conformsTo>>

<<conformsTo>> <<conformsTo>>

<
<

c
o
n
fo

rm
s
T
o

>
>

Model

Transformation

Execution

Figure 2.8: Transformation process between models, adapted from [56]. Artifacts are illus-
trated as rectangles and the model transformation activity is pictures as rectangle with rounded
corners. Solid lines describe the transformation process while dotted lines indicate the confor-
mance between artifacts.

2.6. MODELING OF EMBEDDED SYSTEMS WITH UML AND MARTE 41

In model-to-model transformations, models are used as the input and output of the transfor-
mation process. The transformation may be performed on multiple target and destination
models, defined as one-to-one, many-to-one, or one-to-many transformation. Furthermore,
model transformations can be endogenous or exogenous. Imagine two models, mi and mj ,
confirming to metamodel mmi and mmj , respectively. In endogenous transformations, the
metamodel of the input model is equal to the metamodel of the output model, i.e., mi = mj ,
while the metamodel differs (mi ̸= mj) for exogenous model transformations. In fact, exoge-
nous model transformations require a set of rules which describe how elements of the input
model are mapped to the elements of the output model. If a transformation rule does not
address elements of the input model, they will be ignored during the transformation process,
and no element will be created in the output model. The last dimension mentioned above
distinguishes between horizontal and vertical transformations. In horizontal transformations,
the abstraction level between the input model mi and mj remains the same, e.g., when refac-
toring or migrating models. Vertical transformation refers to a transformation where the
input and output models have a different level of abstraction. For instance, transforming one
PIM into multiple PSMs is described as a vertical exogenous one-to-many transformation,
e.g., m/UML → (m/C++, m/Java). A model exchange between different modeling tools is an
example of a horizontal transformation. As described in [179, 180, 181, 182], the analysis of
models, e.g., developed in UML or Simulink, may also require model-to-model transformations.
Code generation, for instance, may be described as a vertical transition from models, e.g., a
PSM, to lower-level artifacts, e.g., C++ or Java source code, which is a typical example of a
model-to-text transformation [56].

2.6 Modeling of Embedded Systems with UML and MARTE
To apply MDD in software engineering, modeling languages are used to specify, visualize,
and document models. As a general-purpose graphical modeling language, UML has been
established as the standard modeling language in MDD and represents the most used modeling
language in the embedded software industry [7, 407]. As a central part of this thesis, UML
is used to model hardware components (cf. Section 5.2, p. 117 ff.), specify the UML-based
Power Analysis Profile (PAP) (cf. Section 5.3, p. 124 ff.), and define the software application
model of the case study (cf. Section 7.2, p. 176 ff.). A description of the UML diagrams used
in this thesis can be found in Appendix A.3 (p. 266).

This section discusses the MARTE UML profile as the basis for the definition of the PAP.
A brief overview of MARTE is given in Section 2.6.1. The basic structure and profiles of
MARTE are introduced in Section 2.6.2, while Section 2.6.3 covers the Value Specification
Language (VSL), a textual language to specify quantitative information. The modeling of
NFPs is discussed in Section 2.6.4.

2.6.1 Overview

UML can be customized and extended with the concept of UML profiles (cf. Section A.3.2,
p. 270 ff.) to take domain-specific aspects into account. A UML profile generally represents
a domain-specific interpretation of the general UML language. While focusing on functional
aspects, basic UML offers no support to model NFPs nor NFRs in software development.
Two early UML extensions standardized by the OMG which are using NFR-specific annota-
tions [46, 108] for the analysis of NFPs are the UML Profile for Modeling Quality of Service

42 CHAPTER 2. RELATED WORK AND BACKGROUND

and Fault Tolerance Characteristics and Mechanisms (QoS&FT) [271] and the UML Profile
for Schedulability, Performance, and Time Specification (SPTP) [270].

The SPTP profile extends UML with basic Quality of Service (QoS)4, concurrency, resource,
and timing concepts specific to real-time systems. Furthermore, SPTP adds requirements
and properties needed for the two types of quantitative analysis, namely, schedulability and
performance [46]. The QoS&FT profile has a broader scope than SPTP, allowing a larger
extent of QoS requirements and properties to be considered, which may be fixed at design
time or managed dynamically [46, 91]. However, the QoS&FT profile neither includes typical
results of scheduling analysis like end-to-end response time and the schedulability of tasks
when describing workloads [271] nor enables tools to extract basic concepts like triggers or
tasks [109] needed to fully support the process of analysis modeling. Multiple sources [108, 110]
have referred to the two-step annotation process as being too heavy-weight and requiring too
much effort compared to SPTP. Furthermore, the profile lacks variable specifications. The
additional objects to be created for annotation purposes and the use of long Object Constraint
Language (OCL) expressions may also negatively affect the readability of the model5.

The OMG issued a request for proposal to upgrade the SPTP to the UML 2.0 specifica-
tion [108]. As a result, the MARTE specification has been released as a direct replacement for
the SPTP [108, 278, 348]. MARTE is based on features of the SPTP and reuses structural
components of the QoS&FT and corresponding stereotypes of the SysML profile. As stated
in [348], MARTE enhances UML with several capabilities, such as:

• Methods to define and specify types of quantitative and qualitative NFPs and their
relationships for UML models and model elements.

• A generic framework to model NFPs, including power-related properties.

• The ability to model hardware resources accurately.

• Methods to model software applications specifically for real-time and embedded systems.

• Methods to model the relationship between the software application and the underlying
hardware platform.

With the capabilities added by MARTE, the basis for a formal analysis may be defined,
which enables the ability to predict and evaluate key aspects such as power consumption
automatically or semi-automatically in early design phases before a hardware platform may be
available, which addresses RQ3 and RQ4. In the following, the basic structure of MARTE will
be introduced, and aspects such as the Value Specification Language (VSL) and the modeling
of NFPs will be explained in detail.

2.6.2 Basic Structure and Profiles

According to [278], the definition of profiles in MARTE relies on a two-stage process, namely
the domain model specification and the definition of underlying UML profile design:

• The first stage covers the definition of domain elements representing required concepts
related to a specific concern, e.g., NFP modeling. A metamodel and detailed semantics
descriptions of each containing element formalize the resulting domain model.

4In this context, QoS is equivalent to NFPs.
5A more detailed comparison of the SPTP and the QoS&FT profiles may be found in [46, 108, 109].

2.6. MODELING OF EMBEDDED SYSTEMS WITH UML AND MARTE 43

• In the second stage, UML profiles are designed as UML-based representations of MARTE
domain model elements.

Profiles defined by MARTE provide extensions based on stereotypes, tagged values, and specific
notations intended to integrate a complementary DSL for designing, analyzing, and building
embedded and real-time systems into the concepts of UML. The general structure of MARTE
is shown in Figure 2.9. Packages and profiles (partly) used in this thesis are highlighted in
blue.

MARTE foundations

<<profile>>
CoreElements

<<profile>>
NFP

<<profile>>
Time

<<profile>>
Alloc

<<profile>>
GRM

MARTE design model

<<profile>>
GCM

<<profile>>
HLAM

<<profile>>
SRM

<<profile>>
HRM

MARTE analysis model

<<profile>>
GQAM

<<profile>>
SAM

<<profile>>
PAM

MARTE annexes

<<profile>>
VSL

<<profile>>
RSM

<<modelLibrary>>
MARTE_Library

Visual Paradigm Standard(Schaarschmidt(Fachhochschule Osnabrueck))

Figure 2.9: MARTE architecture and profile overview, adapted from [278]. Elements (partly)
used in this thesis are highlighted in blue (UML 2.5 package diagram notation).

To address RQ3 and RQ4, MARTE is used for two basic concepts: the definition of the
PAP and the specification of NFPs for hardware components (cf. Section 5.3, p. 124 ff.). For
the PAP, stereotypes of different MARTE profiles, such as the Generic Resource Model (GRM)
and the Hardware Resource Modeling (HRM), are considered, which provide tagged values for
the definition of NFPs.

The GRM profile is a core framework of MARTE used to model a general platform for
executing embedded applications. For instance, the MCU can be a resource that provides
processing capabilities as a resource service. The use or demand of resources is addressed by
the ResourceUsage package of the GRM, which enables an evaluation of requirements based
on resources needed during execution. For this, the metamodel of UML can be extended with
stereotypes of the GRM. However, the utilization of the GRM profile in the context of this
thesis is limited to the Resource and ResourceUsage stereotypes, as shown in Figure 2.10.

Besides the general Resource stereotype, the GRM package also provides specializa-
tions such as StorageResource, TimingResource, ComputingResource, and DeviceRe-
source [278]. The ResourceUsage stereotype contains tagged values that may be suitable

44 CHAPTER 2. RELATED WORK AND BACKGROUND

<<profile>> GRM

<<metaclass>>
UML::Classes::Kernel::NamedElement

<<stereotype>>
Resource

 resMult : NFP_Integer = 1
 isProtected : boolean
 isActive : boolean

<<metaclass>>
UML::Classes::Kernel::Property

<<stereotype>>
ResourceUsage

 execTime : NFP_Duration [*] {ordered}
 msgSize : NFP_DataSize [*] {ordered}
 allocatedMemory : NFP_DataSize [*] {ordered}
 usedMemory : NFP_DataSize [*] {ordered}
 powerPeak : NFP_Power [*] {ordered}
 energy : NFP_Energy [*] {ordered}

<<metaclass>>
UML::Classes::Kernel::Classifier

{ordered} subUsage

{ordered}
usedResources

Visual Paradigm Standard(Schaarschmidt(Fachhochschule Osnabrueck))

Figure 2.10: Excerpt of the Resource and ResourceUsage stereotype definitions (GRM
profile), adapted from [278] (UML 2.5 profile diagram notation).

to model aspects related to power and timing. Furthermore, the stereotype may be a reason-
able basis for more complex scenarios in which multiple resources of different types are used.
Such information can be modeled within a single stereotype instead of being spread across the
model [348]. Since the ResourceUsage stereotype is an extension of the UML NamedElement,
it can be applied to nearly all elements of the UML model, including classes, state machines,
states, and transitions.

<<profile>> HRM

<<profile>> HwLogical

<<profile>>
HwComputing

<<profile>>
HwCommunication

<<profile>> HwPhysical

<<profile>>
HwDevice

<<profile>>
HwStorage

<<profile>>
HwTiming

<<profile>>
HwGeneral

<<profile>>
HwLayout

<<profile>>
HwPower

<<import>><<import>>

Visual Paradigm Standard(Schaarschmidt(Fachhochschule Osnabrueck))

Figure 2.11: Structure of the HRM profile, adapted from [278] (UML 2.5 package diagram
notation).

A specialization of the GRM profile is the HRM profile to model hardware parts of
embedded system platforms. The HRM profile illustrated in Figure 2.11 aims to structure
hardware concepts under a hierarchical taxonomy with categories depending on their structure,
functionality, and technology [278]. For this, the HRM offers two views: a logical view
(HwLogical) to classify hardware resources by their functional properties and a physical view
(HwPhysical) for a classification related to physical properties. The HRM profile illustrated
in Figure 2.11 consists of the following packages (sub-profiles):

• The HwGeneral package provides a HwResource stereotype, which inherits from the
Resource stereotype (GRM package) and provides at least a HwResourceService, as

2.6. MODELING OF EMBEDDED SYSTEMS WITH UML AND MARTE 45

illustrated in Figure 2.12. The stereotypes HwComponent and HwResourceService
provide tagged values to describe NFPs such as power consumption and heat dissipation.

• The HwLogical package consists of sub-profiles such as HwComputing to model, e.g.,
MCUs, HwStorage to model, e.g., memory, and HwCommunication for communication
interfaces. Further sub-profiles of the package are HwTiming for clocks and timers and
HwDevice to model sensors and actuators.

• The HwPhysical package consists of the sub-profiles HwLayout and HwPower. The
HwLayout sub-profile provides a generic HwComponent stereotype to describe physical
components with tagged values such as dimension, position, price, and weight.
With the HwPower profile, models may be annotated with power properties.

Figure 2.12 illustrates the HwPower sub-profile as part of the HwPhysical profile. The tagged
values staticConsumption and staticDissipation define the consumption and dissipation
of a non-operating or non-active hardware component, while the tagged values consumption
and dissipation define the (dynamic) consumption and dissipation of the HwComponent
when powering the HwResourceService. Furthermore, the HwPower sub-profile shown in Fig-
ure 2.12 defines the HwPowerSupply stereotype, which inherits from the HwComponent to
model aspects of power supplies and batteries. Note that the layout and physical-specific
attributes such as position, weight, and price of the HwComponent stereotype have been
omitted in Figure 2.12. For the description of NFPs, the VSL and NFP profiles and the
MARTE model library are used (cf. Figure 2.9, p. 43). Aspects of the VSL and NFP modeling
are discussed in the following.

<<profile>> HwPower

 consumption : NFP_Power
 dissipation : NFP_Power

<<stereotype>>
HwResourceService

 staticConsumption : NFP_Power
 staticDissipation : NFP_Power

<<stereotype>>
HwComponent

 suppliedPower : NFP_Power
 capacity : NFP_Energy [0..1]

<<stereotype>>
HwPowerSupply

 coolingPower : NFP_Power

<<stereotype>>
HwCoolingSupply

0..*

poweredServices

Visual Paradigm Standard(Schaarschmidt(Fachhochschule Osnabrueck))

Figure 2.12: The HwPower sub-profile as part of the HRM profile, adapted from [278].

2.6.3 Value Specification Language (VSL)

MARTE introduces the Value Specification Language (VSL) to specify non-functional aspects
based on quantitative information. The VSL is used to specify values for properties of stereo-
types and to define constraints and complex data types. Since the Tag Value Language (TVL)
of the SPTP lacks the ability to model user-defined NFPs, the VSL extends concepts of the
TVL, e.g., to annotate constant, variable, tuple, and expression values [278]. According to the
OMG specification for MARTE [278], VSL provides concepts to specify parameters, constants,
and expressions in a textual form. Additionally, the VSL is able to express relationships

46 CHAPTER 2. RELATED WORK AND BACKGROUND

between elements by using arithmetic, logical, relational, and conditional expressions. To
extend UML with complex data structures, the VSL provides stereotypes for composite data
types such as collection, interval, choice, and tuple types. By this, values can be specified with
the VSL as literal data types representing single values and composite data types for structured
data types with additional attributes.

• Literal values represent basic data types in text-based formats that are common to most
programming languages, such as boolean, string, and number (integer, real) literals.

• The VSL predefines four composite data types. The IntervalType data type defines
a valid range of data values with two boundary values or as an enumeration. The Col-
lectionType defines data structures as arrays, the ChoiceType combines structurally
unrelated data types into a single type, and the TupleType expresses ordered collections
of typed attributes [348]. A formal specification of each type can be found in [278].

VSL is also used to define variables and describe relationships between attribute values.
According to the MARTE specification [278], VSL variables must be explicitly declared using
a dollar sign ($) as a keyword for variable declaration, placed before the variable name.
Optionally, a direction information can be defined before the variable name using the keyword
in for an input variable, out for an output variable, or inout if the variable is used for
both. Also optional are the data types, which can be specified with a colon after the variable
name, and the init expression, which can be specified with an equal sign. Listing 2.1 shows
the definitions of three variables using a literal data type (line 1), a composite data type
with and without an init expression (lines 2 and 3), and an expression assignment (line 5).
The TupleType defines the basic structure for defining NFPs, e.g., used for the variables
currentTime and threshold in Listing 2.1, and is explained in the following Section 2.6.4.

1 out $setAlarm : Boolean
2 in $currentTime : NFP_Duration
3 $threshold : NFP_Duration = (500, ms)
4
5 setAlarm = (currentTime > threshold) ? true : false

Listing 2.1: Examples of VSL variable definitions and expression usage.

2.6.4 Non-functional Properties

For the modeling of NFPs, MARTE provides a domain model and a UML profile. The
UML profile diagram in Figure 2.13 shows an excerpt of the NFP profile used in this thesis,
namely the stereotypes «unit», «dimension», and «nfpType». The «unit» stereotype can
be considered as an extended description of the entity to be modeled. Properties introduced
by the «unit» stereotype are [348]:

• baseUnit (optional): Symbol representing the base for the measurement unit to be
modeled, e.g., W or J as defined in Section 2.1.1 (p. 17 ff.)

• offsetFactor (optional): Numerical offset for the conversion between the units of the
measurement unit, e.g., between Celsius and Fahrenheit [348].

2.6. MODELING OF EMBEDDED SYSTEMS WITH UML AND MARTE 47

• convFactor (optional): Quantitative relationship between the baseUnit and other
units of this the measurement unit, e.g., 10−3 for the conversion from mW to W .

<<profile>> NFP

<<metaclass>>
UML::Classes::Kernel::EnumerationLiteral

 symbol : String [0..1]
 baseDimension : Dimension [*] {ordered}
 baseExponent : Integer [*] {ordered}

<<stereotype>>
dimension

<<stereotype>>
UML::DataTypes::TupleType

 convFactor : Real [0..1]
 convOffset : Real [0..1]
 baseUnit : unit [0..1]

<<stereotype>>
unit

<<metaclass>>
UML::Classes::Kernel::Enumeration

 valueAttrib : Property [0..1]
 unitAttrib : Property [0..1]
 exprAttrtib : Property [0..1]

<<stereotype>>
nfpType

Visual Paradigm Standard(Schaarschmidt(Fachhochschule Osnabrueck))

Figure 2.13: Excerpt of the MARTE NFP profile, adapted from [278] (UML 2.5 profile diagram
notation).

The «dimension» stereotype shown in Figure 2.13 extends the UML enumeration concept
and represents the composition of a NFP in terms of the three fundamental physical units
length (L), mass (M), and time (T), as well as data (D) to measure information. Note that the
dimension may be a single fundamental dimension, such as length, or a combination of multiple
fundamental dimensions. To model physical information, the «dimension» stereotypes provide
a set of properties [348]:

• symbol (optional): Used for physical base dimensions L, M, T, or D.

• baseDimension (optional): An ordered list used for derived dimensions to specify the
relationship between the dimension to be modeled and the physical base dimensions, e.g.
{L, M, T} for the PowerUnitKind (cf. Figure 2.14).

• baseExponent (optional): An ordered list used to specify the exponents for each physical
base dimension defined in baseDimension, e.g., {2, 1, −3} for the PowerUnitKind.

The «nfpType» stereotype as a UML representation of the NFP_Type domain element [278]
inherits from the VSL TupleType. It is used as a detailed specification of quantitative values,
e.g., to model physical values. Properties of the «nfpType» stereotype include [348]:

• valueAttrib: Placeholder to specify a value of NFPs as numerical quantity or string.

• unitAttrib: Declaration of the physical measurement unit corresponding to the value
specifications of the NFPs, e.g., PowerUnitKind.

• exprAttrib (optional): Value of NFPs as VSL expression.

With the MARTE_Library (cf. Figure 2.9, p. 43), MARTE also provides a standard library,
which contains basic NFP data types with appropriate measurement unit definitions to rep-
resent physical aspects. Figure 2.14 shows selected elements of the MARTE model library
for measurement units and basic NFP types. The MARTE model library can be extended
with additional domain-specific and application-specific physical data types and basic physical
measurement units. The extension of the MARTE model library is a sub-step for the definition
of the PAP discussed in Section 5.3 (p. 124 ff.). The abstract data type NFP_CommonType

48 CHAPTER 2. RELATED WORK AND BACKGROUND

«dataType»
«nfpType»

 {valueAttrib=value}
NFP_String

value: String

«dataType»
«nfpType»

 {valueAttrib=value}
NFP_DateTime

value: DateTime

«dimension»
EnergyUnitKind

{baseDimension={L, M, T},
baseExponent={2, 1,- 2}}

«unit» J
«unit» kJ {baseUnit=J, convFactor=1E3}
«unit» Wh {baseUnit=J, convFactor=2.778E-4}
«unit» kWh {baseUnit=Wh, convFactor=1E3}
«unit» mWh {baseUnit=uA, convFactor=1E-3}

«enumeration»
DirectionKind

incr
decr

«enumeration»
SourceKind

est
meas
calc
req

«enumeration»
StatisticalQualifierKind
max
min
mean
variance
range
percent
distrib
determ
other

«dataType»
«nfpType»

 {valueAttrib=value}
NFP_Real

value: Real

«dataType»
«nfpType»

 {valueAttrib=value}
NFP_Boolean

value: Boolean

«dataType»
«nfpType»

 {exprAttrib=expr}
NFP_CommonType

expr: VSL_Expression
source: SourceKind
statQ: StatisticalQualifierKind
dir: DirectionKind
mode: String [*]

«dataType»
«nfpType»

 {valueAttrib=value}
NFP_Integer

value: Integer

«dataType»
«nfpType»

 {unitAttrib=unit}
NFP_Energy

+unit: EnergyUnitKind
+precision: Real

«modelLibrary»
MARTE_Library::BasicNFP_Types

«dataType»
«nfpType»

 {unitAttrib=unit}
NFP_Duration

unit: TimeUnitKind
clock: String
precision: Real
worst: Real
best: Real

«dataType»
«nfpType»

 {unitAttrib=unit}
NFP_Power

+unit: PowerUnitKind
+precision: Real

«dimension»
TimeUnitKind

{symbol=T}

«unit» s
«unit» tick
«unit» ms {baseUnit=s, convFactor=1E-3}
«unit» us {baseUnit=ms, convFactor=1E-3}
«unit» min {baseUnit=s, convFactor=60}
«unit» hr {baseUnit=min, convFactor=60}
«unit» day {baseUnit=uA, convFactor=24}

«dimension»
PowerUnitKind

{baseDimension={L, M, T},
baseExponent={2, 1,- 3}}

«unit» W
«unit» mW {baseUnit=W, convFactor=1E-3}
«unit» kW {baseUnit=W, convFactor=1E3}

«modelLibrary»
MARTE_Library::MeasurementUnits

Figure 2.14: Excerpt of the MARTE model library with measurement units and basic NFP
data types, adapted from [278] (UML 2.5 package diagram notation).

is defined in the MARTE model library to introduce additional properties as a basis for all
derived NFP data types in Figure 2.14, such as NFP_Power and NFP_Energy. If the additional
properties are taken into account, a NFP data type for the MARTE model library may be
defined by the VSL TupleType (value, expr, unit, statQ, dir, source, precision), with:

• value: The actual value expressed as a numerical quantity or string. The value property
is bound to the default property valueAttrib provided by the «nfpType» stereotype.

• expr (optional): Contains a VSL expression and is used instead of a the value prop-
erty. The expr property is bound to the default property expAttrib provided by the
«nfpType» stereotype.

• unit: Contains the physical measurement unit. The unit property is bound to the
default property unitAttrib provided by the «nfpType» stereotype.

2.7. SOFTWARE TESTING PRINCIPLES 49

• statQ (optional): Statistical qualifier used if the value is a statistical quantity to indicate
the type of statistical measure, e.g., max, min, mean, variance, or range.

• dir (optional): Enables a comparison for two values of the same NFP type by using the
two directions of increasing (incr) and decreasing (decr) for the order of quality.

• source (optional): Describes the origin of the value, e.g., measured (meas), estimated
(est), or calculated (calc).

• precision (optional): Defines the standard deviation of the real measurement.

As a basic example for the tuple notation, the data type NFP_Power may be expressed as
(value = 1.5, expr = −, unit = ms, statQ = −, dir = −, source = −, precision = −) or
(value = 1.5, unit = ms). If the shortened notation6 is used, it may be expressed as (1.5, ms).

This section introduced the structure and concepts of MARTE. While UML is used for the
functional modeling of software, MARTE extends UML with the ability to model NFPs, which
are used in this thesis to describe energy-related properties for power consumption estimation
as a form of testing.

2.7 Software Testing Principles

Software testing is an important step in the software development process, which takes up
to 50 % of the total time and more than 50 % of the total cost [38, 258]. The approach to
estimating power consumption presented in Chapter 5 (p. 115) describes a specific software
test method for NFRs partly based on the concepts presented in this section. In addition to
a general introduction to the field of software testing, various concepts and methodologies
are presented in order to classify the concepts of this thesis and to point out differences with
existing approaches.

Since no single definition of software testing exists, the term is interpreted differently in the
literature. For instance, Myers et al. (2012) [258] define software testing as “[...] the process
of executing a program with the intent of finding errors”, while McGregor and Sykes (2001)
[241] define software testing as “the process of uncovering evidence of defects in software
systems”. In standardized and accepted glossaries, (software) testing is referred to as “activity
in which a system or component is executed under specified conditions, the results are observed
or recorded, and an evaluation is made of some aspect of the system or component” [174] and
as the process of “[...] all lifecycle activities, both static and dynamic, concerned with planning,
preparation, and evaluation of a component or system and related work products to determine
that they satisfy specified requirements, to demonstrate that they are fit for purpose and to
detect defects” [172]. While focusing on NFRs, aspects of the hardware platform must also be
considered in addition to the software application. Since this widely corresponds to the system
concept, software testing in this thesis is referred to the definition provided in [174]. A main
part of software engineering is verification and validation [235, 367], also known as V&V [174].
Verification is located at different steps of the development phase. Based on static methods,
verification describes a process to determine whether a unit, component, or system conforms
to requirements and standards defined at the specific development phase. Validation is located
at the end of the development process and uses software testing methods to check whether a

6For readability, the shortened notation (value, unit) and (expr, unit) are used for the rest of this thesis.

50 CHAPTER 2. RELATED WORK AND BACKGROUND

component or system solves the assigned problem, meets requirements, and satisfies specified
customer expectations. As part of the Quality Assurance (QA) process [57], however, software
testing is a key element of the entire development cycle used in different phases during the
software development process and performed on different abstraction levels. Figure 2.15 shows
the most common levels of software tests.

Number of Tests

L
e
v
e
l
o
f
A

b
s
tr

a
c
ti
o
n

Unit Tests

Component Tests

Integration Tests

System Tests

Acceptance Tests

Figure 2.15: Levels of software testing.

Unit testing, for example, is performed on the lowest level to evaluate the functionality of
single units as the smallest possible artifacts of a software application against its specification.
A single procedure, individual functions in procedural languages, and combinations of oper-
ations, e.g., organized in classes as used by object-oriented languages, are typically defined
as units [57, 81, 189]. During the test execution, each unit is tested independently and in
isolation [235]. Writing tests for all units of a software application results in a large number
of test cases. Component testing, or module testing, is similar to unit testing. Instead of
individual units, a component as a set of units, e.g., a group of related classes combined in a
file or package, is tested independently and in isolation to verify the interaction of contained
units and related data structures [16, 394, 397]. Since each unit of a component has already
been tested with unit tests, fewer test cases have to be defined. As the next testing level,
the integration test focuses on interfaces and interactions between integrated components. In
comparison, system testing describes the first stage of testing, where a fully functional SUT,
containing the complete software application, hardware components, and documentation, is
used to validate the compliance of high-level functional requirements and NFRs [31, 57, 81].
Typically performed by QA teams, system testing focuses on detecting errors at the highest in-
tegration level. Besides the architectural design and behavior of the SUT covered by functional
requirements, NFRs such as performance, usability, security, reliability, and availability are
evaluated [16, 81]. Since no inner details need to be tested, even fewer test cases are required.
In acceptance tests, as the highest level of software testing, the software application is evalu-
ated for compliance with the business requirements and tested by end users for its acceptance.
Further information about software testing levels can be found in [81, 172, 235, 332, 367].

Section 2.7.1 introduces the dimensions of software testing, while Section 2.7.2 discusses the
concept of dynamic testing. Section 2.7.3 introduces Model-based Testing (MBT) and describes
how this thesis relates to and fits within this systematic testing method. In Section 2.7.4,

2.7. SOFTWARE TESTING PRINCIPLES 51

X-in-the-Loop (XiL) concepts are discussed, which are used in MDD to evaluate software
models. Background on performance analysis and runtime monitoring as an approach com-
plementing conventional software testing is presented in Section 2.7.5. Section 2.7.6 discusses
the integration of virtual and physical embedded systems into the testing process.

2.7.1 Dimensions

The characteristics of a software test for a SUT may differ in multiple aspects. A classification
based on the granularity level, goal, or technique may be elaborated to describe software
tests based on typical characteristics. In previous works [260, 397, 421], domain-specific
classification approaches have been presented. For instance, Neukirchen (2004) [260] provides
a three-dimensional classification including test goal, distribution, and scope. Software testing
describes a vast field, and it is almost impossible to accurately transfer all attributes and
aspects of software testing into (orthogonal) dimensions to define a single classification scheme.
Nevertheless, Figure 2.16 shows a six-dimensional characterization of software testing as a
simplified and more comprehensive representation, elaborated to provide a basic vocabulary
for the software testing concepts described in the subsequent sections. The characteristics
presented in Figure 2.16 are divided into dimensions, categories, and options, highlighted in
bold if used or addressed in this thesis.

The first dimension is referred to as the Objective [260, 421] and describes the purpose
of the test, which can be divided into dynamic and static testing.

Static testing includes all testing activities performed on software development artifacts,
such as the architecture and source code of the SUT and work created around the
SUT, e.g., documentation, requirements, and models [31, 421]. As the term static
implies, software development artifacts are not executed during testing. Instead, they
are statistically analyzed to evaluate logical aspects, such as unreachable code, uncalled
functions, or undeclared variables.
Dynamic testing describes all types of testing where the SUT is executed using test
cases. The main goal of dynamic testing is to evaluate the structural aspects and
functional and non-functional behavior of a SUT by comparing the result of test cases
with the expected results and requirements [260]. Types of dynamic testing include
structural, functional, and non-functional testing.

• Structural testing covers the evaluation of the internal structure of the SUT, e.g.,
the data flow, during execution. However, the structure must be known in advance
in order to derive test cases.

• Functional testing aims to evaluate the behavior of the SUT based on functional
requirements. For the execution of functional tests, knowledge about the inner
structure of the SUT is not necessarily required. A systematic, planned, executed,
and documented workflow has to be defined to successfully use functional tests [81,
421], including a test plan, test suits, test cases, and test verdicts [332].

• Non-functional testing is similar to functional testing, but test cases are executed
against NFRs to evaluate non-functional characteristics of the SUT.

The Level dimension has already been covered in the introduction of the chapter and
refers to the scope of a test [260, 421]. The Technique dimension can be divided into the
static and dynamic execution of tests.

52 CHAPTER 2. RELATED WORK AND BACKGROUND

Static testing techniques cover automated analysis, static analysis, and manual ex-
aminations, e.g., reviews, to analyze the source code of the SUT [258, 367].
Dynamic testing techniques can be categorized into white-box, grey-box, and black-
box testing. Since dynamic testing is important in the context of this thesis, it is
discussed in detail in Section 2.7.2 (p. 53 ff.).

Dynamic

Static
Source Code

Error Handling

Functional Requirements
Objective

Software Testing

Level

Unit

Component

Integration

System
Acceptance

Dimensions Categories Options

Approach

Test Case-based

Exploratory

Model-based

Abstract

Non-Abstract
Abstraction

Technique

Reactive

Non-Reactive

Dynamic

Static

Black Box

Grey Box

White Box

Control Flow Analysis

Data Flow Analysis

Inspection
Walkthrough

Structural Aspects

Functional Aspects

Non-functional Aspects

Execution

Timing

Reactiveness

Real-Time

Non-Real-Time

Figure 2.16: Dimensions of software testing, adapted from [260, 397, 421]. Dimensions may be
divided in categories while options represent aspects of software testing. Options corresponding
to the concepts presented in this thesis are highlighted in bold.

The Approach dimension describes the practice of how software tests are defined, rep-
resented, and executed as part of the test strategy. Figure 2.16 shows the most common
approaches for software testing, such as test case-based testing, exploratory testing, and MBT.
As a traditional method, test case-based testing refers to a practice where test cases are planned
and defined in advance and derived from existing requirements. Instead of pre-defined test
cases, in exploratory testing, the experience, knowledge, and intuition of software developers
and testers are used to create test cases, also known as unscripted testing [6, 175]. MBT is a
method in which software models are used as SUT and as a source for the test case derivation.
This testing method is discussed in Section 2.7.3 (pp. 55 ff.).

2.7. SOFTWARE TESTING PRINCIPLES 53

The Abstraction of software testing refers to whether test cases can be executed directly or
have to be transformed into executable test cases. UML sequence diagrams or a series of high-
level procedure calls are examples of abstract test cases [397] that must be transformed into
executable test cases [299]. Non-abstract or concrete test cases provide values for preconditions,
input data, expected results, and a detailed description of actions [172].

The Execution of software tests shown in Figure 2.16 is limited to properties related to
the concepts of this thesis, such as reactiveness and timing.

Reactiveness specifies if software tests depend on and respond to the behavior of
the SUT to obtain results [172, 422], for instance, if data sent to the SUT depends
on previous outputs. By this, the execution of reactive test cases is influenced by
the behavior of the SUT, which allows test cases to be modified dynamically during
execution. Reactive software tests require runtime monitoring of the SUT as described
in Section 2.7.5 (p. 61 ff.). Since outputs of the SUT are used as inputs, reactive tests
may be executed in a closed loop, while non-reactive tests are defined as open-loop tests.
Open and closed-loop tests are elaborated in Section 2.7.4 (p. 57 ff.).
The Timing characteristic of test cases may include real-time aspects or requirements.
Since time-related behavior strongly depends on the architecture, the test execution must
be performed on the target platform or closely related prototype implementations under
real-time conditions. If the requirements to be evaluated are not related to real-time or
the execution time is not significant, test cases may be executed delayed.

2.7.2 Dynamic Testing

This section gives a brief overview of dynamic software testing methods. As mentioned be-
fore, software testing refers to the systematic analysis of software applications in controlled
scenarios to discover errors and evaluate the behavior and quality level of source code w.r.t. re-
quirements. Based on the availability of information about the SUT and the focus of tests
to be created, a distinction can be made between black-box, grey-box, and white-box tests.
Figure 2.17 illustrates these software testing methods related to their granularity level and
required knowledge level.

Black Box

Grey Box

White Box

Required Level of Knowledge

L
e
v
e
l
o
f

G
ra

n
u
la

ri
ty

Input

Output

Figure 2.17: Black-box, grey-box, and white-box testing in relation to their level of granularity
and required level of knowledge.

54 CHAPTER 2. RELATED WORK AND BACKGROUND

Black-box, grey-box, and white-box tests can be applied on different levels during software
testing. In traditional approaches [59], black-box tests are used for acceptance and system
tests, grey-box tests for integration and component tests, and white-box tests are mainly used
for unit tests [406]. However, the assignment of these testing techniques to specific levels is not
strict and may be adapted to the characteristics of the SUT, aspects to be tested (functional or
structural), and the development process. As mentioned in [31, 57, 81], black-box techniques
may also be applied on lower levels, e.g., as unit and component tests. In MBT, for instance,
test cases are derived from models instead of source code, which defines MBT as a black-
box testing approach [343, 397] applicable at different levels depending on the abstraction
level of the model [306, 421]. Note that MBT can also be used, e.g., to automate white-box
tests [421]. In the following, the three testing methods pictured in Figure 2.17 are introduced
in more detail since they are part of MBD (cf. Section 2.7.3, p. 55 ff.) and XiL tests (cf.
Section 2.7.4, p. 57 ff.).

White-box testing is a structure-oriented testing method used to evaluate the structure,
source code, and control flow, e.g., functions and procedures, of a SUT, typically a software
application or single software components [57, 235, 298]. Since test cases are derived from
source code, white-box tests have the highest level of granularity. In order to specify white-box
tests, developers must have in-depth knowledge of the programming language used and access
to the internal structure and source code of the SUT. Due to the required knowledge, white-box
testing is more extensive than other methods w.r.t. the selection of input data and the proof-of-
correctness of the SUT [343]. White-box testing strategies include coverage-based tests such as
statement coverage, branch coverage, and multiple condition coverage [57, 235, 258, 298, 406].
Regarding software testing levels (cf. Figure 2.15, p. 50), testing may be applied at the unit,
integration, and system levels.

Grey-box testing defines a combination of white-box and black-box testing where an
abstract model represents the system. While the internal algorithms and data structures are
accessible to derive specific tests, inner low-level implementation details, such as the source
code, are still hidden [35, 343]. Typically, grey-box tests evaluate the interaction between parts
of the software application, e.g., on the integration level (cf. Figure 2.15, p. 50). According
to Banerjee et al. (2016) [35], grey-box testing is closely related to MBT (cf. Section 2.7.3,
p. 55 ff.). To derive and execute test cases, a model-generating process, a technique to
generate test cases based on model explorations, and a test oracle are required. The test
oracle compares the output of the SUT with the input defined by the test case to determine
whether a test is valid or has failed. Possible model representations of the SUT may be timed
state machines, e.g., Markov decision processes [148, 225], Markov chain usage models [311],
and extensions such as timed usage models [357, 358]. Moreover, UML may be used for the
model representation, e.g., based on component, object, class, use case, and state machine
diagrams [35, 235]. In fact, Mall (2018) [235] describes grey-box testing specifically for UML
diagram types, for instance, with state, state transition, and state transition path coverage
for UML state machine diagrams and association, aggregation, and derived class tests for
UML class diagrams. The test execution is similar to the black-box testing approach but with
more specific test cases. Grey-box testing is typically applied on the unit, component, and
integration levels [31].

Black-box testing corresponds to a functional testing method where the behavior of
the SUT is evaluated. This method explores possible inputs and analyzes the corresponding
outputs to validate that the SUT conforms to a specification. Operations provided by public
interfaces can be used for all interactions with the SUT. At the same time, the internal structure

2.7. SOFTWARE TESTING PRINCIPLES 55

and implementation details of the SUT are hidden and unknown during the specification and
execution of tests. Therefore, black-box testing requires the least level of knowledge and has
the lowest granularity (cf. Figure 2.17). Test cases are derived based on requirements and
interface specifications. The most common black-box testing methods are equivalence class
partitioning and boundary value analysis [57, 184, 235, 258, 367]. Both methods aim to reduce
the number of test cases by selecting only a few representatives of each class. Other black-box
testing methods, such as error guessing, decision table, and pair-wise testing, are discussed
in [81, 258, 367]. For UML-based models and model representations, the UML Testing Profile
2 (UTP2) provides a basis for systematic testing [31]. Usually, NFRs are evaluated implicitly
when executing functional test cases on critical parts of the software application during black-
box testing [367]. However, for the power consumption estimation approach presented in
this thesis, access to inner details (grey box) is required during test case execution, e.g., to
values of attributes and states of the software application. This topic is further discussed in
Section 2.7.5 (p. 61 ff.). Black-box testing is typically performed in MBT [343], as discussed
in the next section.

2.7.3 Model-based Testing (MBT)

Model-based Testing (MBT) is widely used in research and industry with slightly different
interpretations. Utting et al. (2006) [398] introduce MBT as “[...] a variant of testing that
relies on explicit behavior models that encode the intended behavior of a system and possibly the
behavior of its environment” and define the term w.r.t. generative aspects as “the automatable
derivation of concrete test cases from abstract formal models, and their execution”. Test cases
may be described by pairs of input and output values. Schieferdecker and Hoffmann (2010)
[343] describe MBT as a form of “software testing where test cases are derived in whole or
in part from a model that describes selected, often structural, functional, sometimes non-
functional aspects of a SUT” and define the concepts as “the automation of the design of
black-box tests”. In [95], MBT is defined as a “[...] testing technique aimed at the automatic
generation of tests using models extracted from the software artifacts produced throughout the
development process”. For the automotive domain, Bringmann and Krämer (2008) [58] define
MBT as “all testing activities in the context of MBD projects”. In [113], MBT is described as
an “umbrella of approaches that generate tests from models”, and a more generic definition of
MBT as “testing based on or involving models” is provided in [172].

MBT is mainly used for functional testing of the SUT and enables the execution of test cases
at early development stages. Since the concept is based on models, software application tests
are possible without the need for platform-specific source code to be available. Furthermore,
MBT provides an efficient way to reduce the efforts to be made when defining and performing
software tests leading to a reduction of costs for the overall software development process [343].

In the following, a taxonomy is introduced for a brief overview of the details and core
elements of MBT. In [398, 397], the first comprehensive taxonomy for MBT was introduced and
adapted in later work [399]. Additionally, it has been further extended for specific domains such
as embedded systems in general [421, 422] and safety-critical hard real-time embedded control
systems [29]. Figure 2.18 shows the basic structure of the taxonomy as a consolidation of the
concepts presented in [398, 421]. The A|B notation at the leaves indicates mutually exclusive
alternatives. The taxonomy consists of the four main dimensions Model, Test Generation,
Test Execution, and Test Evaluation, with eleven associated categories. It should be noted
that the taxonomy of the category MBT Basis described in [397, 398] differs significantly

56 CHAPTER 2. RELATED WORK AND BACKGROUND

Characteristics

Paradigm

Pre-Post

Transition-based

History Based

Functional

Operational

Deterministic | Non-Deterministic

Timed | Untimed

Discrete | Hybrid | Continuous

MBT Basis

System Model

Test Model

Coupled System Model and Test Model

Model

Test Selection

Criteria

Structural Model Coverage

Structural Code Coverage

Data Coverage

Requirements Coverage

Test Case Specification

Random and Stochastic

Fault Based

Technology

Automatic | Manual

Random Generation

Graph Search Algorithm

Model Checking

Symbolic Execution

Theorem Proving

Runtime Monitoring

Result of

Generation

Executable Test Models

Executable Test Scripts

Executable Code

Test Generation

Execution Options

Real-Time | Non-Real-Time

Reactive | Non-Reactive

Generating Test Logs

Specification

Reference Signal-feature Based

Reference Signal Based

Requirements Coverage

Test Evaluation Specification

Test Execution

Technology
Automatic | Manual

Online | Offline

Test Evaluation

Model-Based

Testing

Dimensions Categories Options

Data Flow | Control

Stochastic

Mutation-analysis Based

Search Based

Online | Offline

Scope

Unit

Component

Integration

System

Integration Level

Model-In-The-Loop

Software-In-The-Loop

Processor-In-The-Loop

Hardware-In-The-Loop

Figure 2.18: Taxonomy of MBT with dimensions, categories and options, adapted from
[29, 398, 421]. Options related to the concepts of this thesis are highlighted in bold.

from [421]. Since the testing of environmental models is neither in the scope of this thesis
nor relevant to the software engineering process, the definition introduced in [421] has been
selected over [397, 398] as it is more suitable for this thesis.

Considering the definitions of MBT at the beginning of this section, the power consumption
estimation approach of this thesis for MDD (cf. Chapter 5, p. 115 ff.) can be mapped to parts

2.7. SOFTWARE TESTING PRINCIPLES 57

of the MBT workflow based on the options of the taxonomy shown in Figure 2.18. As
the MBT basis, a UML-based system model is investigated, which specifies the behavior of
the software application extended with functional and non-functional aspects of hardware
components. The system model has a deterministic discrete behavior and a transition-based
notation, e.g., in UML state charts [275, 329]. Tests for requirements coverage are developed
manually, resulting in executable test models. The test model can represent the complete
software application or specific aspects, e.g., as UML sequence diagrams. The test execution
is based on a system model and XiL approach. The power consumption estimation approach
is used for NFR coverage performed online and offline in a manual or semi-automatic manner.
In summary, parts of the concepts of this thesis can be integrated into the MBT domain
based on the presented taxonomy. However, for the following reasons, the power consumption
estimation approach for MDD does not aim to define an MBT approach. First, the automatic
derivation and generation of test cases from models as a key factor of MBT is not part of the
estimation approach and not covered by this thesis. Second, MBT has limited support for the
generation of NFP-related test cases and the evaluation of NFRs [95, 96]. Even with UML
extensions such as the UTP2 [276] to model test cases and environments, the capabilities to
define non-functional tests are limited [31, 327]. Instead, a more general approach is provided
to evaluate power- and energy-related aspects in early development stages of MDD based on
a new UML profile (cf. Section 5.3, p. 124 ff.), methods (cf. Section 5.4, p. 135 ff.), and
evaluation platforms (cf. Section 6.5, p. 161 ff.). The reader is referred to [397, 398, 421]
for further information about the dimensions, categories, and options of the MDD taxonomy
shown in Figure 2.18.

2.7.4 X-in-the-Loop (XiL) Testing

To evaluate software applications in MDD, X-in-the-Loop (XiL) testing can be used as a
consistent testing process for the initial (partial) model, the generated source code, and the
final software application executed on the embedded target system [59, 355]. The architecture
of XiL tests can be divided into two main groups: open-loop and closed-loop tests. In open-
loop tests, the SUT, e.g., the model of a software application, is executed in an isolated setup
and evaluated without the impact of the environment. Inputs such as signals, parameters, or
events are sent to the SUT, and outputs are monitored and analyzed. The general concept of
an open-loop test [59, 186] is shown in Figure 2.19, where a test case is used to derive the test
data as input for the SUT and the expected output of the test case. During test execution,
the output of the SUT is monitored, captured, and compared with the expected output. This
testing setup is denoted as an open loop since neither the output of SUT nor the behavior of
the environment does affect the SUT and is returned as an input.

SUTInput SUT Output EvaluationTest Case

Expected

Output

Figure 2.19: Diagram of an open-loop testing setup (block diagram notation).

58 CHAPTER 2. RELATED WORK AND BACKGROUND

For closed-loop tests, an environmental model, also known as plant model, has to be
developed. It defines the behavior of the environment in which the SUT is tested. Instead of
an isolated execution, both models are coupled, forming a closed loop [59, 203] that enables
interaction between the SUT and the environmental model, as shown in Figure 2.20. The
structure and scope of the environmental model may vary depending on the target domain,
the defined SUT, and the abstraction level of the in-the-loop test used. If the SUT represents
the software application of an embedded system, the environmental model can reflect a set of
interfaces (e.g., sensors and actuators), define a set of physical properties (e.g., temperature
and humidity), and simulate user-defined behavior. The test case is used to derive the expected
output, input for the SUT, and the configuration of the environment model. The outputs of
the SUT are used as inputs to the environmental model. The reaction of the environmental
model is fed back as an additional input into the SUT, representing the idea of a closed
loop between the SUT and the environment. An advantage of closed-loop tests is the ability
to evaluate the interaction of the SUT with its environment before hardware platforms are
available, which makes closed-loop testing suitable for early analysis.

SUTInput SUT Output EvaluationTest Case

Expected

Output

Parameters

Environmental

Model

Figure 2.20: Diagram of a closed-loop testing setup (block diagram notation).

Open-loop testing is commonly used to evaluate the behavior of the software application
model for static systems, which is equal to unit testing. In contrast, closed-loop testing is
used for dynamic systems and focuses more on the interaction between the SUT and the
environmental model.

Different in-the-loop test approaches exist, which can be used in various phases of the
development cycle. This section uses the V-model development process7 to illustrate in
which development phases in-the-loop tests are typically performed and their time-related
execution order. Figure 2.21 shows an abstract version of the V-model development process
from a software development perspective for embedded systems with XiL tests assigned to
the development phases. The V-model defines a standardized development process [404] as
an extension of the waterfall model and describes the relationship between the development
and testing phases. The y-axis defines the abstraction of the development process from
defining requirements (high) to the design of the software application (low), while the x-
axis defines the time of the development. The V-model is frequently used for developing
software applications in domains related to embedded systems such as automotive [158, 249],
space [255], or healthcare [242]. Note that different domain-specific definitions of the V-model

7In the literature, the term V-model is also referred to as V-cycle.

2.7. SOFTWARE TESTING PRINCIPLES 59

Source Code Generation

(Embedded Target)

Software

Component Design Unit Testing

Software Integration

Testing
MIL

Software System

Testing

System Integration

Testing

User Acceptance

Testing

SIL

Software Architecture

User Requirements

Engineering

Software Requirements

Engineering

System Requirements

Engineering

MIL

PIL

HIL

HIL

Time

Figure 2.21: Illustration of the V-model with XiL tests to verify quality gates, adapted from
[147, 158, 404].

approach instead of a uniform one exist [147, 404, 411]. Additionally, the V-model is the
basis for other development processes. Examples are the multiple V-model [59] and the W-
model [31, 343], which itself has different domain-specific interpretations, e.g., for software
testing [368] and component-based software development [216]. Different levels of XiL tests,
as shown in Figure 2.21, may be used to verify quality gates. A quality gate defines a decision
point in the development process consisting of a set of quality criteria that must be met in
order to enter the next development phase [59, 186, 355]. In the following, each in-the-loop
test is explained in more detail.

Model-in-the-Loop (MiL) is the first level of in-the-loop testing, typically used in early
phases of MDD to evaluate functional aspects of software application models. It aims to
evaluate the architecture and functions to verify the developed software application regarding
requirements defined in previous steps (cf. left side of Figure 2.21). To execute a MiL test,
a runtime environment is required to provide the context for the SUT and to simulate other
aspects required for the interaction with the software application model. For the simulation,
laboratory and development computers are typically used. MiL can be seen as a hardware-
independent testing approach for functional aspects and can be defined as open-loop or closed-
loop environments. However, if MiL is also used to evaluate non-functional aspects, additional
information about the embedded target system is required, e.g., for the evaluation or the
environmental model. The testing process can be performed manually by developers or
executed in a (fully) automated manner, e.g., using a model checker to inspect the software
application model for compliance with the modeling guidelines and calculate the model coverage.
Such tests can also be used to generate reference results for subsequent testing, e.g., Hardware-
in-the-Loop (HiL).

Software-in-the-Loop (SiL). In the next stage, the SUT is derived from the model
representation and consists of hand-written or fully generated source code due to the use of code

60 CHAPTER 2. RELATED WORK AND BACKGROUND

generators. Broekman and Notenboom (2003) [59] refer to SiL as host/target testing, where
the source code is compiled for the execution and evaluation in a simulated environment on the
host computer. SiL tests can be executed in real-time using high-performance systems or fast
and slow motion. Moreover, SiL may be applied in closed-loop and open-loop configurations
with or without environmental models, e.g., to evaluate sequential and parallel aspects of the
generated source code [102]. The primary use of SiL tests is to identify and fix inconsistencies
in the functionality between the model representation and the executable object code. The
automatic source code generation process requires a certain amount of preliminary work. The
software application model may need to be adjusted using specific data types or libraries so
that code generators can auto-generate platform-specific executable object code, which may
impact the execution behavior. Design flaws, e.g., buffer overflows and arithmetic problems
such as division-by-zero fault, are identified during SiL testing. Additionally, non-functional
aspects such as memory usage or efficiency can be derived from SiL tests.

Processor-in-the-Loop (PiL). Described as software unit tests or software integration
tests [59], PiL aims to test the real object code for the MCU that will later be used in
the embedded target system. For this purpose, commercially available evaluation boards
are typically used. Alternatively, target MCU emulators can be considered as an execution
platform. As preliminary work, the cross-compiled source code is generated with predefined
optimization options of the compiler and flashed on the target embedded system or integrated
into the emulation platform. The embedded system, e.g., the evaluation board, executes
the test management code as part of the PiL environment along with the compiled software
application. The simulation tool performing the PiL executed on a host computer interacts
with the management code, e.g., by using a serial communication interface, to send test values
and obtain output results. Since the simulation tool and management code are involved in the
PiL test, the real-time behavior of the software application cannot be evaluated. However, PiL
aims to detect faults in the processor architecture and defects such as bugs in the code generator
and compiler and undesirable side effects resulting from compiler options and optimization
levels used. As the last level that provides inexpensive and manageable debugging during test
execution [421], PiL fills the gap between the simulations-based testings (MiL and SiL) and
the real-time level testing introduced next.

Hardware-in-the-Loop (HiL) tests are located in the last steps of the verification
and validation process defined by the V-model shown in Figure 2.21. For HiL testing, the
software application generated from the model is executed with a real-time operating system
and other components such as network management stacks and drivers, e.g., for controlling
peripheral devices and interfaces. Instead of an environmental model used in MiL, SiL, and
PiL, a dedicated hardware setup (HiL simulator) specially designed to simulate the physical
environment is required [259]. The HiL simulator has to be capable of performing actions
in real-time, where a response must be guaranteed within specified time constraints. Since
the environment can be simulated in real-time, the behavior of the SUT corresponds to the
expected true behavior. Sensors, actuators, and additional components of the embedded system
can be simulated or physically connected to the SUT as real components if no real-time models
with the required accuracy are available [43, 77, 134, 173] or the creation of such models is too
expensive or complicated [118, 232, 237, 390]. HiL testing aims to verify the correct functional
execution of the software application on the target MCU while using the surrounding peripheral
interfaces and connected hardware components [259]. Examples are scheduling misbehavior
of the software application and performance issues due to the underlying hardware or latency
issues based on the hardware-software interactions. Fault injections and edge cases can be

2.7. SOFTWARE TESTING PRINCIPLES 61

executed in a non-destructive manner to evaluate the safety and diagnostic functions of the
SUT [259]. Furthermore, HiL simulators can simulate fluctuations and peaks of the supply
voltage and peripheral misbehavior to evaluate the robustness of the SUT. By considering the
entire embedded system, e.g., software and hardware, during the test case execution, HiL is
the first level allowing the evaluation of NFRs, e.g., real-time performance [203]. Another use
of application for HiL is the evaluation of interactions between embedded systems, which is
why HiL can be executed in multiple stages of the V-model development cycle, as shown in
Figure 2.21. It is also possible to achieve standardization and automatic execution of test series.
However, HiL testing is considered to be time-consuming, expensive, and error-prone [319, 150].
The design of HiL tests requires a high effort while, at the same time, the physical SUT and
the required environmental simulation are difficult to maintain. It also requires more time
and costs to resolve bugs found at this stage of the development process compared to earlier
phases, e.g., during MiL.

2.7.5 Performance Analysis and Runtime Monitoring

An important part of the software testing process is the execution and monitoring of the SUT,
as well as the verification of compliance with requirements. As introduced in Section 2.2.2
(p. 24 ff.), software applications for embedded systems have specific requirements and unique
constraints, which makes the validation process more challenging. The need to interact
with the environment to obtain input data adds to the complexity of testing and validating
software applications, as the environment may be dynamic, non-deterministic, and challenging
to simulate or control [24, 35].

Performance analysis [84] is used to evaluate non-functional aspects of the software ap-
plication (cf. Section 2.3, p. 27 ff.), which are typically related to the processing speed and
response times of the SUT. However, power consumption as an important performance met-
ric is often not associated with the software layer because a software application does not
directly consume power [289]. As a driving factor of hardware activities, software applications
significantly impact the dynamic power and energy demand of an embedded system since
they define the actual behavior during runtime, which is also described as the cause-effect
relationship [160, 231].

Non-functional testing is a central part of the testing process and differs significantly from
functional testing. While many approaches exist to define functional tests, non-functional
tests are difficult to describe without referring to functional behavior. Furthermore, NFRs
are typically formulated abstractly and have to be converted into specific and executable
test cases. According to Spillner and Linz (2021) [367], existing functional test scenarios are
used to measure NFPs of the SUT for the verification of NFRs. However, the execution of
performance tests, especially for estimating power consumption, is only considered useful if
software applications have passed functional tests in advance.

The SUT is typically represented as a black box when evaluating non-functional aspects.
To obtain the necessary data that test oracles may use for a test case evaluation, NFPs of
the SUT have to be visible and measurable during the test run. For example, evaluating time
characteristics, such as the response time as a non-functional aspect, does not require additional
effort and can be measured and analyzed along with the execution of a functional test case.
However, especially for estimating power consumption, an observation of the internal states
is necessary, which causes the need for detailed and in-depth instrumentation and probing.
As a consequence, the power consumption estimation approach requires the use of grey-box

62 CHAPTER 2. RELATED WORK AND BACKGROUND

tests. Nevertheless, observing internal states is not always a trivial task, especially for software
applications used in embedded systems due to the lack of human-readable interfaces [133].

Runtime monitoring refers to an analysis paradigm where the execution of a SUT is
observed and examined against the expected behavior [37, 117, 156]. It may be used as a
practical application of formal verification and as an approach to complement conventional
software testing and debugging [334, 412]. Besides the SUT, runtime monitoring requires a set
of properties to be evaluated, which can be expressed, e.g., as a test using a formal specification
language. According to Falcone et al. (2013) [116], the runtime verification process can be
described as a three-step process:

1. Monitor synthesis

2. System instrumentation

3. Execution analysis

In the monitoring synthesis step, the monitor is generated, defining a runtime object used
for the evaluation [116]. The monitor can receive traces, such as events or logs produced
by parts of the SUT, and can evaluate the data considering the expected values [220]. The
monitoring process can be performed during the execution of the SUT (online) or after the
test run has been finished with log files (offline). Additionally, for online monitoring, the
simultaneous execution of the test case and the monitoring can be synchronous, asynchronous,
or a combination of both [72]. The synchronous approach defines a step-by-step analysis where
a single event generated from the SUT is analyzed and processed by the monitoring instance
before the SUT proceeds with the execution and generates the next event. In asynchronous
monitoring, the SUT and the monitoring are detached and executed separately, which reduces
the impact of the monitoring instance on the SUT and has lower overheads [71]. Additionally,
the monitor is also able to send information to another source or back to the SUT if necessary.
In terms of software testing, cf. Section 2.7 (p. 49 ff.), the monitor includes the role of the
test oracle [220].

In the second step, namely the system instrumentation, the SUT is instrumented so that
relevant events and signals from the SUT during runtime can be probed, extracted, and
sent to the monitor. As instrumentation techniques, hardware-based and software-based
instrumentation are used to obtain analog and digital signals of the hardware platform and
generate the software application’s output.

In the third step, the behavior of the SUT is analyzed by the monitor either online or offline,
denoted as execution analysis. For the power consumption estimation approach, a hybrid
monitoring approach of the SUT illustrated by Figure 2.22 is required to obtain data from the
software application and hardware platform simultaneously during test case execution. Since
runtime monitoring can also be applied after the SUT is placed in an environment, bugs in
the software application that have not appeared in the testing phase may be detected [334].

The hardware instrumentation aims to measure the power consumption of the SUT during
runtime. Data obtained by the software instrumentation may include extensive traces of hard-
ware accesses, events, and signals [117]. Some variants of hardware-based instrumentation may
require additional monitoring hardware (e.g., bus monitoring) or depend on specific hardware
components (e.g., on-chip monitoring), which are out of scope for this thesis. However, further
information can be found, e.g., in [412]. By combining hardware and software instrumentation,
the monitor is able to correlate changes in current consumption with the behavior of the

2.7. SOFTWARE TESTING PRINCIPLES 63

Test Case
System Under Test

Measuring

Device
Expected Output

Input

Monitor

Software

Application

Probes for

observation

Software

Instrumentation

Probes for

observation
Parameter

Verification

Embedded System

Hardware

Instrumentation

Test case

output

Figure 2.22: Runtime monitoring for the power consumption estimation approach, adapted
from [412]. Dashed lines indicate information flow, e.g., logs, readings, expected output, and
configuration parameters. Solid lines indicate data flow related to the test case execution.

software application. Sánchez et al. (2019) [334] published a survey on challenges for runtime
monitoring. For the power consumption estimation approach presented in this thesis, the chal-
lenges of observability and non-intrusiveness are particularly significant. An ideal monitoring
implementation should not interfere with the behavior of the SUT used for test case execution.
However, power consumption can be measured without interfering the SUT during runtime,
which makes the hardware instrumentation in this thesis inherently non-intrusive.

The software instrumentation is executed along or included in the software application
of the SUT, which can affect functional and non-functional aspects and, thus, the behavior of
the SUT during runtime. Consequently, the result of the test case execution may be different
compared to the execution without instrumentation. This effect is also known as the observer
or probe effect [129, 367]. Examples of such negative effects may include a higher response
time or a more intensive hardware utilization, which in turn affect the power consumption
estimation. Therefore, it is common practice to use software instrumentation with care while
aiming for low latency to keep the effect as minimal as possible [334].

2.7.6 Related Work on the Integration of Virtual and Physical Hardware

This section discusses related work considering the integration of virtual and physical hardware
for simulation and testing. For the power consumption estimation of software applications
in MDD, the hardware behavior must part of the simulation to reflect hardware-software
interactions due to the cause-effect relationship between software and hardware. The proposed
power analysis methods (cf. Section 5.4, p 135 ff.) introduce concepts to couple and integrate
virtual and physical embedded systems into the simulation environment for a system-wide
power estimation in early development phases. Previous research has proposed approaches
related to the basic conceptual ideas of the proposed power analysis methods but with a
different focus and only slightly related to topics such as MDD, software testing, the modeling
of energy and power-related aspects, and the influence of the software application on energy
consumption.

An approach on the program level to automatically determine the energy demand of an
MCU is presented in [161]. The authors introduce indirect and direct energy measurement

64 CHAPTER 2. RELATED WORK AND BACKGROUND

techniques to give developers energy consumption measurements and optimization hints at
the function level. In contrast to the approaches presented in Sections 5.4.1 to 5.4.2, the
source code must be compiled and flashed. The concept of direct measurement is somewhat
similar to the power analysis method based on the integration of physical embedded systems
presented in Section 5.4.2 (p. 136 ff.), which describes the use of a measuring device to obtain
measurements. The indirect measurement in [161] uses performance counters to determine
the energy consumption of the software application directly executed on the target platform.
The work aims to optimize software applications on the source code level and to detect the
best suitable compiler and compiler flags. The authors also state that their approach is used
in early stages of the software development process. However, in MDD, source code-level
approaches are no longer considered as early. Suppose further peripheral devices in addition
to the MCU are included in the evaluation process. In that case, a full-blown platform-specific
software application has to be available. Additionally, the approach in [161] only considers
the energy consumption of the MCU and does not take other components, such as wireless
interfaces or sensors, into account.

In MBD, co-simulation is an area of research where frameworks are used to couple simu-
lation environments and models executed on different hosts, which may be placed in various
geographical locations. Protocols such as the Distributed Co-Simulation Protocol (DCP) [254]
have been specified for the interoperability and communication between distributed tools and
simulated models. The DCP implements a master-slave principle and specifies a data model, a
Finite State Machine (FSM) [410], a set of protocol data units, and a communication protocol
that supports IPv4, Controller Area Network (CAN), USB, and Bluetooth for data transport.
For each system involved in the communication process, a particular DCP slave has to be
executed on the target host in addition to the simulation. DCP has been used in related work,
e.g., in [39, 209, 346], to achieve XiL tests. A co-simulation scenario with a remote embedded
platform has been presented in [346]. However, embedded systems do not always provide
interfaces such as Ethernet. In addition, wireless communication interfaces are not suitable as
an interface between simulations for a power analysis due to their high power consumption,
which would negatively affect the overall measurement of the embedded system. Furthermore,
the embedded system used in [346] is not considered resource-constrained, which makes the
approach not suitable for the requirements of this thesis.

A model-based rapid prototyping process is presented in [305]. The authors describe the
integration of software and hardware models based on a model-based integration environment
and a newly defined graphical architecture description language [304]. The language is a
subset of Simulink and Stateflow and provides time-triggered semantics, which restricts the
functionality of software applications to periodic executions. The hardware platform is ab-
stracted and virtualized while supporting communication interfaces to collect sensor data and
provide signals. However, the approach uses Simulink and Stateflow while this thesis is focused
on UML-based models. Furthermore, the authors do not consider NFPs in the software and
hardware model description, which makes the rapid prototyping process unsuitable for an
early power consumption estimation.

A MiL framework to validate algorithms for autonomous driving and advanced driver
assistant systems is presented in [61]. As part of the proposed approach, a hardware-agnostic
middleware is used as a communication framework to interconnect data sources, e.g., sensors,
the algorithms under test, and the vehicle model. Inputs are collected from either real or simu-
lated virtual sensors. Although the work in [61] defines a MiL approach, it differs significantly
from the approaches presented in Sections 5.4.1 to 5.4.2. The approach aims to perform func-

2.7. RELATED WORK ON POWER CONSUMPTION MODELING & ESTIMATION 65

tional tests for algorithms written in C++ instead of non-functional tests of software models
or artifacts in the context of MDD. Additionally, the framework is not focused on energy and
power-related aspects. The middleware may provide data from actual sensors. However, the
algorithms do neither directly nor indirectly interact with the data sources, e.g., sensors. The
algorithms are platform-independent, while all data sources and the vehicle model are defined
within the same physics-based simulation platform, which makes the middleware proprietary.
Furthermore, no real sensors were used for the evaluation.

In [365] and follow-up work [366], the authors present a robot simulation and monitoring
system. Their approach is able to communicate with simulated and real devices similar to
the approaches presented in Sections 5.4.1 to 5.4.2. However, while proposed power analysis
methods (cf. Section 5.4, p. 135 ff.) aim to provide an environment for early testing and
evaluation of software applications, the work proposed in [365, 366] provides a Graphical User
Interface (GUI)-based solution for remote control of robots by users. Additionally, the authors
do not consider aspects related to energy and power.

2.8 Related Work on Power Consumption Modeling and Esti-
mation

This section discusses work in the area of power modeling and estimation that is related
to the overall concept of this thesis. In [143, 375], the authors state that optimizations
on higher abstractions levels for hardware and software lead to significantly higher power
savings and faster estimations. Figure 2.23 illustrates different abstraction levels of hardware
and software design. In MDD, models inherently represent the software application in an
abstracted sense on the architecture and behavior levels and are transformed by, e.g., model-
to-text transformations (cf. Section 2.5.2, p. 40 ff.), into program code. As shown by the left
y-axis of the diagram in Figure 2.23, power savings due to higher-level changes are expected
to be orders of magnitude higher than lower-level changes. Moreover, the time required to
perform estimations is expected to be orders of magnitude lower for each level of abstraction
(right y-axis in Figure 2.23).

Behavior Level

Register Transfer

Level

Hardware Software

Logic Level

Transistor Level

Architecture Level

Program Code

Level

Instruction Level
5 %

20 %

2-5x

10-20x

Days

Hours

Minutes

H
ig

h
e
r

P
o
w

e
r

S
a
v
in

g
s

F
a
s
te

r
E

s
ti
m

a
ti
o
n

 /
 F

e
e
d
b
a
c
k

Figure 2.23: Power reduction and estimation efficiency for different hardware and software
levels, adapted from [375].

66 CHAPTER 2. RELATED WORK AND BACKGROUND

As illustrated by Figure 2.23, the power consumption estimation can be addressed at
various levels of hardware and software design. Related work is summarized and compared in
Figure 2.24 based on their ability to consider the entire system (system view), e.g., hardware
and software aspects, as well as the level of abstraction and, thus, their suitability to be used in
MDD, specifically in early development phases. In Figure 2.24, groups of thematically similar
approaches are indicated by a specific color. The composition of the groups is discussed below.
This section does not distinguish between related work on power modeling and estimation
since most research provides both within the same work.

System View (Hardware & Software)

L
ev

el
o

f
A

b
st

r
a

c
t

io
n

(F
it

t
in

g
in

t
o

M
D

D
)

Low High

L
o

w
H

ig
h

Thesis

[316]
[236]

[103] [387]
[79]

[370]

[217]

[344]
[315]

[352] [191]
[154]

[66]

[262]
[372]

[19]

[427]

[55]

[239]
[426]

[353] [94][245]

[42][127]

[424]

[27]

[389]

[199]

[3]
[178]

[151]

[22]
[23]

Figure 2.24: A 4-quadrant diagram comparing related work in power consumption modeling
and estimation according to the system view and level of abstraction criteria. Thematically
similar work is grouped together. A distinction is made between low-level (yellow), code-
based (dark yellow/orange), various model-based (brown), and UML-based approaches (red).
Hexagons describe work with a stronger focus on software. The approach of this thesis is
shown in green.

2.8. RELATED WORK ON POWER CONSUMPTION MODELING & ESTIMATION 67

2.8.1 Low-level and Source Code-based Approaches

Low-level approaches at the transistor level, gate level, and Register Transfer Level (RTL) [103,
236, 316] offer highly accurate simulations but require a deep understanding of the internal
structure of the hardware component to be modeled. Due to the complexity, these techniques
are often used to simulate single components or Intellectual Properties (IPs) of a component.
Provided approaches, e.g., [103, 236, 316], can be considered very accurate with low overhead.
However, existing models mainly cover parts of the CPU and, thus, address only a specific
part of embedded systems. Low-level approaches are also unsuitable for complex structures,
including multiple hardware components. In Figure 2.24, low-level approaches are colored
yellow and located in the bottom left corner of the diagram.

Instruction-level Power Analysis (ILPA) and Functional-level Power Analysis (FLPA) are
higher-level approaches compared to transistor level, gate level, and RTL approaches. In ILPA,
the power consumption is estimated based on instruction and instruction pairs [79, 387, 370].
ILPA and FLPA are located on the assembly level, while the FLPA concepts also have been
applied to algorithms written in the C programming language [191]. The energy cost for
each instruction has to be measured in detail using experimental environments of the CPU,
which can quickly become unmanageable for complex architectures with large instruction sets.
FLPA decreases the time needed to build energy models and has been first mentioned in [315],
where basic instructions, built-in library functions as a sequence of basic instructions, and
user-defined functions as a combination of both are used to estimate power consumption. More
recent variants of FLPA, however, are focused on the functional level of the CPU itself. For this,
the CPU is modeled as a block [191] or divided into multiple functional blocks [217, 344, 352],
while the consumption depends on algorithmic and configuration parameters. Energy models
are typically based on equations or represented as tables providing the consumption for
each instruction. Approaches such as ILPA and FLPA primarily focus on estimating the
power consumption of CPUs. They are not intended to be used for a system-wide analysis
where software applications interact with other hardware components. Hao et al. (2013)
[154] proposed a static analysis of Java byte code extracted from smartphone applications
to estimate the overall energy behavior of mobile applications. The energy model used is
based on per-instruction energy cost functions for each hardware component of the device,
such as the MCU, RAM, and wireless communication module. For the estimation process,
the whole application, execution paths, or single methods may be used. The effort required to
create the energy models based on instruction-accurate measurements for various hardware
components should not be underestimated. However, further details on the energy model are
not provided in [154]. Finally, the need for hardware-specific assembly code or source code
in low-level languages such as C makes those approaches unsuitable for power estimation in
early design phases for software applications in MDD (cf. Section 2.5, p 37 ff.), mainly since
source code is automatically generated at later stages of the MDD approach. Still, approaches
such as [154, 161] may be used in later stages to optimize generated source code on the task
level considering MCU-specific properties.

In [66], a concept for an energy-aware device driver is presented, which contains a power-
annotated state machine to trace and map the current state of the hardware component to
a driver state for an overall power consumption estimation. The concept presented in [66]
uses the state machine model of a hardware component to generate function signatures for an
energy-aware device drivers. Software developers have to manually refine each of the generated
functions afterward. Although the basic idea to trace software-hardware interactions as the

68 CHAPTER 2. RELATED WORK AND BACKGROUND

behavior of the software application is similar to the approach presented in this thesis, their
concept does not relate to MDD, where standardized modeling languages for the description
of state machines and NFPs are used as an integrative part of software application models.
Instead, drivers with hardware-specific aspects must be directly implemented on the source
code level to enable power consumption estimations. Furthermore, the proposed power model
is based on scalar values and does not support parameters that can be influenced by the
software application during runtime. Although device-specific source code generation is not
in the scope of this thesis, the approach in this thesis may be used as a basis for generating
energy-aware device drivers.

Since the aforementioned approaches are based on second-generation and third-generation
languages such as assembly and C, the level of abstraction is low, and the approaches do
not fit into MDD. Regarding the level of abstraction, ILPA, FLPA, and source code-based
approaches are located in the lower part of the diagram presented in Figure 2.24. However,
some approaches consider multiple hardware components so that the system view may vary.
Approaches based on assembly language or lower are colored in a darker yellow tone, whereas
approaches using more high-level languages are highlighted in orange.

2.8.2 Model-based Approaches

Power and energy models for embedded systems are typically considered on the hardware
component level, with individual models for each component. With a focus on power con-
sumption modeling and estimation, the following related work provides concepts for hardware
component and system modeling along with NFP and NFR modeling approaches. In Fig-
ure 2.24, the introduced work is illustrated with a brown color and combines model-based
approaches of different domains, e.g., mathematical, SystemC, or Architecture Analysis &
Design Language (AADL) models.

Concepts for power consumption modeling and estimation have been proposed in a set of
research approaches based on workflow models [427] with stages of the system (e.g., initializing,
sensing) that specify the power level of each modeled hardware component, Petri nets [19]
to represent the power-related behavior of the system, and high-level mathematical models
[55, 239, 426] to address power estimation on higher abstraction levels. In addition, manufac-
turers of hardware components also offer tools that developers may use to estimate the power
consumption of hardware components. For instance, as part of the STM32CubeMX graph-
ical configuration and low-level code generation tool published by STMicroelectronics [372],
the Power Consumption Calculator provides a power estimation for MCUs. With this tool,
developers can define profiles based on power state sequences with hardware-specific configura-
tions. Similar approaches are available for other hardware components. The company Nordic
Semiconductor offers an Online Power Profiler [262] for their nRF52 Bluetooth low-energy
and nRF91 low-power wide-area network radio communication product lines. The mentioned
tools use mathematical models based on measured values to estimate power consumption.
Measurements are typically derived under ideal conditions in a controlled test environment,
which may not be reproducible in a real scenario. Other work, such as [42], focuses on the
system level, where, for example, multiple components are modeled as functional blocks and
state machine representations. However, none of the mentioned related work does consider
the integration into MDD and the impact of software applications.

In [127], an algorithm for the automatic generation of parameter-aware energy models of sin-
gle hardware components for embedded systems is presented. An energy model is represented

2.8. RELATED WORK ON POWER CONSUMPTION MODELING & ESTIMATION 69

as a state machine in which each state is related to a distinct state of the hardware component.
Transitions correspond to functions of a simplified driver or interrupts. The approach is not
related to MDD, and generated energy models are not described with a standardized modeling
language such as UML. However, the proposed approach for generating energy models may
be used as a source for hardware component models (cf. Section 5.2.2, p. 119 ff.) by applying
appropriate model-transformation techniques described in Section 2.5.2 (p. 40 ff.).

Zhang et al. (2010) [424] describe a concept to estimate the power consumption for smart-
phones executing compiled applications. The power model is represented as a linear equation
with zero-one indicators derived from traces of hardware components. In contrast, this thesis
aims to provide a power consumption modeling and estimation approach as part of the MDD
process, where software applications can already be evaluated in early development phases
without requiring compiled source code. Additionally, mathematical models proposed in [424]
can be integrated into hardware component models using UML state machines and VSL to
model NFPs as extensions of state machine descriptions.

A MDA framework to estimate the power consumption of Near Field Communication
(NFC) devices and to verify power-related NFRs is presented in [245]. The proposed models
are based on SystemC [170], where each module (e.g., hardware component) is extended
with a power state machine. Furthermore, use cases defined as sequence diagrams represent
the software application. Although the basic idea of integrating physical hardware into the
simulation process is similar to the approach of this thesis, the presented power consumption
estimation is limited to use cases for the communication between the NFC-Reader and NFC-
Bridge, supplied by the NFC-Reader during communication. In contrast, the approach of this
thesis is designed to consider the complete system. A more fundamental difference compared
to [245] is that the approach of this thesis aims to evaluate software application models instead
of hardware components (e.g., NFC-Readers) that supply power to and interact with existing
systems.

Another approach for a system-level power and energy consumption estimation based on
the AADL is presented in [94, 353]. The authors focus on real-time operating systems, Field-
programmable Gate Arrays (FPGAs), and data transfers for the Ethernet communication of
client-server architectures, for which an estimation approach based on power models presented
in [93] is provided. In AADL, software components consist of data, threads, and process
components and are bound to hardware platform components (e.g., CPU or buses). As part of
the estimation process, software and hardware platform components are extended with power
capacity and power budget properties, calculated in a two-step process. For instance, a bus
system may have a power capacity property while every hardware component accessing the bus
declares power budget draws from the bus. In the first phase of the process, the power budget for
every software component (thread) is computed as an power estimation. In the second phase,
the power budgets are combined to calculate the power budgets for every hardware component
as the basis for the energy analysis. The basic power model for each hardware component
is defined as a set of consumption laws for different parameter combinations. Instead of
AADL, this thesis focuses on UML as the most used modeling language in the embedded
software industry [7] and relies on UML class and UML state machine definitions. By using
the same modeling language and elements as the software application to describe hardware
components, the analysis is eased since the system is represented by a single model in the same
representation. The PAP presented in this thesis (cf. Section 5.3, p. 124 ff.) uses MARTE,
which is also compatible with AADL component models [278, 119]. Additionally, embedded
systems used in IoT and IIoT are typically not based on FPGAs. The consumption laws

70 CHAPTER 2. RELATED WORK AND BACKGROUND

specified as linear equations in [94, 353] are not integrated into AADL models. In contrast,
the approach in this thesis provides model annotations for all power and time-related properties
and methods to define the dynamic behavior of hardware component models enabling a model-
to-model transformation without information loss.

2.8.3 UML-related Approaches

The following approaches are based on UML, SysML, and partly on MARTE, which makes
them more related to the concepts presented in this thesis. Related work discussed below is
colored red in the diagram shown in Figure 2.24. To outline related work with a stronger focus
on software applications and, thus, with the closest relation to the approach presented in this
thesis, a hexagon is used as an illustration.

A model-based power consumption analysis technique based on UML models is presented
in [199]. The introduced systematic process transforms the software application modeled with
UML-based sequence diagrams into control flow graphs. Each node of the control flow graph is
associated with a set of virtual functions (primitive instructions and system functions) for which
an energy measurement must be performed in advance. However, the energy analysis is still
code-based, even if a model-based approach with UML as the source is used. Basic instructions
and functions abstracted in the model are defined by an action language (cf. Section 2.5.1,
p. 38 ff.). The approach presented in [199] may provide an earlier power consumption analysis
compared to other code- or function-based approaches mentioned above. However, it focuses
exclusively on the MCU and does not consider the overall system.

Trabelsi et al. (2011) [389] propose a model-driven hybrid power estimation for embedded
systems architecture and application models in UML, extended with MARTE. Their work
focuses on the CPU, cache, shared memory, and communication buses as part of an SoC
and provides power estimation modules for black-box and white-box IPs. The simulated
architecture and the power estimators are generated automatically using an MDE approach,
while the estimation is still based on cycle- and bit-accurate simulations in SystemC [170].
However, the approach presented in [389] is not intended to consider a complete embedded
system. Additionally, if the system consists of multiple complex components, e.g., dedicated
sensors and wireless communication modules, an in-depth analysis of each component and sub-
component must be performed to derive the behavior of internal memory and communication
buses. Furthermore, their proposed energy estimation approach is only suitable for offline esti-
mations. While this thesis focuses on software models and hardware-software interactions for
the estimation process supporting online and offline estimations, their work is more concerned
with the design space exploration of SoCs.

In [27], for instance, a low-level device modeling and high-level power estimation solution
are described. The approach uses the IP-XACT standard [171] to describe hardware models,
while UML state machines and UML profiles define the appropriate power-related behavior.
In MDD, models of low-level hardware components (e.g., clock generators) are not suitable
for evaluating software application models in early design phases due to the high complexity
and amount of sub-models needed to specify a hardware model of a sensor or MCU, especially
if the analysis has to take the interaction and impact of the software application on single
components (e.g., sensors) or the entire system into account. Moreover, the approach does
not consider the dynamic behavior of peripheral devices. For example, environmental or
configuration changes can cause the peripheral device to consume different amounts of power
in an operating or power state.

2.8. RELATED WORK ON POWER CONSUMPTION MODELING & ESTIMATION 71

In [178], an approach for energy-aware scheduling and timing analysis of software applica-
tions is presented. The concept is based on a timing-energy analysis model obtained by reverse
engineering processes of existing source code resulting in UML class representations [183].
However, the timing-energy analysis model does not include any implementation details. As
a result, the evaluation is based on task level and predefined execution times. While the
approach of this thesis is able to take dynamic behavior and multiple hardware components
into account, the work in [178] focuses on analyzing the power consumption of the MCU.

An approach for power estimation and optimization of CPUs using UML profiles is proposed
in [3]. The application is modeled using tasks and UML activity diagrams. The CPU model
consists of a state machine with associated operating modes, defined as a tuple of voltage
and frequency values and thresholds for over- and under-utilization. For each additional
operating mode mapped to a logical state of the CPU (e.g., execution, sleep, and idle), an
additional state has to be defined, which makes the approach prone to the state explosion
problem [342]. State transitions are executed at the start or end of a task based on the current
utilization of the CPU. While the approach presented in this thesis focuses on the application
level and interactions between software and hardware components, their work is concerned
with finding the best CPU utilization while not taking any other system components into
account. Additionally, the approach does not consider the dynamics originating from software
applications, and no measurements were performed to validate the results.

Another profile based on UML and MARTE for power consumption and real-time analysis
of embedded systems is introduced in [151]. Stereotypes of the proposed profile contain
tagged values to model the switching capacitance, leakage power consumption, and voltage-
frequency pairs used to distinguish between working modes of CPUs. Battery models are
extended with voltage and capacity descriptions, while other component models, like displays,
are limited to their static power consumption. To consider the software application, tasks
without implementation details are defined. Instead, the characteristic of a task is defined
by proper stereotypes, which provide the execution interval, worst-case execution time, and
worst-case execution cycles. Tagged values are extracted and used in simulations to find the
most power-efficient task-by-task working mode for a CPU while considering DVS and real-
time requirements for every task and task chain. However, while the approach in [151] focuses
on simulating task execution on CPU models based on their modeling timing characteristics,
the approach presented in this thesis is designed to take software application models for the
power estimation process into account. By providing stereotypes for class and state machine
diagrams, both static and dynamic aspects of hardware components can be considered.

As an extension of MARTE, the authors in [22] and follow-up work [23] introduce a profile
to model system-wide dynamic power management aspects of embedded systems. A state
machine is defined for each hardware component to model their behavior. States represent
operating modes and are extended with power-related aspects, e.g., frequencies, static power
consumption and maximum energy per cycle, provided by the defined UML profile. The
system-level view is defined by power configurations. A power configuration is associated
with a system-level power mode and specifies a set of power states of hardware components
to be active within the specific system state. The concept introduced in [23] provides two
use case scenarios for the proposed UML profile. The first scenario defines a power state
machine for a many-core CPU, including states for each core configuration with associated
power configuration. Based on over- and under-utilization measurements, the number of active
cores can be adjusted during simulation. In the second scenario, the application is modeled
as use cases directly bound to power configurations. The concept of dynamics is limited to

72 CHAPTER 2. RELATED WORK AND BACKGROUND

the idea that hardware components may have different states depending on the current use
case. Besides the MCU, only a video codec accelerator is considered. However, configuration
details of hardware components are only addressed slightly.

2.9 Summary

This section concludes the introduced background and related work to discuss identified gaps
w.r.t. each of the four RQs introduced in Section 1.2.2 (p. 8 ff.). Furthermore, methodological,
technological, and design choices based on findings are elaborated.

RQ1 – Formal Definition of Energy-related Behavior and Defects

RQ1 aims to answer how NFRs may be described to specify energy-related behavior. For this,
it is necessary to revise the definition of energy bugs and define a more general classification. To
prevent a violation of power- and energy-related NFPs from being interpreted as an energy bug
instead of an unconsidered behavior, an additional definition of the environment is required,
which is used along with the formal specification of NFRs during testing for the detection of
energy bugs in a more precise manner.

The related work and findings introduced in Section 2.3.3 mainly focus on smartphones [34,
83, 101, 221, 293, 424] as only one possible embedded system. Some related work [34, 264, 265]
analyzed the primary sources of energy consumption, denoted as energy hotspots. However,
energy hotspots do not represent bugs per se but may indicate abnormal functional behavior.
The introduced taxonomy and classification of energy bugs in [34] are insufficient as a basis for
the specification of extensive power- and energy-related NFRs by embedded system designers
and engineers. First, software applications for constrained embedded systems use special-
purpose and resource-efficient operating systems with less functionality than mobile devices
such as smartphones. Second, the precise control of individual sub-components of the system
is not reflected in the classification mentioned in [34]. Some types of energy bugs discussed
in [293], such as the wireless signal strength, describe the behavior of hardware components,
occurring rather unexpectedly than unintentionally, which does not fit into the definition of a
traditional bug. Furthermore, energy bugs discussed in [34, 226, 293] mainly refer to effects
without providing a quantitative definition that can be expressed as an NFR and used directly
as a criterion in testing. Due to the significant influence of the environment on the behavior
of embedded systems used in IoT, properties that can influence energy behavior must also be
considered. Such properties include parameters and configurations of sensors and actuators
as a direct interface to the environment and parameters of the environment itself to avoid
false-positive detections of energy bugs that only indicate unconsidered behavior.

RQ2 – Best Practices and Design of Energy-aware Software Applications

RQ2 aims to answer how energy-aware software design patterns are described uniformly. To
address RQ2, the analysis of related work emphasizes the need for a novel framework to
describe energy-aware software design patterns in a more general and quantifiable manner.
By this, a direct comparison between different design patterns may be achieved, which helps
developers to select the most suitable solution.

Related work presented in Section 2.4.2 (p. 34 ff.) discusses power- and energy-related
aspects of software design patterns from two perspectives. The first perspective discusses

2.9. SUMMARY 73

related work on improving software design patterns by optimizing or developing alternative
solutions for language-specific design pattern implementations [64, 122, 224, 234, 263, 331].
However, the improvement of design patterns is not in the scope of this thesis. The second
perspective contains related work on domain-specific design patterns enhancing software
applications addressing NFPs such as safety or power and energy consumption. This is
achieved by integrating the impact on NFPs as the subject of NFRs into the design pattern
template and, thus, describing the consequences and impact on NFRs. Alternative design
pattern templates considering consequences and effects on requirements, NFRs, and constraints
have been presented in [21, 204, 321, 322, 325]. While some design patterns target the
architecture of the ecosystem [321, 325] in which an embedded system may operate, other
approaches strictly divide design patterns into software- and hardware-based patterns [21].
However, mentioned related work does not consider power- and energy-related properties.
In [85, 86, 228, 308, 309, 323], the authors propose design patterns that may be used to
develop more energy-efficient software applications. However, only part of the related research,
e.g., [85, 86, 228, 323], describes design patterns addressing power and energy aspects of
software applications executed on embedded systems. To the best of our knowledge, the
design pattern templates discussed do not integrate the impact on power consumption and
time behavior as two closely related NFPs, in their structure and fields. They also do not
provide a quantification of the energy-related cause-effect relationship between software and
hardware. The description of the design patterns is only expressed in natural language
without providing information about the impact on power- and energy-related NFPs and
NFRs. Therefore, developers cannot consider the impact, side effects, and tradeoffs before
applying a specific design pattern. Moreover, as stated in [38], there is still no catalog of design
patterns targeting energy efficiency in software engineering. To demonstrate the applicability
of the introduced framework, a first catalog of energy-aware design patterns based on the
introduced design pattern template is presented in this thesis.

RQ3 – Joint Modeling of Functional Software Application Models and Energy
Behavior

RQ3 deals with software application models and how they can be extended with energy-
related hardware characteristics to make the software-related impact visible and traceable. An
analysis of related work indicated a lack of modeling approaches for proper power consumption
estimation of software applications. To answer RQ3, concepts are required to model power-
related properties of hardware components and define the dynamic power-related behavior of
an embedded system. By this, the cause-effect relationship between software and hardware
may be considered and analyzed to estimate power consumption.

UML is selected as a basic modeling language since it is well-suited for embedded systems
designs and the most used modeling language in the embedded software industry [7, 407].
Furthermore, UML provides domain-specific extension mechanisms, and developers can access
various MDD tools with UML support. For the approach presented in this thesis, IBM
Rhapsody has been selected as an MDD tool for modeling and simulating software application
models and the prototypical implementation of the concepts introduced in Section 6 (p. 139 ff.).
In MARTE (cf. Section 2.6, p. 41 ff.), power consumption is not specified with the required
granularity, and concepts to model dynamic power-related behavior are missing. With the
PAP, this thesis introduces a UML profile to fill these gaps providing novel concepts to model
the dynamic power-related behavior of an embedded system.

74 CHAPTER 2. RELATED WORK AND BACKGROUND

Related work presented in Section 2.8 (p. 65 ff.) discusses power consumption modeling at
different levels of abstraction. Considering MDD, low-level and source code-based approaches
(cf. [79, 154, 217, 344, 352, 370, 387]) are unsuitable for a power consumption estimation in
early design phases due to the need for hardware-specific assembly code or source code in
low-level languages such as C, which is automatically generated at later stages of the MDD
process. Moreover, these approaches are limited to single components, typically the MCU. In
further model-based approaches, e.g., based on mathematical models [55, 239, 262, 372, 426],
workflow models [427], or AADL models [94, 353], aspects of the software application are
either not considered at all or are modeled as abstract parts, e.g., as thread models with
NFPs, such as minimum and maximum execution times. Such approaches are less suitable
for analyzing the application or business logic of software in MDD. When simulated, the
dynamic behavior is determined at runtime and depends on inputs defined by test cases.
Work on power consumption modeling based on UML, SysML, or MARTE is more closely
related to the approach presented in this thesis. However, existing related work is focused
on estimating the power consumption of CPUs [3, 151], MCUs [23, 178, 199], SoCs [389], or
even lower-level components such as clock generators [27]. For the simulation, UML class
diagrams and UML sequence diagrams defining the software application are transformed into
low-level and code-based approaches [199, 389] or represented as task models with expected
characteristics [3, 151, 178]. Moreover, the dynamic behavior of the embedded system is limited
to a set of predefined states for each hardware component associated with the operating modes
of the software application [22, 23]. None of the concepts consider hardware models as an
integral part of software applications for building system models. Since presented concepts
for hardware models lack standardized descriptions for power- and energy-related NFPs, the
impact of software applications on the overall power consumption is rarely considered.

Estimating the power consumption of software applications requires a software model with
at least some application and business logic and models of all hardware components controlled
or affected by the software application. A general modeling concept for hardware components
is required for such a system view, which can model functional and non-functional aspects,
reflect dynamic power-related behavior, and interact with software models. With the concept
of hardware component models presented in Section 5.2 (p. 117 ff.), these gaps are addressed.

RQ4 – Early Evaluation of Energy-aware Software Applications in MDD

RQ4 aims to determine how the energy-related impact of software application models can be
estimated and energy-related misbehavior detected when the hardware platform is not or is
only partially available. To address RQ4, a novel system-wide approach is required to enable
a power consumption estimation in early development phases based on virtual and physical
hardware platforms.

Due to the cause-effect relationship between software and hardware, a grey-box approach
is required causing the need for instrumentation and probing [367] for the power analysis to
observe the internal state of the SUT during testing (cf. Section 2.7.5, p. 61 ff.). However,
different challenges exist, especially for hardware instrumentation:

• Depending on the current state of each hardware component, the SUT may operate in
the mA or µA range. A highly accurate measurement of such dynamics requires the use
of different probes or advanced and expensive measuring devices.

2.9. SUMMARY 75

• If a high level of granularity is required, each hardware component of the SUT has to
be measured individually during execution which raises the need for multiple measuring
devices while data has to be synchronized for the analysis.

To overcome this challenge, the complete SUT is considered as a single unit, accepting a loss
of precision in the measurement. To still obtain the current state of each hardware component,
simulation logs have to be generated and analyzed. Another topic to consider is the selection
of proper MDD tools. While most of the MDD tools can simulate UML models, they lack
support in analyzing NFPs, especially related to efficiency and performance attributes such as
power and energy consumption [15]. Due to this, it is necessary to define a concept in which
an external analysis tool can be coupled with the simulation environment of an MDD tool.

If the impact of the software application is taken into account early in MDD, e.g., by using
simulation environments instead of source code execution, power-optimization measures are
expected to be more significant and faster to implement (cf. Section 2.8, p. 65 ff.). Following
the V-model development process used in MDD (cf. Figure 2.21, p. 59), MiL is the first
method used as a quality gate to test and evaluate the software application model design.
On the other hand, HiL, the latest in-the-loop testing paradigm, is used to identify issues
with hardware components and hardware-software interactions. If NFRs are not fulfilled
in HiL tests, especially if the problem is software-related (e.g., architecture, algorithms, or
control of hardware components), all stages of the V-model have to be passed again before
the evaluation can be repeated. To avoid an increased number of rework phases and higher
costs to fix detected power-related issues [153, 361, 367], the evaluation of power- and energy-
related NFRs should already be a testing goal in early development phases, as discussed in
the problem statement (cf. Section 1.2, p. 4 ff.). Approaches such as rapid prototyping
can be used to overcome the additional development and planning effort of the V-model
development process when considering power- and energy-related NFRs. Rapid prototyping
comprises techniques for rapidly implementing software applications and embedded systems as
models and prototypes for early and fast testing [298]. The software application, which can be
executable code or a simulated model [59, 240, 305], is evaluated in a real-world environment
or a close equivalent [59] by using a fully-functional embedded system as a testbed in the later
field of application.

However, the related work does not address the integration of a physical embedded system
for early non-functional testing. In [161], hardware-specific source code is executed directly
on the MCU, which is part of later MDD phases. Besides the MCU, other components of
the embedded system are not considered. A middleware for communication with virtual and
physical embedded systems is used in [61, 365, 366]. However, the software application model
is not able to directly interact with embedded system components, e.g., sensors and actuators,
which are only integrated as data sources on a functional level. Co-simulation [39, 209, 346]
focuses on coupling simulation environments and models executed on different hosts, e.g., as a
possibility to integrate physical hardware platforms into XiL testing environments. Protocols
such as the DCP [254] are used for interoperability between simulated models, but they are
not suitable for resource-constrained embedded systems.

Source code level approaches (e.g., [161]) are performed later in MDD after model trans-
formations, followed by hardware-specific manual adjustment, compiling, and flashing steps.
In [3, 22, 23, 151, 178], simulations are used as a virtual hardware representation of the MCUs
to estimate power consumption. Other peripheral devices are not considered, which constitute
a significant part of the system’s power consumption [396, 429].

76 CHAPTER 2. RELATED WORK AND BACKGROUND

For an early estimation, e.g., when using MiL, related work has shown that no suitable
approach exists to couple and integrate hardware behavior into the simulation environment
so that the energy-related impact of software models can be estimated in early development
phases of MDD. Finally, to the best of our knowledge, with discussed related work, software
developers in MDD can hardly quantify the power-related impact of software application
models. This also includes the detection of energy bugs located at the application level. To
fill these gaps, this thesis provides novel concepts for a power consumption estimation in
early development phases based on virtual and physical hardware without needing edit-cross-
compile-flash-debug cycles [30, 393] for each test run. Furthermore, concepts for a low-level
interaction between the software application model and the embedded system are presented.
The analysis of the related work has pointed out the need to address energy-related aspects
in software engineering. Considering design patterns for structuring software applications,
no framework exists to document best practices focusing on energy and power properties.
Additionally, there are still open questions for software applications in MDD regarding the
system-wide modeling and evaluation of power- and energy-related properties in early devel-
opment phases. The following chapters introduce solutions to address RQ1 to RQ4.

Chapter 3

Overview

This chapter provides an overview of the overall approach of this thesis and introduces fun-
damental concepts used in modeling and estimating the power consumption of software ap-
plications as carried out in this thesis. Section 3.1 introduces a workflow from a developer’s
perspective as an illustration of the synergy and combined use of the main contributions
described in-depth in Chapter 4 (p. 89 ff.) and Chapter 5 (p. 115 ff.). Furthermore, concepts
that provide fundamental definitions for various parts of the overall approach are presented.
Section 3.2 presents the concept of scenarios, which describe a set of constraints, requirements,
and properties of the system and environment that are valid during a test case execution. In
Section 3.3, introduces energy bugs as a description of the non-functional misbehavior of a
system. Scenarios and energy bugs are two closely related concepts. A violation of energy-
related NFRs defined within a given scenario may indicate the presence of energy bugs. Thus,
a scenario describes the boundaries between normal behavior and misbehavior (energy bug)
of the system and allows the power estimation process (cf. Chapter 5, p. 115 ff.) to decide
whether a prediction is within or outside the acceptable range.

3.1 Developer Workflow

This section presents the developer workflow as an overview to demonstrate how the proposed
concepts complement and interact with each other and to illustrate their application in different
phases of the MDD process. The workflow is illustrated as a UML activity diagram in Figure 3.1
and consists of a set of roles, twelve actions and sub-actions, and six artifacts. To categorize
activities based on responsibilities, three roles, namely requirements engineer, software engineer,
and test engineer, have been defined and expressed as swimlanes. Note that these roles are
more illustrative and not final in any sense.

The first action of the developer workflow shown in Figure 3.1 is performed during require-
ments analysis. In sub-action 1(a), functional and non-functional requirements and scenarios
(cf. Section 3.2, p. 81 ff.) are defined. Scenarios describe a set of conditions and constraints
to specify the actual environment in which the software application is evaluated. In addition,
scenarios also specify configuration parameters and parameters for hardware components that
are valid during the execution of test cases. NFRs are based on the formal description proposed
in Section 3.3 (p. 84 ff.) to address RQ1. The result of action 1(a) is a list of scenarios and
requirements (artifact A1). The test engineer may use the list to set up the test environment
in later steps. It also defines the basis for detecting energy bugs of the SUT. In action 1(b),

77

78 CHAPTER 3. OVERVIEW

Requirements Engineer Software Engineer

6. Model-to-text
transformation of

hardware
component models

12. Optimize
software

application model

Test Engineer

5. Integrate
hardware models in

software
application model

(A5) System model

(A4) UML models of
hardware

components with PAP
energy model

(A3) UML model of
software application

(A1) List of scenarios,
functional and
non-functional
requirements

2(b). Create
functional software

application UML
model

1(b).
Specify list of

hardware
components

(A2)
List of hardware

components

3(a). Create
functional hardware
component model

4. Import hardware
component models

from model
repository

<<datastore>>
Model repository

3(b). Annotate state
machines with PAP

profile

1(a).
Define scenarios,

functional and
non-functional
requirements

10.
Simulate system

model

11. Evaluate results
based on scenarios
and requirements

9. Configure
measuring device

and Model-Testbed

7. Import hardware
component model

descriptions
(UC²E tool)

(A6)
Energy Traces

8. Configure UC²E
tool based on
scenarios and
requirements

2(a). Select suitable
(energy-aware)
Design Patterns

Estimation
method? [IPA]

[DPA]

[Req. met]

[Req. not met]

[predefined
models

available]

[no pre- defined
models available]

Visual Paradigm Standard(Schaarschmidt(Fachhochschule Osnabrueck))

Figure 3.1: Developer workflow describing the usage of the presented concepts (UML 2.5
activity diagram notation).

the requirements engineer creates a list of hardware components (artifact A2), e.g., MCUs and
peripheral devices such as sensors and actuators. The hardware components may be selected
to fulfill requirements or specifications from other divisions omitted in Figure 3.1, such as the
hardware engineering or costing department.

The resulting artifacts A1 and A2 also serve as input for the software engineer who
defines a functional UML model of the software application (artifact A3) in actions 2(a)–2(b).
Addressing RQ2, energy-aware software design patterns introduced in Chapter 4 (p. 89 ff.)
may be used during the initial design phase of the software application model in action 2(a)
as structural and behavioral solutions to explicitly address energy-related aspects. However,
applying energy-aware software design patterns from the design pattern catalog (cf. Section 4.4,
p. 94 ff.) is an optional design choice that depends on the problem to be solved and the target
system used. In parallel to the development of the software application model, hardware
component models are defined in actions 3 to 4. If no predefined hardware component models
exist, they have to be created by the software engineer in action 3(a) and annotated with the
Power Analysis Profile (PAP) in action 3(b) to apply a set of stereotypes to model energy-

3.1. DEVELOPER WORKFLOW 79

related NFPs resulting in an energy model containing energy-, power-, and time-related aspects.
The process of creating hardware component models and the definition and usage of the PAP
are part of the power estimation design concept for MDD described in-depth in Chapter 5
(p. 115 ff.). The resulting hardware component models with the PAP-based energy model
(artifact 4) in Figure 3.1 represent abstractions and proxies of hardware components that
can interact with the software application model. Both hardware component models and
the UML-based PAP are contributions of this thesis to answer RQ3 and are introduced in
Sections 5.2 (p. 117 ff.) and 5.3 (p. 124 ff.), respectively. If hardware component models
already exist, for example, stored in a model repository of an MDD tool, they can be imported
into the MDD project described as action 4. Note that the definition of a model repository,
as shown in Figure 3.1, is only conceptual and outside the scope of the thesis. The model
repository contains hardware models from existing projects or uses model transformations
as mentioned in Section 2.5.2 (p. 40 f.) to derive hardware component models obtained by
other approaches, e.g., as described in [127]. To achieve a system-wide view, the software
application model (artifact A3) and hardware component models (artifact A4) are combined
into a system model (artifact A5) as a result of action 5. The system model facilitates the
analysis process by combining software and hardware aspects of the system into a single
representation based on UML. For the exchange of model information between the MDD
tool and the analysis tool, a model-to-text transformation of hardware component models
is performed in action 6. As an interchange format, the lightweight and JavaScript Object
Notation (JSON)-based transformation format [338] specified in Section 6.1.1 (p. 140 ff.) is
used.

In action 7, the test engineer uses the resulting hardware component model descriptions
as an import for the analysis tool as the first steps of the evaluation process. As proof-of-
work to address RQ4, an exemplary analysis tool denoted as Unit for Central Control and
Estimation (UC2E) has been developed in this thesis, which is introduced in Section 6.4
(p. 155 ff.). It parses hardware component model descriptions and extracts information
necessary to derive energy models of each hardware component for the estimation process. In
action 8, the list of scenarios and requirements (artifact A1) is used to further configure the
UC2E tool, e.g., the test environment. Depending on the selected power analysis method (cf.
Section 5.4, p. 135 ff.), the measuring device and the Model-Testbed (cf. Section 6.5, p. 161 ff.)
have to be configured in action 9 before the simulation of the system model (artifact A5) is
performed in action 10. As further contributions to address RQ4, extensions such as a HAL
(cf. Section 6.3, p. 149 ff.) and protocols for data exchange (cf. Section 6.2, p. 145 ff.) are
developed for the simulation of system models (artifact A5) to achieve a power consumption
estimation in early design phases. By this, an extensive tracing can be achieved, which enables
an online and offline estimation by the UC2E tool. As a result of the simulation, energy traces
(artifact A6) are obtained and used to evaluate NFRs and estimate the power consumption
in action 11. The developer workflow is completed, if no power-related NFRs are violated.
When violations exist, the software application model must be optimized by fixing detected
energy bugs in action 12. Similar to the development of the software application model in
action 2(a) to 2(b), energy-aware design patterns may also be used by software engineers for
adjustments during the re-design phases in action 12. Afterward, the simulation and analysis
process may be repeated, starting from action 10. Note that actions 5 to 6 may be executed
automatically by the MDD tool, while extensive algorithms of the analysis tool may automate
actions 9 and 11.

80 CHAPTER 3. OVERVIEW

Figure 3.2 illustrates the vision of the enhanced MDD process with applied developer
workflow for the model-based design and development of software applications. Following the
V-model shown in Figure 2.21 (p. 59), the MDD process can be divided into five distinct
phases. It starts with the architecture phase of the software application on the left side of
Figure 3.2, followed by a design, simulation, and integration phase until reaching the rollout and
operational phase of the final product, e.g., an IoT sensor node, on the right side of Figure 3.2.
The x-axis shows the time spent on development, which increases from the left to the right.
The time and cost required to analyze and correct defects increases with each completed MDD
phase. The y-axis shows the consideration of power-related aspects and the accuracy of the
power consumption estimation as two mutually dependent parameters.

Development Time

C
o
n
s
id

e
ra

ti
o

n
 o

f
p
o
w

e
r-

re
la

te
d

 a
s
p
e
c
ts

 a
n
d

a
c
c
u
ra

c
y
 o

f
p
o
w

e
r

c
o
n
s
u
m

p
ti
o
n
 e

s
ti
m

a
ti
o
n

Architecture Design Simulation Integration Rollout / Operational

MDD Phases

Legend

Presented Approach

Traditional Approaches

Figure 3.2: Vision of the enhanced MDD process with applied developer workflow.

By applying the developer workflow as depicted in Figure 3.1 (p. 78), power aspects may
already be considered during the architecture and design phase. For example, energy-aware
design patterns may be used in the architecture phase to define an energy-aware software
application (cf. Chapter 4, p. 89 ff.). The software application model may be extended during
the design phase with hardware component models (cf. Section 5.2, p. 117 ff). Compared
to traditional approaches that do not consider energy-related aspects in early development
phases, a static analysis based on the integrated energy models of hardware component models
may be performed to evaluate, e.g., NFRs. However, the most considerable improvement may
be achieved when applying the power consumption estimation approach during the simulation
phase. Based on the power analysis methods presented in Section 5.4, the software application
model is executed within a simulation that enables the evaluation of NFRs and the detection
of energy bugs (cf. Section 3.3, p. 84 ff.). The approach presented in this thesis not only
increases the accuracy of power analysis in early development phases but may also save time
and reduce costs by avoiding time-consuming and cost-intensive redesign loops due to the early
detection of energy-related misbehavior and violations of NFRs. In traditional approaches,
those aspects are typically evaluated during the integration phase of the software application
and hardware platform (cf. Section 2.7.4, p. 57 ff.).

3.2. SCENARIOS 81

3.2 Scenarios
Embedded systems, such as IoT smart objects introduced in Section 2.2 (p. 21 ff.), are
considered reactive. Unlike transformative systems, reactive systems are characterized by
a non-terminating and event-driven behavior continuously reacting to external and internal
events [155]. External events typically arise through interaction with the environment. The
system accepts inputs from the environment, e.g., by using sensors, and changes the internal
state in response to the input event. Defining the expected reactive behavior while executing
test cases is crucial when testing embedded systems. For instance, when measuring the power
consumption of the System Under Test (SUT) during test case execution, developers need to
know the context, e.g., what kind of behavior caused the measured current draw. For this, an
essential element in the specification of tests is the need for clear definitions of aspects that
may affect the SUT during execution.

The behavior of a software application generally depends on the environment and context
in which it is executed. As a result, the context directly or indirectly influences power demand
and consumption, which is not sufficiently considered during testing. For an improved test
specification, the concept of scenarios tries to address this problem by defining a set of
conditions and constraints that apply for a time period T under consideration. For example,
some smoke or fire detectors are sensitive to the current ambient temperature, which affects
their behavior and, thus, the expected power consumption. Poor network connectivity can
result in multiple transmit or receive cycles increasing the power consumption of a wireless
module.

In general, a scenario S covers the following aspects for the evaluation of a SUT:

• Conditions and properties of the environment affecting the functional or non-functional
behavior of the SUT.

• Initial values for parameters of the system or individual components with an influence
on the power-related behavior. These parameters are either unaffected or cannot be
addressed by the software application.

• Power and energy characteristics to specify the expected energy-related behavior and
limits.

Considering the introduced aspects, a scenario S may be expressed as a list of conditions,
constraints, and requirements. From a test case perspective, a scenario requires specific
parameters to be configured and constraints to be met, allowing them to be also interpreted
as requirements for a given scenario. Since a requirement is typically described using a unique
identifier, each group of requirements and properties can be expressed as a vector, resulting
in Definition 3.1.

Definition 3.1 We define a scenario S = {R⃗g, R⃗e, R⃗p, R⃗en} as a list of requirements and
conditions valid for the time period in which the scenario S is active within a test case. The
elements of a scenario S are:

R⃗g = (rg1 , . . . , rgn), as a vector of general requirements,
R⃗e = (re1 , . . . , ren), as a vector of environmental requirements,
R⃗p = (rp1 , . . . , rpn), as a vector of (predefined) system- and component-specific properties,

R⃗en = (ren1 , . . . , renn), as energy-related requirements (cf. Definition 3.2, p. 85).

82 CHAPTER 3. OVERVIEW

The description of scenarios is not limited to a specific form of expression. The requirements
diagram introduced in the SysML specification [279] is particularly suitable for describing
and representing requirements in MDD. In SysML, requirements are expressed from a system
perspective with stereotypes available for the description of behavior in terms of functional re-
quirements («functionalRequirement»), physical constraints («physicalRequirement»),
or performance-related requirements («performanceRequirement») [279]. However, the
SysML specification lacks stereotypes to specify energy-related and environmental-related
requirements and does not consider parameter definitions that may affect functional and non-
functional behavior. The extension mechanism of UML has been used to design a set of
new stereotypes for SysML, as shown in Figure 3.3. With the newly defined stereotypes

<<metaclass>>
UML4SysML::NamedElement

 base_NamedElement : NamedElement [1]
 / derived : AbstractRequirement [0..*]
 / derivedFrom : AbstractRequirement [0..*]
 id : String [1] {unique}
 / master : AbstractRequirement [0..*]
 / refinedBy : NamedElement [0..1]
 / satisfiedBy : NamedElement [0..*]
 text : string [1]
 / tracedTo : NamedElement [0..*]
 / verifiedBy : NamedElement [0..*]

<<stereotype>>
AbstractRequirement

<<metaclass>>
UML4SysML::Class

<<stereotype>>
Requirement

 source : string
 risk : RiskKind
 verifyMethod : VerificationMethodKind

<<stereotype>>
extendedRequirement

<<stereotype>>
environmentalRequirement

<<stereotype>>
hardwarePropertyRequirement

<<stereotype>>
electricalRequirement

 High
 Medium
 Low

<<enumeration>>
RiskKind

 Analysis
 Demonstration
 Inspection
 Test

<<enumeration>>
VerificationMethodKind

Visual Paradigm Standard(Schaarschmidt(Fachhochschule Osnabrueck))

Figure 3.3: Stereotypes to describe requirements for scenarios (UML 2.5.1 profile diagram).

«environmentalRequirement»,«hardwarePropertyRequirement», and «electricalRe-
quirement», the requirements of a scenario can be described and grouped logically. An
excerpt of a scenario definition with different requirements utilizing the newly introduced
stereotypes is pictured in Figure 3.4. For the exchange of scenarios between MDD tools,
interchange formats such as the Requirements Interchange Format (ReqIF) [274] may be used.

In the exemplary scenario definition for a generic environmental sensor shown in Figure 3.4,
the atmospheric pressure and ambient temperature, as environmental requirements, may vary
between 1000–1005 mbar and 12–35 °C while the scenario is active during test case execution.
As predefined hardware properties, the oversampling rate of the sensor is defined by the
requirement ReqS1.2.1.2. Since such properties may affect the behavior of the environmental
sensor, their specification is necessary for the power consumption estimation process. The
requirements annotated with the «electricalRequirement» stereotype may be used to
specify an energy-related NFR, as explained in Section 3.3 (p. 84 ff.). A single scenario
Stc may be defined for the test case tc if the defined requirements are considered constant.
However, defining a list of scenarios for a single test case is also possible. Imagine a test case
where the SUT should send a notification message whenever the ambient temperature reaches
a threshold value of, e.g., 20 °C, for which two distinct scenarios may be defined. The first
scenario may specify an ambient temperature below 20 °C, while for the second scenario, the
requirement for the ambient temperature is set to a value equal to or greater than 20 °C while

3.2. SCENARIOS 83

id = "ReqS1"
text = "Defines test environment
and restrictions for a connected low
 power environmental sensor"
source = "MS"

<<requirement>>
Scenario

id = "ReqS1.3"
text = "Electrical requirements"
source = "MS"

<<electricalRequirement>>
Electrical

id = "ReqS1.2"
text = "Requirements for hardware
properties"
source = "MS"

<<hardwarePropertyRequirement>>
HardwareProperties

id = "ReqS1.1"
text = "Environmental requirements"
source = "MS"

<<environmentalRequirement>>
Environmental

id = "ReqS1.2.1"
text = "Requirements for the
environmental sensor"
source = "MS"

<<hardwarePropertyRequirement>>
SensorProperties

id = "ReqS1.2.1.1"
text = "The humidity sensor is
disabled"
source = "MS"
risk = "Low"

<<hardwarePropertyRequirement>>
HumiditySensor

id = "ReqS1.2.1.2"
text = "The oversampling rates are
set to 1x"
source = "MS"
risk = "Low"

<<hardwarePropertyRequirement>>
Oversampling

id = "ReqS1.1.2"
text = "The ambient temperature
 has a minimum of 12 and a
maximum of 35 °C"
source = "MS"

<<environmentalRequirement>>
AmbientTemperature

id = "ReqS1.3.1.1"
text = "The total energy of the
sensor during a single
measurement shall not exceed
 57,42*10^-9 J"
source = "MS"
verifyMethod = "Test"
risk = "High"

<<electricalRequirement>>
EnergyQuota

id = "ReqS1.3.1.2"
text = "The sensor shall not
draw more than max. 2.9 µA
for a single measurement"
source = "MS"
verifyMethod = "Test"
risk = "High"

<<electricalRequirement>>
MaximumCurrentDemand

id = "ReqS1.3.1"
text = "Requirements for the
measurement phase of the sensor"
source = "MS"

<<electricalRequirement>>
SensorMeasurement

id = "ReqS1.1.1"
text = "The ambient pressure
lies between 1000-1005 mbar"
source = "MS"

<<environmentalRequirement>>
AtmosphericPressure

Visual Paradigm Standard(Schaarschmidt(Fachhochschule Osnabrueck))

Figure 3.4: Excerpt of a scenario definition with applied scenario-specific stereotypes (SysML
1.6 requirement diagram notation).

leaving other requirements unchanged. Both scenarios may be defined as sub-scenarios for the
overall scenario Stc of test case tc with different thresholds for energy-related behavior. To
specify the order of sub-scenarios for a test case execution with a time period T , a notation
is introduced in Equation (3.1) to define a sequence of scenarios Si along with points in time
ti ∈ T as their end of execution:

Stc = [⟨S0, t0⟩, ⟨S1, t1⟩, . . . , ⟨Sn−1, tn−1⟩, ⟨Sn, tn⟩](t)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

S0 0 ≤ t < t0

S1 t0 ≤ t < t1
...
Sn−1 tn−2 ≤ t < tn−1

Sn tn−1 ≤ t ≤ tn

(3.1)

It is also possible to define the scenarios of a test case as periodic, denoted as Stc, which can
be written as:

Stc = [⟨S0, (i · T) + t0⟩, ⟨S1, (i · T) + t1⟩, . . . , ⟨Sn−1, (i · T) + tn−1⟩, ⟨Sn, (i · T) + tn⟩](t) (3.2)

where i ≥ 0 defines the number of iterations in zero-based numbering. For instance, if i = 1,
each scenario is active for two time periods within a test case executed for a total execution
time of 2 · T .

Scenarios may also be extended with probabilities to describe more realistic test cases,
especially for the event-driven domain of embedded systems. A scenario with sub-scenarios
containing probabilities is denoted as ˆ︁Stc and can be defined similarly to Equation (3.1), for

84 CHAPTER 3. OVERVIEW

instance:

ˆ︁Stc = [⟨S0, Pt0S0 , t1⟩,⟨S1, Pt1S1 , t2⟩, ⟨S2, Pt2S2 , t3⟩, ⟨S3, Pt3S3 , t4⟩, ⟨S4, Pt3S4 , t5⟩](t) (3.3)

with
n∑︂

i=0
PtmSi = 1, for each t ∈ T . (3.4)

Equation (3.4) describes the probability of Si being active at a specific time tm. In Equa-
tions (3.1) to (3.2), scenarios are executed sequentially. By introducing probabilities, one of
several possible scenarios Sn ∈ ˆ︁Stc will be active at a given time t ∈ T . Therefore, the tuple
definition is extended with an additional parameter to define the probability of a scenario being
executed at a specific point in time. For instance, one may consider the last two scenarios
of ˆ︁Stc in Equation (3.3), namely ⟨S3, Pt3S3 , t4⟩ and ⟨S4, Pt3S4 , t5⟩. Both have a probability of
being active at t3 which defines the point in time where the execution of S2 ends. If S3 is
selected, the scenario will be active from t3 to t4. Otherwise, S4 will be active from t3 to t5.
Developers may also be able to graphically model scenarios of a test case, e.g., as defined in
Equation (3.3), using UML state machine diagrams (cf. Appendix A.3, p. 266 ff.). With such
a model-based representation, scenarios are suitable to be used in MBT.

3.3 Energy Bugs
To describe the behavior of a SUT consuming more energy than required to fulfill the intended
task, the term energy bug has been introduced as an umbrella term to describe a broad range
of bugs associated with energy consumption. Ideally, energy bugs should be addressed in early
development stages, for instance, during the software architecture or component design phase,
as illustrated by the V-model in Figure 2.21 (p. 59) and discussed in Section 2.9 (p. 72 ff.),
using accurate simulations. By this, time and resources, e.g., financial and human resources,
can be saved compared to an evaluation of non-functional aspects later in the development
cycle resulting in multiple re-design phases. As previously stated in Section 2.3.3 (p. 30 ff.)
and Section 2.8 (p. 65 ff.), researchers have published numerous works to analyze energy
consumption (cf. Figure 2.24, p. 66) and to detect and describe energy bugs. Since energy
bugs in previous work mainly refer to the effects, but neither a clear definition nor specific
sources of energy bugs have been provided, a revision of the energy bug definition is required.

An initial version of the definition and classification of energy bugs has been published
in [341] and revised in this thesis due to new findings. The section provides definitions for the
terms energy bug and energy-aware systems in Section 3.3.1, as well as a classification scheme
in Section 3.3.2. Moreover, a basic example to illustrate the relationship between energy bugs,
scenarios (cf. Section 3.2, p. 81 ff.), and NFRs (cf. Section 2.3, p. 27 ff.) is presented in
Section 3.3.3.

3.3.1 Energy Misbehavior

In the context of this thesis, the term energy bug refers to an unintended behavior of an
embedded system causing a higher power consumption, which is unnecessary to provide the
current functionality. Generally, energy bugs refer to the behavior of a SUT, defined as a
hardware platform with a finite set of n independent hardware components C, so that:

SUT = {C1, C2, ..., Cn}

3.3. ENERGY BUGS 85

Each hardware component Ci has its own energy-related behavior. The power level of the
SUT at a specific time is defined by the active state of each hardware component Ci ∈ SUT .
When considering Equations (2.1) and (2.7) of Section 2.1.1 (p. 17 ff.), the electric power
consumption PCi for a specific time t ∈ T and the energy consumption ECi for a time period
T of a hardware component Ci can be expressed as:

PCi(t) = UCi(t) · ICi(t) (3.5)

ECi(T) =
∫︂ T

t=0
PCi(t) dt (3.6)

Note that the definition of the SUT depends on the test case and may consist of the complete
system or a set of hardware components required for the test case execution, e.g., an MCU, a
set of sensors, or a radio module. Considering previous calculations, the electric power P and
energy E of a system consisting of n hardware components may be defined as:

PS(t) =
n∑︂

i=1
PCi(t) (3.7)

ES(T) =
∫︂ T

t=0
PS(t) dt =

∫︂ T

t=0

(︄
n∑︂

i=1
PCi(t)

)︄
(3.8)

A new definition of energy bugs is introduced to address RQ1, incorporating previous
considerations presented in Section 2.3.3 (p. 30 f.) and considering new aspects. A tuple of
two parameters ⟨Equ , Idmax⟩ is specified to describe the energy-realted behavior of a SUT. The
energy quota Equ describes the energy available for a period T . The second parameter Idmax
specifies the maximum current demand for a point in time t ∈ T . An energy bug infringes
at least one of the two conditions and, thus, describes a deviation from a previously defined
NFR. If no NFRs are violated, the SUT can be considered energy bug-free.

Definition 3.2 We define a SUT (or a subset of components Ci) to be energy bug-free if the
conditions in Equations (3.9) to (3.10), as part of a single NFR or scenario S, are satisfied:

ES(T) ≤ Equ (3.9)
max(IS(t)) ≤ Idmax (3.10)

When an energy bug occurs during test case execution, at least one of the rules presented in
Definition 3.2 is violated. The definition of energy bugs is not limited to specific elements, can
be phrased on multiple levels, and can be hardware and software related. Hardware-related
definitions may be defined for the complete system or the behavior of single components.
On the other hand, software-related definitions may refer to single functions of the software
application or a program flow, e.g., expressed as a UML sequence diagram [275].

In addition, non-functional misbehavior of a SUT and unused energy-saving opportunities
have to be considered. For this, the notion of an energy-aware or energy-efficient SUT is
introduced, which relates to the parameters for defining energy bugs in Definition 3.2.

Definition 3.3 We define a SUT as energy-aware or energy-efficient if we apply a set
of measures that minimize ES(t) and/or max(IS(t)).

In general, the measures are not subject to any restrictions as long as they positively affect one
or both parameters. It is important to note that they should not negatively impact the system’s

86 CHAPTER 3. OVERVIEW

functional behavior but may still influence other NFRs such as security, real-time behavior,
and response times as a side effect. Examples of measures are energy-aware software design
patterns as part of the design pattern catalog introduced in Chapter 4 (p. 89 ff.). The provided
framework to describe energy-aware software design patterns aims to minimize the parameters
mentioned in Definition 3.3 by adapting the architecture and behavior of software applications.
Other measures not related to design patterns may include compiler optimizations, which are
not in the scope of this thesis.

3.3.2 Classification

As elaborated in a previous publication [341], energy bugs can arise from various sources.
The first distinction can be made between hardware-related and software-related energy bugs.
With subcategories for both sources to aggregate groups of energy bugs with similar causes,
the following classification is introduced:

• Hardware-related Energy Bugs

– Type A: An incorrect hardware design or a faulty component leading to unexpected
power consumption during runtime.

– Type B: Unknown or unconsidered consumers, primarily hardware components,
leading to unexpected power demand.

• Software-related Energy Bugs

– Type C : Flaws in the software design, inappropriate design patterns, or incorrect
hardware usage causing increased power consumption.

– Type D: Software preventing hardware components (e.g., MCUs, peripheral devices)
from entering low-power modes, increasing the system’s power consumption.

The presented classification provides a more general categorization of energy bugs in the
embedded systems domain, which goes beyond the scope of mobile devices described in Sec-
tion 2.3.3 (p. 30 ff.). The presented approach introduced in Chapter 5 (p. 115 ff.) is able to
detect both sources of energy bugs, as the case study in Chapter 7 (p. 175 ff.) demonstrates.

The energy bug types A and B are located on the hardware layer of the SUT. Type A
energy bugs may be caused by the hardware layout and become visible when environmental
conditions change. An example of Type B energy bugs may be additional Light-emitting
Diodes (LEDs) in the layout to indicate the system’s status, leading to unexpected power
demand. Such components can easily be overlooked when predicting the energy consumption of
a SUT. Troubleshooting may require extensive hardware analysis using additional equipment
such as multimeters, oscilloscopes, or logic analyzers. In the worst case, it may be necessary
to replace faulty hardware components or redesign the underlying hardware layout.

Type C and D energy bugs are related to the software layer of the embedded system.
Type C energy bugs may arise from software design flaws, unsuitable design patterns, a faulty
or unoptimized configuration, and unnecessary hardware-software interactions. Furthermore,
an incorrect or non-optimized utilization strategy of system resources, e.g., peripheral devices,
can lead to a higher power consumption and Type C energy bugs [335]. For instance, peripheral
devices can be locked into a higher power mode if they are enabled for a specific part of the
software workflow and not disabled after the workflow has been finished. Furthermore, they

3.3. ENERGY BUGS 87

often have a fixed energy offset called the energy tail [32, 34] whenever certain operations are
executed. If these operations are executed at a high frequency, the offset significantly affects
the overall consumption of the system. In addition, unnecessarily high sampling rates for
sensors may lead to avoidable extra power consumption. On a lower level, flaws in the software
design, e.g., blocking method calls, may prevent peripheral devices or the complete system
from entering a lower power state. Additionally, unoptimized source code (e.g., avoidable
wait cycles) may lead to more extended execution times while keeping the MCU busy or
active for a longer time frame. Programming errors such as unreachable code sections may
prevent hardware accesses (e.g., configuration or power state changes) from being executed.
Moreover, the inaccurate use of Application Programming Interfaces (APIs) and drivers (e.g.,
due to inexperienced software developers or exotic hardware components) affects the power
consumption of a peripheral device.

In contrast, Type D energy bugs are related to the influence of software applications on
the power state of peripheral devices. Hardware components of an embedded system realize
different low-power modes, also known as sleep modes, that may be active if the component
is not in use. Unintentional accesses can prevent these components from switching into sleep
mode (no-sleep bug [295]). They may also be bound to a part of the software application too
early, too long, or both, causing them to operate at high power consumption for longer than
necessary. An example of such an energy bug is described in [391], where the bootloader of
the MCU, as part of its default behavior, generates debug messages on the UART interface
as soon as the MCU is switched from an active into a low-power mode. Imagine a device
already powered down by the software application. Messages on a communication bus, e.g.,
UART, may be interpreted falsely as a wake-up signal so that the peripheral device sets itself
into a higher power mode, e.g., idle, without notifying the software layer. Because hardware
components are not operating in their expected power mode, the power consumption of the
system deviates from the expected level.

3.3.3 Example

This section provides a basic example for the appliance of the tuple definitions (cf. Defini-
tion 3.2, p. 85) to demonstrate the relation between scenarios, requirements, and energy bugs.
This example refers to the IoT sensor node example presented in [341] and used for the case
study as part of the Evaluation in Chapter 7 (p. 175 ff.). However, a detailed understanding of
the case study is not necessary at this point. Imagine an IoT sensor node as SUT, which uses
LPWAN as a wireless communication technology to transfer measurement values to a server.
The behavior of the SUT can be divided into different phases, while a scenario can be defined
for each of these phases if the entire behavior is evaluated within a test case, for instance:

Stc = [⟨Smeasure, tmeasure⟩, ⟨Stransmit, ttransmit⟩, ⟨Ssleep, tsleep⟩] (3.11)

Exemplary for the scenario Stransmit, the LPWAN module might be the most critical component
to be considered. A requirement engineer may specify the following two NFRs to define limits
considering the energy consumption and the peak demand during a single transmission to
avoid excessive load on the energy source.

The total energy of the LPWAN module during a single transmission shall not exceed
42.2 · 10−3 J.

The LPWAN module shall not consume more than 64 mA when transmitting messages.

88 CHAPTER 3. OVERVIEW

For the evaluation, further requirements according to Definition 3.1 (p. 81) have to be specified,
e.g., of the environment and properties of the LPWAN module. Figure 3.5 shows an excerpt
of the defined scenario Stransmit as SysML 1.6 requirement diagram. The scenario not only

id = "ReqS1"
text = "Defines test environment and
restrictions of the LPWAN module
during transmission "
source = "MS"

<<requirement>>
Scenario_TX

id = "ReqS1.7"
text = "The low data rate optimization
has to be turned off"
source = "MS"
verifyMethod = "Test"
risk = "Low"

<<hardwarePropertyRequirement>>
LowDataRateOptimization

id = "ReqS1.6"
text = "The spreading factor has to be
set to 12"
source = "MS"
verifyMethod = "Test"
risk = "Low"

<<hardwarePropertyRequirement>>
SpreadingFactor

id = "ReqS1.2"
text = "The LPWAN module has
performed a join procedure with the
TTN network"
verifyMethod = "Test"
source = "MS"

<<environmentalRequirement>>
NetworkStatus

id = "ReqS1.4"
text = "The total energy of the LPWAN
 module during a single transmission
shall not exceed 0.0422 J"
source = "MS"
verifyMethod = "Test"
risk = "High"

<<electricalRequirement>>
EnergyQuota

id = "ReqS1.5"
text = "The LPWAN module shall not
consume more than 64 mA when the
device is transmitting messages"
source = "MS"
verifyMethod = "Test"
risk = "High"

<<electricalRequirement>>
MaximumCurrentDemand

id = "ReqS1.1"
text = "The distance between the SUT
 and the TTN gateway is 500 meters
and a clear line of sight exists"
verifyMethod = "Test"
source = "MS"

<<environmentalRequirement>>
DevicePosition

id = "ReqS1.3"
text = "The duration of a transmission
should not exceed 200 ms."
source = "MS"

<<requirement>>
TransmitDuration

Visual Paradigm Standard(Schaarschmidt(Fachhochschule Osnabrueck))

Figure 3.5: Requirements for a LPWAN module of an exemplary scenario (SysML 1.6 require-
ment diagram notation).

specifies the expected energy-related behavior of the SUT but also addresses aspects of the
environment and the intended configuration of the LPWAN module as strong influencing
factors on the non-functional behavior. Due to the definition requirements ReqS1.4 and
ReqS1.5 in Figure 3.5, the energy consumption for a single transmission as the upper threshold
and the maximum electric current consumption during the transmission can be considered.
Both aspects are affected by the size of the data to be sent and the currently active configuration
of the LPWAN module. An energy bug exists if at least one of the two introduced NFRs is
violated. The limits of an energy bug-free system for the scenario Stransmit can be defined as
⟨(42.24, mJ), (64, mA)⟩. In addition, the energy quota Equ and the maximum current demand
Idmax may be used to express and quantify energy bugs themselves.

This chapter introduced the closely related concepts of scenarios as a structured collection
of NFRs and energy bugs as violations of energy-related requirements. Both are expressed
as a tuple with the energy quota and the maximum current demand. These two concepts
form the basis for the energy-aware software design patterns in Chapter 4 (p. 89 ff.) and the
modeling and estimation of power consumption in Chapter 5 (p. 115 ff.).

Chapter 4

Software Design Pattern Framework

This section provides a framework to derive and describe best practices for the design of
energy-aware systems (cf. Definition 3.3, p. 85). Energy-aware design patterns may be used
to initially design or optimize software applications after executing test cases and evaluating
energy- and power-related NFRs. While the description of design patterns as a process must
be completed in advance, their application is part of actions 2(a) and 12 in the proposed
developer workflow shown in Figure 3.1 (p. 78). The following sections provide a set of
contributions to overcome RQ2 for the design of energy-aware systems. Section 4.1 outlines
the intended goal of the developed software design pattern framework. In Section 4.2, the
process of identifying design patterns is briefly summarizes, while in Section 4.3, a novel
template for the uniform description of software design patterns is presented. A first catalog
of energy-aware software design patterns is introduced in Section 4.4.

Initial versions of the framework and the design pattern catalog have been published
in [337] and revised and extended in follow-up work [338]. Selected novel energy-aware design
patterns of the design pattern catalog have been published separately in [392].

4.1 Introduction

Software design patterns generally describe generic and programming language-independent
“generalized solution[s] to a commonly occurring problem.” [99]. In Section 2.4.1 (p. 32 ff.),
different approaches for a systematic and abstract description of such software design patterns
have been discussed. The main drawback of design pattern templates presented in Section 2.4.1
(p. 32 ff.) and scientific research mentioned in Section 2.4.2 (p. 34 ff.) is the lack of including
the impact and side effects on power- and energy-related NFPs as the subject of NFRs in
the description of software design patterns. Additionally, metrics to estimate the impact of
a design pattern on NFRs, e.g., related to power and energy, when applied to a software
application, are not part of the proposed templates.

This chapter provides a novel solution to describe energy-aware software design patterns,
explicitly addressing energy-related aspects of the software application while interacting with
hardware resources. The proposed framework is intended to provide the following elements:

• A uniform template to describe the key elements of energy-aware design patterns regard-
less of programming languages and peripheral devices.

89

90 CHAPTER 4. SOFTWARE DESIGN PATTERN FRAMEWORK

• A section to describe the impact on power and energy using a set of quantifiable values
(metrics). By this, the gap between the hardware and software layers can be addressed,
and the cause-effect relationship between software and hardware can be considered.

• A uniform graphical description of the behavior resulting from applying a design pattern
w.r.t. power consumption and time behavior aspects.

The design pattern framework provides a template to describe reoccurring solutions for the
design of software applications in an abstract manner which may help developers to understand
the problem area more in-depth and provide a kind of guideline for the development phase.
Moreover, with the proposed metrics, a direct comparison between different design patterns
becomes possible, which supports developers in selecting the most appropriate design pattern
without the need to implement and evaluate each design pattern beforehand. Due to different
characteristics, it should be noted that not every design pattern is suitable for every type of
hardware. Additionally, there might exist tradeoffs between functional and non-functional
requirements associated with the use of design patterns. Optimizing the software application
in terms of power consumption, for example, may have a negative impact on the time behavior,
which developers must carefully monitor [291].

Before the adapted design pattern template and the design pattern catalog are introduced
in Sections 4.3–4.4, the process for identifying energy-aware design patterns is briefly described
in Section 4.2.

4.2 Design Pattern Identification Process
This section describes the method and sources used to discover energy-aware design patterns
provided by the design pattern catalog in Section 4.4 (p. 94 ff). Identifying design patterns
and adding them to a catalog is often referred to as pattern mining [98, 99]. The process is
naturally associated with discovering new design patterns rather than their invention [124],
mainly because one has to notice that the solution covered by the design pattern in some
context is similar to a solution in another context. However, there is no uniform process
for the creation of design patterns. Instead, several guidelines for writing design patterns
exist [248, 414]. An approach similar to the one described in this section has been presented
in [120] as an iterative process containing the three phases of pattern identification, pattern
authoring, and pattern application with multiple sub-activities for each phase.

For the pattern identification process carried out in this thesis, the research for energy-
aware design patterns has not been limited to specific domains such as automotive or IoT. The
following sources have been elaborated and considered as part of the identification process:

• Literature to identify existing software design patterns, which may also impact power-
and energy-related NFPs.

• Technical documentation and datasheets published by manufacturers for their product
lines intended for embedded system developers.

• Whitepapers of manufacturers dealing with the ideal use of their products, e.g., sensors
and actuators, or explain technologies and domains in which their products are intended
to be used.

• Scientific publications with a focus on software design patterns and embedded systems.

4.3. ADAPTED DESIGN PATTERN TEMPLATE 91

• Own experience based on findings from lectures, seminars, and research projects, e.g.,
[286], carried out in cooperation with small and medium-sized enterprises.

If a problem solution described in at least one of the above sources has been identified as
essential and generalizable (pattern identification), the solution approach has been transformed
into a new energy-aware design pattern (pattern authoring) using the proposed design pattern
template presented in Section 4.3 (p. 91 ff.). Afterward, the energy-aware design pattern was
added to the catalog presented in Section 4.4 (p. 94 ff.).

Most energy-aware design patterns of the design pattern catalog have gone through the
first two phases since they are based on existing principles whose effectiveness has already been
proven. However, newly discovered energy-aware design patterns based on own research, e.g.,
as published in [392], have also gone through the pattern application phase [120] to validate
the described solutions.

4.3 Adapted Design Pattern Template
This section introduces the novel design pattern template for energy-aware software design
patterns. The notation of the pattern template is based on work and concepts presented in
Section 2.4 (p. 32 ff.). However, it has been modified to consider energy and timing aspects.
The template also provides a set of metrics to quantify the impact of the design pattern and
a new graphical representation to illustrate the behavior in an abstract form. An overview of
the design pattern template is shown in Figure 4.1. The structure is divided into three main
elements: General Information, Description, and Impact on Non-functional Requirements.

General Information Description
Impact on Non-

functional Requirements

Pattern Name

Other Names

Strategy

Related Patterns

Known Uses

Abstract

Context

Preconditions

Problem

Realization

Electric Energy

Energy Consumption

Energy Balance EBP

Efficiency Factor ηP

Current Demand

Efficiency Factor ηC

Execution Time / Latency

Consequences

Energy-aware Design Pattern Template

Figure 4.1: Energy-aware design pattern template structure.

Sections of the first two elements provide general information and an in-depth description
of the energy-aware software design pattern similar to well-known design pattern templates
as classical representations discussed in Section 2.4 (p. 32 ff.). However, none of the discussed
design pattern templates considered the impact and side effects on NFPs related to power
and energy consumption which are highly important for restricted or battery-powered systems.
Since NFRs specify criteria based on NFPs and thus form the basis for evaluation, they should
be considered in the high-level description of design patterns. Due to this, the new element
Impact on Non-functional Requirements is introduced and provides sections describing the

92 CHAPTER 4. SOFTWARE DESIGN PATTERN FRAMEWORK

impact and side effects on NFRs related to power, energy, and execution time. The remainder
of this section explains the design pattern template with its elements and sections.

General Information

As part of the classical representation of design patterns, this element has been derived
from [67, 131] and describes the meta-information of a design pattern by providing the following
sections:

• Pattern Name: A name as a unique reference for the described design pattern.

• Other Names: Synonyms and well-known names for the design pattern, e.g., from other
disciplines or domains.

• Strategy: A brief description of the basic strategic principles provided by the design
pattern to address NFPs, e.g., power consumption. Developers may use this section
for a broad filtering and selection process. A more in-depth description of the design
pattern solution is provided in the Description section.

• Related Patterns: Names of other design patterns realizing the same or a closely related
concept or solving related problems. Design patterns mentioned as related patterns
may be combined with the described pattern. In addition, applying the described
design pattern may result in the exclusion of other design patterns mentioned in this
section. Therefore, this section provides the basis for an energy-aware design pattern
language [10].

• Known Uses: Examples of existing solutions successfully using this design pattern, e.g.,
in other domains or disciplines such as electrical engineering.

Description

This element covers the basic definitions of the design pattern concept and the general condi-
tions for effective use. The structure is derived from [21, 67, 131] and contains the following
sections:

• Abstract: A short description of the pattern to provide a first overview.

• Context: Description of the situation where this pattern may be applied.

• Preconditions: Conditions including requirements and properties of the underlying hard-
ware architecture, which must be fulfilled to apply the pattern successfully.

• Problem: Description of the problem addressed by this design pattern expressed as a
question.

• Realization: Description of the implementation details. Depending on the pattern type,
e.g., structural or behavioral design patterns, the level of detail in this section may vary.
Typically, a textual description is provided. Due to diagram-based modeling languages
such as UML (cf. Appendix A.3, p. 266 ff.), graphical representations can be added
to the description. For structural energy-aware design patterns, structure, class, and
object diagrams may extend the textual description. In contrast, state, timing, activity,
or sequence diagrams may be added for behavioral patterns. SysML diagrams, such as
the SysML block definition diagram, are also suitable for less detailed visualizations.

4.3. ADAPTED DESIGN PATTERN TEMPLATE 93

Impact on Non-functional Requirements

This novel element provides the following sections to describe the impact on NFRs related to
electric energy and execution time:

• Electric Energy: This section is divided into two specializations with different sets of
goals and metrics. Considering energy-aware systems (cf. Definitions 3.2–3.3, p. 85),
energy-aware design patterns may address either the energy consumption or the max-
imum current demand. Additionally, each energy-aware design pattern description is
extended with a standardized graphical representation to outline the energy-related and
computational behavior of the defined design pattern. Figure 4.2 shows a variant of the
graphical representation to illustrate the effects on energy consumption referred to as the
power-timing diagram, first published by the author in [337]. In general, the graphical
representation serves two purposes: On one hand, it visualizes the effects of design
patterns uniformly. On the other hand, it helps to improve the understanding of each
design pattern and thus eases the selection of suitable solutions. The basic structure of
the power-timing diagram, as shown in Figure 4.2, consists of a two-part representation.
The y-axis in the upper part of the diagram shows different power levels at which the
system or a single hardware component may operate. The y-axis in the lower part of
the diagram defines the computational power levels of the system or a single hardware
component. Both parts of the diagram share the same x-axis representing the execution
time t to illustrate the behavior over time. A black dashed line characterizes the behavior
without applying the described design pattern. The red line shows the adapted behavior
resulting from the energy-aware design pattern. Moreover, for the power level in the
upper part of the power-time diagram (cf. Figure 4.2), the impact of the energy-aware
design pattern is highlighted by green-filled areas if additional energy is required and by
blue-filled areas to indicate potential energy savings. The graphical comparison of the

Behavior w/o design pattern

Behavior with design pattern applied

Add. Energy

Energy Savings

Execution Time (𝑡)C
o

m
p

u
ta

ti
o

n
al

P
o

w
er

 (
C
P

)

P
o

w
er

 L
ev

el

(P
)

𝑃0

𝑃1

𝑃2

𝐶𝑃1

𝐶𝑃2

𝐶𝑃0

Figure 4.2: Power-timing diagram as a variation of the developed graphical representation,
adapted from [337].

94 CHAPTER 4. SOFTWARE DESIGN PATTERN FRAMEWORK

behavior with and without applied design patterns visualizes the properties, which are
used by the metrics. This section is split into two subsections, as follows:

– Energy Consumption: For this section, a set of metrics consisting of the energy
balance EBP and the efficiency factor ηP have been specified to describe the
impact of design patterns on energy consumption uniformly. EBP defines a balance
equation to indicate possible energy savings, where a higher value of EBP suggests
more significant savings. ηP is derived from EBP and describes an effort-saving
ratio as a dimensionless factor ranging between 0 and 1. In this context, ηP enables
a quantitative evaluation of the efficiency for possible energy savings resulting from
applying an energy-aware design pattern. If ηP = 1, an energy-aware software
design pattern saves energy without additional effort, whereas ηP = 0 means a
design pattern is ineffective and does not save energy. Values within]0, 1[describe
a tradeoff between additional energy overhead and energy savings.

– Current Demand: The effect of design patterns on the maximum current demand is
expressed by the metric ηC . In general, ηC defines a cut-off factor expressed in per-
cent, describing how much the current demand can be reduced. A value of 0 implies
no improvement, while values for ηC ≥ 0.5 can be considered a very effective im-
provement by the energy-aware design pattern. Note that the exemplary graphical
representation in Figure 4.2 can also be applied to design patterns addressing the
current demand. Such a representation is referred to as a current-timing diagram.
It differs from a power-timing diagram only in the upper part, which describes the
behavior related to current levels instead of power levels. However, since energy-
aware design patterns referring to the current demand have other properties and
metrics, the upper part might have a different structure.

• Execution Time / Latency: Describes the impact of the energy-aware design pattern on
the execution time. This section also covers additional overhead and latencies due to
the applied design pattern, e.g., by using worst, average, and best-case scenarios.

• Consequences: Describes tradeoffs when a design pattern is applied since optimizing one
requirement may affect other requirements. In most of the pattern templates introduced
in Section 2.4.1 (p. 32 ff.), this section deals with consequences related to development
costs, portability, and modifiability. Design patterns addressing energy-related prob-
lems may have interrelations with other functional or non-functional properties [291].
Consequently, this section also contains a description of any disadvantages, drawbacks,
and side effects introduced by the energy-aware design pattern, as well as changed or
additional hardware requirements. This may lead to adaptations, which developers must
address.

4.4 Energy-aware Design Pattern Catalog

This section provides the first catalog of energy-aware design patterns as a contribution to
address RQ2. The lack of a catalog for design patterns targeting energy efficiency has also
be identified by Bass et al. (2021) [38]. Energy-aware design patterns in this section are
specified using the adapted design pattern template introduced in Section 4.3. The pattern
catalog contains a total of six energy-aware design patterns with five design patterns based

4.4. ENERGY-AWARE DESIGN PATTERN CATALOG 95

on existing, well-known, and proven principles and one novel design pattern originating from
own research published in [337, 392]. If not already done, the energy-aware design patterns
presented were identified through the design pattern identification process and described using
the new design pattern template proposed in Section 4.3 (p. 91 ff.). Their general validity
is described by the corresponding definitions and equations. The examples are given for the
sake of understandability and do not restrict design patterns in their use. Numerical values
for the examples are assumed or taken from further literature. However, this section focuses
on the fundamental and uniform consideration of best practices from an energy perspective as
well as evaluation and efficiency measures. Energy-aware design patterns may be organized
according to their main category, as shown in Table 4.1.

Design Pattern Classification
Category

Utilization Res Mgmt. Concurrency

Energy-aware Sampling behavioral ✓
Event-based Computing behavioral ✓
Power Monitor behavioral ✓
Direct Memory Access Delegation behavioral ✓
Mirroring behavioral ✓
Race-To-Sleep behavioral ✓ ✓

Table 4.1: Classification and Categorization of six energy-aware design patterns.

According to Table 4.1, most of the energy-aware design patterns address the control and
utilization of individual hardware components during runtime (Utilization). Two of the design
patterns deal with concurrency aspects to improve the energy efficiency of the embedded system,
while only the Power Monitor design pattern focuses on resource management (Res. Mgmt.)
of peripheral devices such as sensors and actuators. Although the introduced design pattern
template is able to specify energy-related aspects of a software application from different
perspectives, energy-aware design patterns presented in this section focus exclusively on
energy consumption. However, future work may expand the design pattern catalog with
design pattern descriptions focusing on electric current demand.

Each of the following energy-aware design pattern descriptions contains a uniform power-
timing diagram as a graphical representation of the behavior related to power consumption,
computational power, and execution time, as introduced in the previous Section 4.3 (p. 91 ff.).
Based on the characteristics illustrated by the power-timing diagram, the impact of design
patterns is described with the proposed metrics EBP and ηP .

4.4.1 Energy-aware Sampling (EAS)

This section describes the Energy-aware Sampling (EAS) design pattern.

General Information

Other Names: Adaptive Sampling as used in literature, e.g., in [356].

Strategy: A (unnecessary) high sampling rate increases the power consumption of a hardware
component due to a longer active period. EAS influences the time a peripheral device is oper-
ating in an active state. By lowering the sampling rate, a peripheral device can be inactive

96 CHAPTER 4. SOFTWARE DESIGN PATTERN FRAMEWORK

for a longer period of time, and the CPU can enter a lower power state. This pattern may
also be applied on CPUs to switch periodically between active and low-power states.

Related Patterns: Cost-Aware Sampling and Quality of Service Based Sampling as two spe-
cializations of the generic EAS pattern are described in [253]. The first pattern adjusts the
sampling rate according to the sampling cost based on power consumption, memory size, and
communication bandwidth, while the second pattern affects the sampling rate based on the
transmission network performance.

Known Uses: A dynamically adapting sampling frequency is used in [356] to save approximately
31 % of the system’s battery energy during a three months continuous water quality monitoring
period.

Description

Abstract: The sampling rate has a strong impact on the energy consumption of the system [388].
The main strategy of EAS is to adjust the sampling rate of peripheral devices in an energy-
aware. This is achieved by selecting a sampling rate that fits the relevant frequencies to extract
all the necessary information.

Context: EAS is highly suitable for periodic systems with constant sampling rates. It may be
used for peripheral devices in situations where signal characteristics are known and algorithms
for data processing can handle varying sampling rates. For CPUs, EAS can be applied when
the execution of the software application contains a high percentage of idling time.

Preconditions: Peripheral devices addressed by this pattern must have the capability to adjust
the sampling rate. In addition, the characteristics of the signal must be well known. When
used in combination with a CPU, power state changes at runtime must be supported.

Problem: How can the energy consumption of a system be optimized by adjusting the sampling
rate of a peripheral device or by reducing the period of the active state of a CPU?

Realization: A static adjustment of the sampling rate for peripheral devices can be achieved
during the startup process of the software application. If the adjustment is supposed to vary
during runtime, further software components, e.g., algorithms or data transmissions, need
to be considered. If EAS is used for peripheral devices such as sensors, the lowest sample
frequency fsample should be fsample > 2 · fmax, with fmax as the maximum frequency of the
signal, to extract all the necessary information, also known as the Nyquist-Shannon sampling
theorem [211]. To adjust the active time of CPUs, parts of the software application containing
idling times need to be identified. For those parts, the CPU can be set to a lower power state.
In general, EAS has a minimal impact on the software application and can be implemented
rapidly. In the case of a static adjustment, this ideally takes place at the initializing phase
of the software application. If the sampling interval varies dynamically at runtime, further
software components may need to be adapted.

4.4. ENERGY-AWARE DESIGN PATTERN CATALOG 97

Impact on Non-functional Requirements

Figure 4.3 shows the power-timing diagram for EAS applied to lower the energy consumption
of a CPU without considering peripheral devices and sensors.

𝑃0

𝑃1

𝐶𝑃1

Energy Savings

𝑡
𝑡0 𝑡1 𝑡2 𝑡4𝑡3

No Pattern

Pattern Applied

Figure 4.3: Power-timing diagram for the EAS design pattern (published in [337]).

Energy Consumption: The power states Pi are defined in the upper part of Figure 4.3, with the
sleep mode as P0 and the normal mode as P1. The lower part represents the computational
power CP , where CP1 describes the computational power in normal mode. The power (duty)
cycle D is defined as:

D = c

T
(4.1)

with the duration c as the duration, the CPU operates in normal (active) mode and T as the
period consisting of a sleep phase and an active phase defined as:

c = t3 − t1 (4.2)
T = t3 − t0 (4.3)

When EAS is applied, a new period T ′ > T is defined, leading to a new relaxed power cycle
D′, defined as:

D′ = c

T ′ (4.4)

T ′ = t4 − t0 (4.5)

Note that the duration c in Equation (4.1) is unchanged while the new period T ′ is increased
and thereby extends the time the CPU operates at P0. EBP , as defined in Equation (4.6),
can be calculated using Equations (4.1) to (4.5) and ∆P10 = P1 − P0. When taking other

98 CHAPTER 4. SOFTWARE DESIGN PATTERN FRAMEWORK

peripheral devices into account, Equation (4.6) needs to be extended.

EBP = Enormal − Erelaxed

= (D · ∆P10) − (D′ · ∆P10)
= ∆P10 (D − D′)

(4.6)

The relationship between relaxing the duty cycle and energy savings is linear. Since additional
power or computational power effort is not required, the efficiency factor can be defined as
ηP = 1.

Execution Time / Latency: When adapting the duty cycle, the execution time of a software
application may be affected. For example, periodic latencies where the system waits until
measured values of a sensor are obtained may be reduced since the sensor is used less often
during the same time period.

Consequences: When using EAS to adjust the reading of a sensor, the number of total data
points decreases. EAS may also have an impact on the accuracy of the sampled signal due to
the reduced sampling rate. Reducing the sampling rate of peripheral hardness or the active
phase of a CPU may increase response times.

4.4.2 Event-based Computing (EBC)

This section describes the Event-based Computing (EBC) design pattern.

General Information

Other Names: None known.

Strategy: CPUs can achieve low energy consumption by minimizing the time spent in active
mode and maximizing the time operating in low-power mode. EBC reduces the active time of
CPUs by using interrupts instead of polling loops. The CPU, which would otherwise only be
active to execute polling loops with subsequent data processing, can be set into a low-power
mode for the time between interrupts.

Related Patterns: A similar approach referred to as Event-Triggered Sampling is presented in
[253], where events are used to reduce the communication between devices by avoiding the
transmission of redundant data and, thus, reducing the number of transmitted messages.

Known Uses: In event-based development, internal and external interrupts can be used to
trigger specific functions of the software application causing spontaneous behavioral changes.
Peripheral devices like ADCs and external devices, such as the NXP CLRC663 plus NFC
frontend [268], use interrupts to signal the host processor when thresholds are reached or
changes are detected.

Description

Abstract: The EBC design pattern optimizes the power consumption of a CPU by replacing
polling loops in the software application with interrupt implementations. Interrupts may be

4.4. ENERGY-AWARE DESIGN PATTERN CATALOG 99

used by internal and external peripheral devices to indicate state changes directly. They serve
as triggers for events and cause a spontaneous change in the state of a software application.
By this, peripheral devices may operate independently of the CPU and, for example, use
interrupts to signal the presence of new data.

Context: This pattern can be applied to software applications that need to respond to sponta-
neous events caused by peripheral devices. EBC is also suitable for time-critical systems.

Preconditions: This pattern requires peripheral devices with interrupt support and built-in
trigger functionalities, e.g., ADCs combined with comparators or external peripheral devices
with built-in interrupt support.

Problem: How can a system process discrete events but remain in a low-power state most of
the time otherwise?

Realization: Polling forces the application to query peripheral devices constantly. This behavior
produces wait cycles and keeps the CPU active, leading to a significantly increased power
consumption. Avoidable wait cycles can be replaced by interrupts and Interrupt Service
Routines (ISRs). A software application can direct the CPU to enter a low-power mode and
configure peripherals to wake up the CPU if necessary.

Impact on Non-functional Requirements

The basic power characteristics of the EBC design pattern are outlined by the power-timing
diagram shown in Figure 4.4.

𝑃0

𝑃1

𝐶𝑃1

Energy Savings

𝑡
𝑡0 𝑡1 𝑡2 𝑡3

No Pattern

Pattern Applied

Figure 4.4: Power-timing diagram for the EBC design pattern (published in [338]).

Energy Consumption: The upper part of Figure 4.4 contains the power levels P0 for the
low power mode and P1 for the active mode of a CPU. When no pattern is applied, the

100 CHAPTER 4. SOFTWARE DESIGN PATTERN FRAMEWORK

application in the example represented in Figure 4.4 constantly queries a peripheral device
at a fixed interval. For a better understanding of the behavior, the terms miss and hit are
introduced. A miss defines a polling operation where the result does not lead to a behavioral
change of the software application, for example, a follow-up data processing activity. In case
of a hit, e.g., a threshold is exceeded. As a result, the software application obtains the data
from the peripheral device and starts (computationally intensive) data processing operations.
W.r.t. the power-timing diagram shown in Figure 4.4, miss and hit can be specified by:

∆tmiss = t1 − t0 (4.7)
∆thit = ∆tinterrupt = t3 − t2 (4.8)

When this pattern is applied, the CPU will be notified and can query peripheral devices if
necessary and directly start (computationally intensive) data processing operations. To reduce
the complexity of the power-timing diagram shown in Figure 4.4, the duration of a hit (no
pattern) and interrupt solution (with pattern) are equal in length, cf. Equation (4.8). To
describe the behavior of the system even further, the following definitions are required:

∆P10 = P1 − P0 (4.9)
Epolling = n · (∆tmiss · ∆P10) + ∆thit · ∆P10 (4.10)

Einterrupt = ∆thit · ∆P10 (4.11)

Epolling in Equation (4.10) defines the energy if polling is used with the parameter n as the
number of polling requests which do not lead to follow-up data processing operations (miss). In
Equation (4.11), Einterrupt defines the expected energy consumption when the design pattern
is applied. Energy savings result from avoiding such polling requests. The resulting energy
balance EBP can be calculated as follows:

EBP = Epolling − Einterrupt

= n · (∆tmiss · ∆P10)
(4.12)

The efficiency factor is ηP = 1 since the appliance of this pattern does not produce additional
power-related overhead if ∆tinterrupt = ∆thit, as defined in Equation (4.8). If ∆tinterrupt >
∆thit, ηP can be calculated as follows:

ηP = 1 −
(︄

Einterrupt

Epolling

)︄
(4.13)

Execution Time / Latency: Adapting the strategy of the software application from a polling-
based to an event-based approach has no negative effect on time behavior. Event-driven
software applications are suitable for real-time requirements. In the provided example, an
additional overhead of the CPU based on context switching when handling interrupts is not
considered. However, context switching is use case specific and depends strongly on the CPU
architecture, CPU model, and selected low-power mode.

Consequences: Interrupts are generally causing changes in the workflow and structure of the
application, which has to be considered. GPIO-based interrupts may require additional wires
or lines, which may lead to hardware design changes.

4.4. ENERGY-AWARE DESIGN PATTERN CATALOG 101

4.4.3 PowerMonitor

This section describes the PowerMonitor design pattern, which is based on previous work [392].

General Information

Other Names: None known.

Strategy: The PowerMonitor design pattern optimizes the time a peripheral device stays in an
active state and lowers the electrical capacitance of the system. The design pattern introduces
an additional abstraction layer for hardware accesses. All peripheral devices and interfaces
can be dynamically controlled and, for instance, automatically disabled if they are no longer
in use or requested by any object of the software application. By this, uncontrolled access to
shared resources, e.g., through competing tasks, is also addressed.

Related Patterns: Power-gating [188], where the principle of the PowerMonitor design pattern
is used at the block level in the integrated circuit design of the hardware layer.

Known Uses: A proof-of-concept implementation of the PowerMonitor design pattern is
presented in [392].

Description

Abstract: The PowerMonitor design pattern considers the power consumption properties of
internal peripheral devices of SoCs and external peripheral devices. This also includes com-
munication interfaces such as I2C and SPI with various connected devices. As a centralized
approach, the PowerMonitor design pattern has deep knowledge of devices and communica-
tion interfaces at runtime and is able to dynamically change their power modes when they
are temporarily not needed. By this, energy-efficient systems may be defined without loss of
functionality.

Context: The PowerMonitor design pattern may be applied to software applications, which
must periodically access peripheral interfaces and devices. Moreover, the design pattern may
also be suitable if a centralized and fine-grained hardware access control has to be achieved.

Preconditions: Depending on the intended usage, the software application requires control
over all considered communication interfaces, such as I2C or SPI, and the capability to disable
and enable external devices, e.g., sensors and actuators, as well as clocks of functional units.

Problem: How can a software application with a fine-grained power-saving strategy be imple-
mented, which only enables peripheral devices on request? Additionally, how can conflicts
between sleep modes (e.g., preventing software from being executed) and use cases with con-
tinuous tasks be addressed?

Realization: The reference implementation of the PowerMonitor design pattern [392] follows
a template meta-programming approach using C++17 to provide an abstract and type-safe
interface. The overall structure and involved components of the PowerMonitor design pattern
are outlined in Figure 4.5. The access of communication interfaces, e.g., I2C or SPI, and

102 CHAPTER 4. SOFTWARE DESIGN PATTERN FRAMEWORK

 WakeUp
 FlakeOut

Trigger

Connector ConnectedDevice<<PhysicalHardware>>
CommunicationInterface

+power(t : Trigger)
PowerControlled

+execute(f)
PowerMonitor

111..*1

<<supervises>><<accesses>> <<uses>>

Visual Paradigm Standard(Schaarschmidt(Fachhochschule Osnabrueck))

Figure 4.5: Structure and components of the PowerMonitor design pattern reference imple-
mentation (adapted from [337, 338, 392]; UML 2.5 class diagram notation).

peripheral devices are managed by a single PowerMonitor class instance. Other parts of the
software application may use the provided functions of the PowerMonitor class and do not
have to implement hardware accesses themselves. The components shown in Figure 4.5 are:

• PowerMonitor: This class defines the flow control fc within the software application
and has access to connected peripheral devices. When active, required power-controlled
communication interfaces and peripheral devices are enabled. When the monitor function
is exited, peripheral devices are placed into sleep mode automatically.

• PowerControlled: This entity supports some kind of power management. This class
has to implement a function that accepts power triggers as wake-up and flake-out signals.

• ConnectedDevice: This class provides an abstract interface to the user part of the
software application, abstracts the used hardware component, and specializes Power-
Controlled.

• Connector: This class is a low-level abstraction to provide basic functions of Communi-
cationInterfaces.

• CommunicationInterface: This class is a communication interface provided by the
MCU, e.g., GPIO or bus systems such as I2C or SPI, or CAN.

The execute method of the PowerMonitor is called from the application layer in order to get
access to a peripheral device. This triggers the power method of a ConnectedDevice instance
using a wake-up signal as a parameter, which is also propagated to the linked communication
interface. When all operations have been completed, the PowerMonitor instance sends another
trigger, which initiates the flake-out phase of the concerned objects. By this, a PowerMonitor
instance defines a specific section within the software application for controlled access to
communication interfaces and peripheral devices. Outside this section the device moves
dynamically to a low-power or sleep mode reducing the system power.

Impact on Non-functional Requirements

The power-timing diagram pictured in Figure 4.6 sketches the characteristics of the Power-
Monitor design pattern.

Energy Consumption: For the scenario introduced by the power-timing diagram in Figure 4.6,
it is assumed that the considered communication interface and the peripheral device are
disabled before t0. This state is denoted as power consumption level P1. At first, the com-
munication interface to access the peripheral device, e.g., I2C, is enabled at t0. Afterward, at

4.4. ENERGY-AWARE DESIGN PATTERN CATALOG 103

𝑃0

𝑃1

𝑃3

𝑃2

𝐶𝑃1

Energy Savings

𝑡
𝑡0 𝑡1 𝑡2 𝑡3

No Pattern

Pattern Applied

𝑡4

Figure 4.6: Power-timing diagram for the PowerMonitor design pattern (published in [337]).

t1, the peripheral device, e.g., a connected sensor, gets enabled. To describe the behavior of
the system and the software application on which the PowerMonitor design pattern has been
applied, the following definitions are required referring to Figure 4.6:

T = t4 − t0 (4.14)
∆t10 = t1 − t0, ∆t21 = t2 − t1, ∆t32 = t3 − t2 (4.15)

and

∆P21 = P2 − P1, ∆P32 = P3 − P2, ∆P31 = P3 − P1 (4.16)

For the time frame ∆t21, the application can use the device without any loss of functionality,
and the power consumption level is P3. Afterward, the PowerMonitor instance dynamically
disables the external device and the communication interface while the power consumption
drops back to the previous level P1.

Possible energy savings can be calculated using Equations (4.15) to (4.16) which strongly
depend on the power consumption of the communication interface defined as ∆P21 and the
external device defined as ∆P32. The energy consumption for the software application, without
(Enormal) and with (Emonitor) the design pattern applied, may be calculated as:

Enormal = T · ∆P31 (4.17)
Emonitor = (∆t10 + ∆t32) · ∆P21⏞ ⏟⏟ ⏞

≈0

+∆t21 · ∆P31 (4.18)

The first part of Emonitor can be considered very small and close to zero since enabling
functional units usually takes only a few clock cycles. Equation (4.19) provides the calculation
of the energy balance EBP :

EBP = Enormal − Emonitor

≈ ∆P31 · (T − ∆t21)
(4.19)

104 CHAPTER 4. SOFTWARE DESIGN PATTERN FRAMEWORK

The computational power shown in the lower part of Figure 4.6 is unaffected by this pattern
and remains constant at level CP1. The efficiency factor is ηP = 1 because the basic concept
does not require additional energy.

Execution Time / Latency: Latencies may be introduced by the additional overhead of the
software application to manage and control devices. Additional latencies may occur during
switching the power states of affected hardware devices since the response time of those devices
may be increased compared to devices continually running. However, these type of latencies
cannot be generalized since they depend on the specific implementation of the software appli-
cation and hardware layer characteristics. Therefore, they are not part of the power-timing
diagram pictured in Figure 4.6.

Consequences: This design pattern requires a deep knowledge of each communication interface
and peripheral device, as well as their energy consumption characteristics, which increases
the complexity of the software application design. Additionally, for more complex peripheral
devices, e.g., network adapters, the recreation of its contexts requires additional application
logic if, for example, the connection is lost due to a timeout. Energy consumption may be
reduced without any loss of functionality depending on the characteristics of communication
interfaces and peripheral devices. Enabling and disabling hardware components periodically
may add further latencies, as mentioned in the Execution Time / Latency field. In some cases,
the startup phase of such devices may be more energy expensive, for instance, due to inrush
current, compared to steady-state operating devices. Additionally, changing the states in short
intervals may have a negative impact caused by re-establishing phases of a radio connection
or the preheating phases of gas sensors. Using interrupts for asynchronous events may also be
limited if clocks have been disabled.

4.4.4 Direct Memory Access Delegation (DMAD)

This section describes the Direct Memory Access Delegation (DMAD) design pattern.

General Information

Other Names: None known.

Strategy: Transferring a large amount of data may be time-consuming, depending on the clock
settings of the communication bus used, the source’s reading speed, and the destination’s
writing speed. During data transfer, the core of a CPU operates in active mode. The strategy
of this pattern is to use the DMA method to handle data and memory transfers without using
a CPU core, which can instead be put into a low-power mode to reduce power consumption.
This may also result in a lower overall electrical capacitance if devices can be turned off com-
pletely. Because a DMA-based transfer is typically faster, the active time of a system is also
reduced.

Related Patterns: None known.

Known Uses: High Speed Serial Port [115] describes a hardware interface design pattern where
DMA is used to transfer data between a serial device and memory without CPU intervention.

4.4. ENERGY-AWARE DESIGN PATTERN CATALOG 105

Description

Abstract: The DMAD pattern optimizes the energy consumption of a system by using DMA
for data transfers between peripheral devices and memory units. The CPU core, which would
otherwise be responsible for the communication, can be set to a lower power mode during
data transfer.

Context: This design pattern is highly suitable for use cases where larger data transfers or
continuous data streams need to be processed automatically. The CPU core can be set to a
power-saving state if no other application load has to be calculated for the data transfer period,
for example, since a DMA controller operates in parallel with the CPU, allowing autonomous
communication between peripheral devices without requiring CPU clock cycles. This pattern
should also be considered if a high-speed data transmission up to 100 Mbps is needed.

Preconditions: This design pattern requires a system with DMA support.

Problem: How can an energy-efficient data transfer between peripheral devices or memory
units be achieved without using the CPU?

Realization: At its core, DMAD is independent of the software application but depends on the
hardware platform and the wiring of the DMA. DMA controllers and interrupts are typically
configured during the initialization phase of the software application. As a result, the software
application requires adaptions to include such platform-specific configuration commands. The
CPU only has to respond to those interrupts and ISRs, which, for example, are triggered when
a data transfer task is finished. Common use cases are audio and video data streams and
applications where continuous ADC values are required, which can be directly transferred into
the memory or to other peripheral devices.

Impact on Non-functional Requirements

Figure 4.7 shows the power-timing diagram for the DMAD design pattern.

Energy Consumption: The power-timing diagram shows a simplified use case for a basic
understanding of the impact on power consumption and time behavior. The upper part of
Figure 4.7 shows the temporal behavior and the power consumption levels of the pattern.
P0 is defined as the state where the CPU core and the DMA controller are operating in a
low-power mode. Assuming that the power consumption of the DMA controller is lower than
the power consumption of the CPU, P1 defines the power state where the DMA controller is
active, while the state P2 defines the power state of the system where the CPU is operating.
For simplification, the configuration overhead and possible power consumption when the DMA
operates in an idle state are ignored. To calculate the energy balance EBP , the following
equations are defined with reference to Figure 4.7:

∆t10 = t1 − t0, ∆t20 = t2 − t0, ∆t21 = t2 − t1 (4.20)

and

∆P10 = P1 − P0, ∆P20 = P2 − P0 (4.21)

106 CHAPTER 4. SOFTWARE DESIGN PATTERN FRAMEWORK

𝑃0

𝐶𝑃1

Energy Savings

𝑡
𝑡0 𝑡1 𝑡2

No Pattern

Pattern Applied

𝑃1

𝑃2

Figure 4.7: Power-timing diagram of the DMAD design pattern (published in [338]).

For this pattern, the energy balance EBP can be calculated by subtracting the energy con-
sumption when the DMAD pattern has been applied (Edma) from the solution without the
design pattern (Enormal) using Equations (4.20) to (4.21) as follows:

EBP = Enormal − Edma

= (∆t20 · ∆P20) − (∆t10 · ∆P10 + ∆t21 · ∆P20)
= ∆t10 · (∆P20 − ∆P10)

(4.22)

Equation (4.22) indicates that the DMA must be faster or consume significantly less power
than the CPU to apply the design pattern effectively. Since the design pattern does not require
additional power or computational power effort, the efficiency factor can be defined as ηP = 1.

Execution Time / Latency: The DMAD design pattern may accelerate the data transfer due to
the direct DMA communication between peripheral devices without the CPU being involved.
Furthermore, the CPU core can use the number of cycles saved for other tasks or be set to a
low-power mode.

Consequences: An additional overhead is caused by the configuration of the DMA controller.
For example, if only a few data values have to be read from the ADC, additional CPU cycles
to set up the DMA controller neutralize the effect of the DMAD design pattern. In addition,
the structure of the software application has to be reviewed to support DMA and interrupts.

4.4. ENERGY-AWARE DESIGN PATTERN CATALOG 107

4.4.5 Mirroring

This section describes the Mirroring design pattern.

General Information

Other Names: None known.

Strategy: This design pattern describes strategies to lower the execution time of a system
by shifting the application (partly) between CPU cores at runtime. The Mirroring design
pattern can be used for two different strategies. In the first strategy, the execution time of
computation-intensive parts can be reduced by migrating from an energy-efficient to a high-
performance core. When a significant amount of idle time exists, tasks can be moved from a
high-performance to an energy-efficient core as a second strategy.

Related Patterns: If multiple CPU cores are used simultaneously for a short period of time to
finish the workload earlier, it corresponds to the Race-To-Sleep design pattern as described in
Section 4.4.6 (p. 111 ff.).

Known Uses: ARM’s big.LITTLE describes a hardware-based technology for heterogeneous
multiprocessor architectures, which can be seen as a hardware implementation of the Mirroring
pattern. The architecture allows tasks to be assigned to a high-performance or energy-efficient
core depending on the expected computational intensity [420]. At runtime, the running state
of tasks can be transferred between CPU cores.

Description

Abstract: The Mirroring design pattern is able to migrate an application or parts of the
workload, e.g., defined as tasks, between CPU cores with different power levels and power
characteristics at runtime.

Context: Use the Mirroring design pattern if the underlying system consists of a multi-core
architecture and the software application can influence the execution environment of tasks
dynamically at runtime.

Preconditions: This design pattern requires a specific CPU or system architecture. Each CPU
or MCUcore must be able to communicate with other cores, e.g., via signaling and inter-core
communication, and must be able to change the operating mode or adjust the operating
frequency at runtime.

Problem: How can a software application or parts of the software application, e.g., tasks, be
switched dynamically between individual cores of a multi-core CPU during runtime to increase
energy efficiency?

Realization: The concept of the Mirroring design pattern can be applied to different CPU
and system architectures. Note that with technologies such as ARM’s big.LITTLE, tasks may
be switched between cores without the need to extend parts of the software design. In the
absence of low-level hardware support, a management layer that controls and coordinates the

108 CHAPTER 4. SOFTWARE DESIGN PATTERN FRAMEWORK

<<block>>
<<softwareArtifact>>

CoreControl

<<block>>
<<logical>>
Strategy

<<block>>
<<logical>>
EnergyRules

<<block>>
<<softwareArtifact>>

MigrationUnit

<<block>>
<<logical>>
Assignment

<<block>>
<<logical>>
TaskGroup

<<block>>
<<logical>>
CoreGroup

<<block>>
<<softwareArtifact>>

Task

<<block>>
<<hardwareArtifact>>

CPUCore

1

1..*

1

1..*

<<executedOn>>

<<defines>> <<controls>>

<<groups>> <<groups>>

Visual Paradigm Standard(Schaarschmidt(Fachhochschule Osnabrueck))

Figure 4.8: Exemplary software design using the Mirroring design pattern (adapted from [337];
(SysML 1.6 block definition diagram notation).

tasks must be developed. An example of a software-based implementation for multi-core CPUs
is shown in Figure 4.8. The elements of the Mirroring design pattern example in Figure 4.8
have the following characteristics:

• TaskGroup: The class defines a group of tasks that can be executed on a CoreGroup.

• CoreGroup: This is a group of CPU cores.

• CoreControl: This block manages CoreGroups and defines Assignments between a
TaskGroup and a CoreGroup. It implements functions for measuring the load of the
CPU cores and consists of a Strategy, a MigrationUnit, and a set of EnergyRules.

• Strategy: This block defines the execution and association rules of cores and tasks,
e.g., the order in which tasks are migrated and cores powered. Depending on the CPU
architecture and abilities of the operating system used, a TaskGroup may be transferred
between CoreGroups without additional implementation effort. If the running state of
a task can not be transferred, another strategy uses, for instance, a second task denoted
as the mirroring task implementing the same functionality as the original task. It is
assigned to another CPU core, typically on hold, and only executed if a migration by
the CoreControl is initiated.

• MigrationUnit: This class provides functions to instruct the cores and perform mi-
grations. It also includes task management and context-switching strategies along with
power management functions.

• EnergyRules: This class contains rules based on CPU registers, performance counters,
and NFPs of abstract core representations in the CoreGroup, which the CoreControl
may use for an energy-aware processing.

4.4. ENERGY-AWARE DESIGN PATTERN CATALOG 109

Impact on Non-functional Requirements

Figure 4.9 outlines the power-timing diagram for the Mirroring design pattern.

𝑃0

𝑃1

𝑃2

𝑃3

𝐶𝑃2
𝐶𝑃1

𝐶𝑃3

Energy Savings

Add. Energy

𝑡
𝑡0 𝑡1 𝑡2 𝑡3

No Pattern

Pattern Applied

Figure 4.9: Power-timing diagram of the Mirroring design pattern for a dual-core CPU
(published in [337]).

Energy Consumption: The purpose of this pattern is to optimize power consumption and
energy efficiency by dynamically controlling different cores of a CPU or multiple CPUs of
a system, as mentioned in the field Strategy. The impact on power consumption depends
on how the cores are controlled. Figure 4.9 shows the power-timing diagram for a dual-core
CPU consisting of an energy-efficient core and a high-performance core. The use case shown
in Figure 4.9 describes the migration of a task running on a high-performance core to an
energy-efficient core. The upper part of Figure 4.9 describes the power consumption P of the
processor. The power state P0 represents the state of the system when both cores operate in
low-power mode, denoted as sleep mode. P1 is reached when only the energy-efficient core is
active, P2 when only the high-performance core is active, and P3 when both cores are active
at the same time.

The computational power CP is defined as CP1 for the energy-efficient core, CP2 for
the high-performance core, and CP3 as the computational power when both cores are active
simultaneously. The mirroring of a task in Figure 4.9 starts at t0. The application moves
relevant tasks from the high-performance to the energy-efficient core. During this time frame,
both cores are active and causing a power consumption overhead. At t1, the high-performance
core is set into the defined low-power mode. For the time between t1 and t2, the system utilizes
the low-power core. At t2, tasks are shifted back to the high-performance core, resulting in
an additional power overhead for the time between t2 and t3. To calculate the energy balance

110 CHAPTER 4. SOFTWARE DESIGN PATTERN FRAMEWORK

EBP and the efficiency factor ηP , the following definitions are required referring to Figure 4.9.

∆t10 = t1 − t0, ∆t21 = t2 − t1, ∆t32 = t3 − t2 (4.23)
∆t10 + ∆t32

∆t21
= qt < 1 (4.24)

In Equation (4.24), qt defines the quotient of the switching duration between the two cores
and the time the energy-efficient core is active. To be effective, the total execution time of the
energy-efficient core must be greater than the duration for switching between cores, and thus
the qt < 1. In Equation (4.26), qP is defined as the quotient between the power consumption
overhead required for the context switch where both cores are active and the power consumption
if only the high-performance core is active. It is assumed that the power consumption of the
energy-efficient core is lower than the power consumption of the high-performance core qP < 1.

∆P21 = P2 − P1, ∆P32 = P3 − P2 (4.25)
∆P32
∆P21

= qP < 1 (4.26)

Equations (4.23) to (4.26) may be used to calculate the energy saved (Esave) and additional
energy (Eadd) when applying the design pattern. Assuming that ∆t32 = ∆t10, the energy
balance EBP can be calculated as follows:

EBP = Esave − Eadd

= ∆P21 · ∆t21 − ((∆P32 · ∆t10) + (∆P32 · ∆t32))
= ∆P21 · ∆t21 − 2 · (∆P32 · ∆t10)
= ∆P21 · ∆t21(1 − qP qt)

(4.27)

The efficiency factor for the Mirroring design pattern is specified as ηP = (1 − qP qt). If, for
example, qp = 0.125 and qt = 0.1, the efficiency factor can be calculated as ηP = 0.988. In
general, the efficiency of the Mirroring design pattern highly depends on the application’s
workflow and the characteristics of the CPU. Energy is consumed for each state change, e.g.,
entering a low-power mode, due to the process of loading and unloading transistors, which
has to be considered in the application design [396].

Execution Time / Latency: This pattern impacts the execution time in two ways: The first
impact results from executing additional software application parts to manage tasks and
CPU cores. The migration of a task itself causes the second impact. If a task, for example, is
moved between two differently clocked cores, the execution time may be shortened or extended.

Consequences: This pattern can be modified to assign m different tasks to n cores with m ≥ n
with m, n ∈ N. Development costs are low if CPUs or cores share the same architecture,
compiler, and programming language. If source code for a task has to be ported from, e.g.,
C++ to ASM, the development costs will increase due to the introduced required knowledge,
increased complexity, and up to n variants for the same task to be implemented. For the
reference implementation, the CoreControl class represents the managing instance, which
must be executed on a core that is either permanently active or switched off last. To get the
best energy balance, the most energy-efficient core is typically selected, which may introduce
other disadvantages due to the reduced computational power.

4.4. ENERGY-AWARE DESIGN PATTERN CATALOG 111

4.4.6 Race-To-Sleep

This section describes the Race-To-Sleep energy-aware design pattern.

General Information

Other Names: Race-To-Idle, Race-To-Halt, Race-To-Zero, Race-To-Black.

Strategy: The Race-To-Sleep design pattern may be applied in two basic variants to reduce
the execution time and, thus, lower the overall energy consumption of a system. In single-
core environments, the CPU uses the highest possible operating frequency to compute the
application workload as fast as possible. Afterward, the CPU switches to a low-power state
to save energy. The second variation addresses multi-core environments, where the software
application may be split and executed on different CPU cores to speed up processing, reducing
the energy demand. Note that both variants may be combined.

Related Patterns: When applied in single-core environments, the concept of the Race-To-Sleep
design pattern is similar to DFS [300], where the frequency of a CPU can be adjusted during
runtime depending on the actual requirement.

Known Uses: The basic concept of this pattern is used for speed scaling in [9]. A multi-core
scenario where the software applications may (partially) benefit from parallel processing to
reduce the execution time is described in [88, 328].

Description

Abstract: This design pattern can affect the dynamic and static power consumption of the
system, as described in Section 2.1.1 (p. 17 ff.). Computation-intensive software applications,
in particular, can profit from the Race-To-Sleep design pattern. For single-core use, the highest
possible operating frequency may be configured. In multi-core environments, the software
application may executed on different CPU cores.

Context: Race-To-Sleep may be used when software applications are computationally intensive
or contain computationally intensive sections.

Preconditions: In single-core environments, the CPU must be able to adjust the frequency at
runtime. To achieve parallel processing in multi-core configurations, developers must ensure
that the software application can be (partly) parallelized and does not induct bottlenecks due
to a high proportion of sequential and non-parallelizable sections.

Problem: How to compute a software application as fast as possible while maximizing the
time a system can operate in one of the available low-power modes?

Realization: In order to apply the Race-To-Sleep design pattern, the logic and structure of soft-
ware applications may have to be adapted to monitor and control the CPU frequency during
runtime or to divide and allocate the workload to different CPU cores. For single-core environ-
ments, frequency alteration must be supported by the operating system or implemented using
software libraries and advanced algorithms. Measuring the current workload or performance

112 CHAPTER 4. SOFTWARE DESIGN PATTERN FRAMEWORK

counters of the CPU may be used in the decision-making process to adjust the frequency. In
multi-core environments, fork-join concepts may be added to the software application to share
the workload and speed up computation.

Impact on Non-functional Requirements

The power-timing diagram in Figure 4.10 shows the exemplary usage of the Race-To-Sleep
design pattern in a dual-core scenario.

𝑃0

𝑃1

𝑃2

𝐶𝑃1

𝐶𝑃2

Energy Savings

Add. Energy

𝑡
𝑡0 𝑡1 𝑡2

No Pattern

Pattern Applied

Figure 4.10: Power-timing diagram of the Race-To-Sleep design pattern in a dual-core scenario
(published in [337]).

Energy Consumption: The upper part of the power-timing diagram shown in Figure 4.10
pictures the power-related temporal behavior of the Race-To-Sleep design pattern with the
power consumption levels P0 for the low-power or sleep mode, P1 for the normal mode, and
P2 for the race mode. In this example, only one CPU core is active in P1, while both cores
are utilized in P2. In single-core scenarios, P2 defines the mode with the maximum frequency.

In the lower part of the power-timing diagram shown in Figure 4.10, CP1 describes the
computational power for the normal mode and CP2 the computational power for the race mode,
e.g., both cores of the CPU utilized. The time between t0 and t1 represents the active time of
the race mode, while t2 defines the beginning of the low-power mode. With the Race-To-Sleep
design pattern applied, the software application enters the race mode at t0, increasing both
the computational power and power consumption. After work has been computed at t1, the
software application switches back to the low power mode P0. To calculate the effectiveness
of the Race-To-Sleep design pattern, the following definitions and assumptions are required:

∆t10 = t1 − t0, ∆t21 = t2 − t1 (4.28)

∆P10 = P1 − P0, ∆P21 = P2 − P1 (4.29)

4.4. ENERGY-AWARE DESIGN PATTERN CATALOG 113

which may be used to define the additional energy overhead (Eadd) and energy savings (Esave)
of the Race-To-Sleep design pattern by means of the following equations:

Esave = ∆P10 · ∆t21 (4.30)
Eadd = ∆P21 · ∆t10 (4.31)

Equations (4.28) and (4.29) are used to define the parameters qP and qt as follows:

∆P21
∆P10

= qP (4.32)

∆t10
∆t21

= qt (4.33)

with qP as the quotient between the additional power consumption in race mode P2 compared
to the power consumption of the normal mode P1. The quotient qt describes the ratio between
the duration of the race mode and sleep mode when the design pattern has been applied. The
energy balance EBP can be calculated using Equations (4.28) and (4.29) as follows:

EBP = Esave − Eadd

= ∆P10 · ∆t21 − ∆P21 · ∆t10

= ∆P10 · ∆t21(1 − qP · qt)
(4.34)

The value of EBP is positive if the energy savings are larger than the energy overhead
introduced by the additional core to finish the computation earlier. The efficiency factor ηP

can be defined as (1 − qP · qt). The calculations of EBP and ηP can be evaluated with the help
of Amdahl’s law [297], which describes the execution time of an application when switching
from a sequential to a parallel approach. The speedup S described in Amdahl’s law is defined
as:

S = TS

TP
= 1

fs + 1−fs

p

(4.35)

TS represents the sequential execution time, fs is the sequentially performed proportion of
an algorithm with 0 ≤ fs ≤ 1, p defines the number of CPU cores used, and TP defines the
parallel execution time with TP = fs · TS + ((1 − fs)/p) · TS . For the evaluation, the following
algebraic relations are introduced:

∆t20 = TS (4.36)
∆t10 = TP (4.37)

∆P21
∆P10

= g · (p − 1) = qP (4.38)

∆t10
∆t21

= TP

TS − TP
= 1

S − 1 = qt (4.39)

In Equation (4.38), g = [0, 1] is defined as the relative proportion of the power consumption
ratio qP for an additional single core, and (p − 1) defines the number of additional cores. With

114 CHAPTER 4. SOFTWARE DESIGN PATTERN FRAMEWORK

Equations (4.36) to (4.39), the definitions of EBP and ηP may be verified as follows:

EBP = (∆P10 · (TS − TP)) − (∆P21 · TP)
= (∆P10 · (TS − TP)) − (∆P10 · g · (p − 1) · TP)

= ∆P10 · (TS − TP)
(︃

1 − qP · TP

TS − TP

)︃
= ∆P10 · ∆t21(1 − qP · qt)

(4.40)

and

ηP = 1 − g · (p − 1) · 1
S − 1 = 1 − qP · qt (4.41)

Considering the MPC8641D dual-core CPU [267, 374] as an example. The additional energy
consumption is 30 % (g = 0.3) higher compared to a single-core usage. With an overhead of
10 % (non-parallelizable part of the application) fs = 0.1 and p = 2 for the dual-core setup,
the following calculations for ηP can be performed:

S = 1
0.1 + 0.45 ≈ 1.81 =⇒ qt ≈ 1.2, qp = 0.3 (4.42)

ηP = 1 − (0.3 · 1.2) = 0.64 (4.43)

Execution Time / Latency: The Race-To-Sleep design pattern may accelerate the execution
of the software application and has a positive effect on the overall time behavior. However,
if power consumption levels change dynamically at runtime, the execution time of a software
application is difficult to predict.

Consequences: Developers have to consider other peripheral devices, such as timers, when
adjusting the frequency of a CPU since they may use the same clock generators. Clock-rate
changes can also lead to negative side effects and undefined behavior when timer-related
intervals are used. Moreover, the application has to be designed without blocking accesses
and waiting periods. Parts that cannot be parallelized may reduce the overall efficiency of the
design pattern.

Chapter 5

Power Estimation Concept for MDD

Energy-aware design patterns to enhance software application during the architecture and
design phases have been presented in Chapter 4 (p. 4 ff.). This chapter focuses on concepts
required to implement the developer workflow presented in Section 3.1 (p. 77 ff.) for the power
consumption estimation of software application models as contributions to answer RQ3.

Section 5.1 provides a brief overview of the vision for the power consumption estimation
concept presented in this thesis. The remaining sections provide contributions to address RQ3
and parts of RQ4 defined in Section 1.2.2 (p. 8 ff.). Section 5.2 discusses the characteristics of
hardware components essential for the hardware modeling process and introduces hardware
component models along with their realization in UML. The UML-based Power Analysis
Profile (PAP) to model power-related characteristics of hardware components is described
in Section 5.3. Finally, two methods for the power consumption estimation are introduced
in Section 5.4, which can be applied in different MDD phases. Initial ideas for this approach
have been published in [339, 340, 341].

5.1 Overview

In this section, the motivation and the overall goals for the power consumption estimation
concept are discussed. As shown in Figure 5.1, the relations between the concepts and methods
of this chapter can be illustrated as a three-step process.

Hardware Component Model

extends

Hardware Component Models

Software Model

System Model

Simulation & Estimation

System

Model

Measuring

Device

Testbed

Architecture & Design

System

Model

IPA DPA

Power Analysis Profile

A
n

a
ly

s
is

 T
o

o
l

Attributes Operations

Energy Model

Integration

Figure 5.1: Overview and relations between the concepts and methods for a power consumption
estimation. Horizontal arrows describe bi-directional communication between components,
while the vertical arrow describes a concept extension.

115

116 CHAPTER 5. POWER ESTIMATION CONCEPT FOR MDD

In the first step, the concept discussed in Section 5.2 (p. 117) is used at the architecture
and design phase to specify hardware component models as proxies of physical hardware
components in UML with structural aspects such as attributes and operations and an energy
model describing discrete energy-related behavior.

The PAP introduced in Section 5.3 (p. 124 ff.) extends hardware component models to
allow engineers and developers to specify energy- and time-related NFP. In the second step,
hardware component models are integrated into the UML-based software application model to
make hardware-software interactions visible and to form a system model. The system model
is simulated in the third step for a power consumption estimation. The simulation is based
on one of two power analysis methods introduced in Section 5.4 (p. 135 ff.). The Indirect
Power Analysis (IPA) method does not require additional hardware, while the Direct Power
Analysis (DPA) method utilizes a physical testbed and enables direct interaction between
the simulated system model and physical hardware function-wise and energy-wise. A power
consumption estimation by both methods results in an energy trace. The energy trace is used
to analyze misbehavior and energy bugs in software applications based on predefined NFRs.

As mentioned in Section 3.1 (p. 77 ff.), the concepts and methods of this chapter are
integrated into various steps of the developer workflow. Software engineers may use hardware
component models and the PAP during the architecture and design phase (cf. actions 3(a)
to 5 in Figure 3.1, p. 78) to build the system model. Test engineers may use the provided
power analysis methods during simulation to perform power consumption estimations (cf.
right side of Figure 3.1, p. 78). In summary, the power consumption estimation concept for
MDD intends to achieve the following goals:

• Providing hardware component models which may be integrated into a software appli-
cation model to make hardware-software interactions visible.

• Definition of a UML profile to extend hardware component models with power-related
NFPs as a basis for the power consumption estimation process.

• Enable interaction between the system model and real hardware components during the
simulation to provide true data, e.g., from sensors, and to avoid the use of simulated
data. This also enables more advanced simulations, which can consider the entire
communication process, e.g., from an IoT node through a gateway to a cloud service.

• An evaluation based on real power consumption measurements that can be mapped to
the behavior of the software application model. The impact of software model changes
on power consumption can be derived directly. The complete development cycle is
shortened and is suitable for rapid prototyping approaches.

• A decoupling between the software model and the test environment by the use of a
Model-Testbed as a special execution platform that supports the exchange of individ-
ual components, e.g., to consider different variations of the same sensor type and the
evaluation of the impact on the overall power consumption of the system.

• A more energy-transparent software application model [135] due to the detailed simula-
tion and analysis approach to support energy-aware decisions based on the evaluation
of power-related NFRs.

5.2. HARDWARE MODELING 117

5.2 Hardware Modeling

This section covers the hardware modeling process and the development of hardware component
models. Section 5.2.1 discusses the power-related characteristics of hardware components.
Section 5.2.2 provides a definition of hardware component models, while Section 5.2.3 presents
their implementation in UML to enable a linkage with the software application model.

5.2.1 Characteristics

As mentioned in Section 2.2.2 (p. 24 ff.), the software level and hardware level have a cause-effect
relationship [160] where actions of the software application are causing effects on hardware
components resulting in specific power consumption of hardware components. Therefore, it
is essential to consider the underlying hardware for a proper power consumption estimation
of software applications. Based on the aspects of hardware components, they can be classi-
fied according to different characteristics. A classification based on the energy management
capabilities provided by hardware components is presented below. In addition, their energy
behavior is particularly interesting for the modeling process. As further discussed in this
section, the behavior of hardware components can be described with a black-box, grey-box,
or white-box transparency, directly affecting the modeling accuracy.

Introduction of Device Classes

Due to the variety of MCUs and peripheral device types, defining a general abstraction of the
functionality and properties of these devices is a major challenge. Hence, the concept of device
classes is introduced as a first step towards a classification for the hardware modeling process.
The basic idea of device classes has been published in [391] as a follow-up work of [337] and
divides hardware components into one of the following four device classes based on their power
management capabilities:

• Class 0 : Devices that do not offer any possibilities to regulate power consumption by
design. The only option for the software application to gain control over such devices
to turn them on and off externally is to use additional hardware components, such as a
transistor or programmable power supply. However, if these components are not already
part of the embedded system, a rework of the circuit design is required.

• Class 1 : Devices without a discrete power management unit but with the functionality
to control the operating mode via the software layer. Typically, such devices provide at
least two power states for an active and a power-off mode.

• Class 2 : Devices with their own internal logic realized in hardware and the firmware to
control and adjust the power consumption. Typically, the selected power state affects
the functionality and quality of service (e.g., precision, number of measurements) of the
device. On the software level, it may be possible to switch between different power states.
Note that devices of this class may not have the ability to be turned off completely.

• Class 3 : Devices with full power management capabilities that support all previous
Class 1 and 2 criteria. The combination of proprietary logic and the ability to con-
trol the device externally and entirely through the software application enables the
implementation of sophisticated power management strategies.

118 CHAPTER 5. POWER ESTIMATION CONCEPT FOR MDD

Generally, possible power optimization approaches depend on the complexity of the considered
device. From a technical perspective, Class 0 devices, such as low-complex sensors, may only be
optimized externally by adjusting the voltage and electric current as described by Equation (2.1)
in Section 2.1.1 (p. 17 ff.). Such devices are also denoted as simple devices in [337]. In
contrast, the power consumption of Class 1–3 devices, denoted as complex due to their
internal architecture and dynamic behavior, may be expressed using Equations (2.2) to (2.5).
Power optimization approaches for complex devices on the software level (cf. Section 2.2.2,
p. 24 ff.) mainly focus on dynamic aspects, including voltage, electric current, and frequency.

Black-box, Grey-box and White-box Transparency

In addition to the power management capabilities, another important characteristic is the
behavior transparency of a hardware component, which can be classified as black-box, grey-box,
or white-box transparency, a concept similar to the dynamic testing techniques introduced
in Section 2.7.2 (p. 53 ff.). In particular, Class 1–3 devices often have a complex behavior
that results in multiple operating states with different power consumption levels. In the
following, the two main challenges related to the acquisition of information for the hardware
modeling process are discussed, whose complexity depends on the transparency of the hardware
component to be modeled.

• The first challenge concerns the identification of existing operating states for the hardware
modeling process. Typically, data sheets provided by manufacturers contain a detailed
description of defined operating states and their characteristics, e.g., power consumption
or operating frequencies. However, a hardware device may have hidden states that can
be easily overlooked during modeling, e.g., if they are undocumented or only active when
specific events occur. The detection of such hidden states requires a more comprehensive
evaluation, which may be achieved by approaches as described in [127]. However, since
hardware component models in this thesis focus on non-functional aspects, operating
states may be combined, from an energy perspective, into a single state if their functional
behavior has identical power consumption or timing characteristics.

• The second challenge concerns the identification of transitions between operating states
and their representation in hardware component models. In total, three different types
have to be considered. A state change of a hardware component may be triggered (a) by
the software application, (b) by the hardware component itself (intrinsic), and (c) by the
environment as an extrinsic force. A wireless communication device, for instance, will
enter a transmission state after the software application sends a transmit command (a)
for a specific message. Due to their internal logic, hardware components can initiate
state transitions independently (b), for instance, open receive windows or switch to a
low-power mode after a timeout. The last type of state change (c) is initiated by the
hardware component due to environmental changes. With simulations focused on the
software application, the environmental impact cannot be covered without extending
the simulation environment to include environmental models. The characteristics of
the environment may be modeled by using the concepts of scenarios introduced in
Section 3.2 (p. 81 ff.). Although the methods for the simulation and analysis presented
in Section 5.4 are suitable for taking the impact of the environment into account in a
simplified manner, the extension of simulation environments is not the main focus of
this thesis and is considered as out of scope (cf. Section 1.3, p. 12 f.).

5.2. HARDWARE MODELING 119

Imagine the Plantower PMSA003I laser-based particle concentration sensor [419] as an
example. The sensor adjusts the sampling mode from a so-called normal mode to a fast
mode automatically due to the particle density in the environment, which refers to a type (c)
transition. In addition, the threshold for switching between modes is not documented. Since
the Plantower PMSA003I does not provide an interface to retrieve the active operating state,
the fast mode can be considered a hidden state that only becomes visible by observing a change
in the overall power consumption of the sensor.

In summary, the behavior of a hardware component may be considered as white-box
behavior if all operating states are known and are part of the hardware component model
and all transitions are initiated by the software application during simulation. A grey-box
behavior is similar to a white-box behavior, but transitions may also be initiated by the
hardware device itself as intrinsic behavior, which may have to be predicted by the hardware
component model during simulation. The behavior of a hardware component can (partly) be
considered as black box behavior if hidden states exist that are not covered by the hardware
component model. Additionally, transitions are triggered by environmental changes, which
may not be simulated with state-of-the-art simulation environments of current MDD tools (cf.
Appendix A.2, p. 265 ff.).

5.2.2 Formal Definition of Hardware Component Models

This section presents the basic concept for the formal abstraction of hardware components.
Before discussing the concept of hardware component models, the concept of energy models
as a fundamental element of hardware component models and the characterization of events as
an important part of modeling reactive systems are introduced.

Concept of Energy Models

Energy models describe the non-functional energy-related behavior of hardware components.
In the following, the term SUTES refers to an embedded system used as a system under test,
which contains a finite set of n independent hardware components Cn, defined as:

SUTES = {C1, C2, ..., Cn} (5.1)

The behavior of each hardware component Ci ∈ SUTES may be expressed using a Finite State
Machine (FSM) [410]. We define the FSM for the description of power-related behavior as
the tuple (Σ, Sp, s0, δ, Vc, Is, Iδ, Ts, Tt) with the following elements:

• Σ, as the input alphabet.

• Sp : |Sp| ≥ 2, as a finite set of power states.

• s0 ∈ Sp, as the initial power state.

• δ : Sp × Σ → Sp, as the state-transition function.

• Vc, as the supply voltage of the hardware component in volt (V).

• Is : Sp → R≥0, as the electric current consumption of a power state in ampere (I).

• Iδ : Sp × Σ → R≥0, as the electric current consumption of a transition in ampere (I).

120 CHAPTER 5. POWER ESTIMATION CONCEPT FOR MDD

• Ts : Sp × Σ → R≥0, as the execution time of a state in milliseconds (ms).

• Tt : Sp × Σ → R≥0, as the execution time of a transition in milliseconds (ms).

Each state s ∈ Sp may refer to a functional operating mode of a hardware component, e.g.,
{On, Off , Idle}. A state change from state s1 ∈ Sp to state s2 ∈ Sp can be achieved by
executing the transition t12 ∈ δ, triggered by an event e12 ∈ Σ, expressed as s1 t12|e12−−−−→ s2.

For simplicity, the supply voltage Vc will be considered static for the remainder of this
thesis, while concepts such as voltage scaling [300] are considered out of scope. However,
the proposed definition may be extended to include a list of discrete voltage levels, e.g.,
Vc = {0.0, 2.0, 3.3, 5.0}, where a specific voltage level v ∈ Vc may be constant across all states
and transitions for a specific time t. A voltage level may also be mapped to specific states or
transitions, leading to the following adaptations of previous definitions:

• Vc, as a set of supported voltage levels of the hardware component in volt (V).

• Is : Sp × Vc → R≥0

• Iδ : Sp × Σ × Vc → R≥0

Since each state and transition of a hardware component is annotated with power and
timing aspects, energy models are suitable for estimating the electric power consumption
P , which may be calculated for a specific point in time using the supply voltage Vc and
the time-dependent current consumption of either the active state (Is(t)) or the active non-
instantaneous transition (Iδ(t)), cf. Section 2.1.1 (p. 17 ff.). Based on the energy models of
n hardware components and Equations (2.1) to (2.7), the power consumption Pes and the
energy consumption Ees of an embedded system may be estimated as follows:

Pes(t) =
n∑︂

i=1
PCi(t) (5.2)

Ees(T) =
∫︂ T

t=0
Pse(t) dt =

∫︂ T

t=0

(︄
n∑︂

i=1
PCi(t)

)︄
(5.3)

An Energy model may not map all logical or functional operating modes of a hardware
component. For instance, two operating modes can be aggregated into a single state if they
have the same impact on the overall power consumption or if they cannot be externally observed
or distinguished, which is described as black-box behavior in Section 5.2.1 (p. 117 ff.). Vice
versa, an operating mode of a hardware component can be separated into different power
states if the operating mode has a distinguishable power consumption for each phase, e.g., if
a state of a sensor includes a preheat and a data acquisition phase.

Characterization of Events

The input alphabet Σ of an energy model defines a list of events that trigger state transitions.
Considering the sources for state changes as part of the hardware characteristics discussed in
Section 5.2.1 (p. 117), a distinction can be made between the following three types of events:

• Application-triggered: Describes all types of events caused by the behavior of the software
application model. Those events are declared as extrinsic events. For example, enabling
and disabling peripheral devices or initiating a wireless network transmission may be
triggered by this type of event.

5.2. HARDWARE MODELING 121

• Time-triggered: Describes all types of intrinsic events that are generated by the device
itself and occur at a constant or predictable time after the state has been entered, for
example, if the execution time of a state has been specified.

• Interrupt-triggered: This event type is defined as spontaneous intrinsic. This type of
event is generated by the device itself, e.g., due to environmental changes as intrinsic
forces. For the test case definitions, scenarios (cf. Section 3.2, p. 81 ff.) may be used
to define such events and points in time for their appearance and may be generated by
an environmental model during the simulation. As stated in Section 5.2.1 (p. 117 ff.),
interrupt-triggered events are part of the black-box behavior transparency not covered
by state-of-the-art simulation environments of current MDD tools and considered as out
of scope for this thesis.

While state transitions δ have a fixed execution time and are assumed to be uninterruptible,
the execution times of states s ∈ S may not be predictable in advance, e.g., if state transitions
depend on application- or interrupt-triggered events defined by the input alphabet Σ and,
thus, on the behavior of the software application or environmental model.

Concept of Hardware Component Models

The dynamic behavior of embedded systems with varying power consumption levels has been
analyzed, e.g., in [239, 427]. According to [42, 426], each hardware component may be described
with a set of states defining functional operating modes and transitions to switch between
those modes. The concept referred to as power state machine [42, 87] extends the description
of functional modes and transitions to include meta-information about power consumption
and execution time. By modeling supply voltage, electric current consumption, and timing
aspects for states and transitions, the concept of energy models is able to consider the impact
on NFPs in detail. Furthermore, since some aspects introduced by energy models, such as Is

as the electric current consumption of a state, may be defined as variable over time, dynamic
behavior can be considered more accurately when modeling hardware components, which is
discussed in-depth in Section 5.3 (p. 124 ff.). In this thesis, the abstract model of a hardware
component is formally defined by the tuple (EMhc, Ohc, Ahc), with the elements:

• EMhc: Energy model of the hardware component with a list of power states (operating
modes), a list of state transitions, and power-related characteristics.

• Ahc: Finite set of attributes to model the inner state of the hardware component, e.g.,
the active configuration.

• Ohc: Finite set of operations as an interface for software models, e.g., to change the
configuration and generate events.

EMhc corresponds to the previously introduced energy model as a key element containing all
power states, transitions, and events to model the power-related behavior of a hardware compo-
nent. To achieve a more accurate and realistic modeling approach, existing concepts discussed
in Section 2.8 (p. 65 ff.) are extended by including dynamic power characteristics in states
and transitions. Instead of defining static values, the NFPs of states and transitions may vary
during simulation. For the calculation of NFP values at specific points in time, e.g., the power
consumption for a state, the configuration of a hardware component is stored in attributes of

122 CHAPTER 5. POWER ESTIMATION CONCEPT FOR MDD

Ahc. Imagine a hardware component model of a sensor device with Sp = {On, Off , Measure}
as an example. The software application controls the sensor with application-triggered events
initiated by operations to turn the sensor on and off and to start measurements. Due to this,
the retention times for the states On and Off are not predictable in advance and depend on
the behavior of the software application during execution. Suppose a measurement is initiated
(application-triggered event). In this case, the execution time of the measurement, e.g., the
time the hardware component model stays in the Measure state, may be calculated based on
the parameters in Ahc. The transition between the states Measure and On may be triggered
internally by a time-triggered event after completion.

5.2.3 Integration into Software Models

For the overall concept introduced in Section 3.1 (p. 77 ff.), the integration of hardware
component models into the software model domain is an important step for the specification of
a system model used to estimate power consumption and detect energy bugs. Although SysML
focuses more on modeling systems and hardware components (cf. Section 2.5.1, p. 38 ff.),
hardware component models can be mapped directly to different UML model elements. By
using UML as a modeling language for both system aspects, hardware component models can
be completely integrated into the software domain which addresses RQ3.

For the representation of energy models, this thesis uses UML state machine diagrams.
The underlying concept of UML state machines extends the mathematical model of FSMs and
is therefore able to fully represent the concept of energy models. UML provides additional
diagrams to describe the dynamic behavior of objects over time. However, these diagram types
have several disadvantages, which are described in the following:

• As a behavioral diagram, the UML sequence diagram focuses on time-based interactions
between objects. Since the modeled behavior should also be reflected in state machines
describing the behavior of objects, both diagrams share a close relation [144]. By
modeling a sequence of messages between objects, the execution of a particular use case
is described. In contrast, state machine diagrams, are used to specify the inner behavior
of an object across several use cases by defining what actions can be executed depending
on the current state of the object. By this, state machine diagrams are more suitable to
represent energy models.

• The UML activity diagram is a behavior diagram for the description of workflows using
activities and actions while focusing on concurrency and synchronization. While the
UML state machine diagram describes the states of an object and possible transitions
between the states as reactions to events, activity diagrams describe a flow of activities
executed one after another without the need for events or triggers. Since the energy-
related behavior of hardware components depends on events, activity diagrams are less
suitable.

UML classes model structural and static aspects of hardware components, such as attributes
and operations. The UML specification also provides component diagrams to specific structural
aspects at a higher level of abstraction. Each component in a component diagram is described
with its ports, required and realized interfaces defining the behavior, and relationships to other
components.

5.2. HARDWARE MODELING 123

However, component diagrams have several disadvantages:

• Even though components may be extended with state machines, UML component dia-
grams can not be simulated in MDD tools such as IBM Rhapsody.

• UML ports of component diagrams specify the required and requested interfaces that
also may contain operations. However, they do not have a direct mapping to concepts of
object-oriented programming languages like C++, leading to a MDD tool-specific code
generation that needs to be adapted manually in later development phases.

• During the automatic code generation process, components are realized as classes. For
each class within a component, an inner class is generated, leading to complex and un-
maintainable source code. In IBM Rhapsody, the source code generation for component
diagrams is also limited [168].

Since UML class diagrams are more well-known and frequently used by developers than
other structural diagrams [97, 320], they are selected to model the static aspects of hardware
component models. Moreover, associations and aggregations instead of ports are used to
define relations due to the simpler implementation. In the UML metamodel, a UML class
is specified as a UML classifier and specializes the abstract classes BehavioredClassifier
and EncapsulatedClassifier [275]. As a result, a UML class has associated features
representing structural and behavioral characteristics, e.g., attributes and operations. In
addition, the concept of energy models may be mapped directly to UML behavioral state
machines, which, in turn, can be assigned to the classifierBehavior property of a UML class
to specify the behavior a UML class exhibits over time as a direct consequence of actions.

From an implementation point of view, the general idea of hardware component models
follows the hardware proxy pattern [99], in which a proxy class is responsible for a specific
hardware device and encapsulates all accesses to the device. Additionally, the proxy class
may contain public and private functions and a set of attributes. However, the presented
concept of hardware component models extends the proposed pattern in [99] by the additional
consideration of non-functional aspects due to the energy model. In addition to operations
that invoke functional behavior, a class representing a hardware component model also pro-
vides functions that directly affect power-related behavior by generating events impacting the
associated energy model, such as turning a hardware component on and off. As a basis for
the development, this thesis uses the two exemplary abstract classes shown in Figure 5.2 for
the initial derivation of hardware component models. Intended as an orientation for software
developers, one may extend this basic idea of abstract classes to add or remove operations or
provide further classification without affecting the overall modeling approach.

+powerOn() : void
+powerOff() : void

PeripheralDevice

GenericLED BoschBME280 RAK811

+setPowerMode(powermode : uint8_t) : void
+setVoltage(voltagemode : uint8_t) : void

ProcessingUnit

STM32L476RGEspressifESP32NXPLPC54114

Visual Paradigm Standard(Schaarschmidt(Fachhochschule Osnabrueck))

Figure 5.2: Abstract classes with basic power-related functions to define hardware component
models, illustrated as UML 2.5 class diagram (published in [338]).

124 CHAPTER 5. POWER ESTIMATION CONCEPT FOR MDD

All hardware component models are derived from one of the two base classes, Peripher-
alDevice and ProcessingUnit (cf. Figure 5.2), providing device-specific basic power-related
operations as a basic interface for software applications. The PeripheralDevice class is used,
e.g., for sensors, actors, and communication interfaces. In order to extend the provided in-
terface and make specific functionalities of a hardware component accessible, existing driver
descriptions may be used as a source for function signatures, data types, and configuration
parameters. If MDD tools generate source code in later steps (cf. Figure 2.21, p. 59), hardware
component models may directly be replaced with existing driver implementations due to their
similar function signatures while the generated source code of the software application model
does not require additional manual adjustments by software developers.

The class ProcessingUnit is a base class for hardware component models describing
MCUs and provides methods for their configuration and for switching between operating
modes. However, MCUs differ significantly from each other and must therefore be considered
individually. Furthermore, hardware component models for MCUs require further abstraction
since they are more challenging when it comes to simulations in later MDD phases. Unlike
peripheral devices, changing the configuration or power mode of an MCU directly affects the
life cycle of the software application itself. To keep the software application model platform-
independent, a specific HAL for MCUs has to be provided, considering different operating
modes in an abstract manner. As part of the prototype implementation, Section 6.5.2 (p. 163 ff.)
addresses the topic of abstraction more in-depth.

5.3 Power Analysis Profile (PAP)
To implement the concepts of hardware component models and energy models in UML, this
section introduces the PAP profile as the key approach to model non-functional aspects of
hardware components and to provide quantitative values for the analysis process. The PAP
is based on MARTE and enables the assignment of power- and energy-related properties for
UML-based state machines and class definitions.

MARTE

UML profile to specify

hardware characteristics

Software application and

hardware modeling

Proposed extension to

describe power-related

aspects

UML

PAP

Figure 5.3: Relations between the UML, MARTE, and the PAP, illustrated as Euler diagram.

Figure 5.3 shows the relation between the subset of UML used to define software and
hardware component models (cf. Section 5.2.3, p. 122 ff.), MARTE as an extension of UML
(cf. Section 2.6, p. 41 ff.), and the PAP to model power- and timing-related aspects based on
MARTE. The PAP is a contribution to answer RQ3 and is conceptually located in step 4 of
the developer workflow, shown in Figure 3.1 (p. 78).

5.3. POWER ANALYSIS PROFILE (PAP) 125

The reason for defining a UML profile as a collection of stereotypes to model NFPs of
hardware components is motivated as follows:

• The description of NFPs with UML comments allows the element-wise annotation of
states, transitions, attributes, or operations. As notes in diagrams, UML comments can
also be represented graphically. However, they do not provide a predefined structure,
and developers can mix-up arbitrary dimensions and information, which makes them not
directly machine-readable. For the automatic processing of NFPs, a semantic description
and a corresponding parser have to be developed.

• The NFPs of a hardware component model may be specified as attributes along with
the functional aspects within a UML class diagram, e.g., by defining a proper naming
scheme. As a result, NFPs are also represented in model-to-text transformations (code
generation), even though they have no purpose at the functional level. To avoid this, an
adapted model transformation process must be defined to remove attributes representing
NFPs from the model prior to code generation, which unnecessarily complicates the work
of software developers and can make modeling confusing. Since runtime information
and the internal state of a hardware component model instance (object) are required
to calculate metrics related to the dynamic energy-related behavior, NFPs are instead
annotated with specific stereotypes at the meta-level.

UML stereotypes provide a standardized concept to extend the UML metamodel to add or
redefine the meaning of UML elements. For instance, MARTE and SysML heavily rely on
the use of stereotypes for their specifications. Structured as key-value pairs, stereotypes also
provide a well-defined, type-safe, and machine-readable structure, e.g., when accessed via APIs
of MDD tools. Additional background on stereotypes can be found in Appendix A.3 (p. 266 ff.).

The following Section 5.3.1 gives a brief overview of the basic structure of the PAP, while
Section 5.3.2 describes the extension of MARTE [278] as a basis for the definition of the new
PAP UML profile. Sections 5.3.3 to 5.3.4 describe the packages of the PAP in depth. The
concept of modeling dynamic power-related behavior is explained in Section 5.3.5. Additionally,
a hardware component model of a dimmable LED is presented as an ongoing example in
Sections 5.3.3 to 5.3.5 to illustrate the usage of the concept.

5.3.1 Overview

The mapping of the energy model introduced in Section 5.2.2 into UML is based on the profile
extension mechanism (cf. Appendix A.3.2, p. 270 ff.) to extend the UML metamodel with
stereotypes containing the semantic description of domain-specific information, e.g., power-
related aspects. All stereotypes introduced by the PAP are thematically assigned to one of
the two sub-profile packages shown in Figure 5.4 based on their particular purpose and used
to specify power-related aspects of hardware component models. Stereotypes for structural
aspects of hardware component models are described in Section 5.3.3, while stereotypes for
UML behavioral state machines as the basis of energy models are introduced in Section 5.3.4.
The basic definition of the PAP has been published in [338] and modified and expanded in [341].
It has been adapted again for this thesis due to the most recent findings. Since the presented
profile is based on MARTE [278], the following Section 5.3.2 introduces the extension of the
MARTE profile before presenting the stereotypes of the sub-profile packages in detail.

126 CHAPTER 5. POWER ESTIMATION CONCEPT FOR MDD

<<profile>>
PowerAnalysisProfileUMLModel

<<profile>>
HardwareAbstraction

<<profile>>
HardwareBehavior

<<import>><<import>>

<<apply>>

Visual Paradigm Standard(Schaarschmidt(Fachhochschule Osnabrueck))

Figure 5.4: Overview of PAP profiles and sub-profiles (UML 2.5 package diagram notation).

5.3.2 MARTE Extension

The MARTE library (cf. Section 2.6, p. 41 ff.) consists of a number of basic data types
(NFP_Types) to describe NFPs and measurement units as parts of NFP_Types that specify
units and conversion rules. As shown in Figure 2.14 (p. 48), the MARTE library provides
NFP_Types with associated measurement units to model power and energy. However, for the
overall concept of this thesis, a more detailed modeling of electric current and voltage is required,
which is not provided by the MARTE specification. For this, the MARTE library is extended by
additional data types. Based on the notation provided by the MARTE specification [278, 348],
Figure 5.5 shows the definitions of the newly defined basic NFP_Types and their corresponding
measurement units.

«modelLibrary»
MARTE_Library::BasicNFP_Types

«dataType»
«nfp Type»

 {unitAttrib=unit}
NFP_ElectricCurrent

+unit: ElectricCurrentUnitKind
+precision: Real

«dataType»
«nfp Type»

 {unitAttrib=unit}
NFP_Voltage

+unit: VoltageUnitKind
+precision: Real

«dimension»
ElectricCurrentUnitKind

{symbol=I}

«unit» A
«unit» mA {baseUnit=A, convFactor=1000}
«unit» uA {baseUnit=mA, convFactor=1000}
«unit» nA {baseUnit=uA, convFactor=1000}

«dimension»
VoltageUnitKind

{baseDimension={M,L,T,I},
baseExponent={1,2,-3,-1}}

«unit» V
«unit» mV {baseUnit=V, convFactor=1000}
«unit» uV {baseUnit=mV, convFactor=1000}
«unit» nV {baseUnit=uV, convFactor=1000}

«modelLibrary»
MARTE_Library::MeasurementUnits

Figure 5.5: Additional data types for the MARTE library to describe voltage and electric
current, adapted from [338] (UML 2.5 profile diagram notation).

The ElectricCurrentUnitKind measurement unit at the top right of Figure 5.5 represents
the base International System of Units (SI) metric for electric current with the physical base
dimension I, as explained in Section 2.1 (p. 17 ff.). The tags baseUnit and convFactor in the
upper part of Figure 5.5 specify the unit of the type and the conversion rules within the same
unit. As a derived SI metric, the VoltageUnitKind consists of the base dimensions for mass (M),

5.3. POWER ANALYSIS PROFILE (PAP) 127

length (L), time (T), and electric current (I). With NFP_Voltage and NFP_ElectricCurrent
in the lower part of Figure 5.5, additional data types for the measurement units are defined and
added to the NFP_Types section of the MARTE library. Those NFP_Types are used to model
non-functional aspects of hardware component models, such as electric current consumption,
in a dynamic and detailed manner.

5.3.3 Hardware Abstraction Package

The sub-profile HardwareAbstraction of the PAP (cf. Figure 5.4, p. 126) provides stereotypes
to extend UML classes and UML class elements of hardware component models with additional
information primarily used for the simulation and analysis described in Section 5.4. Figure 5.6
shows an overview of the stereotypes provided by the HardwareAbstraction sub-profile of the
PAP. The stereotype HwAbstraction can be applied to UML classes and is primarily used

<<profile>> HardwareAbstraction

<<metaclass>>
Property

<<metaclass>>
Class

<<metaclass>>
Operation

<<stereotype>>
HwPowerAttribute

<<stereotype>>
HwTimingAttribute

 supplyVoltage : NFP_Voltage [1..*] {ordered}
 frequencies : NFP_Frequency [1..*] {ordered}

<<stereotype>>
HwAbstraction

<<stereotype>>
HwBehavioralImpact

 id : NFP_String
 type : NFP_String
 direction : NFP_String

<<stereotype>>
HwAttribute

<<stereotype>>
HwMCUAbstraction

<<stereotype>>
HwDeviceAbstraction

Visual Paradigm Standard(Schaarschmidt(Fachhochschule Osnabrueck))

Figure 5.6: HardwareAbstraction sub-profile package, adapted from [341] (UML 2.5 profile
diagram notation). Generalization hierarchies and unused tags have been omitted.

to tag hardware component models within a system model. By this, developers are able
to distinguish between classes of the hardware component model and classes of the software
application model. Additionally, model transformation processes, as explained in the developer
workflow described in Section 3.1 (p. 77 ff.) and Section 5.4 (p. 135 ff.), rely on such markers for
their automatism. Besides the use as a marker, the HwAbstraction stereotype provides tags
for basic properties (cf. Figure 5.6), such as supported frequencies and the definitions of the
supported supply voltages expressed as a tagged value based on the introduced NFP_Voltage
data type. The stereotypes HwMCUAbstraction and HwDeviceAbstraction share the same
set of tags and allow the distinction between processing units and peripheral devices, as
described in Section 5.2.3 (p. 122). Note that Figure 5.6 only contains tags used by the
current approach. While the tag supplyVoltage has been additionally defined, the tag
frequency is available due to the inheritance of the MARTE stereotype HwResource of the
HRM package, cf. Section 2.6 (p. 41 ff.) and [278]. For a complete list of tags of the stereotype
HwAbstraction resulting from generalization hierarchies within MARTE, see Table B.1 in
Appendix B (p. 273 f.).

Attributes of a hardware component model affecting power-related aspects, such as electric
current consumption or execution time, may be annotated with the HwPowerAttribute or
HwTimingAttribute stereotype, respectively. Both stereotypes inherit from the base stereo-

128 CHAPTER 5. POWER ESTIMATION CONCEPT FOR MDD

type HwAttribute which provides tags to define a unique Identifier (id) as an attribute
identifier. By this, a connection between an element on the functional level and an element
on the meta-level can be achieved. The mechanism is used by the methods described in Sec-
tion 5.4 (p. 135 ff.) to include changes in the calculation of the electric current consumption
and execution time during runtime. The remaining tags type and direction describe fur-
ther properties of attributes annotated with the HwPowerAttribute or HwTimingAttribute
stereotype based on the VSL specification [278], which may be included in model-to-model
or model-to-text transformations (cf. Section 2.5.2, (p. 40 ff.). Since HwAttributes are
typically used in expressions, the type is typically set to boolean (0 and 1 for false and true)
or numerical data types such as integer, float, or double. The direction tag defines whether
the variable in the context of an expression is an input (in), output (out), or both (inout).

The stereotype HwBehavioralImpact may be applied to any operation that either af-
fects one or more attributes annotated with the HwPowerAttribute or HwTimingAttribute
stereotypes or directly affects the power-related behavior, e.g., by triggering events leading
to state changes of the energy model. Similar to the stereotype HwAbstraction, the HwBe-
havioralImpact is mainly used as a marker for later model transformation processes. For
instance, additional automatic source code generation steps [162] may be performed prior to
the simulation and analysis phase to add further trace commands to the opaque behavior,
including the logging of affected attributes and their new values.

<<HwPowerAttribute>> -brightnessLevel : PercentageInteger
<<HwBehavioralImpact>> +setBrightness(level : int) : void

<<HwDeviceAbstraction>>
DimmableLED

<<HwBehavioralImpact>> +powerOn() : void
<<HwBehavioralImpact>> +powerOff() : void

PeripheralDevice

Visual Paradigm Standard(Schaarschmidt(Fachhochschule Osnabrueck))

Figure 5.7: Class definition of the dimmable LED example (UML 2.5 class diagram notation).
Unused tagged values have been omitted to improve legibility.

Ongoing Example: Structural Modeling

In the following, the structural part of the hardware component model for the ongoing dimmable
LED example is introduced to illustrate how developers may use the stereotypes provided
by the HardwareAbstraction package in MDD. The UML class defining the structure of
the hardware component model is shown in Figure 5.7. As specified in Section 5.2.3, the
class DimmableLED inherits from class PeripheralDevice to provide at least a set of two
predefined operations so that the software application model can influence the power-related
behavior by turning the device on and off. The DimmableLED class provides the attribute
brightnessLevel to represent the current brightness level of the LED in percent, whose
value may be changed by the software application using the setBrightness operation. The
brightnessLevel attribute is annotated with the HwPowerAttribute stereotype to specify
an id for the use in expressions.

5.3. POWER ANALYSIS PROFILE (PAP) 129

Following the MARTE specification [278], an own integer-based datatype PercentageIn-
teger for the brightnessLevel attribute of the DimmableLED class is defined, as shown in
Figure 5.7. The PercentageInteger data type illustrated in Figure 5.8 contains a boundary
definition that may be used to derive test data in later steps (cf. Section 2.7.3, p. 55 ff.).

<<dataType>>
Integer

 bounds : Integer[2]

<<dataType>>
<<intervalType>>
IntegerInterval bounds = (VSL) {0, 100} {readOnly}

<<dataType>>
PercentageInteger

Visual Paradigm Standard(Schaarschmidt(Fachhochschule Osnabrueck))

Figure 5.8: Example data type definition using utility types of the MARTE model library
(UML 2.5 notation).

5.3.4 Hardware Behavior Package

The purpose of the new HardwareBehavior sub-profile is to apply the concept of energy
models introduced in Section 5.2.2 by extending the UML metamodel for behavioral state
machines [275] with the ability to include descriptions of non-functional aspects for a power
consumption estimation. Figure 5.9 shows the stereotypes provided by the HardwareBehavior
package and the corresponding UML elements to which the stereotypes may be applied.

<<profile>> HardwareBehavior

<<metaclass>>
State

<<metaclass>>
StateMachine

<<metaclass>>
Transition

<<stereotype>>
HwBehavior

 current : NFP_ElectricCurrent [1..*] {ordered}
 execTime : NFP_Duration [*] {ordered}
 hasDynamicConsumption : Boolean
 hasDynamicExecutionTime : Boolean

<<stereotype>>
HwBehavioralState

 current : NFP_ElectricCurrent [1..*] {ordered}
 execTime : NFP_Duration [*] {ordered}
 hasDynamicConsumption : Boolean
 hasDynamicExecutionTime : Boolean

<<stereotype>>
HwBehavioralTransition

Visual Paradigm Standard(Schaarschmidt(Fachhochschule Osnabrueck))

Figure 5.9: HardwareBehavior sub-profile package, adapted from [338] (UML 2.5 profile
diagram notation). Generalization hierarchies and unused tags have been omitted.

A state machine may be extended with the stereotype HwBehavior if it represents an
energy model as part of the hardware component model definition. The stereotype contains
no additional tags and is mainly used to identify a state machine as an energy model of a
hardware component. While serving as a marker for energy models, automatic model-to-model
transformations for the analysis process, as mentioned in the developer workflow illustrated
by Figure 3.1 (p. 78), can be implemented as part of the proposed power analysis methods
introduced in Section 5.4 (p. 135 ff.).

The stereotypes HwBehavioralState and HwBehavioralTransition provide the same
set of tags for behavior modeling and are applied to states and transitions of UML state
machines. The most important tags for the proposed power consumption estimation are:

• hasDynamicConsumption: This flag indicates if the electric power consumption of the
state or transition is static, e.g., fixed value, or dynamic, e.g., described as an expression.

130 CHAPTER 5. POWER ESTIMATION CONCEPT FOR MDD

• hasDynamicExecutionTime: This tag serves as a flag that indicates if the execution
time of the state or transition is variable or static.

• current: This tag contains the electric current consumption of a state or transition as
a fixed value or an expression.

• execTime: This tag contains the execution time of the state or transition. The value of
this tag may be specified as a fixed value or an expression. For states, this value may
also be empty if the retention time is not specified and depends, for example, on external
triggers, e.g., application- or interrupt-triggered.

MARTE distinguishes between static power consumption as a constant, e.g., in standby, and
dynamic power consumption as additional power consumed when the component is active and
operating (cf. Section 2.1.1, p. 17 ff.). In contrast, the stereotypes hasDynamicConsumption
and hasDynamicExecutionTime of the PAP specify whether the values of the stereotypes
current or execTime are static or depend on the current context of the simulation and,
therefore, are changeable within the state or transition. With the concept of modeling dynamic
power-related behavior (cf. Section 5.3.5, p. 132 ff.), the PAP can also model dynamic current
consumption as an offset of static current consumption similar to MARTE using the tagged
value current. In this case, current contains an expression with at least one reference to a
base state defining the static consumption, e.g., an idle state of the energy model.

Since the introduced stereotypes HwBehavioralState and HwBehavioralTransition
inherit from MARTE stereotypes such as ResourceUsage of the GRM package (cf. Fig-
ure 2.10, p. 44), they provide a set of additional tags, e.g., allocatedMemory, which are
not utilized by the power consumption estimation concept and, thus, have been omitted in
Figure 5.9. A complete list of tags for both stereotypes is provided in Appendix B (p. 273 f.).

To ensure full compatibility with MARTE, new tags and data types have been introduced
in this thesis to model dynamic and static current consumption. However, MARTE also
provides different approaches to model power- and energy-related aspects, which have several
disadvantages:

• Due to the generalization hierarchies of the PAP, tags such as consumption and dis-
sipation from the MARTE HwResourceService stereotype are available to model
power. However, both tags are based on the data type NFP_Power, which, as argued in
Section 5.3.2 (p. 126 ff.), is insufficient in this thesis. Dividing the modeling of power into
electrical current and voltage provides greater degrees of freedom and also allows more
detailed modeling. When referring to Equation (2.1) (p. 18), the value defined for the
consumption tag defined by the NFP_Power data type may be calculated using the tags
supplyVoltage and current. A portion of the power used by a hardware component is
lost in the form of heat energy, which can be specified by the tag dissipation. However,
the measurements carried out in this thesis capture the total current consumption of the
system, while no assertions can be made about the portion converted to heat. Therefore,
the use of this tag has no advantages.

• The ResourceUsage stereotype of the GRM package provides an energy tag to specify
the amount of energy permanently consumed due to the usage. However, the data type
NFP_Energy (J) does not fit the presented modeling approach of this thesis. In states,
for instance, the retention times are not always known in advance and are determined
at runtime. Furthermore, parameters affecting the power consumption of the state may

5.3. POWER ANALYSIS PROFILE (PAP) 131

change during execution. Therefore, it is more suitable to consider the instantaneous
power, defined by the electric current consumption (I) and voltage (V), as a parameter
detached from the temporal dimension.

Furthermore, the tag execTime of the ResourceUsage stereotype originally describes the
“time that the resource is in use due to the usage” [278]. However, while maintaining the
intended definition of the execTime tag, in PAP, this MARTE tag specifies the execution
time of single states and transitions in this thesis, avoiding the definition of a new tag with
similar semantics. The following subsection briefly discusses the extension of tag values to
include meta data that can be used in the power consumption estimation approach.

Extension of Tag Values with Metadata

NFPs modeled with the PAP may also be extended with additional metadata. For instance,
one may specify the source of the value and value ranges, which may be used to derive test
cases. In the following, a selected number of possibilities to demonstrate the potential of the
profile will be explained while leaving room for further use cases. Examples are explained
based on static values, while the general concept can also be applied to expressions.

Referring to the VSL TupleType definition (cf. Section 2.6.4, p. 46 ff.), a complete tagged
value description, e.g., of the electric current, may be modeled as current = (value =
5, unit = mA, source = meas, statQ = mean). The element source = meas describes that
the value has been derived from measurements, and statQ = mean indicates that the value
is the arithmetic mean. Tags for the HardwareBehavior sub-profile are defined with different
multiplicities. For instance, the multiplicity range ∗ for the tag execTime indicates that it may
contain zero or more values. For the current tag, the multiplicity range is defined as 1..∗ so
that at least one value has to be defined. Due to this, a tag may contain worst-case and best-case
values for time- and power-related aspects. For example, a range for an estimated execution
time of a transition between 1 and 5 ms may be specified as execTime = ((value = 1, unit =
ms, source = est, statQ = min), (value = 5, unit = ms, source = est, statQ = max)).

Moreover, it is also possible to integrate NFRs of scenarios and energy bug definitions
(cf. Section 3.3, p. 84 ff.) into the UML model. Imagine that a power-related NFR with a
mean value and an upper limit needs to be modeled. By defining the tagged value current
as ((value = 5, unit = mA, source = est, statQ = mean), (value = 10, unit = mA, source =
est, statQ = max)), both the expected mean electric current consumption and the maximum
current consumption as the upper limit can be modeled, extracted with model-to-model
transformations, and used to derive test cases.

When considering scenarios (cf. Section 3.2, p. 81 ff.), tags may also contain multiple static
values. Imagine a state of a hardware component model which contains different characteristics
depending on the currently active scenario. Tagged values for the electric current consumption
with different power consumption levels may be defined as current = ((value = 5, unit =
mA), (value = 10, unit = mA)), and tagged values for the execution time as execT ime =
((value = 30, unit = ms), (value = 15, unit = ms)). During simulation, an analysis tool
would consider the pair (value = 5, unit = mA) and (value = 30, unit = ms) for the first
scenario and (value = 10, unit = mA) and (value = 15, unit = ms) for the second scenario,
respectively.

132 CHAPTER 5. POWER ESTIMATION CONCEPT FOR MDD

Ongoing Example: Behavior and NFP Modeling

The application of the HardwareBehavior sub-profile to the ongoing example of the dimmable
LED is shown in Figure 5.10. The energy model consists of the two states On and Off.
Instructions defined in the operations powerOn() and powerOff() (cf. Figure 5.7, p. 128)
generate events to initiate state transitions, as explained in Section 5.2.2 (p. 119 ff.). Both
states are annotated with the proper stereotype of the PAP. Since transitions are considered
instantaneous, the values of the tags current and execTime are set to 0 mA and 0 ms,
respectively. The electric current consumption for the state Off is set to 0 mA, while the state
On has a dynamic consumption indicated by the tagged value hasDynamicConsumption =
true. In this example, the current tag contains an expression instead of a fixed value. The
current consumption of this state can vary between 0.05 mA and 5 mA due to the interval
definition of [1, 100] (cf. Figure 5.8, p. 129) for the brightnessLevel attribute shown in
Figure 5.7 (p. 128). The declaration rules and interpretation of such expressions are part of
the dynamic behavior modeling covered in the following Section 5.3.5.

<<HwBehavioralState>>
Off

<<HwBehavioralState>>
On

Visual Paradigm Standard(Schaarschmidt(Fachhochschule Osnabrueck))

Figure 5.10: Annotated state diagram of the dimmable LED example. Unused tagged values
have been omitted to improve legibility (UML 2.5 state machine diagram notation).

5.3.5 Modeling Dynamic Power-related Behavior

For the power consumption estimation process, the electric current consumption and the
execution time may be specified with a single numeric value if they are considered static and
do not change during execution. However, both aspects may also be affected if, for example,
the software model changes configuration parameters during the simulation. In the following,
the main concept for modeling the dynamics of hardware components is presented. It is used
by the power analysis methods (cf. Section 5.4, p. 135 ff.) within the estimation process.

The tuple notation of NFP data types specified by MARTE [278] and introduced in
Section 2.6 (p. 41 ff.) structures the content of tags provided by the HwBehavioralState and
HwBehavioralTransition stereotypes. For the power consumption estimation approach
within this thesis, the three elements value, expr, and unit of the tuple notation are
required to describe tagged values, for example, current = (value = 20, unit = mA) or
execT ime = (expr = 5 · 20, unit = ms). While the unit element is mandatory, a value either
for the value or the expr element has to be provided depending on the use of static values
like fixed numbers or dynamic values defined as expressions. However, the NFP_CommonType
data type (cf. Section 2.6, p. 41 ff.) provides a set of probability distribution operations that
may be used as the value of a tag, for instance, gamma(k : Integer, mean : Real) for a
gamma distribution, poisson(mean : Real) for a Poisson distribution with a given mean,
or binomial(prob : Real, trials : Integer) to specify a binomial distribution with a

5.3. POWER ANALYSIS PROFILE (PAP) 133

probability and number of trials. The MARTE specification does not provide any rules or
guidelines for implementing such operations and leaves the interpretation of tagged values,
such as aTag = (value = poisson(1.3), statQ = distrib), open to the developers of analysis
tools. Additionally, the MARTE specification defines the methodological rule that analysis
tools have to compute the VSL::Expressions::Variables and return them to the UML model
at the start of a VSL evaluation. Due to this, the use of operations as values introduces
dynamics into UML models. According to [348], the main idea behind the use of probability
distribution operations is the definition of a UML generic model as a source, from which
multiple UML models as variants with different tagged values may be derived for analysis.
However, this is not suitable for considering dynamics of software application models and event-
driven approaches at runtime. Instead, the approach in this thesis focuses on expressions that
are evaluated online (cf. Section 2.7.5, p. 61 ff.) and re-evaluated for every scenario change
and tag value modified during simulation.

In PAP, variables are still based on VSL and use the Variables type from the
VSL::Expressions package [278, 348]. However, their declaration and usage are slightly adapted
and differ from the MARTE specification by introducing cross-references between tags of UML
elements, such as states and transitions of state machines and attributes of classes, to reflect
dynamic behavior in the model definition. Listing 5.1 shows the adapted specification using
the Extended Backus–Naur Form (EBNF).

⟨variable-call-expr⟩ |= ⟨variable-name⟩
⟨variable-declaration⟩ |= [⟨variable-direction⟩] ‘$’ ⟨variable-name⟩

[‘:’ ⟨typename⟩] [‘=’ ⟨init-expression⟩]
⟨variable-direction⟩ |= ‘in’ | ‘out’ | ‘inout’

⟨variable-name⟩ |= [⟨namespace⟩ ‘.’] ⟨body-text⟩
⟨namespace⟩ |= ⟨pap-prefix⟩ [‘.’ ⟨pap-postfix⟩]

‘.’ ⟨pap-tag⟩ | ⟨body-text⟩
⟨pap-prefix⟩ |= ‘PAP’

⟨pap-postfix⟩ |= ‘ATTR’ | ‘SM’ ‘.’ ⟨pap-sm-element⟩
⟨pap-sm-element⟩ |= ⟨body-text⟩

⟨pap-tag⟩ |= ⟨body-text⟩
⟨body-text⟩ |= terminal symbol consisting of a string of characters

Listing 5.1: Selected parts of the MARTE VSL specification for variables described in EBNF.
A definition of the nonterminal symbols ⟨typename⟩ and ⟨init-expression⟩ can be found in [278].
Adaptations in this thesis are highlighted in bold.

By defining a dedicated namespace as a separation between the basic concepts of MARTE
and the extension provided by PAP, the compatibility between MARTE and PAP is maintained.
The main reason for the extension shown in Listing 5.1 is the definition of links between the
object and the meta-level and the modeling of cross-references between elements of the meta-
level. Examples of links and cross-references between are provided for the ongoing example at
the end of this section. When PAP is used by developers in their MDD workflow as proposed
in Section 3.1 (p. 77 ff.), the following set of rules must be respected:

• If a VSL variable for PAP is defined, a specific namespace has to be used.

134 CHAPTER 5. POWER ESTIMATION CONCEPT FOR MDD

• The namespace contains at least a prefix and a tag.

• The prefix has to start with a specific term PAP.

• The postfix can be one of two terms: ATTR for attribute or SM for state machine. The
postfix is optional and depends on the type of reference.

• In case the SM postfix is used, the state or transition name of the state machine (energy
model) must be provided.

Ongoing Example: Definition of Variables

Considering the dimmable LED example once again. To access the bounds tag of the Per-
centageInteger data type used for the brigthnessLevel attribute shown in Figures 5.7
to 5.8, the namespace Pkg.DimmableLED.brightnessLevel.bounds has to be used. How-
ever, while properties of such data types may be considered constant, values of class attributes
become instance-related and differ for each class instance. For example, two instances of
the same sensor hardware component model may be configured differently and thus have
various current consumption values during runtime. However, such instance-related values
are necessary for estimating power consumption, as carried out in this thesis. According to
the introduced namespace schema, the reference PAP.ATTR.brightness has to be used, for
example, to include the value of the attribute brightnessLevel in equations. The first part
(PAP) signals the usage of the corresponding profile, whereas ATTR refers to an attribute of
the class annotated with the aforementioned stereotypes. The specifier brightness refers
to the id defined by the id field of the HwAttribute stereotype applied to an attribute of
the UML class (cf. Figure 5.7, p. 128). Note that the interpretation of namespaces is not
defined in the MARTE specification and has to be implemented by the analysis tool. During a
model transformation, the stereotypes HwPowerAttribute and HwTimingAttribute may be
used to extract the <variable-direction>, <variable-name>, and <typename> described
in Listing 5.1 using the tagged values direction, id, and type, respectively. The concept
can also be used to specify cross-references between tags of state machine elements. For
instance, the variable PAP.SM.NameOfState.NameOfTag references the value of NameOfTag
of the state NameOfState. To refer to a tagged value in the scope of the current UML element,
the definition PAP.NameOfTag may be used.

As shown in Figure 5.10 (p. 132), the electric current consumption for the On state can vary
between 0.05 mA and 5 mA. Instead of defining multiple states to cover each possible current
consumption, PAP prevents state explosion [402] and addresses such dynamic behavior. The
expression for the current tag is defined as a linear relationship and includes the previously
defined reference PAP.ATTR.brightness. For non-linear relationships, zero-one indicators
may be used, where each variable representing such a zero-one indicator has to be modeled
as an attribute of the hardware component model. For instance, the current consumption
may be defined as current = (expr = a · 5 + b · 10, unit = mA) with a and b as zero-one
indicators. While this concept of dynamic behavior introduced by PAP is not specified in
MARTE, analysis tools have to keep track of changes for all variables annotated with the
HwPowerAttribute stereotype during execution to enable a power consumption estimation.
Interactions between the software model and a hardware component model may cause the
analysis tool to re-evaluate all expressions containing the affected tags.

5.4. POWER ANALYSIS METHODS 135

5.4 Power Analysis Methods

The developer workflow motivated in Section 3.1 (p. 77 ff.) contains simulation and analysis
steps for the power consumption estimation of embedded software applications in MDD. As
a contribution to address RQ4, the introduced power analysis methods obtain and provide
so-called energy traces to make the power-related impact of the software application on an
embedded system visible. Developers may utilize the energy traces as an indicator for energy
bugs (cf. Section 3.3, p. 84 ff.) and to optimize the workflow and the design of the software
application model, as illustrated by Figure 3.1 (p. 84). As an umbrella term for the power
analysis methods discussed in this section, the term Software-Model-in-the-Loop (SMiL) is
introduced and describes an in-the-loop testing approach for software application models with
integrated energy models. More formally, this term may be defined as follows:

Definition 5.1 Software-Model-in-the-Loop (SMiL) describes a method in which a software
model extended by energy models interacts with a virtual or physical hardware platform
based on functional test cases to estimate the power consumption as a non-functional property
of the system with a focus on the impact of the software application.

While energy models have been presented in Section 5.2 (p. 117 ff.), the following sections
discuss methods following the SMiL definition. The first method introduced in Section 5.4.1 is
denoted as Indirect Power Analysis (IPA). It is used in stages where the embedded system is
not yet defined or no physical hardware is available for the evaluation process. With the Direct
Power Analysis (DPA) introduced in Section 5.4.2, on the other hand, simulated software
application models can interact with physical hardware based on real hardware accesses.
By this, DPA is able to take hardware-software interactions as a crucial part of the power
consumption estimating process [135] into account. Initial versions of the methods have been
published in [338, 341] but enhanced in this thesis due to recent research findings.

5.4.1 Indirect Power Analysis (IPA)

The IPA method implements the SMiL approach for virtual hardware platforms (cf. Defi-
nition 5.1). For the power consumption estimation, IPA relies primarily on data obtained
from energy models during the simulation. Figure 5.11 illustrates the structure of IPA with

MDD Tool

Simulation Environment

Development Evaluation & Power Analysis

Analysis Tool

Simulation Logs, Hardware

Commands and Simulated Traces

Hardware Component Model

Transformation

Test EngineerSoftware Engineer

C2

P1 C1 P2

Figure 5.11: Indirect Power Analysis (IPA) method to derive energy traces without a connected
hardware platform, adapted from [341]. A dashed line describes a data exchange before the
execution of a simulation while the solid line indicates a data exchange during the simulation.
The red circled elements are used to reference individual parts in this section.

136 CHAPTER 5. POWER ESTIMATION CONCEPT FOR MDD

the MDD tool and the analysis tool as the two main parts (P1 and P2) and two communica-
tion paths (C1 and C2) between these two parts. During the development phase, the MDD
tool annotated with (P1) in Figure 5.11 is used, e.g., by a software engineer to design the
system model consisting of the software model and at least one hardware component model.
Additionally, the MDD tool provides a simulation environment where the system model can
be directly executed. For the evaluation and power analysis, the analysis tool marked as
(P2) in Figure 5.11 directly interacts with the simulation environment provided by the MDD
tool. As a first step of the analysis process, the analysis tool requires additional information
about the SUT. Model-transformation processes of hardware component models (C1) are
executed so that the analysis tool gets deep knowledge of the SUT’s properties (cf. Section 6.1,
p. 140 ff.). A direct communication link (C2) between the MDD tool and the analysis tool
is established during the simulation to trace all hardware accesses of the simulated software
model, which may lead to changes in the power-related behavior of one or more hardware
components. Besides the processing of energy models and simulation logs, simulation data for
hardware components can be predefined and passed to the simulation environment if, e.g., a
sensor is activated to collect data. By this, scenarios introduced in Section 3.2 (p. 81 ff.) as an
environment definition for the SUT may be realized. The communication interface between
the simulation environment and the analysis tool is independent of a specific MDD tool.

The analysis tool derives energy traces for the power analysis and the detection of energy
bugs automatically or manually, e.g., by a test engineer. Compared to traditional approaches,
IPA does not require additional hardware, such as measuring devices. Since all hardware
interactions are simulated, the approach may be used for early real-time simulations and
design space exploration approaches as long as a hardware component model for each hardware
component under consideration exists.

5.4.2 Direct Power Analysis (DPA)

The idea of the rapid prototyping approach (cf. Section 2.9 (p. 72 ff.) is adapted in this thesis
to provide a faster approach (compared to HiL) and more realistic approach (compared to
MiL) for a power consumption estimation in MDD (cf. Figure 2.21, p. 59). Contrary to the
definition provided by [59], the characteristics and constraints of the hardware platform used
for the estimation process must be close to those of the intended platform. Otherwise, this
type of non-functional test would offer developers no value. Moreover, the concepts of MiL and
HiL are utilized in an adapted manner compared to the definitions in Section 2.7.4 (p. 57 ff.)
to obtain energy traces as the energy footprint of software application models.

The DPA method implements the SMiL approach for physical hardware platforms by
introducing a novel power analysis method. For this, hardware accesses generated by software
applications during simulation are forwarded to a hardware platform, denoted as Model-Testbed,
reproduced, and the results are returned to the simulation environment as traces. While the
hardware platform replicates the hardware-software interactions, values for electric current
and voltage are measured and continuously recorded, allowing energy traces to be derived.
Due to this, DPA may be considered as an extended version or superset of IPA. The basic
structure of DPA is illustrated in Figure 5.12.

The parts (P1) and (P2) and the communication paths (C1) and (C2) of DPA shown
in Figure 5.12 are similar to the elements introduced by IPA and provide at least the same
functionality. However, the analysis tool has been extended to interact with and control the
parts (P3) and (P4) in Figure 5.12.

5.4. POWER ANALYSIS METHODS 137

Analysis and Control Tool

Simulation Logs, Hardware
Commands and Traces

C
on

tr
o

l C
om

m
a

n
d

s

M
e

a
su

re
m

en
ts

Hardware
Access Commands

Data and Traces from the MCU
and Peripheral Devices

Development Evaluation & Power Analysis

Hardware Component
Model Transformation

Test EngineerSoftware Engineer

Model-Testbed

Message Interpreter

Measuring Device

Voltage
Sensing

Current
Sensing

MDD Tool

Simulation Environment

Electrical Properties

P2

P1

C1C2

P4 C5

C6C7

C3 C4

P3

Figure 5.12: Direct Power Analysis (DPA) concept to derive energy traces based on interactions
with a real hardware platform, adapted from [341]. A dashed line describes a data exchange
before the execution of a simulation while solid lines indicate a data exchange during the
simulation. The red circled elements are used to reference individual parts in this section.

Besides the processing of hardware component models and the derivation of energy traces,
the analysis and control tool (P2) also acts as a bridge between the MDD tool (P1), the
Model-Testbed (P3), and the measuring device (P4). This provides a more comprehensive
performance analysis and results in more detailed energy traces. The proposed approach has
been designed as a modular architecture, enabling the rapid development of new setups for
specific test cases.

The Model-Testbed (P3) executes a message interpreter that provides direct hardware
access. In DPA, hardware accesses from the software application are directed to the Model-
Testbed using the communication path (C3), while traces as responses of the Model-Testbed
are returned over the communication path (C4). The concept of Model-Testbeds is not limited
to specific controller platforms and allows the dynamic integration of peripheral devices to
evaluate their power consumption. The Model-Testbed is also suitable for providing actual data
(e.g., sensor measurements) to the simulated software model for a more realistic evaluation.
With a physical Model-Testbed connected to the simulation environment of the MDD tool, the
analysis and control tool (P2) is able to compare the power characteristics derived from energy
models with real measurements while keeping track of all time-referenced hardware states.

A measuring device (P4) is connected to the Model-Testbed for continuous voltage and
current measurements (C5). The measured values are accumulated (C6) and evaluated by
the analysis and control tool. Since the tool is aware of the internal state of each hardware
component model instance based on the trace data sent by the simulation environment, states
and transitions of each hardware component model instance can be mapped to a specific time
or time frame of the measurement and combined with the measured values. Additionally, the
analysis and control tool uses control commands to initiate measurements and configure the
measuring device in general, e.g., ranges and resolution of the obtained data (C7).

138 CHAPTER 5. POWER ESTIMATION CONCEPT FOR MDD

Since DPA is focused on estimating power consumption, it is sufficient to replicate hardware-
software interactions instead of executing the entire software application on the Model-Testbed.
Each instance of a hardware component model is coupled with a specific peripheral device
of the Model-Testbed. Without the need to generate, adapt, compile, and flash the software
application model before each test, the DPA defines a rapid prototyping approach and enables a
faster and more realistic evaluation of the complete system compared to traditional approaches
(cf. Section 2.8, p. 65 ff). The use of a physical hardware platform also increases the probability
of detecting (hardware-related) energy bugs (cf. Section 3.3, p. 84 ff.).

Additionally, runtime monitoring is suitable for the DPA method. However, contrary to
the definition discussed in Section 2.7.5 (p. 61 ff.), the monitor component in this thesis is
not generated and implemented by the analysis tool (P2). Instead, the analysis tool may be
parameterized and configured based on scenarios, NFRs, and hardware component models,
which corresponds to the concept of an interpreted monitor [117].

Test cases performed with DPA may also be based on scenarios but with a limited scope
compared to IPA. To fully support the concept of scenarios, an additional environmental
model is required that also provides the ability to influence the physical test environment
of the Model-Testbed directly. However, this results in a more complex setup and requires
the extension of the concept shown in Figure 5.12. While currently not part of DPA, the
extension will be a subject of future work. The DPA method is part of the proof-of-concept
implementation discussed in depth in Chapter 6 (p. 139 ff.).

Chapter 6

Prototype Implementation

This chapter describes the prototype implementation of the Direct Power Analysis (DPA)
method for the power consumption estimation in MDD as a part of the evaluation defined by the
developer workflow (cf. Figure 3.1, p. 78). While the software and hardware modeling process
is covered by the case study in Chapter 7 (p. 175 ff.), this section focuses on implementing
main components, tools and protocols to address RQ4 as shown in Figure 6.1. The red circled
numbers (1–8) in Figure 6.1 reference individual parts of the DPA method introduced in the
following sections.

Unit for Central Control
and Estimation

(UC²E)

Measuring Device
(Qoitech Otii Arc)

Simulation Logs, State Changes
and Hardware Accesses

S
ta

te
 C

h
a

n
g

e
s

a
n

d

C
on

tr
o

l C
om

m
a

n
d

s

M
e

a
su

re
m

en
t V

a
lu

e
s

(V
o

lta
g

e
, C

u
rr

e
nt

)

Hardware Access Commands

Data and Traces from the MCU
and Peripheral Devices

Hardware Component
Model Transformation

Model-Testbed
(Espressif, STM, NXP)

UML-based Modeling Tool
(IBM Rhapsody)

Electrical Properties
(Current, Voltage)

4

2

1

3

7

8 5

6

Figure 6.1: DPA concept using IBM Rhapsody as MDD tool and Qoitech Otii Arc as measuring
device. Solid arrows indicate connections used during the simulation and evaluation, while
the dashed arrow describes a manual step performed before the evaluation. The red circled
numbers (1–8) reference individual parts.

Section 6.1 discusses the textual representation of hardware component models for the
model transformation process, referred to as (1) in Figure 6.1. Additionally, the devel-
oped model transformation plug-in enhancing the MDD tool IBM Rhapsody (2) to provide a
hardware component model exchange with the UC2E tool (4) is briefly discussed. Section 6.2
introduces the Simulation Data eXchange Protocol (SDXP) (3) and the messaging framework

139

140 CHAPTER 6. PROTOTYPE IMPLEMENTATION

to provide tracing and access to the Model-Testbed. The concept of a policy-oriented HAL to
exchange logs and simulation data for hardware-software interactions is covered by Section 6.3.
Section 6.4 briefly introduces the main functions of the UC2E tool (4) as a reference implemen-
tation of the analysis and control tool. Finally, Section 6.5 covers the developed Model-Testbed
(5) from a software and hardware perspective. Additionally, a Remote Procedure Call (RPC)-
based protocol (6) to achieve communication with Model-Testbeds, is provided. Measurements
are obtained by a Qoitech Otii Arc measuring device [313] (7) and can be accessed through
the associated Otii Transmission Control Protocol (TCP) server [312] (8) as part of the Otii
desktop application. Parts of the implementations and protocols of this section have been
published in [339, 340, 341, 391].

6.1 Model Transformation
The power analysis methods introduced in Section 5.4 (p. 135 ff.) rely on data exchange before
and during the simulation to perform power consumption estimations. For the execution
of model transformations, access to the logical model structure is necessary, which has to
be provided by APIs of MDD tools. The transformation of hardware component models is
implemented as a two-step process containing a model-to-text and a text-to-model transfor-
mation based on the textual representation format covered in Section 6.1.1. For model-to-text
transformation, Section 6.1.2 presents an extension of the IBM Rhapsody MDD tool that is
provided as a plug-in. The textual representation is the primary format for the model exchange
denoted as (1), while the enhancement of IBM Rhapsody is part of (2) in Figure 6.1.

6.1.1 Textual Representation

This section introduces the structure of the textual representation used in the model transfor-
mation process. For the exchange of hardware component models between IBM Rhapsody [164]
and the UC2E tool, an exogenous model-to-model transformation has been defined to map a
UML model to a C++-based textual model of state machines (m/UML → m/C++). Consid-
ering the developer workflow shown in Figure 3.1 (p. 78), a model-to-text transformation from
UML into the JSON-based textual representation (m(s)/UML → m(s)/JSON) is performed
by IBM Rhapsody as the first part of the two-step process. This is followed by a text-to-model
transformation from the JSON representation to C++ (m(s)/JSON → m(s)/C++), the
language in which the UC2E tool is developed. By this, the UC2E tool remains MDD tool
independent. The text-to-model transformation is covered in Section 6.4 (p. 155 ff.).

With XML Metadata Interchange (XMI), a standardized model exchange format specified
by the OMG exists, which is natively supported by popular MDD tools, including IBM
Rhapsody (cf. Table A.2 in Appendix A.2, p. 265 f.). Current XMI parser and generator
implementations of MDD tools are designed to encode and decode complete UML models.
Considering hardware component models, this includes the entire UML class and the UML
state machine model. However, for the power consumption estimation, the UC2E tool only
requires a subset of the hardware component model definition, e.g., the structure of the energy
model, power-related tagged values, and attributes annotated with the PAP. Approaches
such as [413] enhance the abilities of XMI parsers to process UML models partially, which
would reduce the required memory for the parsing process and lower the execution time.
However, those approaches have not yet been integrated into MDD tools for UML mentioned
in Appendix A.2 (p. 265 ff.). Due to this, JSON has been selected instead of XMI as the data

6.1. MODEL TRANSFORMATION 141

interchange format for the prototype implementation in this thesis. Compared to Extensible
Markup Language (XML) as the data format for XMI documents, JSON is considered more
lightweight, uses fewer resources, and can be encoded and decoded faster [266].

Behavior-related characteristics are the most important aspects of a hardware component
model for the power consumption estimation approach. Since the energy model mainly covers
behavioral and non-functional aspects, the basic structure of the JSON-based interchange
format for the model transformation shown in Listing 6.1 is derived from the state machine
representation. The top-level element is specified as an array of JSON objects representing
hardware component models. A single hardware component model consists of a name which
is the name of the UML class and objects for attributes, settings, states, and transitions. In
the following, the objects of the JSON structure shown in Listing 6.1 are described in detail.
A coherent and complete example generated by the developed plug-in for the dimmable LED
introduced in Section 5.3 (p. 124 ff.) is provided in Appendix C.1 (p. 275 f.).

1 {
2 "HardwareComponentModels": [{
3 "Name": "NameOfBaseClass",
4 "Attributes": {
5 "_comment": "cf. Listing 6.2"
6 },
7 "Settings": {
8 "_comment": "cf. Listing 6.3"
9 },
10 "States": {
11 "_comment": "cf. Listing 6.4"
12 },
13 "Transitions": {
14 "_comment": "cf. Listing 6.5"
15 }
16 }]
17 }

Listing 6.1: Structure of the JSON-based interchange format for hardware component models.

Attributes and Settings

All attributes with the annotated stereotypes HwPowerAttribute and HwTimingAttribute
are extracted as JSON objects and attached to the main Attributes object. Each attribute
is identified by a unique AttributeName name corresponding to the name used within the
UML class definition. The inner structure of a single Attributes object shown in Listing 6.2
and consists of the following properties:

• id: The attribute’s unique id extracted from the value of the id tag provided by the
HwAttribute stereotype. As stated in Section 5.3.3 (p. 127 ff.), the id is used as a
reference to the value of the attribute within a class instance and may be included in
expressions of other tags of the PAP.

• dataType: A property to specifiy the data type, typically an integer or real.

• value (optional): A property containing the initial value for the attribute.

142 CHAPTER 6. PROTOTYPE IMPLEMENTATION

1 {
2 "HardwareComponentModels": [{
3 "Attributes": {
4 "AttributeName": {
5 "id": "id",
6 "dataType": "aType",
7 "value": 0
8 }
9 }
10 }]
11 }

Listing 6.2: Basic structure of the Attributes object.

The Settings object maps the basic power-related characteristics of a hardware component
model as key-value pairs. The basic idea is to group all properties into a settings object,
which apply to the entire hardware component model regardless of the particular state or
transition. Typically, tags of the HwAbstraction stereotype applied to UML classes are part
of the Settings objects. A small example is shown in Listing 6.3. The value of the key-value
pair in line 4 is a composite data type consisting of an integer or real value and a unit as
a string data type (cf. Section 2.6.4, p. 46 ff.).

1 {
2 "HardwareComponentModels": [{
3 "Settings": {
4 "id": "(value, unit)"
5 },
6 }]
7 }

Listing 6.3: Basic structure of the Settings object.

States and Transitions

To trace and analyze the dynamic behavior of the SUT for the power consumption estimation
during simulation, information about states and transitions annotated with the HwBehavioral-
State and HwBehavioralTransition stereotypes are included in the model transformation
process and added to States and Transitions objects. The basic structure of a States
object is shown in Listing 6.4. As a design decision, instead of an unnamed array of states, the
stateId has been introduced as a property to ease access to individual elements during parsing.
Each state consists of the properties name, id, and behavior and is identified by the stateId
(line 4). The id must be unique, can be freely assigned, and is primarily used in Transitions
objects to specify their source and destination. In IBM Rhapsody, for instance, a Universally
Unique Identifier (UUID) is generated for each model element of the Rhapsody model, which
has been used for the id fields in the example shown in Appendix C.1 (p. 275 f.). The be-
havior property describes the power-related behavior and is also an object consisting of the

6.1. MODEL TRANSFORMATION 143

1 {
2 "HardwareComponentModels": [{
3 "States": {
4 "stateId": {
5 "name": "stateName",
6 "id": "uniqueId",
7 "behavior": {
8 "current": "(value, unit)",
9 "execTime": "(value, unit)",
10 "hasDynamicConsumption": false,
11 "hasDynamicExecutionTime": true
12 }
13 }
14 }
15 }]
16 }

Listing 6.4: Basic structure of the States object.

current, execTime, hasDynamicConsumption, and hasDynamicExecutionTime properties
as direct mappings of the corresponding tagged values specified by the HwBehavioralState
stereotype.

As shown in Listing 6.5, the structure of a Transitions object also includes a name and
a behavior property, as well as the following additional properties:

• initialTransition: True if the current transition is a initial transition, false otherwise.

• fromState: The unique id of the source state. Unused for initial transitions.

• toState: The unique id of the destination state.

1 {
2 "HardwareComponentModels": [{
3 "Transitions": {
4 "transitionId": {
5 "name": "transitionName",
6 "initialTransition": true,
7 "fromState": "",
8 "toState": "297bd30c-c077-4e57-9b16-4906cab429c9",
9 "behavior":{
10 "current": "(value, unit)",
11 "execTime": "(value, unit)",
12 "hasDynamicConsumption": true,
13 "hasDynamicExecutionTime": false
14 }
15 }
16 }
17 }]
18 }

Listing 6.5: Basic structure of the Transitions object.

144 CHAPTER 6. PROTOTYPE IMPLEMENTATION

6.1.2 Enhancement of the MDD Tool

For the model-to-text transformation, a plug-in for IBM Rhapsody [164] has been developed.
The plug-in uses the provided Java API and is integrated into the MDD tool as a Helper [166].
In general, Helpers represent custom programs attached to IBM Rhapsody to extend its
functionality. The integration of Helpers is realized via so-called helper files where, for example,
the name, the Java main class, and menu commands of the Helper, are specified as shown
in the middle part of Figure 6.2. Since the model transformation plug-in is integrated into
the context menu of the GUI, developers can start the model transformation of hardware
component models right out of the MDD tool. In IBM Rhapsody, profiles such as the PAP (cf.
Section 5.3, p. 124 ff.) have MDD tool-specific properties in addition to the basic properties
provided by the UML specification [275], e.g., to include the local path of helper files in profile
specifications. As a result, the model transformation plug-in is loaded into IBM Rhapsody
automatically whenever the PAP is added to an MDD project. This process is illustrated in
Figure 6.2. The Java source code files on the left side of Figure 6.2 represent the developed
plug-in. The helper file shown in the center of Figure 6.2 (transformation.hep) contains
two entries to specify the main class and the file path of the plug-in. Within the properties
window of the PAP profile in IBM Rhapsody on the right side of Figure 6.2, the helper file
may be integrated using the path to the helper file.

Transformation Plug-in

[Helpers]

#REM: Definition of the plug-in
name1=HardwareModelTransformation
JavaMainClass1=com.ibm.rhapsody.Main
JavaClassPath1=C:\Plugin\HWTransformation
isPlugin1=1
DLLServerCompatible1=1

Helper File (transformation.hep) IBM Rhapsody

JAVA

Figure 6.2: Integration of Helpers into IBM Rhapsody

To to access and parse the user-developed Rhapsody model, the developed plug-in uses
the IBM Rhapsody Java API. The Rhapsody model is an IBM-specific interpretation of
UML models hidden behind their graphical representations. More information about the IBM
Rhapsody Java API and best practices can be found in [89, 167]. When the transformation
plug-in is executed, the developer may choose a destination path and a file name for the
model-to-text transformation. Afterward, the plug-in iterates through the currently active
MDD project while using stereotypes of the PAP as indicators for annotated classes and state
machines to collect the required information of hardware component models. The process
described by the UML activity diagram in Figure 6.3 is executed for each UML class in the
UML model annotated with a HwAbstraction-based stereotype (cf. Figure 5.6, p. 127). In
the first step, fundamental data, such as the class name, are acquired and stored in a list. In
the next step, all attributes annotated with the HwPowerAttribute or HwTimingAttribute
stereotypes are analyzed, and the content of the id, type, and value tags are saved along
with their attribute names. Afterward, the algorithm checks if a state machine with annotated
HwBehavior stereotype exists. If a corresponding state machine is found, states and transitions
are analyzed. Based on the stored information, the JSON-based file is generated in the last
step of the algorithm. If no state machine exists, the plug-in terminates without producing
an output.

6.2. DATA EXCHANGE 145

1. Analyze UML Class

2. Save Metadata (e.g., Name) to
«MetaList»

3. Analyze Attribute

6. Analyze Behavioral State Machine

7. Analyze State

9. Analyze Transition

8. Save State Structure & Tagged Values
(HwBehavioralState) to «StateList»

10. Save Transition Structure & Tagged
Values (HwBehavioralTransition) to

«TransitionList»

11. Generate JSON Interchange Format
using «MetaList», «AttributeList»,
«StateList», and «TransitionList»

4. Save Elements from Attribute to
<<AttributeList>>

All Attributes analyzed?

Stereotype HwPowerAttribute
or HwTimingAttribute

annotated?

All States analyzed?

All Transitions analyzed?

Stereotype HwBehavior
annotated?

Stereotype HwDeviceAbstraction
or HwMCUAbstraction

annotated?

Yes

No

No

Yes

No

Yes
Yes

No

Yes

No

Yes

No

Visual Paradigm Standard(Schaarschmidt(Fachhochschule Osnabrueck))

Figure 6.3: Sequence of the JSON-based interchange file creation process (UML 2.5 activity
diagram notation), published in [340].

6.2 Data Exchange

To implement the power analysis methods introduced in Section 5.4 (p. 135 ff.), a set of
communication protocols has been developed to enable interactions between the simulation
environment of the MDD tool, the UC2E tool, and the Model-Testbed. Section 6.2.1 introduces
the Simulation Data eXchange Protocol (SDXP) as a data exchange format between the
simulation environment and the UC2E tool. The SDXP is used for the communication denoted
as (3) within the DPA method illustrated in Figure 6.1, while the messaging framework is
part of the system model developed in (2). A reference implementation for integrating SDXP
into a UML-based project is presented in Section 6.2.2.

6.2.1 Simulation Data eXchange Protocol (SDXP)

This section covers the Simulation Data eXchange Protocol (SDXP) specification. In order to
achieve bidirectional communication between the simulation environment and external analysis
tools, such as the UC2E, the SDXP specifies three message types for the data transmission:
Register, Behavior, and Action. These message types enable a well-defined exchange of trace
information, simulation data, e.g., measurements, and control commands for real-time inter-
action with a Model-Testbed. The specification is not limited to a particular representation
format such as JSON, XML, or Comma-separated Values (CSV) and is compatible with any

146 CHAPTER 6. PROTOTYPE IMPLEMENTATION

two-way communication interface. For the proof-of-concept implementation in this thesis (cf.
Section 7, p. 175 ff.), the simulation environment and UC2E tool are connected via a TCP
socket using a CSV-based representation format. In the following, the message types of SDXP
are explained in detail.

Register Message Type

The Register message type is used whenever a hardware component model instance is created
within the simulation. For the registration of a hardware component model instance at the
UC2E tool, the name of the instance and the actual hardware component model type must
be provided. Table 6.1 shows the specification of the Register message type, which contains
a MessageId field, mainly used to distinguish between the Register (0), Behavior (1), and
Action (2) message types, and a timestamp of the registration event. The field Device contains
the name of the hardware component model instance, while the Type field specifies the actual
base name of the hardware component model.

Field Datatype Description

MessageId Integer Message identifier, always set to 0 for Register message type.
Timestamp Integer Timestamp of the message (simulation time).
Device String Name of the instance.
Type String Name of the hardware component model base type.
Binding String (Optional) hardware binding information.

Table 6.1: Basic structure of the Register message type.

Since the approach is designed to support and distinguish multiple instances of the same
basic hardware component model, this runtime information must be provided for analy-
sis and tracing. For instance, if an embedded system consists of two sensors of the same
type, two register messages with different values for the Device and Binding fields are
generated and sent to the UC2E tool before the software application model may interact
with those instances. By this, the UC2E tool is able to distinguish between instances of
a component at runtime without requiring additional configuration effort by the developer
for each test case execution. The Binding field is optional and contains information about
the physical wiring and hardware interfaces as key-value pairs. When using JSON object
literals, a binding for a hardware component model can be specified as, for example, {"in-
terface":"pin","address":{"gpio":26}} to describe that the hardware component is
connected to the GPIO with the number 26. The interface pin states that the GPIO is
configured as a simple switch that can be turned on and off, e.g., to control an LED. The
UC2E tool (cf. Section 6.4, p. 155 ff.) may use the binding to configure the Model-Testbed
automatically using the Model-RPC protocol specified in Section 6.5.4 (p. 168 ff.).

Behavior Message Type

The Behavior message type is primarily used to report state and attribute changes of hardware
component model instances so that a tracing and external analysis outside the simulation
environment may be achieved. Table 6.2 contains the associated fields for the Behavior
message type. Besides the fields MessageId, Timestamp, and Device, which are identical
to those of theRegister message type (cf. table 6.1), three additional fields are introduced to

6.2. DATA EXCHANGE 147

the Behavior message structure, namely State, Transition, and Attributes. For accurate
tracking, a Behavior message must contain a timestamp (simulation time) at which the event
occurred and the name of the affected hardware component model instance. The State field
contains the id of the new power state. If the hardware component model instance executes a
non-instantaneous transition between two power states, the Transition field is used instead.

Field Datatype Description

MessageId Integer Message identifier, always set to 1 for Behavior message type.
Timestamp Integer Timestamp of the message (simulation time).
Device String Name of the instance.
State String (Optional) id of the power state.
Transition String (Optional) id of the executed transition.
Attributes String (Optional) Key-value pairs of altered attributes.

Table 6.2: Basic structure of the Behavior message type.

The Attributes field of a Behavior message contains the new values of altered attributes
required to calculate power consumption or execution time for states or transitions of a
hardware component model (cf. Section 5.3, p. 124 ff.). By this, the UC2E tool is notified
during the simulation and can recalculate the affected parameter values of the energy model in
near real-time. When a state change results in altered parameters, a single Behavior message
is generated containing the new state and all altered attributes, e.g., by using the two fields
State and Attributes.

Action Message Type

An Action message is generated whenever a direct interaction between the hardware component
model and the physical counterpart of the Model-Testbed is required. For this, a bidirectional
transmission is implemented based on a request-response pattern. Table 6.3 shows the fields
of the Action request message.

Field Datatype Description

MessageId Integer Message identifier, always set to 2 for Action message type.

ActionId Integer Action identifier, specifies sub-type for MCU behavior (0), pe-
ripheral device behavior (1), request data (2) and send data (3).

Device String Name of the instance.
RemoteAction String Operation to be called.
Parameters String Key-value pairs of parameters for the operation.
ResponseId Integer (Optional) Set, if a response from the Model-Testbed is required.

Table 6.3: Basic structure of the Action request message type.

This message type distinguishes between messages targeting the MCU or a peripheral
device. Compared to peripheral devices, the MCU of the Model-Testbed is a special case and
is treated separately by the UC2E tool, which is further explained in Section 6.4 (p. 155 ff.).
In total, four sub-types have been derived and are specified by the value of the field ActionId.
The first two types, with the id 0 (MCU) and 1 (peripheral device), summarize all messages
that directly affect the state of a hardware component, e.g., turning a peripheral device on or off.

148 CHAPTER 6. PROTOTYPE IMPLEMENTATION

The remaining sub-types specify interactions with a peripheral device to request (2) or send (3)
information. For instance, an Action message enables interaction with the Model-Testbed to,
e.g., trigger a measurement, request sensor values, send data via a communication interface,
or write configurations. The field RemoteAction defines the actual operation executed in the
Model-Testbed environment. If parameterized operations are used, e.g., the value to be written,
the Parameters field is set with key-value pairs. For obtaining data via a response from the
Model-Testbed, the ResponseId field is set.

Field Datatype Description

MessageId Integer Message identifier, always equal to 2 for Action message type.
ResponseId Integer Same as the response id from the request.
Result String Result of the action (e.g., measurement value, bytes sent, . . .).

Table 6.4: Basic structure of the Action response message type.

Since hardware component models can generate messages simultaneously, the response
format shown in Table 6.4 also includes a ResponseId field with a value equal to the corre-
sponding value of the request message. While Behavior messages are generated within state
machines due to behavior changes, Action messages, on the other hand, may also be generated
within operation calls of the hardware component model instance, e.g., if attributes annotated
with the HwPowerAttribute or HwTimingAttribute stereotype are altered. Since not every
message results in a state change and state changes do not necessarily require communication
with the Model-Testbed, e.g., in case of time-triggered transitions (cf. Section 5.2.2, p. 119 ff.),
actions and behavioral changes are considered separately by SDXP. Hence, the execution of
a single operation may result in multiple Behavior and Action messages.

6.2.2 Messaging Framework

A simple SDXP-based messaging framework has been developed to allow UML models to
communicate with external applications during the simulation in MDD tools, such as IBM
Rhapsody. Designed as an extension, it may reduce the the need for manual modification of
the original UML model as much as possible. Since the framework is written in C++, it can be
integrated into the IBM Rhapsody project as an external source or by reverse engineering. For
the data exchange, the framework connects to the UC2E tool (cf. Section 6.4, p. 155 ff.) via a
socket connection at the beginning of a simulation. It also provides functions to generate SDXP
messages. Figure 6.4 illustrates the UML class diagram of the messaging framework with
the two classes ModelLogger and ModelConnector. In UML and IBM Rhapsody, external
source artifacts are annotated with the «File» stereotype and included in the UML model
by defining dependencies with annotated «usage» stereotype. While the ModelLogger class
in Figure 6.4 provides operations to send and receive data following the SDXP message types,
the ModelConnector class manages the socket connection to the UC2E tool.

Method calls of the messaging framework must be integrated into the opaque behavior
of UML elements such as operations, states, or transitions. For instance, both classes are
used within the proof-of-concept implementation of the policy-oriented HAL introduced in the
following Section 6.3 (p. 149 ff.). The UML model of the case study presented in Section 7.2
(p. 176 ff.) has been manually extended with required method calls to enable simulation data
exchange. However, specific keywords or additional stereotypes may be defined in future work

6.3. POLICY-ORIENTED HARDWARE ABSTRACTION LAYER 149

ExampleClass

<<File>>
ModelLogger

-pin : int
-port : int
+ModelConnector(pin : int, port : int)
+connect()
+send(msg : string) : int
+receive(msg : string&) : int

<<File>>
ModelConnector

<<usage>>

<<usage>>

Visual Paradigm Standard(Schaarschmidt(Fachhochschule Osnabrueck))

Figure 6.4: UML classes of the messaging framework (UML 2.5 class diagram notation).

to automatically generate SDXP-related method invocations within opaque behavior based
on Helpers and model transformations before the actual simulation is executed. A concept
based on such model-to-model transformations has been presented in [162].

6.3 Policy-oriented Hardware Abstraction Layer

This section introduces the policy-oriented HAL as a new approach for the abstraction of
hardware accesses which may be integrated into models developed by (2) in Figure 6.1. The
term policy-oriented originates from the concept of policy-based design [11] as a variant of
the strategy design pattern [131], in which strategies are specified at compile time. Instead of
strategies, policies in the context of the HAL refer to communication interfaces. The initial
concept of the HAL has been published in [391] but is extended to be integrated into the
overall approach of this thesis. The policy-oriented HAL focuses on communication interfaces,
such as GPIO, UART, or I2C, which are used by peripheral devices while also considering
energy-related aspects as a contribution to answer RQ3 and RQ4. In addition to the theoretical
concepts presented in this section and in [391], a C++ reference implementation of the policy-
oriented HAL is presented. The reference implementation defines a simulation-specific variant
using the data exchange framework and SDXP (cf. Section 6.2.2, p. 148 ff.) as the first step
to enable communication between hardware component models and their counterparts on the
Model-Testbed.

A general overview of HAL implementations is provided in Section 6.3.1, followed by an
in-depth description of the concepts and structure of the policy-oriented HAL presented in
Section 6.3.2. In Section 6.3.3, the UML profile as a model representation of the policy-
oriented HAL is introduced. Finally, an basic application example of the policy-oriented HAL
in provided in Section 6.3.4.

6.3.1 Overview

As a widely used programming interface for UNIX-like operating systems, the Portable Oper-
ating System Interface (POSIX) I/O API [170] has been defined, allowing stream and file-like
access to individual devices by providing the five operations open, close, read, write, and
ioctl. The Common Microcontroller Software Interface Standard (CMSIS) [20], a program-
ming interface driven by ARM for their processor platforms, provides functions for controlling
the power consumption of the corresponding internal hardware unit (on-chip) in a simplified

150 CHAPTER 6. PROTOTYPE IMPLEMENTATION

manner. However, all mentioned approaches are focused on the MCU instead of the complete
system, including connected and external peripheral devices.

In contrast to traditional HAL implementations such as POSIX I/O and CMSIS, the
presented HAL provides a multi-tier architecture. It relies on policy-based access patterns for
communication interfaces and connected peripheral devices. It also considers existing power-
related functions of peripheral devices, which are often unused in traditional approaches or
limited to on and off states or other unspecified low-power states. Moreover, the policy-based
HAL is vendor-independent and may be used for an abstraction of internal and external Class 1
to 3 hardware devices (cf. Section 5.2.1, p. 117 ff.) which can be controlled w.r.t their power
consumption as demonstrated in [391].

6.3.2 Three-layered Architecture

The access to external peripheral devices from the software application layer can be seen as a
vertical flow that proceeds from a high-level through various low-level software layers until the
hardware is finally addressed. To control such devices, a lower hardware communication layer
must be accessed. The presented HAL is designed as a hierarchical approach and follows the
Dependency Inversion Principle (DIP) as one of the five SOLID principles1 [238] to realize a
policy-based access pattern. By inverting the dependencies of the underlying hardware layer,
the flexibility and portability are increased while the effort to modify the hardware platform
is minimized. Although DIP has been known for a long time, to the best of the author’s
knowledge, it has not been consistently used in device driver design.

By introducing an additional abstraction to describe the interface required to access the
external peripheral device, the policy-oriented HAL is able to consider peripheral devices that
support different hardware interfaces. For instance, a sensor may be connected to an I2C or
SPI interface. Although the physical wiring and communication protocol are different, the
functionality of the HAL is independent of the hardware interface, and the details are hidden
from the application point of view. This may minimize the effort for developers to modify any
application logic when the hardware configuration changes. The three-layered architecture of
the policy-oriented HAL outlined in Figure 6.5 provides functional access and power-related
control for peripheral devices. The device layer represents the highest and most abstract layer
of the architecture and consists of the following elements:

• ConnectedDevice: An abstract class as the base representation of a specific peripheral
device. A ConnectedDevice requires at least one access policy for the interaction
with physical hardware and may use an additional interface to enable and disable the
peripheral device.

• Device: This class represents a concrete specification of a ConnectedDevice. This
class has to provide an interface to the power management functions of the peripheral
and may offer additional control functions.

• Access: A representation of an access policy, typically defined as an abstract class
providing a set of virtual operations to access the peripheral device.

1SOLID is a mnemonic acronym in software engineering for five design principles to enhance the under-
standability of object-oriented design and consists of the single-responsibility, open–closed, Liskov substitution,
interface segregation, and dependency inversion principles [238].

6.3. POLICY-ORIENTED HARDWARE ABSTRACTION LAYER 151

Device Layer

<<EnergyAware>>
Device

<<DeviceDriver>>
ConnectedDevice

<<AccessPolicy>>
Access

Hardware Abstraction Layer

<<CommunicationInterface>>
PinOut

<<EnergyAware>>
<<CommunicationInterface>>

FunctionalUnit

Hardware Layer

<<OnChip>>
GPIO

<<OnChip>>
HardwareUnit

<<OffChip>>
PeripheralDevice

<<hasExternalWiring>>

<<access>>

<<access>><<access>>

<<access>>

<<use>>

Visual Paradigm Standard(Schaarschmidt(Fachhochschule Osnabrueck))

Figure 6.5: Three-layered architecture of the policy-oriented HAL (adapted from [391]; UML
2.5 package diagram notation).

In general, an access policy defines the requirements of a ConnectedDevice, as a proxy
of a hardware component at the software layer, for a communication interface in an abstract
manner. The proposed policy-oriented HAL provides the following access policies:

• BitAccess: Policy for the basic interface to set and clear a single pin. This type is
typically used to manage the behavior of GPIOs.

• ValueAccess: Policy to read or write single values, e.g., ADC or DAC.

• RegisterAccess: Policy to access the value of a single addressable register. Bus systems
like I2C and SPI typically realize this type of access policy.

• CharacterAccess: Policy that supports read and write operations with ordered se-
quences of unstructured characters (bytes). Typically, serial interfaces such as UART
and sockets implement this policy type.

The layer in the center of Figure 6.5 outlines the core HAL, which provides a low-level
abstraction of communication interfaces such as I2C or UART, implements functional access
by realizing a specific access policy to control the hardware unit and is responsible for the
power consumption control. Additionally, classes in this layer follows the DIP. A specific
communication interface is represented as FunctionalUnit. This class typically contains
platform-specific commands for interacting with the physical hardware module (Hardware-
Unit). The class PinOut implements a FunctionalUnit and contains the actual configuration
(e.g., GPIO number or UART bus identifier). The lowest layer represents the physical hardware
and consists of the following elements:

152 CHAPTER 6. PROTOTYPE IMPLEMENTATION

• HardwareUnit (on-chip): Integrated unit to enable communication between hardware
components. The unit can be powered on and off, e.g., by using clock gating. Examples
of such units are GPIO, UART, and I2C.

• GPIO (on-chip): Describes a physical pin provided by the MCU.

• PeripheralDevice (off-chip): A device physically connected to the MCU by a Hard-
wareUnit, such as sensors and actuators. The device may have internal power manage-
ment functionalities (cf. Section 5.2.1, p. 117 ff.).

In summary, the use of the policy-oriented HAL offers several advantages. By inverting
the dependencies, the device layer is independent of the concrete realization of lower-level
communication interfaces and the underlying hardware platform. Due to this, the functionality
of a Device may be detached from the concrete communication interface and its configuration,
which may significantly improve the portability, interchangeability, modifiability, and reusabil-
ity of software applications. Suppose the concept of the policy-oriented HAL is adapted for
other hardware platforms. In that case, only the implementation of the FunctionalUnit has
to be adjusted, e.g., by defining the use of platform-specific operations and data types. The
stereotypes used in Figure 6.5 are part of the developed UML profile of the policy-oriented
HAL and are explained in the following Section 6.3.3.

6.3.3 Model Representation

A UML profile illustrated in Figure 6.6 has been designed to define a model representation
of the policy-oriented HAL on the meta-level for UML-based models in MDD. By providing
a set of stereotypes for the elements of the policy-oriented HAL, UML classes representing
parts of the HAL may be annotated to enhance the modeling process for developers and to
enable additional model transformation steps if required.

<<profile>> Policy-oriented Hardware Abstraction Layer
<<metaclass>>

Class

<<stereotype>>
DeviceDriver

<<stereotype>>
AccessPolicy

<<stereotype>>
CommunicationInterface

<<stereotype>>
EnergyAware

Visual Paradigm Standard(Schaarschmidt(Fachhochschule Osnabrueck))

Figure 6.6: Overview of the policy-oriented HAL profile (adapted from [391]; UML 2.5 profile
diagram notation).

UML classes annotated with the «DeviceDriver» stereotype correspond to an entity
representing the functional interface of a peripheral device, which is usually off-chip. In
the context of this thesis, hardware component models are typically annotated with the
«DeviceDriver» stereotype. Moreover, communication interfaces required by hardware com-
ponent models may be expressed by access policies. In an UML model, policies are annotated
with the «AccessPolicy» stereotype. Classes annotated with the «CommunicationInter-
face» stereotype represent communication interfaces, also described as functional units of the
system, realizing one or multiple access policies. A class stereotyped as «EnergyAware» has
the ability to control the dynamic power consumption of a connected entity. This stereotype

6.3. POLICY-ORIENTED HARDWARE ABSTRACTION LAYER 153

does not define an expected behavior but assumes that energy-aware peripheral devices have at
least two distinct energy states, e.g., on and off. Note that the concept behind the stereotype
«EnergyAware» refers to energy models and the PAP. Due to this, hardware component
models are always considered energy-aware.

<<metaclass>>
Class

 interface : string

<<stereotype>>
AccessPolicy

 gpioPin : int
 gpioPort : int
 methodClear : string
 methodSet : string
 methodGet : string

<<stereotype>>
BitAccessPolicy

 deviceId : int
 methodClear : string
 methodSet : string
 methodGet : string

<<stereotype>>
RegisterAccessPolicy

 deviceId : int
 methodRead : string
 methodWrite : string

<<stereotype>>
ValueAccessPolicy

 deviceId : int
 methodRead : string
 methodWrite : string

<<stereotype>>
CharacterAccessPolicy

Visual Paradigm Standard(Schaarschmidt(Fachhochschule Osnabrueck))

Figure 6.7: Stereotypes defining AccessPolicy variants (UML 2.5 class diagram notation).

For each access policy introduced in Section 6.3.2 (p. 150 ff.), a distinct stereotype has
been defined, as shown in Figure 6.7. The tags of the stereotypes contain information about
the interface type, e.g., GPIO or UART, the physical connection, e.g., the GPIO pin or the
hardware-specific identifier, e.g., UART0, and the provided methods of the class required for
the interface-specific communication, e.g., read, write, and set. Such information may be
extracted and used to generate platform-specific configurations and operation calls as opaque
behavior similar to concepts presented in [163].

<<DeviceDriver>>
<<EnergyAware>>
DeviceModel

<<HwDevice>>
PhyDevice

<<AccessPolicy>>
InterfaceAccess

<<CommunicationInterface>>
<<EnergyAware>>
FunctionalUnit

<<usage>><<usage>>

Visual Paradigm Standard(Schaarschmidt(Fachhochschule Osnabrueck))

Figure 6.8: Exemplary implementation of the policy-based device pattern (adapted from [391];
UML 2.5 class diagram notation).

Figure 6.8 shows the exemplary usage of the stereotypes and the relationships between the
elements, expressed as UML classes. The DeviceModel in Figure 6.8 represents a software ele-
ment, such as a hardware component model or a simple device driver, that encapsulates access
to a peripheral device via specific interfaces for which specific requirements exist. Such a
requirement may be expressed by an access policy that specifies communication details for the
interaction with a peripheral device. As communication interface, a FunctionalUnit realizes
an access policy and provides access to a physical hardware device (PhyDevice). The PhyDe-
vice is extended with the «HwDevice» stereotype of the MARTE profile [278] to indicate a
resource attached to the hardware platform.

6.3.4 Application Example

An example implementation of the policy-oriented HAL is shown in Figure 6.9 for a Lamp class
as a proxy for an LED, externally connected via a GPIO (PinOut). The GPIO hardware unit
implements the BitAccess policy by using a pinWrite method to control. In object-oriented

154 CHAPTER 6. PROTOTYPE IMPLEMENTATION

+turnOn() : void
+turnOff() : void

<<DeviceDriver>>
Lamp

+set() : boolean
+clear() : boolean

<<AccessPolicy>>
BitAccess

+pinWrite(val : boolean) : boolean

<<CommunicationInterface>>
PinOut

Visual Paradigm Standard(Schaarschmidt(Fachhochschule Osnabrueck))

Figure 6.9: Policy-oriented HAL example for a lamp class with BitAccess policy, adapted
from [391] (UML 2.5 class diagram notation).

programming, a policy can be realized by an interface class. From a source code point of
view, policy-based design is usually associated with the C++ programming language [11].
For instance, in this thesis, a policy may be described by a template with concepts to define
a named set of requirements expressed as template parameters avoiding the disadvantages
of dynamic polymorphism compared to a class declaration with pure virtual methods [403].
Listing 6.6 shows the declaration of the BitAccess policy.

1 /* GPIO Access. */
2 template<typename T>
3 concept BitAccessable = requires(T t) {
4 { t.set()} -> std::same_as<bool>;
5 { t.clear()} -> std::same_as<bool>;
6 };

Listing 6.6: Pin-like access policy example as a BitAccess policy variant, published in [392].

A type T realizes the BitAccessable concept if it implements the methods set() and
clear(). Both methods must return a boolean value. On the device layer, the device class
Lamp in Figure 6.9 may use this specific implementation of the BitAccess strategy to turn a
lamp on and off, as shown in Listing 6.7.

1 template<BitAccessable PIN>
2 class Lamp {
3 public:
4 explicit Lamp(std::unique_ptr<PIN> p):_pin(std::move(p)) {}
5 void turnOn() { _pin->set(); }
6 void turnOff() { _pin->clear(); }
7 protected:
8
9 /* Pin to set/clear. */
10 std::unique_ptr<PIN> _pin;
11 };

Listing 6.7: Implementation of a device layer class in C++ using a predefined BitAccess
policy, adapted from [392].

A more complex example is shown in Figure 6.10. A Device class as a proxy of the
Bosch BME280 sensor [53] is connected to the MCU using an I2C hardware unit, as one
of two supported RegisterAccess policies. Since the communication interface implements

6.4. UNIT FOR CENTRAL CONTROL AND ESTIMATION (UC2E) 155

a master-slave architecture, an additional device connector class (I2CDeviceConnector) is
added. It acts as a link between the communication interface at the HAL core and the device
driver class.

+temperature() : double
+turnOff() : double
+humidity() : double

<<DeviceDriver>>
BME280

+set(addr : uint8_t, val : uint8_t) : boolean
+get(addr : uint8_t, val : uint8_t&) : boolean

<<AccessPolicy>>
RegisterAccess

-devId : uint8_t
I2CDeviceConnector

+set(addr : uint8_t, data : uint8_t[], size : uint16_t&) : boolean
+get(addr : uint8_t, data : uint8_t[], size : uint16_t) : boolean

<<CommunicationInterface>>
I2CMaster

Visual Paradigm Standard(Schaarschmidt(Fachhochschule Osnabrueck))

Figure 6.10: Policy-oriented HAL example for a sensor connected via I2C (adapted from[391];
UML 2.5 class diagram notation).

6.4 Unit for Central Control and Estimation (UC2E)
The UC2E tool is the central component for the power analysis methods presented in Section 5.4
(p. 135 ff.) and allows developers to estimate the power consumption of software application
models. For this, the UC2E tool is able to consider and apply scenarios and to perform an
online or offline analysis. The range of functions also includes:

• The detection of energy bugs.

• The control of the communication between the system model simulated by MDD tools
and the Model-Testbed.

• The management of connected measuring devices.

In the following sections, key features and functions of the UC2E tool are highlighted.
Section 6.4.1 presents an excerpt of the GUIs as an interface for developers to configure
and execute test cases, estimate power consumption, and detect energy bugs. Details of the
communication between the UC2E tool and other components of the power analysis methods
are explained in Section 6.4.2, while Section 6.4.3 describes the integration of measuring
devices. Finally, Section 6.4.4 covers selected details of the power estimation process.

6.4.1 Graphical User Interface

The GUI defines the primary interface for developers to prepare the test environment, connect
the Model-Testbed, and configure the measuring unit. Figure 6.11 shows two exemplary views as
an excerpt of the developed UC2E tool. With the first view shown in Figure 6.11(a), developers
are able to perform a text-to-model transformation of hardware component models (1) based on
the JSON-based model interchange format introduced in Section 6.1.1 (p. 140). As described
in Section 3.1 (p. 77 ff.), the transformation process is necessary to initially configure the
UC2E tool with hardware component models of the SUT to be used within the simulation
and evaluation. The lower part of Figure 6.11(a), highlighted as (2), displays the result of the

156 CHAPTER 6. PROTOTYPE IMPLEMENTATION

2

1

(a)

5

4

3

(b)

Figure 6.11: Screenshots showing the hardware component model import view and the config-
uration and estimation view of the UC2E tool, adapted from [341]. The red circled numbers
(1–5) are used to discuss parts and functions of the tool.

model transformation process. By selecting a hardware component model using a drop-down
menu at the left side of (1), the states and transitions are displayed in (2) as a table, along with
their power-related characteristics. If necessary, the developer can adapt the characteristics
of single states and transitions by editing the corresponding cells in (2). Furthermore, the
wiring (e.g., interface, port, address) for each hardware component model may be defined
manually using the button on the left part of (1) as a direct mapping between a hardware
component model and the corresponding counterpart as part of the Model-Testbed. As an
automatic process, wiring information may also be provided during the simulation based on
the SDXP defined in Section 6.2.1 (p. 145 ff.).

Figure 6.11(b) shows the application’s main view, in which the developer can prepare
the overall system for the power analysis and perform an online evaluation. In part (3) of
Figure 6.11(b), a connection to the Model-Testbed can be established and logging options
selected. Additionally, in the lower section of part (3), a set of buttons is provided to configure
and control the Qoitech Otii Arc measuring device [313]. Part (4) shows the live logging
with two output windows for the Model-Testbed communication and the interaction with the
simulation environment, including request and response messages in both formats, Model-RPC
and SDXP. Part (5) of Figure 6.11(b) contains a table showing all hardware component model
instances, their active states, and expected power consumption in real-time. Additionally,
the estimated and measured current power consumption values of the SUT are displayed to
provide a real-time estimation. In additional views not explicitly shown in Figure 6.11, the
developer can access a runtime monitoring component as a live graph showing the overall power
consumption, a log analyzer, and a time-based graphical comparison between the estimated
and measured power consumption.

6.4. UNIT FOR CENTRAL CONTROL AND ESTIMATION (UC2E) 157

6.4.2 Communication Principles

In DPA, the UC2E tool has to interact with three different systems: the MDD tool, the
Model-Testbed and a measuring device. Since the connection between the UC2E and the
MDD tool (cf. (3) in Figure 6.1, p. 139) is based on a TCP socket, the simulation and the
analyzes can be executed on different systems. A specific version of the policy-oriented HAL
(cf. Section 6.3, p. 149 ff.) has been developed to connect the simulated system model with the
UC2E tool. To abstract hardware accesses, the HAL uses SDXP messages (cf. Section 6.2.1,
p. 145 ff.). Following a low-level approach, only basic methods of communication interfaces
such as UART or I2C (e.g., read() and write()) have to be considered instead of high-level
and hardware component-specific operation calls (e.g., measure()).

The HAL is specifically designed to be used in simulations of MDD models and can
be replaced with a platform-specific variant in later MDD phases. Since no rework of the
software model is required when the HAL is exchanged, the software model remains platform-
independent. A serial connection based on UART is used to establish a connection between
the Model-Testbed and the UC2E tool. Other communications links, such as sockets, can
easily replace the serial connection if the UC2E tool and the Model-Testbed are executed and
connected to different hosts. In this case, additional latencies, e.g., due to the transmission
medium, must be considered, which may negatively affect the power estimation process. The

: SoftwareModel : LED : BitAccess : UC²E : Model-Testbed

7: gpio_set_level(...)

6: notify(...)5: send(ActionMessage)
4: updateStateMachine(...)

3: send(BehaviorMessage)2: set()1: powerOn()

Visual Paradigm Standard(Schaarschmidt(Fachhochschule Osnabrueck))

Figure 6.12: Sequence diagram to enable a peripheral device. (UML 2.5 sequence diagram
notation)

UML sequence diagram in Figure 6.12 shows the interaction between the system model, the
UC2E tool, and the Model-Testbed to enable a peripheral device connected via a GPIO. The
system model consists of the software application model, a LED hardware component model
with access to a GPIO provided by a BitAccess instance as part of the policy-oriented HAL.

A UML sequence diagram for a request-response example is shown in Figure 6.13. This
scenario describes the interactions between the system model, the UC2E tool, and the Model-
Testbed to trigger a measurement of a sensor. High-level method calls may result in multiple
sequential read and write commands. In the case of the method measure() as the first step of
the UML sequence diagram shown in Figure 6.13, several I2C set and get commands may be
executed if, for instance, multiple registers need to be written, read, or monitored to confirm
successful operations. For readability, the communication between the sensor instance and
the physical sensor in Figure 6.13 is shown with a single set or get operation. The execution
of the measure() function generates a single SDXP Behavior message and each set or get
operation of the HAL implementation initiates an Action message. All SDXP messages are
processed by the UC2E tool and transformed into Model-RPC messages if necessary.

158 CHAPTER 6. PROTOTYPE IMPLEMENTATION

: SoftwareModel : Sensor : UC²E : Model-Testbed: RegisterAccess

16: tempVal 15: tempVal
14: send(ResponseMessage) 13: response(...)

12:
i2c_master_read_byte(...)

11: request(...)
10: send(ActionMessage)9: get(...)

8: getTemperature()
7:

i2c_master_write_byte(...)

6: notify(...)
5: send(ActionMessage) 4: updateStateMachine(...)

3: send(BehaviorMessage)2: set(...)1: measure()

Visual Paradigm Standard(Schaarschmidt(Fachhochschule Osnabrueck))

Figure 6.13: Simplified sequence diagram to retrieve data from the Model-Testbed. (UML 2.5
sequence diagram notation)

6.4.3 Integration of Measuring Devices

The UC2E tool is not limited to a specific type of measuring device. By implementing universal
communication protocols like the standard commands for programmable instruments [176]
and the virtual instrument software architecture standard [75, 177], measuring devices from
different manufacturers can be supported. However, the Qoitech Otii Arc [313] does not
support the aforementioned communication protocols. Instead, Qoitech provides a dedicated
software to manage and control the Otii Arc which also includes the TCP-based server [312].
The server is marked as (8) in Figure 6.1 (p. 139) and provides an interface for third-party
programs like the UC2E tool (marked as (4) in Figure 6.1, p. 139) to communicate with the
measuring device and retrieve measurement data.

GPO connected

{is active}

{in deep sleep}

{is active}

: SoftwareModel : MCU : UC²E : MeasuringDevice : Model-Testbed: SimumlationEnv

18: <<disable GPO>>

16: send(set_gpo)17: wokenUp
15: wokenUp

14: response(...)

13: <<enable GPO>>12: send(set_gpo)

11: updateStateMachine(...)
10: send(ActionMessage)

9: send(BehaviorMessage)

4: wait_for(...)

8: setPowerMode()
7:

deep_sleep_start()

6: notify(...)
5: updateStateMachine(...)3: send(ActionMessage)

2: send(BehaviorMessage)1: setPowerMode()

Visual Paradigm Standard(Schaarschmidt(Fachhochschule Osnabrueck))

Figure 6.14: Sequence diagram to demonstrate power mode changes of the Model-Testbed
(UML 2.5 sequence diagram notation).

The life cycle of the Model-Testbed is directly affected by the operating state of the
MCU. Different power modes of the MCU must be supported to achieve a realistic power
estimation when measuring the Model-Testbed during simulation. An additional concept has
been developed to achieve a defined behavior of the Model-Testbed while the MCU operates
in low-power modes. The Model-Testbed is able to switch from low-power modes to active

6.4. UNIT FOR CENTRAL CONTROL AND ESTIMATION (UC2E) 159

mode even if the MCU is not operating and not executing any software. In order to reproduce
changing operating states of the simulation, especially the change from low power to an
active operational mode, the Model-Testbed provides external triggers. The Otii Arc also
offers extended functionalities via a so-called expansion port, including two General Purpose
Outputs (GPOs) that can be accessed using the provided server. By this, the UC2E tool is
able to control the complete behavior of the Model-Testbed at runtime. Figure 6.14 shows a
UML sequence diagram where the software application initiates the command to set the MCU
into sleep mode. To simplify the simulation at this point, the software application waits for
the configured time before the MCU is re-enabled. A blocking function call is used for this
action so that the execution of the software application model will not continue until the MCU
on the Model-Testbed enters the active state.

6.4.4 Power Consumption Estimation

The power estimation capacities of the UC2E tool differ depending on whether IPA or DPA
is used. However, both methods use hardware component models to obtain information
about the MCU and peripheral devices as part of the simulated system model. For a power
consumption estimation by the UC2E tool, several subjects have to be considered, which are
thematically grouped and explained in the following. The first two subjects deal with the
mapping of hardware models and the consideration of expressions as dynamic energy- and
time-related behavior of states and transitions. Afterward, the process of the UC2E tool to
perform the power consumption estimation within IPA and DPA is explained in detail.

Mapping of Hardware Component Models

As a result of the text-to-model transformation of hardware component models based on the
model transformation format (cf. Section 6.1.1, p. 140 ff.), the UC2E tool creates a map of
hardware components for which instances can be initiated during the simulation. The structure
of the C++-based model as part of the UC2E tool is illustrated as a UML class diagram in
Figure 6.15. Each hardware component model is represented as a HwModel whose structure
with classes like HwState and HwTransition is similar to state machines. Name-value pairs
and arrays of attributes are mapped to HwAttribute and HwSetting classes and integrated
as properties of the HwModel. A complete element-wise mapping between the JSON and C++
representations is provided in Table C.1 of Appendix C.2 (p. 277 f.).

Consideration of Expressions

As described in Section 5.3 (p. 124 ff.), expressions based on VSL are used to describe
dynamic behavior within states and transitions. The VSL already supports basic mathematical
operations, and a subset of more complex functions is provided in the specification [278].
However, the specification does not attempt to provide a complete set of complex functions
nor limits the extensions of the VSL to support domain-specific functions. For instance,
functions such as exp10(), exp2(), and expE() may be created to extend the arithmetic
operation of exponentiation for different basis (10, 2, e). As a design choice for the prototype
implementation, instead of defining new functions for every mathematical operation required
in expressions, a JavaScript-based definition is used to simplify parsing and interpretation by
the UC2E tool. For instance, the function Math.pow(b,e) is used in tagged values of the
PAP to specify exponentiation with the basis b and exponent e.

160 CHAPTER 6. PROTOTYPE IMPLEMENTATION

-baseName : QString
-name : QString

HwModel

-current : pair<QString, QString>
-currentEvaluated : pair<double, QString>
-execTime : pair<QString, QString>
-execTimeEvaluated : pair<double, QString>
-dynamicCnsumption : bool
-dynamicExecTime : bool
-id : QString
-name : QString
+evaluate() : bool
+getCurrent() : QPair<QString, QString>
+getCurrentEvaluated() : QPair<double, QString>
+getExecTime() : QPair<QString, QString>
+getExecTimeEvaluated() : Qpair<double, QString>
+getName() : QString
+getId() : QString
+hasDynamicConsumption() : bool
+setCurrent(value : QString, unit : QString)
+setExecTime(value : QString, unit : QString)

HwState

-id : QString
-value : double
-unit : QString

HwSetting

-id : QString
-value : double
+getValue() : QPair<QString, double>
+setValue(value : double)

HwAttribute

+toJSON() : QString
HwMapping

-current : pair<QString, QString>
-currentEvaluated : pair<double, QString>
-execTime : pair<QString, QString>
-execTimeEvaluated : pair<double, QString>
-dynamicCnsumption : bool
-dynamicExecTime : bool
-fromState : HwState*
-isInitialTransition : boolean
-name : QString
-toState : HwState*
+evaluate() : bool
+setCurrent(value : QString, unit : QString)
+hasDynamicConsumption() : bool
+getCurrent() : QPair<QString, QString>
+getCurrentEvaluated() : QPair<double, QString>
+getExecTime() : QPair<QString, QString>
+setExecTime(value : QString, unit : QString)
+getExecTimeEvaluated() : Qpair<double, QString>
+getFromState() : State*
+setFromState(state : State*)
+getId() : QString
+getName() : QString
+getToState() : State*
+setToState()(state : State*)

HwTransition

-interface = pin
-gpio : int
+getGpio() : int
+setGpio(number : int)
+toJSON() : QString

GPIOMapping
-interface = mcu
+toJSON() : QString

MCUMapping
-interface = uart
-controller : int
+getController() : int
+setController(num : int)
+toJSON() : QString

UARTMapping
1

1 1

1

1..*

1

11..*
1 1..*

1 1..*

-transitions

-hwMapping

-hwSettings

-energyAttributes

-activeState

-states

Visual Paradigm Standard(Schaarschmidt(Fachhochschule Osnabrueck))

Figure 6.15: Mapping of hardware component models in C++ (UML 2.5 class diagram).

Estimation Process of IPA and DPA

For IPA, the power estimation process is based solely on behavioral changes in hardware
component models and their modeled consumption values. The UC2E tool is able to draw line
charts for an online estimation and to generate logs for offline analysis. Additional properties
must be considered for hardware components with their own complex logic to achieve realistic
interactions in IPA. However, this increases the need for more complex hardware models.

Imagine a sensor connected via an I2C interface. To achieve a low-level communication
between the virtual hardware component and the hardware component model, the UC2E tool
has to provide a virtual memory map containing all registers which are externally reachable via
the I2C interface. By this, the system model might be able to retrieve data such as measurement
values during the simulation. Such a virtual model has been successfully implemented for
the Bosch BME280 [53] and integrated into the UC2E tool for the evaluation of the power
consumption estimation approach in Chapter 7 (p. 175).

Since no hardware platform is used and hardware accesses are virtual, only software-related
energy bug candidates may be detected. When keeping track of all hardware component models
during simulation, an active component during a low-power phase when executing a test case
might indicate an energy bug. The developer must analyze the behavior to evaluate whether
it is a an error or intended behavior. For instance, a sensor may be left enabled, e.g., if the
expected sleep period is too short and, thus, it is too expensive to turn it off and on.

In DPA, the UC2E tool uses two different sources for power estimation. To obtain mea-
surement data during the test case execution, the UC2E tool queries the Otii server within
an interval of 1 ms. Beside the table-based live view of hardware components shown in Fig-
ure 6.11(b) (p. 156 ff.), the measured data are combined with the modeled values of hardware
component models into a single line graph (online) and log file (offline) to provide developers
with energy traces for the power consumption estimation.

6.5. HARDWARE-BASED MODEL-TESTBED 161

Based on energy traces, the UC2E tool is also able to automatically detect candidates for
energy bugs. An abrupt increase of the measured current consumption without a prior state
change and message exchange may indicate a hardware-related energy bug (Type A or B).
Moreover, inconsistencies between the expected and measured values may indicate additional
hardware-related energy bugs. As another example, the software application model sets the
MCU into a low-power mode. As a result, the UC2E tool expects a lower current consumption
of the overall system. If the measured value does not indicate a power consumption drop to
the expected level, a software-related energy bug (Type C or D) might exist in the design
of the software model. In both cases, further investigations of the developer are necessary to
exclude an inaccuracy in the energy model or a simulation error. Since the UC2E tool traces
active states and power consumption levels for all hardware component models during the
simulation, it may be able to identify the affected hardware component causing the misbehavior
and provide initial feedback to the developer. For complex use cases with multiple hardware
components involved, future work may extend this approach by implementing a matching
algorithm since the deviation detected by the UC2E tool is roughly equal to the single or the
sum of several current tagged values of states or transitions.

In general, the UC2E tool supports scenario definitions as introduced in Section 3.2
(p. 81 ff.), specifically to detect energy bugs. However, some of the requirements and con-
straints specified in scenarios require extended environmental control, which cannot always be
guaranteed if DPA is used in field experiments instead of laboratory tests. IPA allows a direct
influence of hardware models if this is required to fulfill a specific scenario. For instance, a
virtual hardware model of a sensor may return readings derived by the UC2E tool from the
currently active scenario. As a message bridge, the UC2E tool might also be extended for
fault injections.

6.5 Hardware-based Model-Testbed

This section covers the development of the hardware-based Model-Testbed. Following the SMiL
approach (cf. Definition 5.1, p. 135), the concept of a hardware-based Model-Testbed allows a
direct interaction with the SUT, e.g., simulated software model, function-wise and energy-wise.
As a contribution to overcome RQ4, Model-Testbeds are used in conjunction with DPA to
evaluate software application models in early MDD phases. In Figure 6.1, the Model-Testbed
is located at (5).

A brief overview of the Model-Testbed concept is given in Section 6.5.1. Section 6.5.2
focuses on the software layer and introduces the architecture and functions of the message
interpreter, denoted as firmware in the following sections. For the hardware layer discussed
in Section 6.5.3, the Model-Testbed concept has been applied to three MCU architectures
from different vendors, namely Espressif Systems ESP32 [111], NXP LPC54114 [269], and
STMicroelectronics STM32L476 [371]. As a universal and lightweight communication protocol
to interact with Model-Testbeds (cf. (6) in Figure 6.1, p. 139), Model-RPC is introduced in
Section 6.5.4.

Initial concepts of Model-Testbeds and Model-RPC have been published in [339, 340, 341,
393] while a supervised master’s thesis [62] provides contributions by extending the firmware
and realizing the advanced Model-Testbed concept focusing on rapid prototyping and developer
productivity.

162 CHAPTER 6. PROTOTYPE IMPLEMENTATION

6.5.1 Overview

The main goals of the Model-Testbed concept are to enable dynamic and near real-time
hardware-software communication and realistic interaction with the environment. The defi-
nition of Model-Testbeds follows a minimalistic, modular and interchangeable design concept.
The term minimalistic describes the property of a Model-Testbed to use a minimum and only
the necessary amount of hardware components. Especially in the layouts of commercial evalua-
tion boards, the system is equipped with additional components such as converters, regulators,
interfaces, debuggers, and sometimes even sensors and actuators, which are not necessary
for the intended evaluation and can negatively influence the measurement and estimation of
power consumption. For MCUs as the core of the Model-Testbed, for instance, the reference
implementation provided by datasheets only consists of some additional resistors, switches,
and capacitors. The terms modular and interchangeable describe concepts of a Model-Testbed
where components, such as individual peripheral devices and the MCU, can be reconfigured or
replaced to perform specific tests, e.g., for design space exploration. To meet the requirements
of rapid prototyping discussed in Section 2.9 (p. 72 ff.) as idea to overcome RQ4, adding and
replacing individual components should be possible without much integration effort. Following
the concept of a breakout board, the MCU needs to provide as many GPIOs and access to
functional blocks as possible to connect and integrate external peripheral devices. In addition,
the developed firmware should ensure that each Model-Testbed can be controlled similarly,
regardless of the underlying hardware layer. The general setup of the Model-Testbed is sketched
in Figure 6.16 using the SysML notation [279]. If no power consumption estimations and
evaluation of NFRs have to be performed, the Model-Testbed can communicate directly with
the SUT, e.g., a simulated UML model of the system. However, for the power consumption
estimation based on DPA, the UC2E tool, as an additional component, is required to act as a
message bridge for the two components.

mut : ModelUnderTest testbed : Model-Testbed

mu : MeasuringUnit

µc : SoC

peripherals : Device [0..*]

model : SoftwareModel

sim : SimulationEnvironment

rpc : Model-RPC Message : UART

Supply
VCC

Available
PinOut : GPIO

WakeUp

PinIn : GPIO

DeviceAccess : UART

PowerOut

PinIn : GPIO

PinOut : GPIO

Request-Response

interfaces accesses

Visual Paradigm Standard(Schaarschmidt(Fachhochschule Osnabrueck))

Figure 6.16: Block diagram showing principal parts and usage of the Model-Testbed, adapted
from [341] (SysML 1.6 internal block diagram notation).

In Figure 6.16, UART is used as a communication protocol, which can easily be replaced
by other concepts such as sockets. This illustrates the universal purpose of the Model-Testbed
concept since distributed setups can be realized (cf. Section 6.4.2, p. 157), where simulations
and the Model-Testbed are executed and placed at different hosts and locations.

To provide a power estimation early in the development process while preventing time-
consuming edit-cross-compile-flash-debug cycles [30, 393], the software application itself is not
executed on Model-Testbeds directly. One disadvantage of this approach is that computationally

6.5. HARDWARE-BASED MODEL-TESTBED 163

intensive parts of the software model, for which no low-level source code exists at the time of
testing, are not included in the power consumption estimation process. However, regarding
the overall system, the MCU only accounts for a small part of the total consumption. Since
Model-Testbeds can physically map different operating modes, only a small delta of the current
consumption in the active state is not considered. Again, the use of concepts such as scenarios
(cf. Section 3.2, p. 81 ff.) is a possible solution in which the total workload for the active
state of an MCU within test cases may be specified. With adaptations of Model-RPC and the
firmware, the Model-Testbed might be able to simulate such workloads.

6.5.2 Software Layer

By implementing the Model-RPC protocol for message exchange, the firmware executed on
the Model-Testbed provides a universal interface that does not require a specific system or
simulation environment. Applications such as the UC2E tool can send requests to the Model-
Testbed, which are processed and directed to the desired hardware component, e.g., the MCU,
or communication interfaces such as I2C, SPI, or UART. In this context, the Model-Testbed
acts as a server for requests from any client, e.g., one or more MDD tools. The Model-RPC
allows such clients to configure the Model-Testbed and to interact with its interfaces in a uni-
and bidirectional manner.

Related work presented in Section 2.7.6 (p. 63 ff.) focuses on application-level data exchange
between distributed co-simulations. In contrast, the concept of Model-Testbeds aims to link
the software model with the target platform during the simulations. Similar to DCP, a specific
firmware is executed on the hardware platform. However, the firmware does not represent a
simulation. Instead of exchanging data at the application level, the firmware provides low-level
access to the underlying hardware in a unified manner. This enables direct communication
between the software model and hardware components.

In the following, the architecture of the firmware is presented. Furthermore, power modes
are introduced which are realized by the firmware (message interpreter) of Model-Testbeds and
the policy-oriented HAL presented in Section 6.3 (p. 149 ff.) to keep the system model platform-
independent during simulation and to be able to support multiple MCUs from different vendors
without adjusting parts of the system model.

Architecture

The firmware has been developed for each hardware platform presented in Section 6.5.3
(p. 165). Naturally, the basic principle of the firmware has to be adapted for the specific
hardware platform and, therefore, contains platform-specific source code, e.g., to configure
and interact with communication interfaces. However, all firmware variants are based on
FreeRTOS [13].

Figure 6.17 shows a UML class diagram of the firmware where some aspects have been sim-
plified to maintain readability. The architecture of the firmware consists of five central classes.
The main class of the firmware, referred to as MainApp in Figure 6.17, manages all MessageDis-
patcher and MessageHandler instances executed in distinct tasks. The firmware provides
two MessageDispatcher implementations to handle all incoming and outgoing Model-RPC
messages, namely the ConfigurationDispatcher and the ControlDispatcher. While the
ConfigurationDispatcher accepts all Model-RPC-related messages for the configuration
of the Model-Testbed, the ControlDispatcher handles all requests for the system and for

164 CHAPTER 6. PROTOTYPE IMPLEMENTATION

MainApp

+requestQueue : osMailQ
AbstractMessageHandler

I2CMessageHandlerSystemMessageHandler

PWMMessageHandlerUARTMessageHandler

PinMessageHandler

 ACTIVE
 SLEEP
 DEEP_SLEEP
 DEEP_POWER_DOWN
 OFF

<<Enum>>
PowerMode

-HandlerMap : std::map<String, AbstractMessageHandler*>
MessageDispatcher

-requestQueue : osMailQ
ConfigurationDispatcher

-requestQueue : osMailQ
ControlDispatcher

-jsonrpc : string
-method : string
-params : std:vector<string>
-id : string

Request
-jsonrpc : string
-params : std:vector<string>
-id : string

Response

-jsonrpc : string
-method : string
-data : std:vector<string>
-id : string
-code : int

Error

1

0..1

1

0..1

1
1

1

1

1

0..1

1

0..1

1

0..1

+configurationDispatcher+controlDispatcher

+systemHandler
+uartHandler

+pinHandler
+pwmHandler

+i2cHandler

Visual Paradigm Standard(Schaarschmidt(Fachhochschule Osnabrueck))

Figure 6.17: Basic architecture of the firmware (message interpreter), adapted from [62] (UML
2.5 class diagram notation).

communication interfaces to which peripheral devices may be connected and distributes the
request to the appropriate handler instance. As Figure 6.17 further illustrates, a platform-
specific handler implementation has been developed for each communication interface which
executes the request and, if necessary, generates a response, which is processed by the Con-
trolDispatcher instance. Classes for the message data types, such as Request, Response,
and Error, follow the Model-RPC structure.

The current version of the firmware does not support multiple responses for a single request
and the initiation of Model-RPC messages if interrupts are triggered. However, when GPIOs
are configured as interrupts, the firmware provides functions to query an internal interrupt
counter for each configured GPIO. By this, external clients may use a polling approach to
detect if an interrupt has occurred.

Realization of Power Modes

On one hand, the Model-Testbed enables functional access to the connected devices. On the
other hand, it is possible to change the system state of the Model-Testbed, e.g., by switching
the power mode of the MCU. Due to different architectures, vendor-specific design choices,
and features, MCU families provide various power modes with different specifications that
define whether CPU cores, flash units, SRAM banks, oscillators, and interfaces are powered,

6.5. HARDWARE-BASED MODEL-TESTBED 165

turned off, or throttled if possible. Due to this, a uniform control of MCUs requires further
abstraction. However, while each vendor may use a different naming scheme for provided
power modes, they might share similar characteristics. The basic idea is to define a set of
abstract power modes so that hardware component models representing MCUs in the model
domain may provide a uniform interface for controlling power-related behavior. These power
modes are implemented by the firmware of Model-Testbeds (cf. PowerMode in Figure 6.17)
and the policy-oriented HAL (cf. Figure 5.2, p. 123) to ease the simulation of UML models
and support the rapid prototyping approach. Within this thesis, a total of five power modes
have been defined, namely:

• ACTIVE : Defines the state where the MCU is active and all peripherals powered.

• SLEEP: The system clock is stopped, and no instructions are executed. Peripherals are
powered and can generate interrupts. If configured, registers, the DMA, GPIOs, static
RAM and flash modules are maintained.

• DEEP_SLEEP: This mode is similar to the SLEEP mode with the main clock and
peripheral clocks disabled. Flash modules are put in standby mode or turned off.

• DEEP_POWER_DOWN : Except for the Real-time Clock (RTC), the MCU is com-
pletely turned off and can only be awakened by RTC-generated interrupts. Static RAM
and registers are not maintained.

• OFF : The MCU is completely turned off.

Unique ids are assigned to the introduced power modes, ranging from 0 (ACTIVE) to 4 (OFF),
which are used as a reference by the firmware and Model-RPC. For each MCU of a Model-
Testbed, the introduced abstract power modes have to be mapped to the most suitable power
modes of the specific MCU. The elaborated mappings for the MCUs discussed in Section 6.5.3
are shown in Table E.1 as part of Appendix E (p. 285 ff.).

6.5.3 Hardware Layer

To demonstrate the portability of the approach, Model-Testbeds were developed for three
different hardware platforms. The MCUs used for Model-Testbeds were chosen for a variety of
reasons. On one hand, the platform independence of the approach shall be demonstrated by
selecting products with various architectures from different manufacturers. On the other hand,
the selected MCUs have different fields of application. For instance, the Espressif Systems
ESP32 [111] is a widely used MCU in the IoT domain, applied in commercial products, e.g.,
smart home applications, and in IoT-related projects driven by the maker community. The
NXP LPC54114 [269] is a low-power, dual-core MCU based on an ARM Cortex-M4 core and
an ARM Cortex-M0+ core, specifically designed for always-on applications in automotive,
industrial, and mobile domains. The STMicroelectronics STM32 MCU family is widely used
in the industry for electronic devices focused on sensor data handling and data processing.
Based on the provided functionalities, Model-Testbeds may be further divided into basic and
advanced Model-Testbeds.

166 CHAPTER 6. PROTOTYPE IMPLEMENTATION

Basic Model-Testbeds

The term basic describes platforms following the concept of breakout boards. Figure 6.18
shows Model-Testbeds which have been used and developed within this thesis. The first Model-
Testbed shown in part (a) of Figure 6.18 is built on a Himalaya basic breakout board with a
mounted Espressif ESP32 SoC2 without embedded flash. A second Model-Testbed based on
the NXP LPC541143 [269] is shown in part (b) of Figure 6.18. To meet the design concept
of Model-Testbeds, a specific breakout board for the NXP LPC54114 has been designed as a
platform prototype using the Altium CircuitMaker design tool [12]. The schematics of the
developed breakout board are included in Appendix E.2 (p. 287 f.).

(a) (b)

Figure 6.18: Images of basic Model-Testbeds based on a commercial ESP32 breakout board (a)
and the developed breakout board for the LPC54114 (b).

Advanced Model-Testbed

An advanced Model-Testbed based on the STMicroelectronics STM32L476 [371] as an improved
version of the basic Model-Testbeds has been elaborated in a supervised master’s thesis [62].
The main goal of the advanced Model-Testbed concept is to enhance the rapid prototyping
support and to improve the usability, productivity, and experience of developers by simplifying
their general use and handling for test setups. For instance, when basic Model-Testbeds are
used, system setups were based on breadboards and jumper cables, which has turned out to
be occasionally error-prone and required more in-depth technical knowledge. Due to this, the
mobility of Model-Testbeds was also limited.

The developed advanced Model-Testbed addresses those limitations and is designed as
a mobile, stackable, and enclosed system with standardized JST XH pin and socket inter-
connection for communication interfaces such as GPIO, I2C, or SPI. Figure 6.19 shows the

2Espressif part number: ESP32-WROOM-32 with ESP32-D0WDQ6
3NXP part number: LPC54114J256BD64QL

6.5. HARDWARE-BASED MODEL-TESTBED 167

(a) (b)

Figure 6.19: Images of the advanced Model-Testbed based on the STM32L476 showing the
front (a) and side (b) of the 3D-printed enclosure.

front (a) and side (b) of the developed advanced Model-Testbed. It provides eight digital and
four analog interfaces via shared GPIOs and four Pulse-width Modulation (PWM), two I2C,
and two UART interfaces. Moreover, the advanced Model-Testbed provides a single interface
for CAN and SPI, respectively. Furthermore, two buttons and a brightness sensor for direct
interaction with developers have been integrated. A separate non-volatile memory module
stores the active configuration and up to three fallback configurations. The simplified block
diagram of the Model-Testbed is shown in Figure 6.20. Besides the STM32L476, a Raspberry
Pi Zero W [318] has been integrated into the design to provide a wireless access point with
which developers are able to configure the Model-Testbed using a web user interface.

STM32L476 (MCU)

Interfaces

Model-Testbed

GPIO

(8x)

I2C

(2x)

SPI

(1x)

PWM

(4x)

Raspberry Pi Zero W

Brightness Sensor

LED

Button (2x)

EEPROM

IO-Expander

GPIO

I2C

Status LED (3x)

GPIO

OLED

Status LEDGPIO

I2C

Webbrowser

(Configuration)

Model

Simulation
USB

WiFi

Message Interpreter

Webserver

External Host

UART

Figure 6.20: Block diagram of the advanced Model-Testbed (adapted from [62]). Rectangles
outlined in grey define the system boundaries, while rectangles outlined in blue describe the
individual components. Black arrows indicate communication protocols between components.

168 CHAPTER 6. PROTOTYPE IMPLEMENTATION

6.5.4 Model-RPC

To enable interactions between the simulation environment and a Model-Testbed within DPA
(cf. Section 5.4.2, p. 136), Model-RPC as a universal and lightweight communication protocol
has been specified, marked as (6) in Figure 6.1 (p. 139). Generally, Model-RPC can be
understood as a mapping of functions a Model-Testbed provides. In DPA, the interaction
between the simulated system model and the Model-Testbed follows a client-server principle
and relies on RPC to exchange messages. As illustrated in Figure 6.1 (p. 139), if a hardware
component model as the client requires hardware access, corresponding SDXP messages are
translated into Model-RPC messages by the UC2E tool. Afterward, the messages are forwarded
to the Model-Testbed, acting as a server in this scenario. The responses are returned from
the Model-Testbed to the UC2E tool and are passed to the simulation environment for further
processing. Due to the strict decoupling, Model-RPC fulfills the following requirements:

• Independent: The communication protocol should be independent of the transport proto-
col, communication interface, hardware platform variants, and programming languages.

• Efficient: The implementation of the endpoints should be resource efficient w.r.t. the
source code footprint and the required computing time to interpret messages.

• Structured: Messages should be structured so that they are machine-readable.

• Verifiable: Along with the machine-readable structure of messages, a methodology should
exist to verify messages automatically for correctness and completeness using a schema
description.

• Extendible: The structure of messages should support future extensions.

• Versionable: The communication protocol should offer the possibility to distinguish
between different versions to avoid problems with varying endpoints.

• Well-defined: The communication protocol should follow a standardized approach to
easily integrate and adapt existing tools and procedures.

Data serialization, as used for RPC, can be in textual or binary format. Flatbuffers [141]
and Protocol Buffers [139] are examples of language and platform-independent mechanisms
for a binary serialization of structured data. With gRPC [140], a standardized framework for
the binary message exchange based on RPC and Protocol Buffers exists. XML and JSON
are the two most commonly used data exchange formats for text-based encoding of messages.
While XML is the approach with the most comprehensive capabilities, processing XML-based
messages on an embedded system is too complex compared to JSON [266].

Based on and fully compatible with JSON-RPC [190], Model-RPC is defined as a standard-
ized communication and human-readable protocol. The disadvantages of lower performance
and higher amount of data compared to binary encoded messages [233, 310, 373] are accepted for
the prototype implementation within this thesis. JSON-RPC implements a request-response
principle based on a client-server model with JSON-based messages. The specification [190]
defines four message types: (1) request, (2) response, (3) notification, and (4) error.
A client initiates a request message while the server sends a response message back to the
client containing either the result or an error message. A client may also send a notification
message. In this case, the server does not send a response message, even if the execution

6.5. HARDWARE-BASED MODEL-TESTBED 169

fails. In addition to the single message mode, several messages can be sent as a batch. The
basic structure of a Model-RPC request is shown in Listing 6.8.

1 {
2 "jsonrpc": "2.0",
3 "method": "[CLASS_NAME].[METHOD]",
4 "params": {},
5 "id": 12
6 }

Listing 6.8: Basic structure of a Model-RPC request message.

The message structure consists of a method property as a string, a param object, and an
id, which the client can choose freely to assign a response to a former request. A Model-RPC
request reuses the jsonrpc property (line 2) to specify the version number. For all messages,
this property is set to 2.0, representing the latest version of JSON-RPC [190]. However, the
structure of the method property value (line 3) is more restricted compared to JSON-RPC
and consists of the two parts [CLASS_NAME] and [METHOD] separated by a dot. The class
name specifies a part of the Model-Testbed, whereas the method defines the actual operation
performed by the part. This extension expands the language syntax in an object-oriented way
to distinguish between different component types. It also allows commands and functions for
specific interfaces to be grouped and organized, achieving a logical or physical segmentation of
the Model-Testbed. The params object (line 4) may contain an array or any structured object.
In Model-RPC, a device object must be provided as a parameter to distinguish between
communication interfaces of the same type, e.g., multiple I2C buses. The response message
shown in Listing 6.9 contains the result of the method execution as a result property, e.g., 42.
The format of the result property may vary between a simple value or a JSON object literal.
In Listing 6.9, the value of the id property matches the value of the id property in the former
request message (cf. Listing 6.8). Note that a response message will only be sent to the
client if the request contains an id property.

1 {
2 "jsonrpc": "2.0",
3 "result": 42,
4 "id": 12
5 }

Listing 6.9: Exemplary Model-RPC response message.

Model-RPC provides different method classes to configure, control, and interact with the
Model-Testbed and interfaces such as GPIO, PWM, UART, and I2C on a lower level. The
remainder of this section describes the specified method classes ([CLASS_NAME]) with all
provided methods ([METHOD]) in detail.

170 CHAPTER 6. PROTOTYPE IMPLEMENTATION

System Methods

The system class identifier groups all methods addressing the configuration of the Model-
Testbed and the behavior of the MCU. Table 6.5 shows the set of methods provided by the
system object identifier.

Method
params Parameter

Description
Name Type

system.config - - Return current configuration.
system.restart - - Restart remote target.
system.reset - - Reset remote target.
system.sleep mode Number Set the Model-Testbed into a specific low-power mode.
system.configure config configType Configure a remote target.

Table 6.5: Model-RPC methods for the system class.

With the system class identifier, the target Model-Testbed can be reset, restarted, and
set to a specific low-power mode. For the latter, a mode parameter must be provided which
corresponds to the id of the respective low-power mode specified in Section 6.5 (p. 161 ff.).
The example in Listing 6.10 shows a Model-RPC request to set the target system into a
low-power mode, where the mode parameter is added as property of the params object (line 4)
and set to id 1 (sleep mode). With the config and configure methods, the current setting
of the Model-Testbed can be read and set using a configType object. The structure of the
configType object contains configuration details for each supported interface of the Model-
Testbed, such as GPIO, PWM, or I2C. It is added as a property to the params object (line 4)
if the configure method is used. More details about the configType object, along with
JSON-Schema [417] description, are provided in Appendix D.1 (p. 279 f.).

1 {
2 "jsonrpc": "2.0",
3 "method": "system.sleep",
4 "params": { "mode": 1 }
5 }

Listing 6.10: Basic example of a Model-RPC to change the power mode of a Model-Testbed.

GPIO Methods

To control a single GPIO, Model-RPC specifies the pin class identifier with the implemented
methods shown in Table 6.6. In order to interact with a specific GPIO, the params object
is extended with a device object containing a key-value property with the number of the
affected GPIO. In Model-RPC, a GPIO with a default configuration can be set, cleared, and
read. However, if a GPIO is configured as ADC or interrupt, extended functionalities are
provided by the firmware of a Model-Testbed (cf. Section 6.5.2, p. 163 ff.). With pin.adc, the
analog value of a GPIO can be requested, while pin.interrupt, as a counter-like method,
returns the number of interrupts triggered. The following example in Listing 6.11 shows a

6.5. HARDWARE-BASED MODEL-TESTBED 171

Method
device Parameter

Description
Name Type

pin.set gpio Number Set a single GPIO.
pin.clear gpio Number Reset a single GPIO.
pin.get gpio Number Get the current state of the GPIO.
pin.adc gpio Number Get the current ADC value from 0–4048, e.g., 0–3.3 V.

pin.interrupt gpio Number Get the counted number of rising/falling edges for a
GPIO configured as interrupt pin.

Table 6.6: Model-RPC methods for the pin class.

Model-RPC request to receive the current analog value of the GPIO with the number 4. Note
that an id is provided to receive a response with the current value from the Model-Testbed.

1 {
2 "jsonrpc": "2.0",
3 "id": 1,
4 "method": "pin.adc",
5 "params": {
6 "device": {
7 "gpio": 4
8 }
9 }
10 }

Listing 6.11: Basic example of a Model-RPC request to get an analog value of a single GPIO.

PWM Methods

Model-RPC specifies the PWM class identifier to provide functions of the PWM interface
to read and configure the duty cycle for a specific PWM channel. An overview of provided
methods is given in Table 6.7.

Method
device Parameter

Description
Name Type

pwm.dutycycle pwm Number Get the duty cycle of the PWM channel.

pwm.set
pwm Number Set the duty cycle for a PWM channel.dutycycle Number

Table 6.7: Model-RPC methods for the pwm class.

UART Methods

Model-RPC provides write and read methods for peripheral devices connected via UART
interfaces. Both methods listed in Table 6.8 require an id of the UART controller as a

172 CHAPTER 6. PROTOTYPE IMPLEMENTATION

property of the device object. Additionally, a buffer containing the string to be sent must
be provided for the write method. The read method requires a timeout property defining
the amount of time the method may take to complete. The key-value pairs buffer and
timeout in Table 6.8 have to be provided as properties of the params object.

Method
Parameter

Description
Name Type

uart.write
controller* Number Write a message to an UART interface.buffer+ String

uart.read
controller* Number Read data from an UART interface.timeout+ Number

* = device object property, + = param object property

Table 6.8: Model-RPC methods for the uart class.

Figure 6.21 shows an example for a communication between a system model and a Model-
Testbed to send and verify a configuration for a peripheral device connected over UART using
notification, request, and response messages. In step 1 of the UML sequence diagram,
a Model-RPC notification message with uart.write as method is transmitted from the
simulated system model to the Model-Testbed. The message includes a device object and a
buffer object as key-value pair of the params object. While the controller key-value pair
specifies the UART interface, the buffer contains the configuration, which will be written
to the connected peripheral device on the Model-Testbed. In step 2.1 of Figure 6.21, the
simulated system model sends a Model-RPC request message to to delegate the execution of a

sm : SystemModel testbed : Model-Testbed

1: notification

2.2: response

2.1: request

Visual Paradigm Standard(Schaarschmidt(Fachhochschule Osnabrueck))

Figure 6.21: Model-RPC communication between a system model and a Model-Testbed, adapted
from [341] (UML 2.5 sequence diagram notation).

6.5. HARDWARE-BASED MODEL-TESTBED 173

uart.read command on the target Model-Testbed. Since the request message contains an id
parameter, the Model-Testbed generates a response message that is sent back to the system
model in step 2.2. The value parameter of the result contains the response of the peripheral
device, which the system model uses to verify if the configuration has been processed correctly.

I2C Methods

Model-RPC provides a set of methods listed in Table 6.9 for the interaction with I2C interfaces.
The read method requires the param object to contain a key-value pair for the number of
bytes to be read. The device object must consist of properties as key-value pairs for the I2C
bus to be used, the identifier of the connected device, and the register to be read. For
some peripheral devices, the register property for read methods can be omitted. The write
method requires a list of bytes to be written and a device object with properties similar to
those of the read method. Furthermore, a basic test function to verify the presence of a
peripheral device with the given identifier on a specific I2C bus is provided.

Method
Parameter

Description
Name Type

i2c.read

bytes+ Number

Read bytes from a I2C device.bus* Number
identifier* Number
register* Number

i2c.write

bytes+ List

Send bytes to a I2C device.bus* Number
identifier* Number
register* Number

i2c.test
bus* Number Checks the presence of a peripheral device

with the given identifier.identifier* Number
* = device object property, + = param object property

Table 6.9: Model-RPC methods for the i2c class.

The Model-RPC definition can be fully described using OpenRPC [283]. The OpenRPC
specification provides a machine-readable and programming language-agnostic interface de-
scription for JSON-RPC APIs allowing humans and computer systems to explore the struc-
ture and methods. An example of the Model-RPC definition for the uart.write method in
OpenRPC can be found in Appendix D.2 (p. 283 f.).

In this chapter, the prototype implementation of the DPA method has been presented. This
includes parts (1) to (8) illustrated in Figure 6.1 (p. 139), for instance, the concept of Model-
Testbeds, the SDXP and Model-RPC communication protocols, and the UC2E tool as a central
element combining, managing, and controlling UML-based simulations, Model-Testbeds, and
measuring devices. Hence, a power consumption estimation can be executed, as described in
steps 6 to 11 of the developer workflow (cf. Section 3.1, p. 77 ff.).

Chapter 7

Evaluation

After discussing the main concepts and their prototype implementations, this chapter evaluates
the overall power consumption estimation approach as a contribution to answer RQ3 and
RQ4. Parts of this chapter have been published in [341]. Section 7.1 introduces the basic
setup of the case study for the power consumption estimation. The evaluation is divided
into two parts. As the first part, Section 7.2 presents the modeling and evaluation of the
beehive microclimate sensor node case study to demonstrate the collaboration of the presented
concepts introduced in this thesis and the potential of the overall power consumption estimation
approach. Furthermore, the potential of the power consumption estimation approach for the
detection of energy bugs is shown. Section 7.3 focuses on the performance of DPA and
evaluates the time delays and power overhead as the second part of the evaluation.

7.1 Setup

This section introduces the basic test setup for the power consumption estimation of a beehive
microclimate sensor node as part of the case study presented in Section 7.2 (p. 176 ff.). With
the Espressif Systems ESP32, the selected Model-Testbed is based on a popular low-cost
MCU commonly used in the IoT domain. The firmware executed on the Model-Testbed relies
on FreeRTOS [13] and has been developed with the Espressif IoT development framework.
The test setup shown in Figure 7.1 consists of the Qoitech Otii Arc measurement unit, the
Model-Testbed, and additional hardware components used in the beehive microclimate sensor
node, namely the Bosch BME280 to measure environmental parameters and the RAKwireless
RAK811 Long Range (LoRa) module to achieve a wireless communication. The measuring
device in Figure 7.1 is connected to the host system executing IBM Rhapsody and the UC2E
tool via USB. A Silicon Labs CP2102 USB-to-UART bridge [359] with a configured baud rate
of 115200 bauds is used to communicate with the Model-Testbed.

For the evaluation, the Qoitech Otii Arc measures the electric current consumption and
voltage of the system shown in Figure 7.1 with a sample rate of 4 ksps. The Qoitech Otii Arc
uses two shunts measuring in parallel, allowing the device to immediately switch between these
two shunts to avoid the range problems and sample loss described in Section 2.1.3 (p. 20 ff.).
The analyzes of the UC2E tool are based on hardware component models and the raw data
recorded by the measuring device and obtained at a polling interval of 1 ms from the Otii
desktop application.

175

176 CHAPTER 7. EVALUATION

Due to the setup, the representation of signals in the diagrams of this section may be
inaccurate if the frequency of the signals to be sampled is equal to or higher than the sampling
frequency of the Qoitech Otii Arc or the polling interval of the UC2E tool. Further details
about the UC2E tool and embedded firmware, hardware characteristics of the host system,
and the Qoitech Otii Arc can be found in Appendix F (p. 289 ff.).

USB-to-UART Serial Adapter

ESP32 (Model-Testbed)

Qoitech Otii Arc

(Measuring Device)

BME280 Sensor

RAK811 LoRa Module

Figure 7.1: Test setup showing the Model-Testbed with connected peripherals and the Qoitech
Otii Arc.

7.2 Case Study: Beehive Microclimate Sensor Node
This section introduces the beehive microclimate sensor node case study as a real-world IoT
example for smart objects. The evaluation in this section demonstrates the application of the
presented modeling concepts. Based on the case study, a proof-of-concept and an evaluation
of the DPA methods are presented. Previous versions of the beehive microclimate sensor node
case study have been used in [341, 391] to illustrate concepts and perform evaluations.

Section 7.2.1 provides an overview of the beehive microclimate sensor node, introduces
the hardware components of the platform, and explains the field of application. The model-
ing of hardware components is covered by Section 7.2.2, while Section 7.2.3 introduces the
software application model. In Section 7.2.4, the scenario of the case study is introduced. A
power consumption estimation for the beehive microclimate sensor node is demonstrated and
discussed in Section 7.2.5, while the capabilities of DPA to detect energy bugs are shown in
Section 7.2.6.

7.2.1 Overview

This section describes the basic layout and functionality of the beehive microclimate sensor
node to monitor western honeybee (Latin: Apis mellifera) colonies as a typical IoT application
example. Generally, beekeeping in wood or polystyrene magazines can negatively affect bees

7.2. CASE STUDY: BEEHIVE MICROCLIMATE SENSOR NODE 177

since the magazines do not correspond to natural housing. Bees can actively influence the
humidity and temperature of a magazine to ensure optimal environmental conditions for
larvae and the colony [106]. Since beekeepers either do not visit the hives at all or visit them
irregularly during the winter months from about October to March, the sensor node monitors
the hives remotely. This results in the requirement that the sensor node must operate energy-
efficiently for at least six months while monitoring the actual condition in the magazine and
transferring environmental data to a cloud service via a wireless communication interface.

Beehive Microclimate Sensor Node

Espressif ESP32 MCU UART
Bosch BME280

Environmental Sensor

RAKwireless RAK811

WisDuo LoRa Module
I2C

The Things Network

ApplicationLoRa

Figure 7.2: Block diagram of the sensor node connected to the The Things Network (TTN).
Black arrows describe wired communication between components (blue squares), and the blue
arrow describes wireless communication between systems (grey squares).

A simplified block diagram of the sensor node is shown in Figure 7.2. It consists of
an Espressif ESP32 MCU [111], a Bosch BME280 environmental sensor [53] on an Adafruit
breakout board [5] connected via I2C, and a RAKwireless RAK811 WisDuo LoRa module
[317] based on the Semtech SX1276 LoRa transceiver [351] connected via UART. The Bosch
BME280 sensor is placed inside the beehive magazine and measures temperature, humidity,
and air pressure at a fixed interval. For energy-efficient and long-range wireless communi-
cation, the LoRaWAN communication protocol [230] is used to transmit average values of
the obtained sensor data to a TTN [385] cloud application instance, where the data may be
pre-processed, formatted, and forwarded to platform services such as ThingSpeak [381] or
tools like MathWorks MATLAB [380] for further analysis. The TTN is an IoT ecosystem
based on an open and decentralized LoRaWAN network. Figure 7.3 shows the IoT sensor
node prototype in a green-colored enclosure applied in a beehive.

Figure 7.3: The prototype microclimate sensor node applied in a beehive (red circle).

178 CHAPTER 7. EVALUATION

7.2.2 Hardware Component Modeling

This section describes the UML modeling process for each hardware component of the beehive
microclimate sensor node following the developed concepts introduced in Section 5.2 (p. 117 ff.).
Hardware component models representing peripheral devices use the reference implementation
of the policy-oriented HAL (cf. Section 6.3, p. 149 ff.) for hardware-software interactions with
the Model-Testbed (cf. Section 6.4.2, p. 157 f.). By this, hardware-related aspects are hidden
from the actual software application model, increasing platform independence.

Device State Electric Current Execution Time
Value Static Source Value Static Source

Espressif
ESP32

Off 1.0 µA Y O - - -
Deep-sleep 10.0 µA Y O - - -
Active 27.5 mA Y M - - -

Bosch
BME280

Sleep 13.4 µA Y M - - -
Forced 467.2 µA Y M 16.59 ms Y M

RAK-
wireless
RAK811

Sleep 5.5 µA Y M - - -
Idle 6.1 mA Y M - - -
Join 19.9 mA Y M - - -
Receive (RX) 22.2 mA Y M 1300 ms Y E
Transmit (TX) 63.9 mA Y M D N C

- = Not applicable, D = Dynamic at runtime, C = Calculated, E = Estimated,
M = Measured, N = No, O = Obtained from datasheets, Y = Yes

Table 7.1: Operating states, power consumption and execution times of components for the
beehive microclimate sensor node. Unused operating states have been omitted.

To define an energy model for each hardware component model, datasheets [53, 111, 317]
for the components of the beehive microclimate sensor node shown in Figure 7.2 (p. 177)
have been analyzed, and corresponding operating states have been extracted. Table 7.1 shows
a subset of identified operating states which can be triggered by the software application
model (cf. Section 7.2.3, p. 183 ff.), along with their initially obtained current consumption
and execution time values. The supply voltage of each hardware component in Table 7.1 is
3.3 V. For the evaluation, transitions are assumed to be executed instantaneously and do not
contain any significant energy current or time offset. As a result, the tagged values current
and execTime of each transition are set to (0, mA) and (0, ms), respectively. The electric
current consumption values in datasheets are often determined under ideal conditions and
differ significantly from those reached when the hardware component is used in more realistic
environments. Therefore, for all considered operating states, the extracted power consumption
values have been confirmed or adjusted with values obtained by measurements executed in this
thesis under more realistic conditions of the environment in which the evaluation is performed.
In the following, particular aspects of the hardware modeling process are discussed.

Espressif ESP32 MCU

For the Espressif ESP32 MCU, a power mode mapping (cf. Section 6.5.2, p. 163 ff.) for the
operating states given in Table 7.1 has been defined. The ACTIVE state corresponds to the
Modem Sleep power mode of the ESP32 (cf. Table E.1 in Appendix E.1, p. 285 ff.). The electric

7.2. CASE STUDY: BEEHIVE MICROCLIMATE SENSOR NODE 179

current consumption value for this state has been captured while the MCU was operating
in a mode with a single active core and disabled Wi-Fi and Bluetooth peripherals. Within
the DEEP_SLEEP state, mapped to the Deep-sleep [111], only the ultra-low power core, the
real-time clock module, and the memory are powered. The current consumption value for the
OFF state has been obtained from the datasheet [111], while the values for the two other states,
DEEP_SLEEP and ACTIVE, have been derived from measurements. Since the time spent in
each mentioned state during the simulation depends entirely on the workflow of the software
application model, no execution times have been specified.

Bosch BME280 Environmental Sensor

As a result of the modeling process, Figure 7.4 shows the UML class definition of the Bosch
BME280 hardware component model directly taken from the IBM Rhapsody MDD tool. The
hardware component model inherits from the PeripheralDevice base class as described in
Section 5.2.3 (p. 122 ff.). Additionally, an interface (BME280_Interface) has been defined that
specifies all functions a software application model can use. The hardware component model
also encapsulates the platform-independent driver implementation [54] specified as externals
files, bme280 and bme280_defs, in Figure 7.4. Artifacts such as the official Bosch driver files
annotated with the «File» stereotype in Figure 7.4 may be integrated using reverse engineering
processes. The integration of legacy code is a typical procedure in MDD, independent of the
presented concepts. It can be applied during the hardware modeling process described in the
developer workflow (cf. Section 3.1, p. 77 ff.). Since the sensor is connected as an I2C device, the
hardware component model has a reference to an instance of a SimulationI2CAccess class as
an implementation of the RegisterAccessPolicy introduced by the reference implementation
of the policy-oriented HAL in Section 6.3 (p. 149 ff.).

BoschBME280
«HwDeviceAbstraction»

BME280_Interface
«Interface»

bme280
«File»

«Usage»

PeripheralDevice

bme280_defs
«File»

«Usage»

SimulationI2CAccess

«Usage»

Official Bosch BME280
Driver Files

Contains PAP-annotated

State Machine

Figure 7.4: Bosch BME280 hardware component model as UML class diagram modeled with
IBM Rhapsody. In order to improve the legibility, no attributes and operations are shown.

The state machine of the environmental sensor is illustrated in Figure 7.5. For the Normal
state, the values for electric current consumption and the execution time are considered as
being dynamic and specified by expressions, as a modeling feature of the PAP. The expressions
are derived from the datasheet and depend solely on the current configuration, e.g., the number
of sensors and the oversampling rate of each sensor during a single measurement. However,
during the active phase of the case study, only a single measurement is obtained instead of

180 CHAPTER 7. EVALUATION

Sleep
«HwBehavioralState»

Normal
«HwBehavioralState»

[mode == 0]

[mode == 3]

Forced
«HwBehavioralState»

[mode==1]

[mode == 1]

<<HwDeviceBehavioralState>>
current=(467.2,uA)
execTime=(16.59,ms)

<<HwBehavioralState>>
current=(13.4,uA)

<<HwBehavioralState>>
current=((0.2*(1-PAP.execTime*(1000/[...],uA)
execTime=((1+(2*PAP.ATTR.T_Sample)+[...],ms)

Figure 7.5: UML behavioral state machine of the Bosch BME280 modeled with IBM Rhapsody.

a (continuous) measurement series. Due to this, the sensor only switches between the Sleep
and the Forced state during the simulation. Moreover, since the configuration is set by
the software model in the initialization phase and does not change at runtime, the current
consumption and execution time of the Forced state may be, instead, defined as static with
fixed values, as shown in Figure 7.5 and Table 7.1 (p. 178).

RAKwireless RAK811 WisDuo LoRa Module

The state machine of the RAKwireless RAK811 LoRa module shown in Figure 7.6 is the
most complex state machine of the microclimate sensor node with the highest uncertainties
of the modeled values. The main reason is that the RAK811 module operates as a black
box and does not provide internal indicators to identify the current operating state. As a

Sleep
«HwBehavioralState»

RX
«HwBehavioralState»

TX
«HwBehavioralState»

Idle
«HwBehavioralState»

tm(_txDurationInMs)

evIdleSleep

evIdleTX

tm(_rxDurationInMs)

evIdleRX

evSleepIdle

Join
«HwBehavioralState»

evJoinIdle
evIdleJoin

<<HwBehavioralState>>
current=(5.5,uA)

<<HwBehavioralState>>
current=(22.2,mA)
execTime=(PAP.ATTR.RX_DURATION,ms)

<<HwBehavioralState>>
current=(63.9,mA)
execTime=(((PAP.ATTR.N_PREAMBLE+4.25)[...],s)

<<HwBehavioralState>>
current=(19.9,mA)

<<HwBehavioralState>>
current=(6.1,mA)

Figure 7.6: UML behavioral state machine of the RAK811 modeled with IBM Rhapsody.

result, driver implementations have to use polling mechanisms to verify whether, e.g., the
join process [230] or single transmissions were processed successfully. Power consumption
values for each operating state are obtained with the parameters described in Table 7.2 as
the configuration for the wireless communication of the RAK811 LoRa module. The timer
function tm(...) is applied on transitions in Figure 7.6 and defines a timeout, after which
the Receive (RX) and Transmit (TX) windows are expected to be completed, and transitions

7.2. CASE STUDY: BEEHIVE MICROCLIMATE SENSOR NODE 181

back to the Idle state are performed. The parameters of this method are either calculated by
the hardware component model or defined by the scenario specifications. Events for a state
transition are generated within states and defined with the prefix ev. The execution time
of the TX window is calculated dynamically (denoted as D in Table 7.1) during simulation
based on the parameters shown in Table 7.2, while the message length (in bytes) depends on
the input of the software application model. The equations to calculate the length of the TX
window are obtained from [351] and combined into a single expression used in the value field
of the current tag provided by the PAP.

Parameter Configured Value

Bandwidth 125 kHz
Spreading Factor 12
Preamble Length 23 symbols
Header Mode Explicit (bool: 0)
Low Data Rate Optimization Off (bool: 0)
CRC Check Off (bool: 0)
Coding Rate 4/5 (bool: 1)

Table 7.2: Configuration parameters for the wireless communication of the RAKwireless
RAK811 hardware component model, e.g., for calculating the TX window size. A more
detailed explanation of the parameters can be found in [351].

The parameters shown in Table 7.2 may vary during the execution of test cases and
either be included in scenario definitions (cf. Section 3.2, p. 81 ff.) or integrated into the
hardware component model using the PAP stereotype for attributes. When dynamic power-
related behavior is modeled, such expressions may become complex, as shown in Listing 7.1
for the complete definition of the TX duration value. The green-colored element represents

1 (((PAP.ATTR.N_PREAMBLE+4.25)*(1/(PAP.ATTR.BW/Math.pow(2,PAP.ATTR.SF))))+
2 (((8+
3 Math.max(
4 Math.round(
5 Math.ceil((8*PAP.ATTR.PAYLOAD_BYTES-4*PAP.ATTR.SF+28+16*
6 PAP.ATTR.CRC_ENABLE-20*PAP.ATTR.IH_ENABLE)/(4*(PAP.ATTR.SF
7 -2*PAP.ATTR.LOW_DATA_RATE_ENABLE))
8)*(PAP.ATTR.CR+4)
9)
10 ,0)
11)+4.25)*(1/(PAP.ATTR.BW/Math.pow(2,PAP.ATTR.SF))))
12 ,s)

Listing 7.1: Expression for the variable execution time in the TX state of the RAK811.

the MARTE TupleType definition in the form (value,unit). Elements highlighted orange
reference to the id of class attributes with annotated HwAttribute-based stereotypes. Mathe-
matical operations not part of the VSL specification and represented by JavaScript operations
(cf. Section 6.4, p. 155 ff.) are colored in cyan.

The beehive microclimate sensor node is configured as LoRaWAN class A device [350],
the most energy-efficient type defined in the LoRaWAN specification [230]. As the main

182 CHAPTER 7. EVALUATION

characteristic of class A devices, communication can only be initiated by the end device when
opening a TX window to send an uplink message, as illustrated in Figure 7.7. After each uplink
transmission from the SUT to a TTN gateway, the end device, e.g., the RAKwireless RAK811,
must open two receive windows, RX1 and RX2, where data can be sent from the network via
a gateway, to the SUT. The second window RX2 will only be opened if no downlink message
has been received during the first RX window. The transmission is completed if a message has
been received or the second RX window slot is closed. Afterward, the RAK811 LoRa module
returns to an idle state. The delay between the TX and RX windows and the length of each
RX window are variable and part of the LoRaWAN protocol definition used by the TTN to
configure devices. According to the log output after the RAK811 has connected to the TTN
IoT ecosystem, the length of both RX windows is expected to be 3000 ms or less. The first
window RX1 is opened 5000 ms after a completed transmission (RX1 Delay), while the RX2
opens after 6000 ms (RX2 Delay) if no data has been received within RX1.

TX RX1 RX2

RX1 Delay

RX2 Delay

RX1 Length

RX2 Length

Time

Figure 7.7: Receive windows and delays for LoRaWAN class A devices.

For accurate power estimations, the state machine of the RAK811 hardware component
model has been further adapted to consider the characteristics of the TTN. First, an additional
high-level state for the connection phase of the TTN network, also described as Join, has been
added. Joining the TTN network is a non-deterministic process that may contain multiple
attempts with various TX and RX windows, for instance, if a join accept message has been
missed by the RAK811 module. Since the duration and power consumption can not be
predicted in detail, an average power consumption value is used as long as the device tries
to join the network. The value for the join state shown in Table 7.1 has been obtained by
measuring the power consumption during this process ten times. Additionally, benchmarks
revealed that the RAK811 LoRa module closed the first RX window always after a maximum
time of 1500 ms, while the second RX window was never used, leading to parameter adaptions
of the defined scenario and the state machine.

While the aforementioned aspects can be modeled for IPA and DPA using detailed scenario
definitions, there are additional challenges when using DPA. The Bosch BME280, for example,
only passively interacts with the environment by sensing the surroundings. However, variations
in environmental properties directly impact the behavior of the RAK811 LoRa module. For
instance, incoming RX messages as spontaneous events are not predictable by the UC2E
tool in real time. In addition, interference in the transmission medium can lead to longer
transmissions and receiving times, which are unpredictable when interacting in real-time
with physical hardware components in non-simulation environments. Since the RAK811 is
configured as a class A device in this thesis, no spontaneous RX windows occur. Deviations
during the power consumption estimation due to interferences of the transmission medium
can be assigned to the states of the energy model and thus be identified as external effects.

7.2. CASE STUDY: BEEHIVE MICROCLIMATE SENSOR NODE 183

This section has shown that the concepts of hardware component models introduced in
Section 5.2 (p. 117 ff.) are able to represent the basic properties of all hardware components
of the IoT sensor node case study in UML. With the concept of energy models, all significant
power states can be considered, and both static and dynamic energy behavior can be modeled
with stereotypes of the PAP (Section 5.3, p. 124 ff.), which contain single values and complex
expressions. Furthermore, the novel variable declaration concept of the PAP used for attributes
enables a connection between the functional and meta levels. While annotated attributes of
a hardware component model may change during test case execution, e.g., by the software
model, they may directly affect the computation of modeled expressions.

7.2.3 Software Application Modeling

This section describes the software application model for the beehive microclimate sensor
node. From the software developer’s point of view, the software application model represents
the core element of the development process since it specifies the behavior of the sensor node
based on the intended workflow and hardware-software interactions. As part of the system
model, it is also the main target of the power consumption estimation process. Changes in
the workflow may directly affect the system and lead to different measurement results. The
UML class diagram of the system model developed in IBM Rhapsody is shown in Figure 7.8.

UserApplication

CONFIG_TTN_APP_EUI:char*

CONFIG_TTN_APP_KEY:char*

CONFIG_TTN_DEV_EUI:char*

currentMode:bool=false

message[100]:char

evActive()

evMeasure()

evProcess()

evSend()

evSleep()

initSystem():void

measure():void

processData():void

shutdownSystem():void

PeripheralDevice
«EnergyAware»

_access:IAccess*

powerOff():int
powerOn():int

BoschBME280
«HwDeviceAbstraction,DeviceDriver»

«HwPowerAttribute,HwTimingAttribute» h_oversampling:int

«HwPowerAttribute,HwTimingAttribute» p_oversampling:int

«HwPowerAttribute,HwTimingAttribute» s_oversampling:int

«HwBehavioralImpact» getData(resultValues:bme280_data*):uint8_t

«HwBehavioralImpact» powerOff():int

«HwBehavioralImpact» powerOn():int

«HwBehavioralImpact» setSettings(mode:BME280_CONFIG):uint8_t

1

_bme280

WisDuoRAK811
«HwDeviceAbstraction,DeviceDriver»

«HwTimingAttribute» _bandwith_BW:double

«HwTimingAttribute» _codingRateCR:int

«HwTimingAttribute» _CRC:bool

«HwTimingAttribute» _headerIH:bool

«HwTimingAttribute» _lowDataRateOptimizeDE:bool

«HwTimingAttribute» _preambleSymbolsN:int

_rxDelayBetweenReceiveWindowsInMs:int

«HwTimingAttribute» _rxReceiveDelay1:int

«HwTimingAttribute» _rxReceiveDelay2:int

«HwTimingAttribute» _spreadingFactorSF:int

getDeviceEUI():rak_err

getStatus():rak_err

getVersion():rak_err

«HwBehavioralImpact» join():rak_err

«HwBehavioralImpact» powerOff():int

«HwBehavioralImpact» powerOn():int

«HwBehavioralImpact» sendMsg(data:uint16_t*,size:size_t):int32_t

setAppEUI(app_eui:const char*):rak_err

setAppKey(app_key:const char *):rak_err

setDeviceEUI(dev_eui:const char *):rak_err

1

_rak811

SimulationUARTAccess
«CommunicationInterface»

read(resultbuffer:uint8_t*,length:uint32_t,ticks_to_wait:uint32_t):int

write(message:std::string):int

1

_access

CharacterAccess
«Interface»

read(resultbuffer:uint8_t*,length:uint32_t,ticks_to_wait:uint32_t):int
write(message:std::string):int

SimulationI2CAccess
«CommunicationInterface»

read(addr:uint8_t,data:uint8_t*,len:uint32_t):uint8_t

write(addr:uint8_t,data:const uint8_t*,len:uint32_t):uint8_t1

_access

RegisterAccess
«Interface»

read(addr:uint8_t,data:uint8_t*,len:uint32_t):uint8_t
write(addr:uint8_t,data:const uint8_t*,len:uint32_t):uint8_t

IAccess
«Interface,AccessPolicy»

EspressifESP32
«HwMCUAbstraction,DeviceDriver»

«HwBehavioralImpact» setPowerMode(powerMode:uint8_t):bool

«HwBehavioralImpact» setSleepMode(powerMode:uint8_t,params:SLEEP_MODE_PARAMS &):bool

«HwBehavioralImpact» setVoltage():void
1

_esp32

ProcessingUnit
«EnergyAware»

setPowerMode(powerMode:uint8_t):bool
setVoltage(voltagemode:uint8_t):void

ModelLogger
«File»

ModelConnector
«File»

Figure 7.8: Class diagram of the beehive microclimate sensor node modeled in IBM Rhapsody,
adapted from [341]. The system model consists of the main application (yellow), hardware
component models (blue), and the policy-oriented HAL (green). Red-colored classes are
extensions for data exchange with the UC2E tool (UML 2.5 class diagram notation).

184 CHAPTER 7. EVALUATION

A basic software application has been developed to implement the functionality of the
beehive microclimate sensor node. To maintain readability, only a subset of the defined at-
tributes and operations are shown in Figure 7.8. The central part of the software application is
represented by the yellow colored class UserApplication and defines the logic and workflow
of the overall application. The blue highlighted classes show the hardware component models,
namely EspressifESP32, BoschBME280, and WisDuoRAK811, along with their abstract base
classes ProcessingUnit and PeripheralDevice. With the green-colored SimulationUAR-
TAccess and SimulationI2CAccess, two classes derived from the RegisterAccess and
CharacterAccess interfaces as part of the policy-oriented HAL have been developed. They
serve as the abstraction layer for communication interfaces to realize hardware-software in-
teractions. The two red-colored UML classes in Figure 7.8 have been added to the system
model for a data exchange based on the SDXP (cf. Section 6.2, p. 145 ff.). The ModelLog-
ger class provides a system-wide logging interface used by hardware component models to
generate simulation logs for the IPA and DPA. Additionally, both classes are utilized by the
developed policy-oriented HAL to realize the data exchange. Note that ModelConnector and
ModelLogger are external files represented by the stereotype «File». These external files are
only required for the simulation and are not part of the UML model and the code generation
process.

To model the behavior of the UserApplication UML class and, thus, the general behavior
and the program flow of the software application model, the UML state machine shown in
Figure 7.9 has been defined. It consists of the five states InitSystem, Measure, Process,
Send, and Sleep as distinct execution phases of the software application model and a set of
transitions for switching between these phases. Additionally, a set of events has been defined
to trigger transitions, namely evMeasure, evProcess, evSend, evSleep, and evActive.
They are generated within operations of the UserApplication class, such as measure() or
processData() in Figure 7.8 (p. 183).

SleepProcessInitSystem Send
evSend evSleep

Measure

evActive

evMeasure evProcess

Figure 7.9: UML behavioral state machine of the software application modeled with IBM
Rhapsody. Inner details are hidden. (UML 2.5 state machine diagram notation)

When executed, the software application model enters the InitSystem state, where the
peripheral device class instances are initiated, the BME280 sensor and the RAK811 LoRa
module are configured, and a join request to the TTN is initiated. After the TTN has
been joined, the event evMessure is generated, resulting in a state change from InitSystem
to Measure. During the execution of the Measure state, a single measurement with the
Bosch BME280 sensor is performed (forced mode [53]), and measurement data are obtained.
Afterward, the evProcess event is generated, forcing the software application model to
enter the next state, where the acquired sensor values are analyzed and accumulated into a
message. The message is then transmitted to a TTN gateway during the Send state. After
the transmission has been completed, the software application model switches to the Sleep
state in which the system is set into a low power mode for ten minutes. During that time, the
RAK811 LoRa module and the Espressif ESP32 are put into their previously defined sleep

7.2. CASE STUDY: BEEHIVE MICROCLIMATE SENSOR NODE 185

modes. When an evActive event is generated, the system returns to the Measure state, and
the process of measuring, data processing, and data transmission is repeated. The functional
behavior of UML operations and UML states defining the application logic are modeled in
textual form as opaque behavior using C++, e.g., to facilitate the integration of existing device
drivers, configure hardware component models, and generate events to initiate transitions.
The illustration of opaque behavior has been omitted in Figure 7.8 and Figure 7.9.

Two energy-aware design patterns were applied during the development of the software
application model. First, the software application configures the connected devices with their
maximum possible speeds and transfer modes in the InitSystem state, which corresponds
to the Race-to-Sleep design pattern (cf. Section 4.4.6, p. 111 ff.). This allows the beehive
microclimate sensor node to switch back to a low-power mode more quickly. Second, the EAS
design pattern (cf. Section 4.4.1, p. 95 ff.) has been applied to the Bosch BME280 sensor,
where the oversampling for all three sensors (temperature, humidity, and pressure) has been
reduced to one instead of 16. By this, the energy footprint of the sensor is reduced.

This section demonstrated the development of a system model by integrating hardware
component models into a software model. The concept of the policy-oriented HAL (cf. Sec-
tion 6.3, p. 149 ff.) has been successfully implemented for the I2C and UART communication
interfaces. During simulation, the hardware component models of the BME280 and RAK811
use these implementations to achieve low-level communication for sensor data acquisition and
transmission. With the behavior modeled as a UML state machine, both the hardware and
software layers of the IoT sensor node case study have been successfully modeled in UML to
enable power consumption estimation and power fault detection in early development phases.

7.2.4 Scenario Definition

For the evaluation, test lab scenario Stl has been defined, which is further divided into the
three different sub-scenarios Stl = [Sa, St, Ss], defined as:

• Sa: Scenario for the active phase to cover measuring and data processing activities.

• St: Scenario for the transmit phase, where data is sent to a cloud application.

• Ss: Scenario describing the sleeping phase of the IoT sensor node.

Even while the configuration parameter, e.g., for the Bosch BME280 and RAK811, and the
characteristics of the laboratory environment are considered static and remain unchanged
during simulation, the advantage of defining sub-scenarios lies in the possibility to define and
assign different energy-related NFRs for each relevant segment of the software application life
cycle. For instance, Stl may contain a requirement for average temperature values obtained by
the Bosch BME280 in laboratory environments, which are expected to vary between 18-20 °C.
Since the evaluation focuses on NFRs, the exact measured temperature is not relevant as long
as it remains within limits defined by the scenario Stl. In sub-scenario St, only the RAK811
is allowed to change its state to transmit a message to the TTN. For sub-scenario Ss, all
components must be in a pre-selected low-power state (cf. Table 7.1. p. 178), where the MCU
is assumed to operate in DEEP_SLEEP state and the RAK811 in the Sleep state, while the
BME280 remains in the Idle state. Exemplary for the sub-scenario Ss, the following two
power-related NFRs may be specified for the RAK811 LoRa module:

NFR1: The total energy of the LoRa module (rak811) during a single sleep phase period of
10 min shall not exceed 13.07 · 10−3 J.

186 CHAPTER 7. EVALUATION

NFR2: The LoRa module (rak811) shall not consume more than 6.6 µA when the device
operates in a low-power mode.

As a threshold for the evaluation in this thesis, the power-related NFRs may be fulfilled if
the measured power consumption does not exceed 20 % of the expected power consumption
specified in Table 7.1 (p. 178). Considering a sleeping phase of 10 min and an supply voltage
of 3.3 V, an energy bug threshold can be derived from NFR1 and NFR2 and expressed as the
tuple ⟨(13.07, mJ), (6.6, µA)⟩. If the measured power consumption stays below this definition,
the system may be considered energy bug free for scenario Ss.

Measurement data is transmitted to the TTN along with additional metadata using a
public gateway of the TTN located at a distance of 2.94 km from the Model-Testbed. The
test lab scenario Stl defines the position of the Model-Testbed as static so that the distance
between the Model-Testbed and the TTN gateway does not vary during test case execution,
resulting in a fixed configuration of the RAK811 LoRa module, e.g., with a spreading factor
of 12 (cf. Table 7.2, p. 181). Furthermore, the scenario Stl defines that the join process for the
TTN requires only a single attempt. Due to the findings described in Section 7.2.2 (p. 178 ff.),
the maximum duration of the first RX windows is considered to be 1300 ms, while the second
RX window is omitted.

This section demonstrated the definition of scenarios (cf. Section 3.2, p. 81 ff.) to describe
and specify properties of the environment that can directly influence functional and non-
functional behavior. As a basis for evaluating the IoT sensor node, scenarios include constraints
on the case study, which go beyond hardware and software aspects of the SUT. However,
they are necessary for an evaluation based on NFRs. Considering the definition of energy
bugs (cf. Definition 3.2, p. 85), limits and boundaries within a system can be defined in a
machine-readable format to ease the process of evaluating energy-related behavior.

7.2.5 Power Consumption Estimation

This section demonstrates the capabilities of the presented power consumption estimation
approach based on the beehive microclimate sensor node introduced in previous Sections 7.2.2
to 7.2.4. Additionally, this section compares the accuracy of the power analysis methods.

The simulation of the software application model was executed within the defined scenario
Stl for a total of 65 minutes, in which the UC2E tool continuously obtained measurements,
which resulted in a total of 219,148 measurement points. As an offline analysis, the diagram
presented in Figure 7.10 has been automatically generated by the UC2E tool after the sim-
ulation. It shows an energy trace based on DPA for an excerpt of 13 seconds in which the
software application model completed an entire active cycle. The upper part of Figure 7.10
shows the total electric current consumption of all system components as a comparison be-
tween the expected (blue-colored line) and the measured power consumption (orange-colored
line) directly from the Model-Testbed. The two plots in the middle and lower part describe
the functional and power-related behavior of the ESP32 and RAK811 as blue and green lines.

If IPA is used instead of DPA, the energy trace would only contain a single line with the
expected current consumption (blue-colored line in Figure 7.10). As a superset of IPA, DPA
is able to trace both (cf. Section 5.4.2, p. 136 ff.). Since the expected current consumption is
equal for both methods, the energy trace in Figure 7.10 can also be used to directly compare
IPA and DPA.

Based on the simulation data, the UC2E tool predicts a total energy consumption of 14.80 J
for the complete test case execution of 65 minutes, e.g., as illustrated in Figure 7.13 for the

7.2. CASE STUDY: BEEHIVE MICROCLIMATE SENSOR NODE 187

625 626 627 628 629 630 631 632 633 634 635 636 637 638
0

10
20
30
40
50
60
70
80
90

100
IoT Device (Simulation)
IoT Device (Model-Testbed)

625 626 627 628 629 630 631 632 633 634 635 636 637 638
0

10
20
30
40
50
60
70
80
90

100

625 626 627 628 629 630 631 632 633 634 635 636 637 638
Time (s)

0
10
20
30
40
50
60
70
80
90

100

Deep
Sleep

Activeesp32 Consumption
esp32 State

Sleep

Idle

RX

TXrak811 Consumption
rak811 State

El
ec

tri
c

Cu
rre

nt
 (m

A)

St
at

e

Figure 7.10: Energy trace generated by the UC2E tool, adapted from [341]. The upper part
shows the total electric current consumption of the system as a comparison between IPA
(blue-colored line) and DPA with Model-Testbed execution (orange-colored line). Diagrams
in the middle and lower parts show the expected functional (green) and power-related (blue)
behavior of the ESP32 and RAK811. The results of the BME280 have been omitted due to
their negligible impact.

detection of energy bugs in Section 7.2.6 (p. 189 ff.). In contrast, an energy consumption of
14.05 J has been physically measured by the Otii Arc connected to the Model-Testbed. For the
presented case study, the evaluation revealed a total error of 5.38 % between expected (IPA)
and measured power consumption (DPA).

The total power consumption of the SUT during the active phase, as exemplary shown in
the upper part of Figure 7.10, can primarily be assigned to the ESP32 MCU and the RAK811
LoRa module. While the MCU remains in the active state (green line) for the simulation time
between 625.5 s and 638.2 s with a static (from a macroscopic point of view) power consumption
of 28 mA (blue line), the logged behavior of the RAK811 hardware component model indicates
a more dynamic behavior. For the time between 625 s and 626.2 s, the RAK811 operates in
Sleep mode with a power consumption of 5.5 µA. At 626.2 s, the software application model
enables the RAK811 to initiate a data transfer. The RAK811 switches to the Idle mode, and
the current consumption increases to 6.1 mA. The transmission starts at 628 s and is finished
at 800 ms later. For that time, the hardware component model of the RAK811 expects the
hardware component to operate in TX mode with a current consumption of 63.9 mA. The RX

188 CHAPTER 7. EVALUATION

window is opened automatically by the RAK811 module, which the corresponding hardware
component model predicts for the period from 635.1 s to 636.7 s with a current consumption
of 22.2 mA. Afterward, the RAK811 returns to the Idle mode and is put back to the Sleep
mode by the software application mode at 637.4 s.

However, the excerpt of the energy trace in Figure 7.10 contains some deviations between
the estimated and measured power consumption, which are highlighted with the red-circled
letters (A) to (D) in Figure 7.11. Part (A) in Figure 7.11 shows the three-step startup phase
of the MCU, executing the first and second stage bootloader followed by the application
startup phase [111]. The three phases can be broadly assigned to the segments of the current
consumption, which are described as (A) in Figure 7.11. However, it is unclear which specific
sub-components of the MCU are responsible for the current consumption change, so detailed
modeling is impossible. In addition, evaluations revealed that optimizations at the bootloader
level result in reduced execution times. As the evaluation of the simulation log indicates,
the energy model of the ESP32 hardware component model does not contain a fine-grained
representation of the startup phase (cf. center of Figure 7.10). However, by refining the energy
model, this phase may be considered by determining an average value for the duration of the
startup phase and using the PAP to annotate all transitions from the initial and low-power
states to the active state.

625 626 627 628 629 630 631 632 633 634 635 636 637 638
Time (s)

0
10
20
30
40
50
60
70
80
90

100

El
ec

tri
c

Cu
rre

nt
 (m

A)

IoT Device (Simulation)
IoT Device (Model-Testbed)

A B

C C

D

Figure 7.11: Energy trace for the case study evaluation with simulation deviations highlighted.

Part (B) in Figure 7.11 shows the transmission phase of the RAK811, where the model
predicts a higher current consumption for a slightly longer period than actually measured. As
shown in Table 7.1 (p. 178), the power consumption has been measured prior to the test exe-
cution and differs significantly from the data provided in the datasheet of the sensor [351]. For
this specific test setup and defined scenario, the drift may result from inaccuracies of the values
defined by the PAP in this state, e.g., due to a measurement error in the previously performed
measurement of this thesis and environmental effects, which may lead to parameter changes
during testing [73, 78, 287]. However, the current consumption value previously obtained still
showed the smallest deviation compared to the values provided by the datasheet [317]. The
length of the TX windows is determined by the modeled expression (cf. Listing 7.1, p. 181)
based on calculations provided in the datasheet [351]. Again, if conditions during the test case
execution change, the duration of the TX state may be affected. Another reason is time delays
of DPA, which are discussed in detail in Section 7.3 (p. 191). In a further step to refine the
hardware component model for future simulations, values and expressions may be adjusted in
the corresponding stereotypes of the PAP.

7.2. CASE STUDY: BEEHIVE MICROCLIMATE SENSOR NODE 189

The artifacts (C) in Figure 7.11 are effects introduced by the DPA method and result from
the instrumentation of the Model-Testbed using the UART communication interface, since
every low-level interaction of a hardware component model requires communication with the
Model-Testbed. The analysis of the simulation logs has shown that such artifacts marked as (C)
can be observed during the transmission of each Model-RPC message, resulting in additional
current consumption caused by the UART interface during this time.

A time-related drift in the simulation is marked as (D), which shows the start of the first
RX window by the RAK811 module. This particular example of extensive delay arises during
the simulation process and is further amplified due to the high load of the host system. More
precisely, since the energy model (cf. Figure 7.6, p. 180) is modeled in such a way that it
automatically switches to the RX state after an internal timer of 5000 ms has elapsed and
triggers the evIdleRX event, deviations can be traced back to the simulation. The effects of
DPA and time delays are discussed more in-depth in the following Section 7.3 (p. 191 ff.).

As a contribution to answer RQ4, the evaluation in this section has demonstrated the
applicability of the power estimation approach using a realistic case study of an IoT sensor
node in early phases of the MDD process as described by the V-model in Figure 2.21 (p. 59).
The estimation process has been performed as a MiL test (IPA) and a HiL-like test (DPA). The
loss of accuracy and the absence of environmental effects are compensated by the advantages
of IPA, e.g., real-time simulations and design space explorations without physical hardware.
It has been shown that DPA enables simulated software application models in IBM Rhapsody
to communicate directly with real hardware components by using a Model-Testbed in early
development phases while skipping cost and time intensive steps, e.g., edit-cross-compile-
flash-debug cycles [30, 393]. Since the power consumption estimation relies on protocols
such as SDXP, IPA and DPA are not limited to the simulation of UML classes and UML
state machines as used in this section. Instead, one may also apply the power consumption
estimation approach on partial models or even single UML activity diagrams to evaluate parts
of the software application that would not be executable on a physical embedded system
without major effort. During the evaluation, the UC2E tool was able to trace the states of
each hardware component, which not only creates measurement transparency but also allows
developers to detect any misbehavior of individual components. Since the concept of Model-
Testbeds is able to handle low-power modes of the underlying MCU, only the active state of
the MCU may differ due to the fact that the software application is not executed directly on
the embedded system. Considering the provided concept of a policy-oriented HAL combined
with communication protocols such as Model-RPC, the power-related behavior of peripheral
devices is not expected to be significantly different when using DPA.

7.2.6 Detection of Energy Bugs

This section describes the abilities of DPA to detect and identify energy bugs discussed in
Section 3.3 (p. 84 ff.). Referring to the test lab scenario Stl defined in Section 7.2.4 (p. 185 f.)
as part of the case study, a set of two power-related requirements, NFR1 and NFR2, have
been defined for the sleeping phase (sub-scenario Ss) of the SUT.

These NFRs are considered while evaluating the beehive microclimate IoT sensor node
as a proof-of-concept for an energy bug detection. Figure 7.12 shows an extraction of the
energy trace for the case study evaluation presented in Section 7.2.5 (p. 186), in which the
components of the Model-Testbed switch from an active to a low-power mode. For sub-scenario
Ss, the power consumption of the system shown on the left side in Figure 7.12 and labeled

190 CHAPTER 7. EVALUATION

as (A) is higher than expected. Based on the energy trace generated by the UC2E tool within
DPA, the RAK811 LoRa module operates in the Idle state (B), while the ESP32 MCU is
already set into the DEEP_SLEEP mode. Since both NFRs have been violated, a presence of
an energy bug is very probable. Software developers may use the information provided by
the UC2E tool to further isolate the source of the energy bug. In the provided example, the
source turned out to be a software-related energy bug (Type C) due to a missing operation
call to initiate a state change of the RAK811 from Idle into the Sleep state. The right side
of Figure 7.12 shows the execution of the revised software application model.

The overall impact of the energy bug is illustrated in Figure 7.13. The accumulated power
consumption for the beehive microclimate sensor node with a faulty software application model
is illustrated as blue lines. The accumulated power consumption is shown as red-colored lines
for the revised software application model. A dashed line shows the estimation based on IPA,
while straight lines are measurements with DPA.

20 21 22 23 24 25 26 27 28 29 30 31 32
0

5

10

15

20

25

30

35

40
Software Application with Energy Bug

IoT Device (Model-Testbed)

20 21 22 23 24 25 26 27 28 29 30 31 32
0

5

10

15

20

25

30

35

40
Software Application w/o Energy Bug

IoT Device (Model-Testbed)

20 21 22 23 24 25 26 27 28 29 30 31 32
0

10
20
30
40
50

20 21 22 23 24 25 26 27 28 29 30 31 32
0

10
20
30
40
50

20 21 22 23 24 25 26 27 28 29 30 31 32
Time (s)

0

10

20

30

40

50

20 21 22 23 24 25 26 27 28 29 30 31 32
Time (s)

0

10

20

30

40

50

Deep
Sleep

Activeesp32 Consumption
esp32 Power State

Idle

RXrak811 Consumption
rak811 Power State

Deep
Sleep

Activeesp32 Consumption
esp32 Power State

Sleep

Idle

RXrak811 Consumption
rak811 Power State

El
ec

tri
c

Cu
rre

nt
 (m

A)

St
at

e
St

at
e

A

B

Figure 7.12: Analysis of a software application with (left) and w/o (right) a software-related
energy bug. Technical indicators for the presence of an energy bug are highlighted in red. The
overall consumption (A) is higher than expected. The RAK811 LoRa module stays in the
Idle state (B) while the ESP32 MCU is set into the DEEP_SLEEP state. Adapted from [341].

During the evaluation of the case study, another unexpected behavior was coincidentally
observed, which turned out to be a Type A energy bug. A sporadic and undesired behavior
caused the RAK811 LoRa module to enter the Idle state while the SUT was still in the sleeping
phase. Further analysis revealed an open circuit due to faulty wiring of the UART interface
between the MCU and the LoRa module of the Model-Testbed. The RAK811 sporadically
interpreted the undefined behavior of the GPIO as a wake-up signal forcing it to switch back to

7.3. OVERALL PERFORMANCE OF DPA 191

the Idle state. Since the behavior contradicts both NFRs, it was classified as an energy bug.
In general, the UC2E tool is able to detect such hardware-related energy bugs by recognizing a
sudden increase in the measured current consumption value without a prior state change of a
hardware component model. Since the difference between the measured current consumption
value before and after the increase is approximately equal to the corresponding electric current
value of a state or transition, the UC2E tool is able to identify the hardware component model
instance causing the misbehavior. The hardware-related energy bug has been resolved by
adding pull-up resistors to the UART TX and RX lines.

0 5 10 15 20 25 30 35 40 45 50 55 60

t [min]

0

50

100

150

200

250

300

350

400

450

I
(t

)
·t

[m
A
·m

in
]

Software w/o Energy Bug (Measured)

Software w/o Energy Bug (Estimated)

Software with Energy Bug (Measured)

Software with Energy Bug (Estimated)

Figure 7.13: Comparison of the beehive microclimate software model energy consumption
with and without energy bug forcing the RAK811 to remain in a higher power mode.

This section has shown the capabilities of the approach to detect energy bugs. Based on
power-related NFRs specified as part of scenarios in Section 7.2.4 (p. 185 ff.), the detection of
software-related and hardware-related energy bugs has been demonstrated. Furthermore, all
concepts presented in Chapter 3 (p. 77 ff.) and Chapter 5 (p. 115 ff.) could be integrated into
a single use case and are successfully applied in a proof-of-concept.

7.3 Overall Performance of DPA

This section evaluates the efficiency of the proposed DPA method by using basic examples
to determine performance metrics such as delays, tradeoffs, and limitations. The evaluation
of DPA includes the analysis of time delays in Section 7.3.1 and power-related overhead
discussed in Section 7.3.2. For statistical analysis, a benchmark to analyze the time delay and
power-related overhead has been defined.

7.3.1 Investigation of Time Delays

In general, time delays of the DPA approach may lead to less accurate results caused by
additional communication delays between the MDD tool, UC2E tool, and the Model-Testbed.
This delay may, for instance, cause hardware components to remain in a high-energy state
much longer than intended. Compared to a native execution of the software application on the
hardware platform, it is likely that the presented approach introduces time delays. Depending
on how significant these delays become, the derived energy trace may be less beneficial for
developers. Therefore, evaluating the time delay caused by DPA is crucial to determine the

192 CHAPTER 7. EVALUATION

effectiveness of the proposed power estimation approach. A basic software application that
periodically toggles a single GPIO between high and low states at a fixed interval of 1000 ms
is used to evaluate time delays. For the measurement with Otii Arc, an LED is connected
to the GPIO as a consumer to detect a change in the current consumption. This example
has the smallest Model-RPC message size, and switching a GPIO is considered the most basic
function of the MCU. Therefore, the resulting delay defines the lower limit for any action
performed on the Model-Testbed when using DPA.

In the following, the evaluation is divided into two parts. The first part analyzes the delays
caused by the communication between the UC2E tool and the Model-Testbed. The second part
deals with the delays of the used MDD tool IBM Rhapsody.

Delays due the communication between the UC2E tool and the Model-Testbed

The first analysis focuses on delays between the UC2E tool and Model-Testbeds. The basic
example modeled with IBM Rhapsody is compared with a native application with the same
functionality flashed and executed on the ESP32-based Model-Testbed. The same hardware
was used for both measurements, flashed with either the developed firmware (cf. Section 6.5.2,
p. 163 ff.) or the base software application using FreeRTOS [13]. Figure 7.14 shows a single
switching event for the GPIO from a low to a high state as a comparison between DPA (green-
colored line) and the native execution of the software application (red-colored line). The power

Figure 7.14: Time delay for activating a single GPIO as a comparison between the software
application executed natively on the MCU under FreeRTOS (red-colored line) and the DPA
approach (green-colored line), published in [341].

consumption of the Model-Testbed in milliamperes is shown on the y-axis, while the x-axis
describes the execution time in milliseconds. For synchronizing both measurement series in
time, the UC2E tool generates a time-referenced marker for each incoming message of the
MDD tool. The marker and measurement data of the Otii Arc are stored in a single log file
and analyzed after the benchmark has been completed. For the Model-Testbeds with GPIO in
a low state (LED off), the current consumption of about 27.5 mA corresponds to the current
consumption of the ESP32 MCU (see Table 7.1, p. 178). With GPIO in high state (LED on),
the current consumption increases by 11 mA to about 38.5 mA. As an indicator that the
GPIO has been switched and the LED is enabled, the first measured value with an increase
in current consumption for both use cases was selected. Based on the marker and identified
measured value, a deviation between both use cases could be identified, which is referred to
as delay tD. Let the total time delay tD between the native implementation and the DPA

7.3. OVERALL PERFORMANCE OF DPA 193

approach be defined as:

tD = tDP + tDC + tDI (7.1)

where elements defining tD can be considered as distinct steps in the DPA approach. The
processing delay tDP refers to an additional offset caused by the message processing of the
UC2E tool. It defines the period between the arrival of a message and the completion of the
message processing, including the parsing and creation of SDXP and Model-RPC messages.
This delay mainly depends on the underlying host system, e.g., the load and scheduler of the
operating system executing the UC2E tool and IBM Rhapsody. In Figure 7.14, the delay tDP

has a length of 11 ms.
The communication delay tDC defines the time-related latency resulting from the commu-

nication between the UC2E tool and the Model-Testbed. In general, the delay tDC scales with
the size of the Model-RPC message and the transmission speed and is expected to be static for
the same type of messages and configured transmission speed. Since the Model-RPC GPIO
message requires the smallest number of bytes, the tD in Figure 7.14 may be considered as the
minimum delay for Model-RPC messages transmitted with the configured baud rate of 115,200
bps. For example, Model-RPC UART messages (cf. Section 6.5.4, p. 168 ff.) require more
bytes since they contain a buffer with the data to be transmitted as strings. The selected baud
rate of 115,200 bps for the CP2102 USB-to-UART bridge represents the default value of the
ESP32 and may differ for other MCUs. The MCU also supports baud rates up to 1,500,000
bps which would significantly reduce the time-related overhead defined by tDC [112].

The message interpretation delay tDI is related to the time between the reception of
a message and switching the GPIO, where the most significant portion of the delay tDI is
required for parsing and processing the string-based Model-RPC message on the Model-Testbed
to switch the logical state of the GPIO. In Figure 7.14, tDI has a length of 8 ms. Note that
based on the capabilities of the MCU, the tDI may vary and is Model-Testbed specific.

28 28.5 29 29.5 30 30.5 31 31.5 32 32.5 33 33.5 34 34.5 35
Milliseconds (ms)

T
im

e
D

el
ay

Figure 7.15: Statistical evaluation of the time delay tD for switching the logical state of GPIO
in DPA based on a benchmark with 100 iterations as a box plot (published in [341]).

Figure 7.15 shows the analysis of the total time delay tD for the presented approach. The
values of tD have a maximum value of 35.0 ms and a minimum value of 28.0 ms. All measured
delays fit within limits without detecting outliers during the execution of the benchmark.
However, the median x̃ of tD is 31.0 ms, the lower quartile Q1 = 30.0 ms, and the upper
quartile Q3 = 32.0 ms. Furthermore, an average value of 30.9 ms with a standard deviation
σ = 1.5 has been determined. The results show that the communication between the tool
and the testbed is subject to only minor fluctuations, which are also influenced by factors not
directly related to the approach, such as the host system. The minimum delay between the
generation of low-level hardware access and the actual execution is expected to be 30.9 ms

194 CHAPTER 7. EVALUATION

on average. This delay becomes particularly important when software-hardware interactions
are time-critical and require execution times below the measured delay, e.g., when a series of
commands must be sent to a peripheral device. However, there still exists sufficient potential
for optimization, for instance, by increasing the transfer rate, reducing the message size, or
optimizing the message format.

Delays introduced by IBM Rhapsody

The second analysis focuses on the simulation environment of IBM Rhapsody to obtain a
complete impression of the overall DPA approach. For this, two additional benchmarks have
been performed to analyze the simulation accuracy of the software model and to quantify the
data transmission delay of the local TCP socket communication between the IBM Rhapsody
and the UC2E tool. The results of both benchmarks are illustrated as box plots in Figure 7.16.

As mentioned at the beginning of this section, this benchmark has been designed as a
periodic test where the simulated model triggers a GPIO at a fixed interval of 1000 ms. To
analyze possible delays, each message generated by the software model has been recorded, and
the unique timestamp extracted. The time deviation ∆t for two consecutive messages mn

and mn+1 generated by the software application model at simulation time tn and tn+1 can be
determined by calculating ∆t = (|tn − tn+1|) − 1000. The time deviation of the simulation
is illustrated as a boxplot in the upper part of Figure 7.16. A value of 0 ms for ∆t means
that two SDXP Action messages have been generated without any additional delay of IBM
Rhapsody or the host system, respecting the expected interval of 1000 ms. Note that no
negative deviations were recorded during the benchmark. The results show an average of
∆t = 7.0 ms, a median of x̃ = 5.0 ms, and a deviation σ = 6.3 ms. The lower quartile Q1 and
the upper quartile Q3 are located at 0 ms and 20.0 ms, respectively, while the highest delay
measured was 27.0 ms. Compared to the expected interval of 1000 ms for switching the GPIO,
the messages are generated on average every 1007 ms, but at most after 1027 ms due to the
simulation environment and host system (e.g., load, operating system, and scheduler).

The lower part of Figure 7.16 shows the transmission delay for the generated message
between the IBM Rhapsody MDD tool and the UC2E tool. The SDXP Action messages (cf.
Section 6.2.1, p. 145 ff.) were received by the UC2E tool after an average time of 31.6 ms with

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28Si
m

ul
at

io
n

A
cc

ua
rc

y

16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48
Milliseconds (ms)

Tr
an

sm
iss

io
n

D
el

ay

Figure 7.16: Time delays of the simulation environment and the message transmission during
a benchmark with 100 iterations as box plots (published in [341]).

7.3. OVERALL PERFORMANCE OF DPA 195

x̃ = 31.0 ms. Without including outliers, the lower quartile Q1 is located at 25.0 ms and the
upper quartile Q3 is 40.0 ms. It should be noted that the environment mainly causes both
sources of time delays shown in Figure 7.16, e.g., due to the task scheduler and the current
load of the host’s operating system. Considering a minimum value of 17.0 ms and a maximum
value of 47.0 ms, the range of 30.0 ms is a strong indicator that the host system used for
DPA might not be powerful enough to handle time-critical and low-latency hardware-software
interactions, e.g., software-based generation of PWM signals (Soft-PWM) which require a
constant timing. This is supported by the fact that the high load of the host system due to the
simultaneous execution of DPA and additional applications, e.g., for further documentation,
led to data loss of the Otii desktop application in some test runs and gaps in the data recordings
and diagrams. In general, the delays mentioned above may have a negative impact on the
overall power estimation process. This is especially true for inaccuracies within the simulation
environment, as this distorts the system behavior. The transmission delay causes a right shift
of the measurement curve and does not affect the power consumption estimation approach if
and only if this delay can be considered as a static offset.

Figure 7.17: Effects of time delays for the example application with a one second interval.
The graph shows native execution (green line) and the simulation using DPA (pink line).

To illustrate the effect of time delays, Figure 7.17 shows a plot of the current consumption
generated by the Qoitech Otii desktop application as the direct comparison between the native
execution of the software application switching an LED as a green curve and the simulation
using DPA as a pink curve. Both graphs were synchronized in the Qoitech Otii desktop
application for better visualization by the first rising edge. The continuous drift through time
delays analyzed in this section causes the simulated software application within DPA to lag
for almost one period after a simulation time of 70 s. Note that the impact of time delays
becomes more significant as the number of actions within a period increases.

This section provided an in-depth analysis of the overall performance and characteristics
of DPA. A minimal delay of 30 ms for direct interactions between the UC2E tool and the
Model-Testbed defines the lowest limit for timing requirements of the systems to be evaluated
with DPA. Additional delays not related to the presented approach are introduced by the
operating system executed on the host system, e.g., due to the scheduler and the general load
affecting parts of the simulation, such as timers. In summary, the delays of the approach can
be considered acceptable for a power consumption estimation in early MDD phases.

196 CHAPTER 7. EVALUATION

7.3.2 Power and Timing Tradeoffs

As discussed in Section 7.3.1, several tradeoffs for the presented DPA method exist. While
edit-cross-compile-flash-debug cycles [30, 393] can be avoided for a faster and earlier evaluation,
other power and timing tradeoffs affect the accuracy of DPA. Such tradeoffs include:

• Overhead due to the implementation of monitoring functionalities and additional com-
munication with the Model-Testbed to perform hardware-software interactions.

• Inaccuracies of the estimation due to unconsidered hardware components.

Generally, tradeoffs have a subtractive or additive character whereby the terms refer to ad-
ditional operational steps in the post-processing of energy traces to adjust and improve the
overall estimation.

The term subtractive describes tradeoffs introduced by the DPA that must be removed
from energy traces for a highly accurate power consumption estimation. These tradeoffs
are introduced due to the monitoring and instrumentation of the Model-Testbed, which is
used as external instrumentation to perform hardware-software interactions. As shown in
Figure 7.11 (p. 188), sending instructions to the Model-Testbed results in additional power
consumption for the communication between the UC2E tool and the Model-Testbed via UART.
Since this additional power consumption does not exist when a software application runs
natively on an embedded system, this power-related overhead must be subtracted from an
energy trace to obtain a more accurate estimation. This is also true for time-related overhead
(cf. Section 7.3.1, p. 191 ff.). When referring to the evaluation of the beehive microclimate
sensor node case study, the impact of this tradeoff can be considered marginal and extensive
post-processing is negligible. However, the tradeoff may become more significant with increased
communication.

The term additive describes additional power consumption caused by other hardware
components and peripherals of the Model-Testbed, for which no proxy (hardware component
model) exists. For the proposed power analysis methods, the additional power consumption
of communication interfaces has to be added in post-processing, e.g., by counting low-level
interface accesses and adding a fixed offset for each send and receive operation. With DPA, on
the other hand, the additional electric current consumption is part of the generated energy trace
but might not be associated with a specific hardware component model instance. Instead, the
power consumption from unconsidered hardware components becomes part of the background
noise. In this thesis, additive tradeoffs are mainly related to the communication between
peripheral devices within the Model-Testbed, e.g., I2C or UART. For instance, while the energy
model of the RAK811 LoRa module reflects the characteristics of the hardware component
itself, the additional overhead caused by the UART communication interface used between
the ESP32 and the RAK811 is not considered. Concerning the current consumption of the
overall system, the effect of such communication interfaces can be considered as being low
[212, 252]. However, for a more accurate power analysis, the policy-oriented HAL might be
extended with energy models for each communication interface.

The discussed tradeoffs mainly occur due to two factors. The first factor arises from dis-
turbing the observed system, commonly known as the observer effect. The second factor results
from abstraction as part of the UML modeling process. Unconsidered hardware components
may not falsify the measurement but may negatively affect the estimation and evaluation of
NFRs if their impact becomes too large. Despite the limitations described in this section, the
results provided in this chapter indicate that further scientific investigations are reasonable.

Chapter 8

Conclusion

This thesis provides a novel and innovative approach to model and estimate the power consump-
tion of software applications in MDD for embedded systems. In the following, the contributions
and findings are summarized. This chapter concludes with an outlook for future work based
on the results of this thesis to be discussed. This chapter concludes with an outlook on open
topics and future work based on the results of this thesis.

8.1 Summary

In areas such as IoT, embedded systems are expected to be resource-constrained in terms of
performance, power, timing and costs. Especially when battery-powered embedded systems
are placed in harsh environments or buried underground [146, 409], the supply of power is a
major challenge. In many cases, replacing or recharging the power source is either impossible,
impractical, or results in higher costs. Besides battery capacity, managing the energy an
embedded system consumes is one of the most critical factors in determining how long the
system will last.

Developers and engineers have to deal with the increasing complexity of embedded system
designs due to the variety of processor architectures, communication interfaces, and a growing
number of devices with distinct functionalities, such as sensors and actuators. While power
consumption is commonly associated with the hardware layer, little attention has been given
to the software layer, which controls and directs most hardware activities. Energy awareness is
often neglected in the embedded software development process, and developers and engineers
may be unaware of how to reduce the energy impact of software applications [289, 301].
For the software engineering process, approaches such as MDD may be used to manage the
complexity of software applications for embedded systems. This enables analysis at the design
and architecture level. However, most approaches and tools in MDD are focused on functional
and timing aspects of software applications, while they lack support for an early analysis of
NFRs. As a result, such requirements are evaluated at the end of the development cycle, where
errors and misbehavior can cause additional time delays and costs.

This thesis presents a novel and innovative model-driven approach to estimate the power
consumption of software applications for embedded systems in early design phases. The
approach is realized by a set of contributions, summarized in the following according to the
individual subjects of the four main Research Questions (RQs) elaborated in this thesis. As a
comprehensive contribution, a developer workflow has been specified to combine all proposed

197

198 CHAPTER 8. CONCLUSION

contributions of this thesis into a coherent process, starting from initial modeling to a power
consumption estimation in early design phases using physical hardware.

Formal Definition of Energy-related Behavior and Defects (RQ1)

For an early analysis of software applications, a formal definition of energy-related behavior as a
set of NFRs is required. The elaborated contributions related to this topic can be summarized
as follows:

• Introduction of the two metrics energy quota Equ and the maximum current demand
Idmax to describe power- and energy-related NFRs and to define the boundaries for an
energy bug-free system.

• A novel classification of energy bugs independent of specific device types.

• The concept of scenarios as a set of conditions and constraints to specify aspects of the
environment and the system when executing test cases.

The use of metrics for the formal description of power- and energy-related NFRs allows
the precise specification of the expected behavior and the definition of boundaries for an
energy bug-free system or subsystem. The violation of one or both metrics may indicate the
presence of an energy bug. Since energy-related behavior strongly depends on the context
and environment in which the hardware system and software application are deployed, the
concept of scenarios has been introduced. They define a set of conditions and constraints,
e.g., environmental conditions and system configurations, which apply for a specific amount
of time during the execution of test cases. By this, environmental changes can be reflected
within a test case for a more realistic evaluation of reactive systems.

With the provided specification of NFRs and the introduction of scenarios, the energy-
related behavior of a system can be specified and evaluated.

Best Practices and Design of Energy-aware Software Applications (RQ2)

When addressing power and energy issues in software engineering, the availability of docu-
mented best practices is essential to implement the most appropriate solution. Such paradigms
are referred to as software design patterns. However, current design pattern templates do not
cover non-functional aspects such as power and energy consumption. To address this gap, the
following contributions are provided:

• A novel framework and a design pattern template for identifying and uniformly describing
energy-aware software design patterns.

• A design pattern catalog consisting of one novel and five redefined best practices for an
energy-aware design of software applications.

As part of the framework, the proposed design pattern template provides new fields for the
quantitative description of energy consumption and current demand as characteristics of an
energy-aware software design pattern. With the energy balance EBP and the efficiency factors
ηP and ηC , the framework also introduced a set of new metrics as benchmark parameters for
a quantitative evaluation of energy-aware software design patterns in terms of efficiency and
effectiveness. EBP defines a balance equation to indicate possible energy savings, whereas

8.1. SUMMARY 199

ηP and ηC define effort-saving ratios to provide a quantitative evaluation and to describe the
efficiency of possible energy savings resulting from applying an energy-aware design pattern.
Each energy-aware design pattern description is also extended with a standardized graphical
representation to outline the energy, temporal, and computational behavior aspects. Moreover,
based on the uniform design pattern template, a catalog of energy-aware design patterns has
been introduced in this thesis.

Researchers and software developers can use the introduced design pattern framework to
uniformly document new design patterns based on the provided pattern template, metrics,
and graphical representation. They can also select appropriate solutions from the provided
design pattern catalog when modeling and evaluating energy-aware applications. Furthermore,
the uniform representation achieved by the design pattern template may help to speed up the
selection of best-fitting design patterns and the overall decision-making process.

The idea of the design pattern framework for energy-aware software design patterns has
been noticed by the scientific community, where the related publication [337] was awarded
with the Best Student Paper Award by the program committee reviewers of the conference.
Additionally, the ideas and concepts of the publications [337, 392] have been included in the
fourth edition of the book Software Architecture in Practice by Bass et al. (2021) [38] as a
curriculum for future software engineers.

Joint Modeling of Functional Software Application Models and Energy Be-
havior (RQ3)

Since software applications control and drive most hardware activities, they have a significant
impact on overall power consumption and define the runtime behavior of the embedded system.
To model power-related aspects of the software application, hardware-software interactions and
the dynamic behavior of hardware components must be considered. However, approaches in
MDD lack the capabilities to combine those power-related aspects with the software application
model. This thesis addresses this gap by providing the following contributions:

• A novel system-wide modeling approach based on hardware component models covering
MCUs and connected peripheral devices.

• A UML-based description of hardware components that can be combined with a software
application model to define a system model.

• The introduction of a UML profile to model energy-related aspects.

For extending software applications with power-related properties of the system, the con-
cept of hardware component models has been presented as UML-based descriptions of hardware
components, including an energy model to specify the power-related behavior over time. Hard-
ware component models can be combined with a software application model to define a system
model. Based on the interactions between the software application model and hardware
component models, power-related aspects become visible.

For the specification of power-related aspects and NFPs in UML, the PAP UML profile has
been developed. Based on the MARTE profile, the PAP introduces a set of new stereotypes
and data types to define, e.g., the electric current consumption and execution time. Stereotypes
of the PAP can be applied to states and transitions of UML state machines and attributes
and operations of UML classes. The PAP has been designed to model dynamic power-related

200 CHAPTER 8. CONCLUSION

aspects of hardware components when executed along with software application models. By
this, the UML profile represents the central element for developing energy models.

Based on the hardware component model definition, a seamless integration of hardware
properties into the software model is achieved. The resulting system model is used for the
system-wide power estimation in early phases of energy-transparent development in MDD.

Early Evaluation of Energy-aware Software Applications in MDD (RQ4)

Early testing is one of the key factors in improving the quality of software applications and
systems. It enables developers to identify and resolve issues in early development phases before
the product reaches the integration phase. If no methods and analysis tools are available to
support developers in evaluating software models early, the analysis process may be postponed
and performed in later development stages. However, time and effort needed to address non-
functional misbehavior in later phases is significantly higher. Since MDD tools for UML offer
only a limited simulation environment and lack support for the evaluation of NFRs, an external
evaluation approach was developed, leading to the following contributions:

• Two methods for estimating power consumption in early MDD phases with and without
the use of a physical hardware platform.

• A case study of an IoT sensor node as a proof-of-concept to demonstrate the potential
of the power consumption estimation approach.

With Indirect Power Analysis (IPA) and Direct Power Analysis (DPA), this thesis provides
two methods for a power consumption estimation in different development phases. IPA provides
a simulation-based rapid power estimation without requiring a hardware execution platform.
DPA is based on a novel in-the-loop approach that utilizes a Model-Testbed to enable direct
interactions between the simulated software model and a physical embedded system. For
this, Model-RPC has been introduced as a universal and lightweight communication protocol
allowing hardware accesses of the simulated system model to be forwarded and executed on
the Model-Testbed. By reproducing hardware-software interactions, edit-cross-compile-flash-
debug cycles can be avoided to enable an evaluation in early MDD phases. For an accurate
power consumption estimation, a measuring device connected to the Model-Testbed obtains
measurements during testing. Another key advantage of DPA is the ability to obtain real data
from peripheral devices and to use communication interfaces associated with IoT to enable
real data transfer. Due to this, estimations of DPA can be considered very accurate as they
are based on the actual behavior of peripheral devices. As a platform for rapid prototyping,
the concept of Model-Testbeds follows a universal approach in which hardware components
can be exchanged and the firmware dynamically configured. Three Model-Testbeds based on
different MCU architectures have been developed to prove platform independence.

For the power consumption estimation of software models, the UC2E tool has been intro-
duced. As a central component of IPA and DPA, the UC2E tool controls the communication
and interaction between the MDD tool, measuring devices, and the Model-Testbed during the
simulation. For direct data exchange between the simulated system model and the UC2E, the
Simulation Data eXchange Protocol (SDXP) has been specified. It enables the exchange of con-
text information, control commands, and low-level hardware accesses required to perform power
consumption estimations. Due to the defined protocols, the presented approach is independent
of MDD tools and hardware platforms. Additionally, as an extension of software models,

8.2. OUTLOOK 201

a policy-oriented HAL has been introduced to abstract and encapsulate low-level hardware
accesses during simulation. The HAL has been designed to be replaced by a platform-specific
version in later phases of the MDD without affecting the software model.

The proposed power consumption estimation approach is evaluated based on a beehive
microclimate IoT sensor node case study. As a proof-of-concept, the proposed developer
workflow has been applied to the case study to demonstrate the potential of the overall approach.
The evaluation includes the specification of software and hardware models, the elaboration
of scenarios, the definition of power-related NFRs, an energy consumption estimation based
on IPA and DPA, and the detection of software- and hardware-related energy bugs. For
UML-based modeling and simulation, IBM Rhapsody has been selected as an MDD tool.

The results have shown that the concept of hardware component models and the PAP are
suitable for modeling the energy-related behavior of hardware components. During simulation,
the UC2E tool was able to trace hardware accesses, create energy traces, and perform power
consumption estimations. Along with scenario definitions, the energy traces have been success-
fully used to detect software and hardware energy bugs. In addition to the simulation-based
estimation of IPA, DPA is capable of obtaining realistic measurements using a physical Model-
Testbed. Due to the true behavior of peripheral devices, the measured values can be considered
very accurate. By reproducing hardware-software interactions, the edit-cross-compile-flash-
debug cycle can be avoided, allowing an estimation in early development phases. A detailed
analysis of the DPA revealed a minimum delay of 30 ms as the lowest limit for the interac-
tion between the UC2E tool and the Model-Testbed to execute hardware-software interactions.
While this delay is sufficient for the case study, it is large enough to become relevant if batches
of messages need to be transmitted within a short time, e.g., when simultaneous hardware
accesses are generated.

The presented contributions of this thesis may help developers and engineers to improve their
understanding of power and energy consumption at the software level. Moreover, they may
drive the development of energy-aware software applications by providing appropriate design
patterns and methods for MDD to estimate the impact of software applications on embedded
systems right at the beginning of the development process. The main idea to estimate the power
consumption early during development may help to reduce the overall development costs and
the time-to-market since additional optimization phases could be avoided. From a technical
perspective, the novel concepts of energy-aware design patterns and the power consumption
estimation approach offer sufficient potential and opportunities for further research.

8.2 Outlook
This thesis aims to specify energy-aware software applications and to estimate the power
consumption of software applications for embedded systems. The presented concepts have
proved to be promising while still offering the potential for future research, investigations, and
improvements. Some suggestions for future research and open topics are:

Expanding the Design Pattern Catalog

Following the proposed design pattern identification process, future research will continue to
identify and derive additional energy-aware software design patterns, e.g., for energy-aware
user interfaces and energy harvesting. While this thesis focused on the energy-aware design

202 CHAPTER 8. CONCLUSION

patterns that address the general power consumption, there may also be design patterns that
aim to optimize the maximum electric current consumption of individual hardware components
or the overall system. Currently, all energy-aware software design patterns of the catalog are
considered as a stand-alone and isolated problem-solution pair. Thus, an additional aspect of
future work is the elaboration of interrelations between energy-aware design patterns to build
a pattern language.

Extension and Performance Optimization of the Power Estimation Approach

The proof-of-concept provided in this thesis shows the potential of the power estimation
approach. Future work may focus on modeling energy sources (e.g., solar modules), energy
harvesting, and battery models to refine the estimations and predict the operational lifetime
of embedded systems equipped with specific energy sources. Additionally, the defined UML
profile may be extended to consider aspects of energy bugs, enabling an automatic evaluation
of NFRs in MDD. Future work may also focus on concepts to automate power consumption
estimation and energy bug detection processes. Solutions such as appropriate energy-aware
software design patterns should be proposed for affected parts of software applications that
need to be revised or optimized as enhanced feedback for developers and engineers.

Independent energy models of communication interfaces may be developed to address
power and timing overhead caused by the communication between hardware components. The
evaluation revealed a delay of 30 ms for the communication between the UC2E analysis tool
and the Model-Testbed, which is considered sufficient for a proof-of-concept implementation.
However, optimization potential exists on the software and hardware level to lower the latencies
and increase the power consumption estimation performance, such as using binary formats
for the data transfer or increasing transfer speeds. While considering the message structure
defined by Model-RPC, first experiments using a binary message format yielded promising
preliminary results with significant time delay reductions.

An important next step following the proof-of-concept might be the consideration of more
extensive embedded systems. This also includes more complex communication interfaces like
Wi-Fi and wired network connections with higher event-driven transmission activity. In both
cases, it is expected that advanced environmental control will be required to predict the power
consumption of peripheral devices more accurately.

It may be worth exploring other approaches, such as machine learning techniques, to
derive energy models that describe the non-functional energy-related behavior of hardware
components. Although approaches like [127] exist to generate energy models automatically,
they are not able to capture hidden states and create relations between states. Furthermore,
data obtained by the power consumption estimation approach may be used to train neural
networks to predict the power and energy footprints of embedded systems.

Extend Support of MDD Tools and Functional Testing

Some of the findings in this thesis go beyond the intended scope of the proposed research
questions and may be part of research in other areas. For instance, the DPA method may also
be used for functional testing in early development phases or rapid prototyping approaches
since the concept of Model-Testbed enables access to peripheral devices without executing the
software application natively. Since the data exchange is based on actual data, e.g., obtained

8.2. OUTLOOK 203

by sensors, functional testing becomes possible. This also opens new research fields, e.g., the
integration into MBT as a new approach for unit and system tests.

As part of the contributions, this thesis stated to provide a platform-independent approach.
By defining communication protocols independent of specific MDD tools, it should be possible
to use different MDD tools for the power consumption estimation approach. Ongoing work
outside the scope of this thesis aims to adapt the proposed concept to include functional testing
and advanced MDD language support. Preliminary results for MathWorks Matlab/Simulink
using Model-RPC and Model-Testbeds to provide a rapid prototyping approach for functional
testing based on realistic data have been submitted as new research and accepted as a scientific
publication [393] at the MODELS 2023 conference.

Bibliography

[1] 3rd Generation Partnership Project (3GPP). Cellular system support for ultra-low
complexity and low throughput Internet of Things (CIoT). Technical report, 3GPP,
21 Dec. 2015. Document Number TR 45.820, V13.1.0.

[2] N. Abd El-Mawla, M. Badawy, and H. Arafat. IoT for the failure of climate-change
mitigation and adaptation and IIoT as a future solution. World Journal of Environmental
Engineering, 6(1):7–16, 2019. ISSN 2372-3076. doi: 10.12691/wjee-6-1-2.

[3] F. B. Abdallah and L. Apvrille. Fast evaluation of power consumption of embedded
systems using diplodocus. In 39th Euromicro Conference on Software Engineering
and Advanced Applications, pages 138–144, Santander, Spain, 4–6 Sept. 2013. doi:
10.1109/SEAA.2013.8.

[4] S. Abdulsalam, D. Lakomski, Q. Gu, T. Jin, and Z. Zong. Program energy efficiency:
The impact of language, compiler and implementation choices. In International Green
Computing Conference, IGCC ’14, pages 1–6, Dallas, TX, USA, 3–5 Nov. 2014. ISBN
978-1-4799-6177-1. doi: 10.1109/IGCC.2014.7039169.

[5] Adafruit Industries. Adafruit BME280 Humidity + Barometric Pres-
sure + Temperature Sensor Breakout, 2023. URL https://learn.adafruit.com/
adafruit-bme280-humidity-barometric-pressure-temperature-sensor-breakout. Last Access:
June 1st, 2023.

[6] W. Afzal, A. N. Ghazi, J. Itkonen, R. Torkar, A. Andrews, and K. Bhatti. An experiment
on the effectiveness and efficiency of exploratory testing. Empirical Software Engineering,
20(3):844–878, June 2015. ISSN 1382-3256. doi: 10.1007/s10664-014-9301-4.

[7] D. Akdur, V. Garousi, and O. Demirörs. A survey on modeling and model-driven
engineering practices in the embedded software industry. Journal of Systems Architecture,
91:62–82, 2018. doi: 10.1016/j.sysarc.2018.09.007.

[8] F. Alam, P. R. Panda, N. Tripathi, N. Sharma, and S. Narayan. Energy optimization
in android applications through wakelock placement. In Proceedings of the 2014 Design,
Automation & Test in Europe Conference & Exhibition, DATE ’14, pages 1–4, Dresden,
Germany, 24–28 Mar. 2014. doi: 10.7873/DATE.2014.101.

[9] S. Albers and A. Antoniadis. Race to idle: New algorithms for speed scaling with a
sleep state. ACM Trans. Algorithms, 10(2):1–31, Feb. 2014. ISSN 1549-6325. doi:
10.1145/2556953.

205

https://learn.adafruit.com/adafruit-bme280-humidity-barometric-pressure-temperature-sensor-breakout
https://learn.adafruit.com/adafruit-bme280-humidity-barometric-pressure-temperature-sensor-breakout

206 BIBLIOGRAPHY

[10] C. Alexander, S. Ishikawa, and M. Silverstein. A pattern language: Towns, buildings,
construction. Oxford Univ. Press, New York, NY, USA, 1977. ISBN 978-0-19-501919-3.

[11] A. Alexandrescu. Modern C++ design: Generic programming and design patterns
applied. C++ in depth series. Addison-Wesley, Boston, MA, USA, 2nd edition, 2001.
ISBN 978-0-201-70431-0.

[12] Altium Ltd. CircuitMaker, 2023. URL https://www.altium.com/circuitmaker. Last
Access: February 1st, 2023.

[13] Amazon Web Services. FreeRTOS - market leading RTOS (real time operating system)
for embedded systems with internet of things extensions, 2022. URL www.freertos.org/.
Last Access: January 1st, 2023.

[14] D. Ameller. Non-functional Requirements as Drivers of Software Architecture Design.
PhD thesis, Universitat Politècnica de Catalunya, Departament de Llenguatges i Sistemes
Informàtics, Barcelona, Spain, 2014. URL http://hdl.handle.net/10803/144942.

[15] D. Ameller, X. Franch, C. Gómez, S. Martínez-Fernández, J. Araújo, S. Biffl, J. Cabot,
V. Cortellessa, D. M. Fernández, A. Moreira, H. Muccini, A. Vallecillo, M. Wimmer,
V. Amaral, W. Böhm, H. Bruneliere, L. Burgueño, M. Goulão, S. Teufl, and L. Be-
rardinelli. Dealing with non-functional requirements in model-driven development:
A survey. IEEE Transactions on Software Engineering, 47(4):818–835, 2021. doi:
10.1109/TSE.2019.2904476.

[16] P. Ammann and J. Offutt. Introduction to Software Testing. Cambridge University Press,
Cambridge, 2nd edition, 2016. ISBN 978-1-107-17201-2. doi: 10.1017/9781316771273.

[17] ams OSRAM Group. TSL2591 Light-to-Digital Converter, 2023. URL https://ams.com/
documents/20143/9331680/TSL2591 DS000338 7-00.pdf. Revision v3-00. Last Access:
March 3rd, 2023.

[18] N. Amsel and B. Tomlinson. Green tracker: A tool for estimating the energy consumption
of software. In Proceedings of the Conference on Human Factors in Computing Systems,
CHI ’10, pages 3337–3342, Atlanta, Georgia, USA, 2010. ISBN 978-1-60558-930-5. doi:
10.1145/1753846.1753981.

[19] E. Andrade, P. Maciel, T. Falcão, B. Nogueira, C. Araujo, and G. Callou. Performance
and energy consumption estimation for commercial off-the-shelf component system design.
Innovations in Systems and Software Engineering, 6(1-2):107–114, 2010. ISSN 1614-5046.
doi: 10.1007/s11334-009-0110-7.

[20] Arm Limited. CMSIS-Driver: Peripheral Interface for Middleware and Application
Code - Version 2.8.0, 2020. URL https://arm-software.github.io/CMSIS 5/latest/Driver/
html/index.html. Last Access: June 1st, 2022.

[21] A. Armoush. Design patterns for safety-critical embedded systems. PhD thesis, RWTH
Aachen University, Aachen, Germany, 2010. URL http://publications.rwth-aachen.de/
record/51773.

https://www.altium.com/circuitmaker
www.freertos.org/
http://hdl.handle.net/10803/144942
https://ams.com/documents/20143/9331680/TSL2591_DS000338_7-00.pdf
https://ams.com/documents/20143/9331680/TSL2591_DS000338_7-00.pdf
https://arm-software.github.io/CMSIS_5/latest/Driver/html/index.html
https://arm-software.github.io/CMSIS_5/latest/Driver/html/index.html
http://publications.rwth-aachen.de/record/51773
http://publications.rwth-aachen.de/record/51773

BIBLIOGRAPHY 207

[22] T. Arpinen, E. Salminen, T. D. Hämäläinen, and M. Hännikäinen. Extension to
MARTE profile for modeling dynamic power management of embedded systems. In M-
BED 1st Workshop on Model Based Engineering for Embedded Systems Design, Workhop
co-located with DATE 2010, pages 1–6, Dresden, Germany, 12 Mar. 2010.

[23] T. Arpinen, E. Salminen, T. D. Hämäläinen, and M. Hännikäinen. MARTE profile
extension for modeling dynamic power management of embedded systems. Journal
of Systems Architecture, 58(5):209–219, Apr. 2012. ISSN 1383-7621. doi: 10.1016/
j.sysarc.2011.01.003.

[24] A. Arrieta, I. Agirre, and A. Alberdi. Testing architecture with variability management
in embedded distributed systems. In Proceedings of the IV Jornadas de Computación
Empotrada, JCE ’2013, pages 12–19, Madrid, Spain, 17–20 Sept. 2013.

[25] M. Asemani, F. Abdollahei, and F. Jabbari. Understanding IoT platforms : Towards
a comprehensive definition and main characteristic description. In Proceedings of the
5th International Conference on Web Research, ICWR ’19, pages 172–177, Tehran, Iran,
24–25 Apr. 2019. doi: 10.1109/ICWR.2019.8765259.

[26] AspenCore. 2019 embedded market study. Technical report, As-
penCore, 2019. URL https://www.embedded.com/wp-content/uploads/2019/11/
EETimes Embedded 2019 Embedded Markets Study.pdf. Last Access: September 9th,
2022.

[27] Y. B. Atitallah, J. Mottin, N. Hili, T. Ducroux, and G. Godet-Bar. A power consump-
tion estimation approach for embedded software design using trace analysis. In 41st
Euromicro Conference on Software Engineering and Advanced Applications, pages 61–68,
Madeira, Portugal, 26–28 Aug. 2015. doi: 10.1109/SEAA.2015.34.

[28] L. Atzori, A. Iera, and G. Morabito. The internet of things: A survey. Computer
Networks, 54(15):2787–2805, 2010. ISSN 1389-1286. doi: 10.1016/j.comnet.2010.05.010.

[29] J. Babić. Model-Based Approach to Real-Time Embedded Control Systems Development
with Legacy Components Integration. PhD thesis, University of Zagreb - Faculty of
Electrical Engineering and Computing, Zagreb, Croatia, 2014.

[30] M. Bagherzadeh, K. Jahed, B. Combemale, and J. Dingel. Live modeling in the context
of state machine models and code generation. Software & Systems Modeling, 20(3):
795–819, 2021. ISSN 1619-1366. doi: 10.1007/s10270-020-00829-y.

[31] P. Baker, Z. R. Dai, J. Grabowski, Ø. Haugen, I. Schieferdecker, and C. Williams.
Model-Driven Testing: Using the UML Testing Profile. Springer Berlin, Heidelberg, 1st
edition, 2008. ISBN 978-3-540-72562-6.

[32] N. Balasubramanian, A. Balasubramanian, and A. Venkataramani. Energy consumption
in mobile phones: A measurement study and implications for network applications. In
Proceedings of the 9th ACM SIGCOMM Conference on Internet Measurement, IMC ’09,
pages 280–293, Chicago, IL, USA, 4–6 Nov. 2009. ACM. ISBN 978-1-605-58771-4. doi:
10.1145/1644893.1644927.

https://www.embedded.com/wp-content/uploads/2019/11/EETimes_Embedded_2019_Embedded_Markets_Study.pdf
https://www.embedded.com/wp-content/uploads/2019/11/EETimes_Embedded_2019_Embedded_Markets_Study.pdf

208 BIBLIOGRAPHY

[33] S. Balsamo, A. Di Marco, P. Inverardi, and M. Simeoni. Model-based performance pre-
diction in software development: A survey. IEEE Transactions on Software Engineering,
30(5):295–310, 4 May 2004. doi: 10.1109/TSE.2004.9.

[34] A. Banerjee, L. K. Chong, S. Chattopadhyay, and A. Roychoudhury. Detecting energy
bugs and hotspots in mobile apps. In 22nd ACM SIGSOFT International Symposium
on Foundations of Software Engineering, FSE ’14, pages 588–598, 16–21 Nov. 2014.
ISBN 978-1-450-33056-5. doi: 10.1145/2635868.2635871.

[35] A. Banerjee, S. Chattopadhyay, and A. Roychoudhury. On testing embedded software.
volume 101 of Advances in Computers, chapter 3, pages 121–153. Elsevier, 2016. doi:
10.1016/bs.adcom.2015.11.005.

[36] A. Barkalov, L. Titarenko, and M. Mazurkiewicz. Foundations of Embedded Systems.
Studies in Systems, Decision and Control. Springer International Publishing, Cham,
Switzerland, 2019. ISBN 978-3-030-11960-7.

[37] E. Bartocci, Y. Falcone, A. Francalanza, and G. Reger. Introduction to runtime
verification. In E. Bartocci and Y. Falcone, editors, Lectures on Runtime Verification:
Introductory and Advanced Topics, pages 1–33. Springer International Publishing, Cham,
Switzerland, 2018. ISBN 978-3-319-75632-5. doi: 10.1007/978-3-319-75632-5 1.

[38] L. Bass, P. Clements, and R. Kazman. Software Architecture in Practice. SEI series
in software engineering. Addison-Wesley Professional, Boston, MA, USA, 4th edition,
2021. ISBN 978-0-13-688609-9.

[39] P. Baumann, M. Krammer, M. Driussi, L. Mikelsons, J. Zehetner, W. Mair, and
D. Schramm. Using the distributed co-simulation protocol for a mixed real-virtual
prototype. In 2019 IEEE International Conference on Mechatronics (ICM), volume 1,
pages 440–445, 2019. doi: 10.1109/ICMECH.2019.8722844.

[40] E. Bayle, R. Bellamy, G. Casaday, T. Erickson, S. Fincher, B. Grinter, B. Gross,
D. Lehder, H. Marmolin, B. Moore, C. Potts, G. Skousen, and J. Thomas. Putting
it all together: Towards a pattern language for interaction design: A CHI 97 work-
shop. ACM SIGCHI Bulletin, 30(1):17–23, 1 Jan. 1998. ISSN 0736-6906. doi:
10.1145/280571.280580.

[41] K. Beck. Smalltalk: Best Practice Patterns. Prentice-Hall, Inc., Saddle River, NJ, USA,
1996. ISBN 978-0-13-476904-2.

[42] L. Benini, A. Bogliolo, and G. de Micheli. A survey of design techniques for system-
level dynamic power management. IEEE Transactions on Very Large Scale Integration
(VLSI) Systems, 8(3):299–316, 2000. ISSN 1063-8210. doi: 10.1109/92.845896.

[43] H. Benninghoff, F. Rems, and T. Boge. Development and hardware-in-the-loop test of a
guidance, navigation and control system for on-orbit servicing. Acta Astronautica, 102:
67–80, 2014. ISSN 0094-5765. doi: 10.1016/j.actaastro.2014.05.023.

[44] L. Berardinelli, P. Langer, and T. Mayerhofer. Combining fuml and profiles for non-
functional analysis based on model execution traces. In Proceedings of the 9th In-
ternational ACM Sigsoft Conference on Quality of Software Architectures, QoSA ’13,

BIBLIOGRAPHY 209

pages 79–88, Vancouver, BC, Canada, 17–21 June 2013. ISBN 978-1-4503-2126-6. doi:
10.1145/2465478.2465493.

[45] S. Berczuk. Finding solutions through pattern languages. Computer, 27(12):75–76, Dec.
1994. doi: 10.1109/2.335755.

[46] S. Bernardi and D. C. Petriu. Comparing two UML profiles for non-functional require-
ment annotations: the SPT and QoS profiles. In International Workshop of Specification
and Validation of UML models for Real Time and Embedded Systems in conjunction
with the 7th International Conference on the Unified Modeling Language, SVERTS ’04,
Lisbon, Portugal, 11 Oct. 2004.

[47] D.-R. Berte. Defining the IoT. Proceedings of the International Conference on Business
Excellence, 12(1):118–128, May 2018. doi: 10.2478/picbe-2018-0013.

[48] J. Bézivin. In search of a basic principle for model-driven engineering. Novatica Journal,
Special Issue on UML, 5(2):21–24, 2004.

[49] G. Booch, R. Maksimchuk, M. Engle, B. Young, J. Conallen, and K. Houston. Object-
oriented analysis and design with applications. The Addison-Wesley object technology
series. Addison-Wesley, Upper Saddle River, NJ, USA, 3rd edition, 2007. ISBN 978-0-
201-89551-3.

[50] J. O. Borchers. A pattern approach to interaction design. AI & Society, 15(4):359–376,
Dec. 2001. ISSN 0951-5666. doi: 10.1007/BF01206115.

[51] C. Bormann, M. Ersue, and A. Keranen. Terminology for constrained-node networks.
RFC 7228, Internet Engineering Task Force, May 2014. URL https://datatracker.ietf.org/
doc/rfc7228/.

[52] Bosch Sensortec GmbH. BMM160 – Datasheet, Version 1.4, 2020. URL
https://www.bosch-sensortec.com/media/boschsensortec/downloads/datasheets/
bst-bmm150-ds001.pdf. Last Access: August 3rd, 2022.

[53] Bosch Sensortec GmbH. BME280 – Datasheet, Version 2.2, 2021. URL
https://www.bosch-sensortec.com/media/boschsensortec/downloads/datasheets/
bst-bme280-ds002.pdf. Last Access: August 3rd, 2022.

[54] Bosch Sensortec GmbH. Github: BME280 sensor API.
https://github.com/BoschSensortec/BME280_driver, 2022. URL https://github.com/
BoschSensortec/BME280 driver. Last Access: August 3rd, 2022.

[55] T. Bouguera, J.-F. Diouris, J.-J. Chaillout, R. Jaouadi, and G. Andrieux. Energy
consumption model for sensor nodes based on LoRa and LoRaWAN. Sensors, 18(7),
2018. ISSN 1424-8220. doi: 10.3390/s18072104.

[56] M. Brambilla, J. Cabot, and M. Wimmer. Model-driven software engineering in practice,
volume 4 of Synthesis lectures on software engineering. Morgan & Claypool Publishers,
San Rafael, CA, USA, 2nd edition, 2017. ISBN 978-1-62705-708-0. doi: 10.2200/
S00751ED2V01Y201701SWE004.

https://datatracker.ietf.org/doc/rfc7228/
https://datatracker.ietf.org/doc/rfc7228/
https://www.bosch-sensortec.com/media/boschsensortec/downloads/datasheets/bst-bmm150-ds001.pdf
https://www.bosch-sensortec.com/media/boschsensortec/downloads/datasheets/bst-bmm150-ds001.pdf
https://www.bosch-sensortec.com/media/boschsensortec/downloads/datasheets/bst-bme280-ds002.pdf
https://www.bosch-sensortec.com/media/boschsensortec/downloads/datasheets/bst-bme280-ds002.pdf
https://github.com/BoschSensortec/BME280_driver
https://github.com/BoschSensortec/BME280_driver

210 BIBLIOGRAPHY

[57] E. J. Braude and M. E. Bernstein. Software Engineering: Modern Approaches.
Waveland Press, Long Grove, IL, USA, 2nd edition, 2016. ISBN 978-1-4786-3230-6.

[58] E. Bringmann and A. Krämer. Model-based testing of automotive systems. In Proceed-
ings of the 1st International Conference on Software Testing, Verification, and Validation,
pages 485–493, Lillehammer, Norway, 9–11 Apr. 2008. doi: 10.1109/ICST.2008.45.

[59] B. Broekman and E. Notenboom. Testing embedded software. Pearson Education, 1st
edition, 2003. ISBN 978-0-321-15986-1.

[60] D. Brown. A conversation with steve furber: The designer of the arm chip shares lessons
on energy-efficient computing. Queue, 8(2):1–8, Feb. 2010. ISSN 1542-7730. doi:
10.1145/1716383.1716385.

[61] D. Bruggner, A. Hegde, F. S. Acerbo, D. Gulati, and T. D. Son. Model in the loop
testing and validation of embedded autonomous driving algorithms. In 2021 IEEE
Intelligent Vehicles Symposium (IV), pages 136–141, Nagoya, Japan, 11–17 July 2021.
doi: 10.1109/IV48863.2021.9575530.

[62] J. Budde. Entwurf und Entwicklung einer Hardware-in-the-Loop Plattform zum Rapid-
Prototyping modellbasierter Software. Master’s thesis, Faculty of Engineering and
Computer Science, Osnabrück University of Applied Sciences, Osnabrück, Germany,
2022. (in German).

[63] C. Bunse and H. Höpfner. Resource substitution with components - optimizing energy
consumption. In Proceedings of the 3rd International Conference on Software and Data
Technologies, volume 3 of ICSOFT ’08, pages 28–35, Porto, Portugal, 5–8 July 2008.
INSTICC. ISBN 978-989-8111-52-4. doi: 10.5220/0001879000280035.

[64] C. Bunse and S. Stiemer. On the energy consumption of design patterns.
Softwaretechnik-Trends, 33(2):4–5, May 2013. doi: 10.1007/s40568-013-0020-6.

[65] T. D. Burd and R. W. Brodersen. Design issues for dynamic voltage scaling. In
Proceedings of the 2000 International Symposium on Low Power Electronics and Design,
ISLPED ’00, pages 9–14, Rapallo, Italy, 26–27 July 2000. ACM. ISBN 978-1-58113-190-
1. doi: 10.1145/344166.344181.

[66] M. Buschhoff, R. Falkenberg, and O. Spinczyk. Energy-aware device drivers for em-
bedded operating systems. ACM SIGBED Review, 16(3):8–13, Nov. 2019. doi:
10.1145/3373400.3373401.

[67] F. Buschmann, R. Meunier, H. Rohnert, P. Sommerlad, and M. Stal. Pattern-Oriented
Software Architecture - Volume 1: A System of Patterns. Wiley Publishing, Chichester,
UK, 1996. ISBN 978-0-471-95869-7.

[68] F. Buschmann, K. Henney, and D. C. Schmidt. Pattern Oriented Software Architecture:
On Patterns and Pattern Languages (Wiley Software Patterns Series). John Wiley &
Sons, Inc., Hoboken, NJ, USA, 2007. ISBN 978-0-471-48648-0.

[69] G. Caplat and J. L. Sourrouille. Model mapping in MDA. In Workshop in Software
Model Engineering at the 5th International Conference on the Unified Modeling Language,
volume 196 of WiSME ’02, Dresden, Germany, 1 Oct. 2002.

BIBLIOGRAPHY 211

[70] G. Caplat and J. L. Sourrouille. Considerations about model mapping. In J. Bezivin
and M. Gogolla, editors, Workshop in software model engineering at the 6th International
Conference of The Unified Modeling Language, WiSME ’03. San Francisco, CA, USA,
21 Oct. 2003.

[71] I. Cassar and A. Francalanza. On synchronous and asynchronous monitor instrumen-
tation for actor-based systems. In J. Cámara and J. Proença, editors, Proceedings of
the 13th International Workshop on Foundations of Coordination Languages and Self-
Adaptive Systems, volume 175 of FOCLASA ’14, pages 54–68, Rome, Italy, 6 Sept. 2014.
doi: 10.4204/EPTCS.175.4.

[72] I. Cassar, A. Francalanza, L. Aceto, and A. Ingólfsdóttir. A survey of runtime monitoring
instrumentation techniques. In A. Francalanza and G. J. Pace, editors, Proceedings of
the 2nd International Workshop on Pre- and Post-Deployment Verification Techniques,
volume 254 of PrePost@iFM ’17, pages 15–28, Turin, Italy, 19 Sept. 2017. doi: 10.4204/
EPTCS.254.2.

[73] M. Cattani, C. A. Boano, and K. Römer. An experimental evaluation of the reliability
of lora long-range low-power wireless communication, 2017. ISSN 2224-2708. URL
https://www.mdpi.com/2224-2708/6/2/7.

[74] M. R. V. Chaudron, W. Heijstek, and A. Nugroho. How effective is UML modeling?
Software & Systems Modeling, 11(4):571–580, 26 Aug. 2012. ISSN 1619-1366. doi:
10.1007/s10270-012-0278-4.

[75] D. Cheij. A software architecture for building interchangeable test systems. In 2001
IEEE Autotestcon Proceedings. IEEE Systems Readiness Technology Conference, pages
16–22, Valley Forge, PA, USA, 20–23 Aug. 2001. doi: 10.1109/AUTEST.2001.948916.

[76] M. Chen, J. Wan, and F. Li. Machine-to-machine communications: Architectures,
standards and applications. KSII Transactions on Internet and Information Systems, 6
(2):480–497, 27 Feb. 2012. doi: 10.3837/tiis.2012.02.002.

[77] S. Chen, Y. Chen, S. Zhang, and N. Zheng. A novel integrated simulation and test-
ing platform for self-driving cars with hardware in the loop. IEEE Transactions on
Intelligent Vehicles, 4(3):425–436, 2019. doi: 10.1109/TIV.2019.2919470.

[78] P. S. Cheong, J. Bergs, C. Hawinkel, and J. Famaey. Comparison of lorawan classes
and their power consumption. In IEEE Symposium on Communications and Vehicular
Technology, SCVT ’17, pages 1–6, 14 Nov. 2017. doi: 10.1109/SCVT.2017.8240313.

[79] K.-W. Choi and A. Chatterjee. Efficient instruction-level optimization methodology for
low-power embedded systems. In 14th International Symposium on Systems Synthesis,
ISSS ’01, pages 147–152, Montréal, P.Q., Canada, 30 Sept.–3 Oct. 2001. ISBN 978-1-
58113-418-6. doi: 10.1145/500001.500035.

[80] Cisco Systems. Cisco annual internet report (2018–2023). Technical Report
C11-741490-01, Cisco, 2020. URL https://www.cisco.com/c/en/us/solutions/collateral/
executive-perspectives/annual-internet-report/white-paper-c11-741490.html. Last Access:
August 3rd, 2022.

https://www.mdpi.com/2224-2708/6/2/7
https://www.cisco.com/c/en/us/solutions/collateral/executive-perspectives/annual-internet-report/white-paper-c11-741490.html
https://www.cisco.com/c/en/us/solutions/collateral/executive-perspectives/annual-internet-report/white-paper-c11-741490.html

212 BIBLIOGRAPHY

[81] L. Copeland. A Practitioner’s Guide to Software Test Design. Artech House, Norwood,
MA, USA, 2004. ISBN 978-1-58053-791-9.

[82] J. O. Coplien. Advanced C++ Programming Styles and Idioms. Addison-Wesley
Longman Publishing Co., Inc., Boston, MA, ISA, 1991. ISBN 978-0-201-54855-6.

[83] L. Corral, A. B. Georgiev, A. Sillitti, and G. Succi. A method for characterizing energy
consumption in android smartphones. In 2nd International Workshop on Green and
Sustainable Software (GREENS), pages 38–45, San Francisco, CA, USA, 20 May 2013.
doi: 10.1109/GREENS.2013.6606420.

[84] V. Cortellessa, A. Di Marco, and P. Inverardi. Integrating performance and reliability
analysis in a non-functional mda framework. In Proceedings of the 10th International
Conference on Fundamental Approaches to Software Engineering, FASE ’07, pages 57–71,
Braga, Portugal, 24 Mar.–1 Apr. 2007.

[85] L. Cruz and R. Abreu. Performance-based guidelines for energy efficient mobile applica-
tions. In Proceedings of the 4th International Conference on Mobile Software Engineering
and Systems, MOBILESoft ’17, pages 46–57, Buenos Aires, Argentina, 22–23 May 2017.
doi: 10.1109/MOBILESoft.2017.19.

[86] L. Cruz and R. Abreu. Catalog of energy patterns for mobile applications. Empir-
ical Software Engineering, 24(4):2209–2235, 2019. ISSN 1382-3256. doi: 10.1007/
s10664-019-09682-0.

[87] A. Danese, G. Pravadelli, and I. Zandonà. Automatic generation of power state machines
through dynamic mining of temporal assertions. In Proceedings of the 2016 Conference
on Design, Automation & Test in Europe, DATE ’16, pages 606–611, San Jose, CA,
USA, 14–18 Mar. 2016. EDA Consortium. ISBN 978-3-98153706-2.

[88] A. Das, G. V. Merrett, and B. M. Al-Hashimi. The slowdown or race-to-idle question:
Workload-aware energy optimization of smt multicore platforms under process variation.
In Proceedings of the Design, Automation & Test in Europe Conference & Exhibition,
DATE ’06, pages 535–538, 14–18 Mar. 2016.

[89] A. Dash, A. Kacker, C. Sutton, J. Zhou, and Y. Yoshida. Rational rhapsody JAVA
API – code snippets & helper apps., 2022. URL https://www.ibm.com/support/pages/
rational-rhapsody-java-api-\T1\textendash-code-snippets-helper-apps. Last Access: Febru-
ary 1st, 2023.

[90] Dassault Systèmes. Magicdraw, 2022. URL https://www.3ds.com/products-services/
catia/products/no-magic/magicdraw/. Last Access: August 3rd, 2022.

[91] M. de Miguel. General framework for the description of QoS in UML. In 6th IEEE
International Symposium on Object-Oriented Real-Time Distributed Computing, pages
61–68, 16 May 2003. doi: 10.1109/ISORC.2003.1199237.

[92] J. Deichmann, D. Georg, B. Klein, B. Mühlreiter, and J. P. Stein. Crack-
ing the complexity code in embedded systems development: How to man-
age - and eventually master - complexity in embedded systems development.,
2022. URL https://www.mckinsey.com/industries/advanced-electronics/our-insights/

https://www.ibm.com/support/pages/rational-rhapsody-java-api-\T1\textendash -code-snippets-helper-apps
https://www.ibm.com/support/pages/rational-rhapsody-java-api-\T1\textendash -code-snippets-helper-apps
https://www.3ds.com/products-services/catia/products/no-magic/magicdraw/
https://www.3ds.com/products-services/catia/products/no-magic/magicdraw/
https://www.mckinsey.com/industries/advanced-electronics/our-insights/cracking-the-complexity-code-in-embedded-systems-development

BIBLIOGRAPHY 213

cracking-the-complexity-code-in-embedded-systems-development. Last Access: August
3rd, 2022.

[93] S. Dhouib, J.-P. Diguet, E. Senn, and J. Laurent. Energy models of real time operating
systems on FPGA. In Proceedings of the 4th International Workshop on Operating
Systems Platforms for Embedded Real-Time Applications (OSPERT), Prague, Czech
Republic, 1 July 2008.

[94] S. Dhouib, E. Senn, J.-P. Diguet, J. Laurent, and D. Blouin. Model driven high-level
power estimation of embedded operating systems communication services. In Proceedings
of the 6th International Conference on Embedded Software and Systems, pages 475–481,
Hangzhou, ZJ, China, 25–27 May 2009. doi: 10.1109/ICESS.2009.94.

[95] A. C. Dias-Neto and G. H. Travassos. Model-based testing approaches selection for
software projects. Information and Software Technology, 51(11):1487–1504, 2009. ISSN
0950-5849. doi: 10.1016/j.infsof.2009.06.010.

[96] A. C. Dias Neto, R. Subramanyan, M. Vieira, and G. H. Travassos. A survey on
model-based testing approaches: A systematic review. In Proceedings of the 1st ACM
International Workshop on Empirical Assessment of Software Engineering Languages and
Technologies: Held in Conjunction with the 22nd IEEE/ACM International Conference
on Automated Software Engineering (ASE), WEASELTech ’07, pages 31–36, Atlanta,
Georgia, USA, 5 Nov. 2007. ACM. doi: 10.1145/1353673.1353681.

[97] B. Dobing and J. Parsons. Dimensions of UML diagram use. Journal of Database
Management, 19(1):1–18, 2008. ISSN 1063-8016. doi: 10.4018/jdm.2008010101.

[98] B. P. Douglass. Real-time design patterns: Robust scalable architecture for Real-time
systems. The Addison-Wesley object technology series. Addison-Wesley, Boston, MA,
USA, 2003. ISBN 978-0-201-69956-2.

[99] B. P. Douglass. Design patterns for embedded systems in C: An embedded software
engineering toolkit. Newnes/Elsevier, Oxford and Burlington, MA, 2011. ISBN 978-1-
85617-707-8.

[100] B. P. Douglass. Real-time UML workshop for embedded systems. Embedded technology
series. Newnes an imprint of Elsevier, Amsterdam, second edition edition, 2014. ISBN
978-0-12-407781-2.

[101] L.-T. Duan, B. Guo, Y. Shen, Y. Wang, and W.-L. Zhang. Energy analysis and
prediction for applications on smartphones. Journal of Systems Architecture, 59(10,
Part D):1375–1382, 2013. ISSN 1383-7621. doi: 10.1016/j.sysarc.2013.08.011.

[102] U. Durak, D. Müller, F. Möcke, and C. B. Koch. Modeling and simulation based
development of an enhanced ground proximity warning system for multicore targets.
In Proceedings of the Model-Driven Approaches for Simulation Engineering Symposium,
Mod4Sim ’18, Baltimore, Maryland, 15–18 Apr. 2018. Society for Computer Simulation
International.

[103] Y. Durrani, T. Riesgo, and F. Machado. Statistical power estimation for register transfer
level. In International Conference Mixed Design of Integrated Circuits and System, pages
522–527, Gdynia, Poland, 22–24 June 2006. doi: 10.1109/MIXDES.2006.1706635.

https://www.mckinsey.com/industries/advanced-electronics/our-insights/cracking-the-complexity-code-in-embedded-systems-development
https://www.mckinsey.com/industries/advanced-electronics/our-insights/cracking-the-complexity-code-in-embedded-systems-development
https://www.mckinsey.com/industries/advanced-electronics/our-insights/cracking-the-complexity-code-in-embedded-systems-development

214 BIBLIOGRAPHY

[104] Eclipse Foundation. Papyrus, 2022. URL https://www.eclipse.org/papyrus. Last Access:
August 3rd, 2022.

[105] O. Elijah, T. A. Rahman, I. Orikumhi, C. Y. Leow, and M. N. Hindia. An overview of
internet of things (IoT) and data analytics in agriculture: Benefits and challenges. IEEE
Internet of Things Journal, 5(5):3758–3773, 2018. doi: 10.1109/JIOT.2018.2844296.

[106] I. Eouzan, L. Garnery, M. A. Pinto, D. Delalande, C. J. Neves, F. Fabre, J. Lesobre,
S. Houte, A. Estonba, I. Montes, T. Sime-Ngando, and D. G. Biron. Hygroregulation,
a key ability for eusocial insects: Native western european honeybees as a case study.
PLOS ONE, 14(2):1–15, Feb. 2019. doi: 10.1371/journal.pone.0200048.

[107] H. Esmaeilzadeh, E. Blem, R. S. Amant, K. Sankaralingam, and D. Burger. Dark
silicon and the end of multicore scaling. In 38th Annual International Symposium on
Computer Architecture, volume 39 of ISCA ’11, pages 365–376, San Jose, CA, USA,
4–8 June 2011. doi: 10.1145/2024723.2000108.

[108] H. Espinoza, H. Dubois, S. Gérard, J. Medina, D. C. Petriu, and M. Woodside. Annotat-
ing uml models with non-functional properties for quantitative analysis. In Proceedings
of the 2005 International Conference on Satellite Events at the 8th International Confer-
ence on Model Driven Engineering Languages and Systems, MoDELS ’05, pages 79–90,
Montego Bay, Jamaica, 2–7 Oct. 2005. Springer-Verlag. ISBN 978-3-54031780-7. doi:
10.1007/11663430 9.

[109] H. Espinoza, H. Dubois, J. Medina, and S. Gérard. A general structure for the analysis
framework of the UML MARTE profile. In MARTES Workshop at 8th International
Conference on Model Driven Engineering Languages and Systems, MoDELS ’05, Montego
Bay, Jamaica, 4 Oct. 2005.

[110] H. Espinoza, J. Medina, H. Dubois, S. Gérard, and F. Terrier. Towards a UML-
based modelling standard for schedulability analysis of real-time systems. In MARTES
Workshop at 9th International Conference on Model Driven Engineering Languages and
Systems, MoDELS ’06, pages 79–90, Genoa, Italy, 2 Oct. 2006.

[111] Espressif Systems. ESP32 Series, 2022. URL https://www.espressif.com/sites/default/
files/documentation/esp32 datasheet en.pdf. Last Access: August 3rd, 2022.

[112] Espressif Systems. Esp-idf - iot development framework, 2023. URL https://www.
espressif.com/en/products/sdks/esp-idf. Last Access: February 3rd, 2023.

[113] ETSI Technical Committee Methods for Testing and Specification. Methods for testing
and specification (MTS); model-based testing (MBT); requirements for modelling nota-
tions. Standard ES 202 951 V1.1.1, European Telecommunications Standards Institute,
Sophia Antipolis, France, 2011. URL https://www.etsi.org/deliver/etsi es/202900 202999/
202951/01.01.01 60/es 202951v010101p.pdf.

[114] E. Evans and E. J. Evans. Domain-driven design: tackling complexity in the heart of
software. Addison-Wesley Professional, 2004. ISBN 978-0-321-12521-7.

[115] EventHelix.com Inc. High speed serial port design pattern, 2019. URL https://www.
eventhelix.com/design-patterns/high-speed-serial-port/. Last Access: August 3rd, 2020.

https://www.eclipse.org/papyrus
https://www.espressif.com/sites/default/files/documentation/esp32_datasheet_en.pdf
https://www.espressif.com/sites/default/files/documentation/esp32_datasheet_en.pdf
https://www.espressif.com/en/products/sdks/esp-idf
https://www.espressif.com/en/products/sdks/esp-idf
https://www.etsi.org/deliver/etsi_es/202900_202999/202951/01.01.01_60/es_202951v010101p.pdf
https://www.etsi.org/deliver/etsi_es/202900_202999/202951/01.01.01_60/es_202951v010101p.pdf
https://www.eventhelix.com/design-patterns/high-speed-serial-port/
https://www.eventhelix.com/design-patterns/high-speed-serial-port/

BIBLIOGRAPHY 215

[116] Y. Falcone, K. Havelund, and G. Reger. A tutorial on runtime verification. In M. Broy,
D. A. Peled, and G. Kalus, editors, Engineering Dependable Software Systems, volume 34
of NATO Science for Peace and Security Series, D: Information and Communication
Security, pages 141–175. IOS Press, 2013. doi: 10.3233/978-1-61499-207-3-141.

[117] Y. Falcone, S. Krstić, G. Reger, and D. Traytel. A taxonomy for classifying runtime
verification tools. International Journal on Software Tools for Technology Transfer, 23
(2):255–284, 2021. ISSN 1433-2787. doi: 10.1007/s10009-021-00609-z.

[118] Z. S. Fathy, Hosam K.and Filipi, J. Hagena, and J. L. Stein. Review of hardware-in-the-
loop simulation and its prospects in the automotive area. In K. Schum and A. F. Sisti,
editors, Modeling and Simulation for Military Applications, volume 6228, pages 117–136,
Orlando, FL, USA, 22 May 2006. International Society for Optics and Photonics, SPIE.
doi: 10.1117/12.667794.

[119] M. Faugere, T. Bourbeau, R. d. Simone, and S. Gerard. MARTE: Also an UML
profile for modeling AADL applications. In Proceedings of the 12th IEEE International
Conference on Engineering Complex Computer Systems, ICECCS ’07, pages 359–364,
Auckland, New Zealand, 11–14 July 2007. doi: 10.1109/ICECCS.2007.29.

[120] C. Fehling, J. Barzen, U. Breitenbücher, and F. Leymann. A process for pattern
identification, authoring, and application. In Proceedings of the 19th European Con-
ference on Pattern Languages of Programs, EuroPLoP ’14, 9–13 July 2014. doi:
10.1145/2721956.2721976.

[121] C. Fehling, F. Leymann, R. Retter, W. Schupeck, and P. Arbitter. Cloud Computing
Patterns. Springer Vienna, Vienna, Austria, 2014. ISBN 978-3-7091-1567-1. doi:
10.1007/978-3-7091-1568-8.

[122] D. Feitosa, R. Alders, A. Ampatzoglou, P. Avgeriou, and E. Y. Nakagawa. Investigating
the effect of design patterns on energy consumption. Journal of Software: Evolution
and Process, 29(2):e1851, 2017. doi: 10.1002/smr.1851.

[123] A. Fonseca, R. Kazman, and P. Lago. A manifesto for energy-aware software. IEEE
Software, 36(6):79–82, 2019. doi: 10.1109/MS.2019.2924498.

[124] M. Fowler. Patterns of enterprise application architecture. Addison-Wesley, Boston,
MA, USA, 1st edition, 2003. ISBN 978-0-321-12742-6.

[125] M. Fowler. UML distilled: A brief guide to the standard object modeling language.
Addison-Wesley, Boston, MA, USA, 3rd edition, 2004. ISBN 978-0-321-19368-1.

[126] M. Friedli, L. Kaufmann, F. Paganini, and R. Kyburz. Energy efficiency of the internet
of things. Technology and Energy Assessment Report prepared for IEA 4E EDNA.
Lucerne University of Applied Sciences, Switzerland, 2016.

[127] D. Friesel, M. Buschhoff, and O. Spinczyk. Parameter-aware energy models for
embedded-system peripherals. In Proceedings of the 13th International Symposium
on Industrial Embedded Systems, SIES ’18, pages 1–4, Graz, Austria, 6–8 June 2018.
doi: 10.1109/SIES.2018.8442096.

216 BIBLIOGRAPHY

[128] T. Funk and B. Wicht. Integrated Wide-Bandwidth Current Sensing. Springer In-
ternational Publishing, Cham, Switzerland, 2020. ISBN 978-3-030-53249-9. doi:
10.1007/978-3-030-53250-5.

[129] J. Gait. A probe effect in concurrent programs. Software: Practice and Experience, 16
(3):225–233, 1986. doi: 10.1002/spe.4380160304.

[130] D. D. Gajski and R. H. Kuhn. Guest editors’ introduction: New VLSI tools. Computer,
16(12):11–14, 1983. doi: 10.1109/MC.1983.1654264.

[131] E. Gamma, R. Helm, R. Johnson, and J. M. Vlissides. Design Patterns: Elements of
Reusable Object-Oriented Software. Addison-Wesley Professional, Boston, MA, USA,
1994. ISBN 978-0-201-63361-0.

[132] J. Ganssle and M. Barr. Embedded Systems Dictionary. CMP Books, San Francisco,
CA, USA, 2003. ISBN 978-1-57820-120-4.

[133] V. Garousi, M. Felderer, Ç. M. Karapıçak, and U. Yılmaz. Testing embedded software:
A survey of the literature. Information and Software Technology, 104:14–45, 2018. ISSN
0950-5849. doi: 10.1016/j.infsof.2018.06.016.

[134] Ş. Y. Gelbal, S. Tamilarasan, M. R. Cantaş, L. Güvenç, and B. Aksun-Güvenç. A
connected and autonomous vehicle hardware-in-the-loop simulator for developing auto-
mated driving algorithms. In Proceedings of the 2017 IEEE International Conference
on Systems, Man, and Cybernetics, SMC ’17, pages 3397–3402, Banff, AB, Canada,
5–8 Oct. 2017. doi: 10.1109/SMC.2017.8123155.

[135] K. Georgiou, S. Xavier-de Souza, and K. Eder. The IoT energy challenge: A software
perspective. IEEE Embedded Systems Letters, 10(3):53–56, 2018. doi: 10.1109/
LES.2017.2741419.

[136] S. Georgiou, M. Kechagia, P. Louridas, and D. Spinellis. What are your programming
language’s energy-delay implications? In Proceedings of the 15th International Confer-
ence on Mining Software Repositories, MSR ’18, pages 303–313, 27 May–3 June 2018.
doi: 10.1145/3196398.3196414.

[137] M. Glinz. On non-functional requirements. In Proceedings of the 15th IEEE In-
ternational Requirements Engineering Conference, RE ’07, pages 21–26, Delhi, India,
15–19 Oct. 2007. doi: 10.1109/RE.2007.45.

[138] H. Gomaa. Software modeling and design: UML, use cases, patterns, and software
architectures. Cambridge University Press, Cambridge, UK, 2011. ISBN 978-0-521-
76414-8.

[139] Google LLC. Protocol buffers. Technical report, Google LLC, 2021. URL https://
developers.google.com/protocol-buffers. Last Access: August 3rd, 2022.

[140] Google LLC. gRPC: A high-performance, open source universal RPC framework, 2022.
URL https://grpc.io/. Last Access: August 3rd, 2022.

[141] Google LLC. Flatbuffers, 2022. URL https://google.github.io/flatbuffers/. Last Access:
August 3rd, 2022.

https://developers.google.com/protocol-buffers
https://developers.google.com/protocol-buffers
https://grpc.io/
https://google.github.io/flatbuffers/

BIBLIOGRAPHY 217

[142] N. Goumagias, J. Whalley, O. Dilaver, and J. Cunningham. Making sense of the
internet of things: a critical review of internet of things definitions between 2005 and
2019. Internet Research, 31(5):1583–1610, 2021. ISSN 1066-2243. doi: 10.1108/
INTR-01-2020-0013.

[143] M. D. Grammatikakis, G. Kornaros, and M. Coppola. Power–aware multicore soc
and noc design. In M. Hübner and J. Becker, editors, Multiprocessor System-on-Chip:
Hardware Design and Tool Integration, pages 167–193. Springer New York, New York,
NY, USA, 2011. ISBN 978-1-4419-6460-1. doi: 10.1007/978-1-4419-6460-1 8.

[144] R. Grønmo and B. Møller-Pedersen. From UML 2 sequence diagrams to state machines
by graph transformation. Journal of Object Technology, 10:8: 1–22, 2011. doi: 10.5381/
jot.2011.10.1.a8.

[145] D. Gross and E. Yu. From non-functional requirements to design through patterns. Re-
quirements Engineering, 6(1):18–36, 2001. ISSN 0947-3602. doi: 10.1007/s007660170013.

[146] A. Grunwald, M. Schaarschmidt, and C. Westerkamp. LoRaWAN in a rural context:
Use cases and opportunities for agricultural businesses. In P. Roer, editor, Proceedings
of the Mobile Communication-Technologies and Applications; 24. ITG-Symposium, ITG-
Fachbericht, pages 134–139. VDE-Verlag GmbH, Osnabrück, Germany, 15–16 May
2019.

[147] I. Gräßler, J. Hentze, and T. Bruckmann. V-models for interdisciplinary systems
engineering. In D. Marjanović, M. Štorga, S. Škec, N. Bojčetić, and N. Pavković, editors,
Proceedings of the 15th International Design Conference, pages 747–756, Dubrovnik,
Croatia, 21–24 May 2018. doi: 10.21278/idc.2018.0333.

[148] L. Gui, J. Sun, Y. Liu, Y. J. Si, J. S. Dong, and X. Y. Wang. Combining model checking
and testing with an application to reliability prediction and distribution. In Proceedings
of the 2013 International Symposium on Software Testing and Analysis, ISSTA ’13, pages
101–111, Lugano, Switzerland, 15–20 July 2013. ACM. ISBN 978-1-4503-2159-4. doi:
10.1145/2483760.2483779.

[149] P. Guo, Y. Li, P. Li, S. Liu, and D. Sun. A uml model to simulink model transformation
method in the design of embedded software. In Proceedings of the 2014 Tenth Interna-
tional Conference on Computational Intelligence and Security, pages 583–587, Kunming,
China, 15–16 Nov. 2014. doi: 10.1109/CIS.2014.162.

[150] J. D. Hagar. Software Test Attacks to Break Mobile and Embedded Devices. Chapman
& Hall/CRC, Boca Raton, FL, USA, 1st edition, 2017. ISBN 978-1-138-46844-3.

[151] M. Hagner, A. Aniculaesei, and U. Goltz. UML-based analysis of power consumption
for real-time embedded systems. In Proceedings of the 10th International Conference
on Trust, Security and Privacy in Computing and Communications, pages 1196–1201,
Changsha, HN, China, 16–18 Nov. 2011. IEEE. ISBN 978-1-4577-2135-9. doi:
10.1109/TrustCom.2011.161.

[152] B. Hailpern and P. Tarr. Model-driven development: The good, the bad, and the ugly.
IBM Systems Journal, 45(3):451–461, 2006. doi: 10.1147/sj.453.0451.

218 BIBLIOGRAPHY

[153] J. Hansson, S. Helton, and P. Feiler. ROI analysis of the system architecture virtual
integration initiative. Technical report, Software Engineering Institute, Carnegie Mellon
University, Pittsburgh, USA, 2018.

[154] S. Hao, D. Li, W. G. J. Halfond, and R. Govindan. Estimating mobile application
energy consumption using program analysis. In Proceedings of the 35th International
Conference on Software Engineering, ICSE’ 13, pages 92–101, San Francisco, CA, USA,
18–26 May 2013. doi: 10.1109/ICSE.2013.6606555.

[155] D. Harel. Statecharts: a visual formalism for complex systems. Science of Computer
Programming, 8(3):231–274, 1987. ISSN 0167-6423. doi: 10.1016/0167-6423(87)90035-9.

[156] K. Havelund and A. Goldberg. Verify your runs. In B. Meyer and J. Woodcock, editors,
Verified Software: Theories, Tools, Experiments: First IFIP TC 2/WG 2.3 Conference,
Revised Selected Papers and Discussions, VSTTE ’05, pages 374–383. Springer Berlin
Heidelberg, Berlin, Germany, 10–13 Oct. 2008. ISBN 978-3-540-69149-5. doi: 10.1007/
978-3-540-69149-5 40.

[157] D. Helms, E. Schmidt, and W. Nebel. Leakage in CMOS circuits – an introduc-
tion. In E. Macii, V. Paliouras, and O. Koufopavlou, editors, Integrated Circuit and
System Design. Power and Timing Modeling, Optimization and Simulation, pages
17–35, Berlin, Heidelberg, 15–17 Sept. 2004. Springer Berlin Heidelberg. doi:
10.1007/978-3-540-30205-6 5.

[158] T. Hermans, P. Ramaekers, J. Denil, P. D. Meulenaere, and J. Anthonis. Incor-
poration of AUTOSAR in an embedded systems development process: A case study.
In Proceedings of the 37th EUROMICRO Conference on Software Engineering and
Advanced Applications, pages 247–250, Oulu, Finland, 30 Aug.–2 Sept. 2011. doi:
10.1109/SEAA.2011.45.

[159] G. Hohpe. Enterprise Integration Patterns: Designing, Building, and Deploying Mes-
saging Solutions. Addison-Wesley Professional, Boston, MA, USA, 1st edition edition,
2003. ISBN 978-0-321-20068-6.

[160] T. Hönig. Proactive Energy-Aware Computing. PhD thesis, Friedrich-Alexander-
Universität Erlangen-Nürnberg (FAU), Erlangen, Germany, 2017. URL https://opus4.
kobv.de/opus4-fau/frontdoor/index/index/docId/8992.

[161] T. Hönig, H. Janker, C. Eibel, W. Schröder-Preikschat, O. Mihelic, and R. Kapitza.
Proactive energy-aware programming with peek. In Proceedings of the 2014 International
Conference on Timely Results in Operating Systems, TRIOS ’14, pages 1–14, Broomfield,
CO, USA, 5 Oct. 2014. USENIX Association.

[162] L. Huning and E. Pulvermüller. Automatic code generation of safety mechanisms
in model-driven development. Electronics, 10(24), 2021. ISSN 2079-9292. doi:
10.3390/electronics10243150. URL https://www.mdpi.com/2079-9292/10/24/3150.

[163] L. Huning, T. Osterkamp, M. Schaarschmidt, and E. Pulvermüller. Seamless integration
of hardware interfaces in UML-based MDSE tools. In Proceedings of the 16th Interna-
tional Conference on Software Technologies, volume 1 of ICSOFT ’21, pages 233–244,

https://opus4.kobv.de/opus4-fau/frontdoor/index/index/docId/8992
https://opus4.kobv.de/opus4-fau/frontdoor/index/index/docId/8992
https://www.mdpi.com/2079-9292/10/24/3150

BIBLIOGRAPHY 219

Online Streaming, 6–8 July 2021. INSTICC, SciTePress. ISBN 978-989-758-523-4. doi:
10.5220/0010575802330244.

[164] IBM. IBM Engineering Systems Design Rhapsody - Developer, 2022. URL https://
www.ibm.com/products/uml-tools. Last Access: August 3rd, 2022.

[165] IBM. IBM Docs: Model Based Testing with TestConductor and Automatic Test
Generation (ATG), 2022. URL https://www.ibm.com/docs/en/rhapsody/9.0.1?topic=
dm-model-based-testing-testconductor-automatic-test-generation-atg. Last Access: Au-
gust 3rd, 2022.

[166] IBM. IBM Documentation - Helpers, 2023. URL https://www.ibm.com/docs/en/
rhapsody/9.0.1?topic=rhapsody-helpers. Last Access: February 1st, 2023.

[167] IBM. IBM Documentation - Rhapsody API, 2023. URL https://www.ibm.com/docs/en/
rhapsody/9.0.1?topic=function-rhapsody-api. Last Access: February 1st, 2023.

[168] IBM. IBM Documentation - Generating code for component diagrams,
2023. URL https://www.ibm.com/docs/en/engineering-lifecycle-management-suite/
design-rhapsody/9.0.2?topic=code-generating-component-diagrams. Last Access: Febru-
ary 1st, 2023.

[169] Institute of Electrical and Electronics Engineers, Inc. IEEE standard american national
standard canadian standard graphic symbols for electrical and electronics diagrams
(including reference designation letters). Technical report, 1993.

[170] Institute of Electrical and Electronics Engineers, Inc. IEEE standard for standard sys-
temc language reference manual. Technical report, Institute of Electrical and Electronics
Engineers, Piscataway, NJ, USA, 2012.

[171] Institute of Electrical and Electronics Engineers, Inc. IEEE Standard for IP-XACT,
Standard Structure for Packaging, Integrating, and Reusing IP within Tool Flows.
Technical report, Institute of Electrical and Electronics Engineers, 2014. URL
https://standards.ieee.org/standard/1685-2014.html. Last Access: August 3rd, 2022.

[172] International Software Testing Qualifications Board. ISTQB Glossary, 2022. URL
https://glossary.istqb.org/. Last Access: August 3rd, 2022.

[173] R. Isermann, J. Schaffnit, and S. Sinsel. Hardware-in-the-loop simulation for the design
and testing of engine-control systems. IFAC Proceedings Volumes, 31(4):1–10, 15–17 Apr.
1998. ISSN 1474-6670. doi: 10.1016/S1474-6670(17)42125-2. 5th IFAC Workshop on
Algorithms & Architecture for Real Time Control.

[174] ISO, IEC, and IEEE. ISO/IEC/IEEE international standard - systems and software
engineering–vocabulary. ISO/IEC/IEEE 24765:2017(E), 2017. doi: 10.1109/IEEESTD.
2017.8016712.

[175] J. Itkonen and K. Rautiainen. Exploratory testing: a multiple case study. In 2005
International Symposium on Empirical Software Engineering, ISESE ’05, Noosa Heads,
Queensland, Australia, 17–18 Nov. 2005. doi: 10.1109/ISESE.2005.1541817.

https://www.ibm.com/products/uml-tools
https://www.ibm.com/products/uml-tools
https://www.ibm.com/docs/en/rhapsody/9.0.1?topic=dm-model-based-testing-testconductor-automatic-test-generation-atg
https://www.ibm.com/docs/en/rhapsody/9.0.1?topic=dm-model-based-testing-testconductor-automatic-test-generation-atg
https://www.ibm.com/docs/en/rhapsody/9.0.1?topic=rhapsody-helpers
https://www.ibm.com/docs/en/rhapsody/9.0.1?topic=rhapsody-helpers
https://www.ibm.com/docs/en/rhapsody/9.0.1?topic=function-rhapsody-api
https://www.ibm.com/docs/en/rhapsody/9.0.1?topic=function-rhapsody-api
https://www.ibm.com/docs/en/engineering-lifecycle-management-suite/design-rhapsody/9.0.2?topic=code-generating-component-diagrams
https://www.ibm.com/docs/en/engineering-lifecycle-management-suite/design-rhapsody/9.0.2?topic=code-generating-component-diagrams
https://standards.ieee.org/standard/1685-2014.html
https://glossary.istqb.org/

220 BIBLIOGRAPHY

[176] IVI Foundation. Standard Commands for Programmable Instruments (SCPI). Technical
report, European SCPI Consortium, 1999. URL https://www.ivifoundation.org/docs/
scpi-99.pdf. Document Number SCPI-99. Last Access: August 3rd, 2022.

[177] IVI Foundation. VISA Specifications, 2022. URL https://www.ivifoundation.org/
downloads/ArchitectureSpecifications/vpp43 2022-05-19.pdf. Document Number VPP-4.3,
Revision 7.2. Last Access: August 3rd, 2022.

[178] P. Iyenghar and E. Pulvermüller. A model-driven workflow for energy-aware scheduling
analysis of IoT-enabled use cases. IEEE Internet of Things Journal, 5(6):4914–4925,
2018. doi: 10.1109/JIOT.2018.2879746.

[179] P. Iyenghar, A. Noyer, J. Engelhardt, and E. Pulvermueller. Translating timing re-
quirements of embedded software systems modeled in Simulink to a timing analysis
model. In Proceedings of the 21st International Conference on Emerging Technologies
and Factory Automation, ETFA ’16, pages 1–4, Berlin, Germany, 6–9 Sept. 2016. doi:
10.1109/ETFA.2016.7733662.

[180] P. Iyenghar, A. Noyer, J. Engelhardt, and E. Pulvermueller. Model-based co-engineering
and NFP analysis in embedded software sub-systems developed using heterogeneous
modeling domains. In Proceedings of the 14th International Conference on Industrial
Informatics, INDIN ’2016, pages 1154–1161, Poitiers, France, 19–21 July 2016. doi:
10.1109/INDIN.2016.7819340.

[181] P. Iyenghar, A. Noyer, J. Engelhardt, E. Pulvermueller, and C. Westerkamp. End-to-
end path delay estimation in embedded software involving heterogeneous models. In
Proceedings of the 11th IEEE Symposium on Industrial Embedded Systems, SIES ’16,
pages 1–6, Krakow, Poland, 23–25 May 2016. doi: 10.1109/SIES.2016.7509427.

[182] P. Iyenghar, S. Wessels, A. Noyer, E. Pulvermueller, and C. Westerkamp. A novel
approach towards model-driven reliability analysis of Simulink models. In Proceedings
of the 21st International Conference on Emerging Technologies and Factory Automation,
ETFA ’16, pages 1–6, Berlin, Germany, 6–9 Sept. 2016. doi: 10.1109/ETFA.2016.
7733505.

[183] P. Iyenghar, A. Noyer, and E. Pulvermüller. Early model-driven timing validation
of IoT-compliant use cases. In Proceedings of the 15th International Conference on
Industrial Informatics, INDIN ’17, pages 19–25, Emden, Germany, 24–26 July 2017. doi:
10.1109/INDIN.2017.8104740.

[184] P. M. Jacob and M. Prasanna. A comparative analysis on black box testing strategies.
In Proceedings of the 2016 International Conference on Information Science, ICIS ’16,
pages 1–6, Kochi, India, 12–13 Aug. 2016. doi: 10.1109/INFOSCI.2016.7845290.

[185] I. Jacobson, G. Booch, and J. Rumbaugh. The unified software development process.
Addison-Wesley, Reading, Mass. and Harlow, 1999. ISBN 978-0-201-57169-1.

[186] V. Jaikamal. Model-based ECU development – an integrated MiL-SiL-HiL approach. In
SAE World Congress & Exhibition, Detroit, MI, USA, 20 Apr. 2009. SAE International.
doi: 10.4271/2009-01-0153.

https://www.ivifoundation.org/docs/scpi-99.pdf
https://www.ivifoundation.org/docs/scpi-99.pdf
https://www.ivifoundation.org/downloads/Architecture Specifications/vpp43_2022-05-19.pdf
https://www.ivifoundation.org/downloads/Architecture Specifications/vpp43_2022-05-19.pdf

BIBLIOGRAPHY 221

[187] H. Jayakumar, K. Lee, W. S. Lee, A. Raha, Y. Kim, and V. Raghunathan. Powering
the internet of things. In Proceedings of the 2014 International Symposium on Low
Power Electronics and Design, ISLPED ’14, pages 375–380, La Jolla, California, USA,
11–13 Aug. 2014. doi: 10.1145/2627369.2631644.

[188] H. Jiang, M. Marek-Sadowska, and S. R. Nassif. Benefits and costs of power-gating
technique. In Proceedings of the 2005 International Conference on Computer Design,
ICCD ’05, pages 559–566, San Jose, CA, USA, 2–5 Oct. 2005. IEEE Computer Society.
ISBN 978-0-7695-2451-1. doi: 10.1109/ICCD.2005.34.

[189] P. C. Jorgensen. Software Testing: a Craftsman’s Approach. CRC Press, Boca Raton,
FL, USA, 4th edition, 2014. ISBN 978-1-4665-6069-7.

[190] JSON-RPC Working Group. JSON-RPC 2.0 Specification, 2013. URL https://www.
jsonrpc.org/specification. Last Access: August 3rd, 2022.

[191] N. Julien, J. Laurent, E. Senn, and E. Martin. Power estimation of a C algorithm based
on the functional-level power analysis of a digital signal processor. In Proceedings of
the 4th International Symposium on High Performance Computing, ISHPC ’02, pages
354–360, Kansai Science City, Japan, 15–17 May 2002. Springer-Verlag. ISBN 978-3-
54043674-4. doi: 10.1007/3-540-47847-7 32.

[192] M. Kallmann and D. Thalmann. Modeling objects for interaction tasks. In B. Arnaldi
and G. Hégron, editors, Computer Animation and Simulation ’98, pages 73–86. Springer
Vienna, Vienna, Austria, 1999. ISBN 978-3-7091-6375-7.

[193] D. Kamma and G. S. Kumar. Effect of model based software development on productiv-
ity of enhancement tasks – an industrial study. In 21st Asia-Pacific Software Engineering
Conference, volume 1, pages 71–77, 1–4 Dec. 2014. doi: 10.1109/APSEC.2014.20.

[194] A. Kanduri, A. M. Rahmani, P. Liljeberg, A. Hemani, A. Jantsch, and H. Tenhunen. A
perspective on dark silicon. In A. M. Rahmani, P. Liljeberg, A. Hemani, A. Jantsch,
and H. Tenhunen, editors, The Dark Side of Silicon: Energy Efficient Computing in the
Dark Silicon Era, pages 3–20. Springer International Publishing, Cham, Switzerland,
2017. ISBN 978-3-319-31596-6. doi: 10.1007/978-3-319-31596-6 1.

[195] S. Kaxiras and M. Martonosi. Computer architecture techniques for power-efficiency,
volume 4 of Synthesis lectures on computer architecture. Morgan & Claypool, San Rafael,
CA, USA, 2008. ISBN 978-1-59829-208-4.

[196] M. Keating, D. Flynn, R. Aitken, A. Gibbons, and K. Shi. Low Power Methodology
Manual - For System-on-Chip Design. Springer Publishing, New York, NY, USA, 2007.
ISBN 978-0-387-71818-7. doi: 10.1007/978-0-387-71819-4.

[197] B. Kienhuis, E. Deprettere, K. Vissers, and P. Van Der Wolf. An approach for quantita-
tive analysis of application-specific dataflow architectures. In Proceedings of the IEEE
International Conference on Application-Specific Systems, Architectures and Processors,
pages 338–349, 14–16 July 1997. doi: 10.1109/ASAP.1997.606839.

[198] B. Kienhuis, E. F. Deprettere, P. v. d. Wolf, and K. A. Vissers. A methodology to
design programmable embedded systems - the Y-chart approach. In Embedded Processor

https://www.jsonrpc.org/specification
https://www.jsonrpc.org/specification

222 BIBLIOGRAPHY

Design Challenges: Systems, Architectures, Modeling, and Simulation - SAMOS, pages
18–37, Berlin, Heidelberg, 2002. Springer-Verlag. ISBN 978-3-54043322-4.

[199] D.-H. Kim, J.-P. Kim, and J.-E. Hong. A power consumption analysis technique using
UML-based design models in embedded software development. In I. Černá, T. Gyimóthy,
J. Hromkovič, K. Jefferey, R. Králović, M. Vukolić, and S. Wolf, editors, SOFSEM 2011:
Theory and Practice of Computer Science, volume 6543 of Lecture Notes in Computer
Science, pages 320–331. Springer, Berlin, Germany, 2011. ISBN 978-3-642-18380-5. doi:
10.1007/978-3-642-18381-2 27.

[200] N. S. Kim, T. Austin, D. Blaauw, T. Mudge, K. Flautner, J. S. Hu, M. J. Irwin,
M. Kandemir, and V. Narayanan. Leakage current: Moore’s law meets static power.
Computer, 36(12):68–75, 19 Dec. 2003. ISSN 0018-9162. doi: 10.1109/MC.2003.1250885.

[201] Kingbright. AP2012EC – Datasheet, Version 11A, 2021. URL https://www.kingbrightusa.
com/images/catalog/SPEC/AP2012EC.pdf. Last Access: August 3rd, 2022.

[202] J. C. Knight. Dependability of embedded systems. In Proceedings of the 24th Inter-
national Conference on Software Engineering, ICSE ’02, pages 685–686, Orlando, FL,
USA, 19–25 May 2002. ISBN 978-1-58113-472-8. doi: 10.1145/581339.581445.

[203] C. B. Koch, U. Durak, and D. Müller. Simulation-based verification for parallelization of
model-based applications. In Proceedings of the 50th Computer Simulation Conference,
SummerSim ’18, Bordeaux, France, 9–12 July 2018. Society for Computer Simulation
International.

[204] S. Konrad and B. H. C. Cheng. Requirements patterns for embedded systems. In
Proceedings IEEE Joint International Conference on Requirements Engineering, pages
127–136, 9–13 Sept. 2002. doi: 10.1109/icre.2002.1211541.

[205] S. Konrad, B. H. C. Cheng, and L. A. Campbell. Object analysis patterns for
embedded systems. IEEE Transactions on Software Engineering, 30(12):970–992, 2004.
doi: 10.1109/TSE.2004.102.

[206] V. Konstantakos, A. Chatzigeorgiou, S. Nikolaidis, and T. Laopoulos. Energy con-
sumption estimation in embedded systems. IEEE Transactions on Instrumentation and
Measurement, 57(4):797–804, 5 Mar. 2008. doi: 10.1109/TIM.2007.913724.

[207] P. Koopman. Embedded system security. Computer, 37(7):95–97, 12 July 2004. doi:
10.1109/MC.2004.52.

[208] G. Kortuem, F. Kawsar, V. Sundramoorthy, and D. Fitton. Smart objects as building
blocks for the internet of things. IEEE Internet Computing, 14(1):44–51, 1 Dec. 2010.
doi: 10.1109/MIC.2009.143.

[209] M. Krammer, C. Schiffer, and M. Benedikt. ProMECoS: A process model for efficient
standard-driven distributed co-simulation. Electronics, 10(5), 2021. ISSN 2079-9292.
doi: 10.3390/electronics10050633.

[210] Y. Kuroki, M. Yoo, and T. Yokoyama. A Simulink to UML model transformation
tool for embedded control software development. In Proceedings of the 2016 IEEE

https://www.kingbrightusa.com/images/catalog/SPEC/AP2012EC.pdf
https://www.kingbrightusa.com/images/catalog/SPEC/AP2012EC.pdf

BIBLIOGRAPHY 223

International Conference on Industrial Technology, ICIT ’26, pages 700–706, Taipei,
Taiwan, 14–17 Mar. 2016. doi: 10.1109/ICIT.2016.7474835.

[211] H. J. Landau. Sampling, data transmission, and the Nyquist rate. Proceedings of the
IEEE, 55(10):1701–1706, 1967. ISSN 0018-9219. doi: 10.1109/PROC.1967.5962.

[212] O. Landsiedel, K. Wehrle, and S. Gotz. Accurate prediction of power consumption in
sensor networks. In Proceedings of the 2nd IEEE Workshop on Embedded Networked
Sensors, EmNetS-II ’05, pages 37–44, 31 May 2005. doi: 10.1109/EMNETS.2005.
1469097.

[213] C. Lange, M. Chaudron, and J. Muskens. In practice: UML software architecture
and design description. IEEE Software, 23(2):40–46, 13 Mar. 2006. doi: 10.1109/
MS.2006.50.

[214] P. A. Laplante. Requirements Engineering for Software and Systems. CRC Press, Boca
Raton, FL, USA, 3rd edition, 2017. ISBN 978-1-138-19611-7.

[215] H. Lasi, P. Fettke, H.-G. Kemper, T. Feld, and M. Hoffmann. Industry 4.0. Busi-
ness & information systems engineering, 6(4):239–242, 19 June 2014. doi: 10.1007/
s12599-014-0334-4.

[216] K.-K. Lau, F. M. Taweel, and C. M. Tran. The W model for component-based
software development. In Proceedings of the 37th EUROMICRO Conference on Software
Engineering and Advanced Applications, EUROMICRO ’11, pages 47–50, Oulu, Finland,
30 Aug.–2 Sept. 2011. doi: 10.1109/SEAA.2011.17.

[217] J. Laurent, E. Senn, N. Julien, and E. Martin. High level energy estimation for
DSP systems. In Proceedings of the International Workshop on Power and Timing
Modeling, Optimization and Simulation, PATMOS ’01, pages 311–316, Yverdon-les-
Bains, Switzerland, 26–28 Sept. 2001.

[218] P. Lea. Internet of Things for Architects: Architecting IoT solutions by implementing
sensors, communication infrastructure, edge computing, analytics, and security. Packt
Publishing, Birmingham, UK, 1st edition, 2018. ISBN 978-1-78847-059-9.

[219] G. M. Lee, N. Crespi, J. K. Choi, and M. Boussard. Internet of things. In E. Bertin,
N. Crespi, and T. Magedanz, editors, Evolution of Telecommunication Services: The
Convergence of Telecom and Internet: Technologies and Ecosystems, pages 257–282,
Berlin, Germany, 2013. Springer Verlag. ISBN 978-3-642-41569-2. doi: 10.1007/
978-3-642-41569-2 13.

[220] M. Leucker and C. Schallhart. A brief account of runtime verification. The Journal
of Logic and Algebraic Programming, 78(5):293–303, 2009. ISSN 1567-8326. doi:
10.1016/j.jlap.2008.08.004.

[221] D. Li, S. Hao, J. Gui, and W. G. Halfond. An empirical study of the energy con-
sumption of android applications. In 2014 IEEE International Conference on Software
Maintenance and Evolution, pages 121–130, Victoria, BC, Canada, 29 Sept.–3 Oct. 2014.
doi: 10.1109/ICSME.2014.34.

224 BIBLIOGRAPHY

[222] P. Liggesmeyer and M. Trapp. Trends in embedded software engineering. IEEE Software,
26(3):19–25, 2009. doi: 10.1109/MS.2009.80.

[223] C. Lim, H. T. Ahn, and J. T. Kim. Predictive DVS scheduling for low-power real-time
operating system. In International Conference on Convergence Information Technology
(ICCIT), pages 1918–1921, Gwangju, Korea, 21–23 Nov. 2007. IEEE Computer Society.
ISBN 978-0-7695-3038-3. doi: 10.1109/ICCIT.2007.316.

[224] A. Litke, K. Zotos, A. Chatzigeorgiou, and G. Stephanides. Energy consumption analysis
of design patterns. International Journal of Electrical, Computer, Energetic, Electronic
and Communication Engineering, 1(11):1663–1667, 2007.

[225] Y. Liu, L. Gui, and Y. Liu. MDP-based reliability analysis of an ambient assisted living
system. In C. Jones, P. Pihlajasaari, and J. Sun, editors, FM 2014: Formal Methods,
volume 8442 of Lecture Notes in Computer Science, pages 688–702, Cham, Switzerland,
12–16 May 2014. Springer International Publishing. doi: 10.1007/978-3-319-06410-9\
46.

[226] Y. Liu, C. Xu, and S.-C. Cheung. Diagnosing energy efficiency and performance for
mobile internetware applications. IEEE Software, 32(1):67–75, 2015. doi: 10.1109/
MS.2015.4.

[227] Y. Liu, C. Xu, S.-C. Cheung, and V. Terragni. Understanding and detecting wake
lock misuses for android applications. In Proceedings of the 24th ACM SIGSOFT
International Symposium on Foundations of Software Engineering, FSE ’16, pages 396–
409, Seattle, WA, USA, 13–18 Nov. 2016. doi: 10.1145/2950290.2950297.

[228] Y. D. Liu. Energy-efficient synchronization through program patterns. In Proceedings
of the 1st International Workshop on Green and Sustainable Software in conjunction
with the 34th International Conference on Software Engineering, GREENS ’12, pages
35–40, Zurich, Switzerland, 3 June 2012. doi: 10.1109/GREENS.2012.6224253.

[229] D. Lopes, S. Hammoudi, J. Bézivin, and F. Jouault. Mapping specification in
MDA: From theory to practice. In D. Konstantas, J.-P. Bourrières, M. Léonard,
and N. Boudjlida, editors, Interoperability of Enterprise Software and Applications,
pages 253–264. Springer London, London, UK, 2006. ISBN 978-1-84628-151-8. doi:
10.1007/1-84628-152-0 23.

[230] Lora Alliance. LoRaWAN™ 1.1 Specification, 2017. URL https://lora-alliance.org/
wp-content/uploads/2020/11/lorawantm specification -v1.1.pdf. Last Access: August 3rd,
2022.

[231] G. Luo, B. Guo, Y. Shen, H. Liao, and L. Ren. Analysis and optimization of embedded
software energy consumption on the source code and algorithm level. In Proceedings of
the 4th International Conference on Embedded and Multimedia Computing, pages 1–5,
Jeju, Korea, 10–12 Dec. 2009. doi: 10.1109/EM-COM.2009.5402965.

[232] M. MacDiarmid and M. Bacic. Quantifying the accuracy of hardware-in-the-loop
simulations. In Proceedings of the 2007 American Control Conference, pages 5147–5152,
New York, NY, USA, 9–13 July 2007. doi: 10.1109/ACC.2007.4283062.

https://lora-alliance.org/wp-content/uploads/2020/11/lorawantm_specification_-v1.1.pdf
https://lora-alliance.org/wp-content/uploads/2020/11/lorawantm_specification_-v1.1.pdf

BIBLIOGRAPHY 225

[233] K. Maeda. Performance evaluation of object serialization libraries in XML, JSON
and binary formats. In Proceedings of the 2nd International Conference on Digital
Information and Communication Technology and it’s Applications (DICTAP), DICTAP
’12, pages 177–182, Bangkok, Thailand, 16–18 May 2012. doi: 10.1109/DICTAP.2012.
6215346.

[234] S. Maleki, C. Fu, A. Banotra, and Z. Zong. Understanding the impact of object
oriented programming and design patterns on energy efficiency. In Proceedings of the
8th International Green and Sustainable Computing Conference, IGSC ’17, pages 1–6,
Orlando, FL, USA, 23–25 Oct. 2017. doi: 10.1109/IGCC.2017.8323605.

[235] R. Mall. Fundamentals of Software Engineering. Eastern Economy Edition. PHI
Learning Private Limited, Delhi, India, 5th edition, 2018. ISBN 978-93-88028-02-8.

[236] D. Marculescu, R. Marculescu, and M. Pedram. Information theoretic measures of energy
consumption at register transfer level. In Proceedings of the International Symposium on
Low Power Design, ISLPED ’95, pages 81–86, Dana Point, California, USA, 23–26 Apr.
1995. ISBN 978-0-89791-744-5. doi: 10.1145/224081.224096.

[237] A. Martin and M. R. Emami. Dynamic load emulation in hardware-in-the-loop sim-
ulation of robot manipulators. IEEE Transactions on Industrial Electronics, 58(7):
2980–2987, 2 Sept. 2011. doi: 10.1109/TIE.2010.2072890.

[238] R. C. Martin and K. Henney. Clean Architecture: A craftsman’s guide to software
structure and design. Robert C. Martin series. Prentice Hall, Boston, MA, USA, 2018.
ISBN 978-0-13-449416-6.

[239] B. Martinez, M. Monton, I. Vilajosana, and J. D. Prades. The power of models:
Modeling power consumption for IoT devices. IEEE Sensors Journal, 15(10):5777–5789,
2015. ISSN 1530-437X. doi: 10.1109/JSEN.2015.2445094.

[240] P. Marwedel. Embedded System Design: Embedded Systems Foundations of Cyber-
Physical Systems, and the Internet of Things. Springer Publishing Company, Incorpo-
rated, Cham, Switzerland, 4th edition, 2021. ISBN 978-3-030-60909-2.

[241] J. D. McGregor and D. A. Sykes. A Practical Guide to Testing Object-Oriented
Software. Addison-Wesley, Boston, MA, USA, 2001. ISBN 978-0-201-32564-5.

[242] M. McHugh, O. Cawley, F. McCaffcry, I. Richardson, and X. Wang. An agile V-model
for medical device software development to overcome the challenges with plan-driven
software development lifecycles. In Proceedings of the 5th International Workshop on
Software Engineering in Health Care, SEHC ’13, pages 12–19, San Francisco, CA, USA,
20–21 May 2013. doi: 10.1109/SEHC.2013.6602471.

[243] Melexis NV. Mlx90640 32x24 ir array – datasheet, revision 12, 2021. URL https://www.
melexis.com/-/media/files/documents/datasheets/mlx90640-datasheet-melexis.pdf. Last
Access: August 3rd, 2022.

[244] S. J. Mellor, M. Balcer, and I. Jacoboson. Executable UML: A Foundation for Model-
Driven Architectures. Addison-Wesley Longman Publishing Co., Inc., Boston, MA, USA,
2002. ISBN 978-0-201-74804-8.

https://www.melexis.com/-/media/files/documents/datasheets/mlx90640-datasheet-melexis.pdf
https://www.melexis.com/-/media/files/documents/datasheets/mlx90640-datasheet-melexis.pdf

226 BIBLIOGRAPHY

[245] M. Menghin, N. Druml, C. Steger, h. Weiss, H. Bock, and J. Haid. Development
framework for model driven architecture to accomplish power-aware embedded systems.
In Proceedings of the 17th Euromicro Conference on Digital System Design, pages 122–
128, Verona, Italy, 27–29 Aug. 2014. doi: 10.1109/DSD.2014.30.

[246] T. Mens and P. Van Gorp. A taxonomy of model transformation. Electronic Notes
in Theoretical Computer Science, 152:125–142, Mar. 2006. ISSN 1571-0661. doi:
10.1016/j.entcs.2005.10.021. Proceedings of the International Workshop on Graph and
Model Transformation.

[247] A. Meroth, F. Tränkle, B. Richter, M. Wagner, M. Neher, and J. Lüling. Optimization
of the development process of intelligent transportation systems using automotive spice
and iso 26262. In Proceedings of the 17th International IEEE Conference on Intelligent
Transportation Systems, ITSC ’14, pages 1481–1486, Qingdao, China, 8–11 Oct. 2014.
doi: 10.1109/ITSC.2014.6957641.

[248] G. Meszaros and J. Doble. A pattern language for pattern writing. In R. C. Martin,
D. Riehle, and F. Buschmann, editors, Pattern Languages of Program Design 3, pages
529–574. Addison-Wesley Longman Publishing Co., Inc., USA, 1997. ISBN 978-0-201-
31011-5.

[249] A. Michailidis, U. Spieth, T. Ringler, B. Hedenetz, and S. Kowalewski. Test front loading
in early stages of automotive software development based on AUTOSAR. In Proceedings
of the 2010 Design, Automation & Test in Europe Conference & Exhibition, DATE ’10,
pages 435–440, Dresden, Germany, 8–10 Mar. 2010. doi: 10.1109/DATE.2010.5457166.

[250] Microchip Technology Inc. ATWINC15x0-MR210xB IEEE 802.11 b/g/n
SmartConnect IoT Module – Datasheet, Revision E, 2021. URL https://
ww1.microchip.com/downloads/en/DeviceDoc/ATWINC15x0-MR210xB-IEEE-802.
11-b-g-n-SmartConnect-IoT-Module-DS70005304E.pdf. Last Access: August 3rd,
2022.

[251] Microsoft Corporation. Flowchart maker and diagramming software | microsoft visio,
2022. URL https://www.microsoft.com/en/microsoft-365/visio/flowchart-software. Last
Access: August 3rd, 2022.

[252] K. Mikhaylov and J. Tervonen. Evaluation of power efficiency for digital serial in-
terfaces of microcontrollers. In Proceeding of the 5th International Conference on
New Technologies, Mobility and Security, NTMS ’12, pages 1–5, 7–10 May 2012. doi:
10.1109/NTMS.2012.6208716.

[253] M. Miśkowicz. Event-based control and signal processing. Embedded systems. CRC
Press, Boca Raton, FL, USA, 1st edition, 2015. ISBN 978-1-315-21507-5.

[254] Modelica Association Project DCP. DCP Specification Document, Version 1.0. Techni-
cal report, Linköping, Sweden, 2019. URL https://www.dcp-standard.org.

[255] R. Moraes, T. Basso, and E. Martins. V-model adaptation for space systems in light
of the ECSS standard. In Proceedings of the 10th Latin-American Symposium on
Dependable Computing, LADC ’21, pages 1–4, Florianópolis, Brazil, 2021. doi: 10.1109/
LADC53747.2021.9672593.

https://ww1.microchip.com/downloads/en/DeviceDoc/ATWINC15x0-MR210xB-IEEE-802.11-b-g-n-SmartConnect-IoT-Module-DS70005304E.pdf
https://ww1.microchip.com/downloads/en/DeviceDoc/ATWINC15x0-MR210xB-IEEE-802.11-b-g-n-SmartConnect-IoT-Module-DS70005304E.pdf
https://ww1.microchip.com/downloads/en/DeviceDoc/ATWINC15x0-MR210xB-IEEE-802.11-b-g-n-SmartConnect-IoT-Module-DS70005304E.pdf
https://www.microsoft.com/en/microsoft-365/visio/flowchart-software
https://www.dcp-standard.org

BIBLIOGRAPHY 227

[256] É. Morin, M. Maman, R. Guizzetti, and A. Duda. Comparison of the device lifetime
in wireless networks for the internet of things. IEEE Access, 5:7097–7114, 7 Apr. 2017.
doi: 10.1109/ACCESS.2017.2688279.

[257] J. Morrish, M. Arnott, and M. Hatton. Global IoT forecast report, 2022-2032. Technical
report, Transforma Insights, 2023. URL https://transformainsights.com/research/reports/
global-iot-forecast-report-2032. Last Access: June 3rd, 2023.

[258] G. J. Myers, C. Sandler, and T. Badgett. The art of software testing. John Wiley &
Sons, Hoboken and N.J, 3rd edition, 2012. ISBN 978-1-118-03196-4.

[259] D. P. Möller and R. E. Haas. Guide to Automotive Connectivity and Cybersecurity:
Trends, Technologies, Innovations and Applications. Springer Publishing Company,
Incorporated, 1st edition, 2019. ISBN 978-3-319-73511-5.

[260] H. W. Neukirchen. Languages, Tools and Patterns for the Specification of Distributed
Real-Time Tests. PhD thesis, Georg-August-Universität Göttingen, Fakultät für Math-
ematik und Informatik, Göttingen, Germany, 2004.

[261] T. Noergaard. Embedded Systems Architecture: A Comprehensive Guide for Engineers
and Programmers. Newnes, Waltham, MA, USA, 2nd edition, 2013. ISBN 978-0-12-
382196-6.

[262] Nordic Semiconductor. Online power profiler, 2022. URL https://devzone.nordicsemi.
com/power/w/opp. Last Access: June 1st, 2022.

[263] A. Noureddine and A. Rajan. Optimising energy consumption of design patterns. In
Proceedings of the 37th International Conference on Software Engineering, volume 2 of
ICSE ’15, pages 623–626, Florence Italy, 16–24 May 2015. IEEE Press. doi: 10.1109/
ICSE.2015.208.

[264] A. Noureddine, A. Bourdon, R. Rouvoy, and L. Seinturier. Runtime monitoring of soft-
ware energy hotspots. In Proceedings of the 27th IEEE/ACM International Conference
on Automated Software Engineering, ASE ’12, pages 160–169, Essen, Germany, 3–7 Sept.
2012. doi: 10.1145/2351676.2351699.

[265] A. Noureddine, R. Rouvoy, and L. Seinturier. Monitoring energy hotspots in software.
Automated Software Engineering, 22(3):291–332, Sept. 2015. ISSN 0928-8910. doi:
10.1007/s10515-014-0171-1.

[266] N. Nurseitov, M. Paulson, R. Reynolds, and C. Izurieta. Comparison of JSON and
XML data interchange formats: A case study. In D. Che, editor, Proceedings of the
22nd International Conference on Computer Applications in Industry and Engineering
(CAINE), pages 157–162, San Francisco, CA, USA, 4–6 Nov. 2009. ISCA.

[267] NXP Semiconductors. MPC8641 and MPC8641D integrated host processor hardware
specifications. document number: MPC8641D rev. 3, 2014. URL https://www.nxp.com/
docs/en/data-sheet/MPC8641DEC.pdf. Last Access: August 3rd, 2022.

[268] NXP Semiconductors. AN11783 - CLRC663 pluslow power card detection. Rev. 1.0,
2017. URL https://www.nxp.com/docs/en/application-note/AN11783.pdf. Last Access:
August 3rd, 2020.

https://transformainsights.com/research/reports/global-iot-forecast-report-2032
https://transformainsights.com/research/reports/global-iot-forecast-report-2032
https://devzone.nordicsemi.com/power/w/opp
https://devzone.nordicsemi.com/power/w/opp
https://www.nxp.com/docs/en/data-sheet/MPC8641DEC.pdf
https://www.nxp.com/docs/en/data-sheet/MPC8641DEC.pdf
https://www.nxp.com/docs/en/application-note/AN11783.pdf

228 BIBLIOGRAPHY

[269] NXP Semiconductors. LPC5411x product datasheet. rev. 2.6, 2020. URL https://
www.nxp.com/docs/en/data-sheet/LPC5411X.pdf. Last Access: August 3rd, 2022.

[270] Object Management Group. UML Profile for Schedulability, Performance, & Time.
Version 1.1. OMG document number formal/05-01-02 (https://www.omg.org/spec/SPTP/
), 2005. Last Access: August 7th, 2022.

[271] Object Management Group. UML Profile for Modeling QoS and FT. Version 1.1.
OMG document number formal/08-04-05 (https://www.omg.org/spec/QFTP/), 2008. Last
Access: August 7th, 2022.

[272] Object Management Group. Model Driven Architecture (MDA): MDA Guide rev.
2.0. OMG document number ormsc/2014-06-01 (https://www.omg.org/cgi-bin/doc?ormsc/
14-06-01), 2014. Last Access: August 7th, 2022.

[273] Object Management Group. XML Metadata Interchange. Version 2.5.1. OMG
document number formal/15-06-07 (https://www.omg.org/spec/XMI), 2015. Last Access:
August 7th, 2022.

[274] Object Management Group. Requirements Interchange Format (ReqIF). Version 1.2.
OMG document number formal/16-07-01 (https://www.omg.org/spec/ReqIF/1.2/), 2016.
Last Access: August 7th, 2022.

[275] Object Management Group. Unified Modeling Language. Version 2.5.1. OMG document
number formal/17-12-05 (https://www.omg.org/spec/UML/2.5.1/), 2017. Last Access:
August 7th, 2022.

[276] Object Management Group. UML Testing Profile 2 Specification. Version 2.1. OMG
document number formal/20-08-05 (https://www.omg.org/spec/UTP2/2.1/), 2017. Last
Access: August 7th, 2022.

[277] Object Management Group. Action Language for Foundational UML. Version 1.1.
OMG document number formal/17-07-04 (https://www.omg.org/spec/ALF/1.1/), 2017.
Last Access: August 7th, 2022.

[278] Object Management Group. A UML Profile for MARTE: Modeling and Analysis of Real-
Time and Embedded Systems. Version 1.2. OMG document number formal/19-04-01
(https://www.omg.org/spec/MARTE/1.2/), 2019. Last Access: August 7th, 2022.

[279] Object Management Group. OMG System Modeling Language Specification. Version
1.6. OMG document number formal/19-11-01 (https://www.omg.org/spec/SysML/1.6/),
2019. Last Access: August 7th, 2022.

[280] Object Management Group. Precise Semantics of UML State Machines. Version 1.0.
OMG document number formal/19-05-01 (https://www.omg.org/spec/PSSM/1.0), 2019.
Last Access: August 7th, 2022.

[281] Object Management Group. Semantics of a Foundational Subset for Executable UML
Models. Version 1.5. OMG document number formal/21-03-01 (https://www.omg.org/
spec/FUML/1.5/), 2021. Last Access: August 7th, 2022.

https://www.nxp.com/docs/en/data-sheet/LPC5411X.pdf
https://www.nxp.com/docs/en/data-sheet/LPC5411X.pdf
https://www.omg.org/spec/SPTP/
https://www.omg.org/spec/SPTP/
https://www.omg.org/spec/QFTP/
https://www.omg.org/cgi-bin/doc?ormsc/14-06-01
https://www.omg.org/cgi-bin/doc?ormsc/14-06-01
https://www.omg.org/spec/XMI
https://www.omg.org/spec/ReqIF/1.2/
https://www.omg.org/spec/UML/2.5.1/
https://www.omg.org/spec/UTP2/2.1/
https://www.omg.org/spec/ALF/1.1/
https://www.omg.org/spec/MARTE/1.2/
https://www.omg.org/spec/SysML/1.6/
https://www.omg.org/spec/PSSM/1.0
https://www.omg.org/spec/FUML/1.5/
https://www.omg.org/spec/FUML/1.5/

BIBLIOGRAPHY 229

[282] E. E. Ogheneovo. On the relationship between software complexity and maintenance
costs. Journal of Computer and Communications, 02(14):1–16, 2014. ISSN 2327-5219.
doi: 10.4236/jcc.2014.214001.

[283] OpenRPC. OpenRPC Specification Version 1.2.6, 2020. URL https://spec.open-rpc.org/.
Last Access: June 1st, 2022.

[284] F. Oquendo, J. Leite, and T. Batista. Eliciting requirements of software architectures.
In F. Oquendo, J. Leite, and T. Batista, editors, Software Architecture in Action, Under-
graduate Topics in Computer Science, pages 27–36. Springer International Publishing,
Cham, Switzerland, 2016. ISBN 978-3-319-44337-9. doi: 10.1007/978-3-319-44339-3 3.

[285] R. Oshana and M. Kraeling. Software engineering for embedded systems: Methods,
practical techniques, and applications. Newnes, Kidlington, Oxfordshire, UK, 2nd
edition, 2019. ISBN 978-0-12-809448-8.

[286] Osnabrück University. Holistic model-driven development for embedded systems in
consideration of diverse hardware architectures., 2022. URL https://www.informatik.
uni-osnabrueck.de/arbeitsgruppen/software engineering/research/holmes.html. Last Access:
August 3rd, 2022.

[287] S. Ould and N. S. Bennett. Energy performance analysis and modelling of lora
prototyping boards. Sensors, 21(23), 2021. ISSN 1424-8220. doi: 10.3390/s21237992.

[288] M. Ozkaya. Are the UML modelling tools powerful enough for practitioners? a literature
review. IET Software, 13(5):338–354, 2019. doi: 10.1049/iet-sen.2018.5409.

[289] C. Pang, A. Hindle, B. Adams, and A. E. Hassan. What do programmers know about
software energy consumption? IEEE Software, 33(3):83–89, 2016. ISSN 0740-7459. doi:
10.1109/MS.2015.83.

[290] M. Panunzio and T. Vardanega. An architectural approach with separation of concerns to
address extra-functional requirements in the development of embedded real-time software
systems. Journal of Systems Architecture, 60(9):770–781, 2014. ISSN 13837621. doi:
10.1016/j.sysarc.2014.06.001.

[291] L. Papadopoulos, C. Marantos, G. Digkas, A. Ampatzoglou, A. Chatzigeorgiou, and
D. Soudris. Interrelations between software quality metrics, performance and en-
ergy consumption in embedded applications. In Proceedings of the 21st Interna-
tional Workshop on Software and Compilers for Embedded Systems, SCOPES ’18, pages
62–65, Sankt Goar, Germany, 28–30 May 2018. ISBN 978-1-4503-5780-7. doi:
10.1145/3207719.3207736.

[292] Ó. Pastor and J. C. Molina. Model-driven architecture in practice: A software production
environment based on conceptual modeling. Springer, Berlin, Germany, 2007. ISBN
978-3-540-71867-3.

[293] A. Pathak, Y. C. Hu, and M. Zhang. Bootstrapping energy debugging on smartphones:
A first look at energy bugs in mobile devices. In Proceedings of the 10th ACM Workshop
on Hot Topics in Networks, HotNets-X ’11, Cambridge, MA, USA, 14–15 Nov. 2011.
ACM. ISBN 978-1-4503-1059-8. doi: 10.1145/2070562.2070567.

https://spec.open-rpc.org/
https://www.informatik.uni-osnabrueck.de/arbeitsgruppen/software_engineering/research/holmes.html
https://www.informatik.uni-osnabrueck.de/arbeitsgruppen/software_engineering/research/holmes.html

230 BIBLIOGRAPHY

[294] A. Pathak, Y. C. Hu, and M. Zhang. Where is the energy spent inside my app? fine
grained energy accounting on smartphones with Eprof. In 7th ACM European Conference
on Computer Systems, EuroSys ’12, pages 29–42, Bern, Switzerland, 10–13 Apr. 2012.
ACM. ISBN 978-1-4503-1223-3. doi: 10.1145/2168836.2168841.

[295] A. Pathak, A. Jindal, Y. C. Hu, and S. P. Midkiff. What is keeping my phone awake?
characterizing and detecting no-sleep energy bugs in smartphone apps. In Proceedings
of the 10th International Conference on Mobile Systems, Applications, and Services,
MobiSys ’12, pages 267–280, Low Wood Bay, Lake District, UK, 25–26 June 2012. ACM.
ISBN 978-1-4503-1301-8. doi: 10.1145/2307636.2307661.

[296] P. S. Patil, J. Doshi, and D. Ambawade. Reducing power consumption of smart device
by proper management of wakelocks. In Proceedings of the 2015 IEEE International
Advance Computing Conference, IACC ’15, pages 883–887, Banglore, India, 12–13 June
2015. doi: 10.1109/IADCC.2015.7154832.

[297] D. A. Patterson and J. L. Hennessy. Computer Organization and Design MIPS
Edition: The Hardware/Software Interface. The Morgan Kaufmann series in computer
architecture and design. Morgan Kaufmann, San Francisco, USA, 6th edition, 2020.
ISBN 978-0-12-820109-1.

[298] J. K. Peckol. Embedded Systems: A Contemporary Design Tool. John Wiley & Sons
Ltd, Hoboken, NJ, USA, 2nd edition, 2019. ISBN 978-1-119-45750-3.

[299] B. Peischl, M. Weiglhofer, and F. Wotawa. Executing abstract test cases. In R. Koschke,
O. Herzog, K. Rödiger, and M. Ronthaler, editors, 37. Jahrestagung der Gesellschaft
für Informatik, Informatik trifft Logistik, volume P-110 of LNI, pages 416–421, Bremen,
Germany, 24–27 Sept. 2007. GI.

[300] T. Pering, T. Burd, and R. Brodersen. The simulation and evaluation of dynamic
voltage scaling algorithms. In Proceedings of the 1998 International Symposium on
Low Power Electronics and Design, ISLPED ’98, pages 76–81, Monterey, CA, USA,
10–12 Aug. 1998. doi: 10.1145/280756.280790.

[301] G. Pinto, F. Castor, and Y. D. Liu. Mining questions about software energy consumption.
In Proceedings of the 11th Working Conference on Mining Software Repositories, MSR
’14, pages 22–31, Hyderabad, India, 31 May–1 June 2014. ACM. ISBN 978-1-4503-2863-
0. doi: 10.1145/2597073.2597110.

[302] Plantower Technology Co., Ltd. PMS1003 – Datasheet, Version 1.0, 2021. URL
https://plantower.com/static/upload/file/20220627/1656292073878896.pdf. Last Access:
March 3rd, 2023.

[303] K. Pohl and C. Rupp. Requirements engineering fundamentals: A study guide for
the certified professional for requirements engineering exam, foundation level, IREB
compliant. Rocky Nook, Santa Barbara, CA, USA, 2nd edition, 2015. ISBN 978-1-
937538-77-4.

[304] J. Porter, G. Karsai, P. Völgyesi, H. Nine, P. Humke, G. Hemingway, R. Thibodeaux, and
J. Sztipanovits. Towards model-based integration of tools and techniques for embedded

https://plantower.com/static/upload/file/20220627/1656292073878896.pdf

BIBLIOGRAPHY 231

control system design, verification, and implementation. In M. R. V. Chaudron, editor,
Models in Software Engineering: Workshops and Symposia at MODELS 2008. Reports
and Revised Selected Papers, MODELS ’08, pages 20–34, Toulouse, France, 28 Sept.–
3 Oct. 2009. Springer Berlin Heidelberg. doi: 10.1007/978-3-642-01648-6 3.

[305] J. Porter, P. Volgyesi, N. Kottenstette, H. Nine, G. Karsai, and J. Sztipanovits. An
experimental model-based rapid prototyping environment for high-confidence embedded
software. In 2009 IEEE/IFIP International Symposium on Rapid System Prototyping,
pages 3–10, 23–26 June 2009. doi: 10.1109/RSP.2009.32.

[306] W. Prenninger and A. Pretschner. Abstractions for model-based testing. Electronic
Notes in Theoretical Computer Science, 116:59–71, 2005. ISSN 1571-0661. doi: 10.1016/
j.entcs.2004.02.086. Proceedings of the International Workshop on Test and Analysis of
Component Based Systems (TACoS 2004).

[307] G. Procaccianti, S. Bevini, and P. Lago. Energy efficiency in cloud software architectures.
In B. Page, A. G. Fleischer, J. Göbel, and V. Wohlgemuth, editors, Proceedings of
the 27th International Conference on Environmental Informatics for Environmental
Protection, Sustainable Development and Risk Management, EnviroInfo ’13, pages 291–
299, Hamburg, Germany, 2–4 Sept. 2013. Shaker.

[308] G. Procaccianti, P. Lago, and G. A. Lewis. A catalogue of green architectural tactics
for the cloud. In Proceedings of the 8th International Symposium on the Maintenance
and Evolution of Service-Oriented and Cloud-Based Systems, pages 29–36, Victoria, BC,
Canada, 29 Sept. 2014. doi: 10.1109/MESOCA.2014.12.

[309] G. Procaccianti, P. Lago, and G. A. Lewis. Green architectural tactics for the cloud.
In Proceedings of the 2014 IEEE/IFIP Conference on Software Architecture, WICSA
’14, pages 41–44, Sydney, Australia, 7–11 Apr. 2014. doi: 10.1109/WICSA.2014.30.

[310] D. P. Proos and N. Carlsson. Performance comparison of messaging protocols and
serialization formats for digital twins in IoV. In 2020 IFIP Networking Conference
(Networking), pages 10–18, Paris, France, 22–26 June 2020.

[311] S. J. Prowell. Using Markov chain usage models to test complex systems. In Proceedings
of the 38th Annual Hawaii International Conference on System Sciences, volume 9 of
HICSS ’05, page 318c, Big Island, HI, USA, 3–6 Jan. 2005. ISBN 978-0-7695-2268-5.
doi: 10.1109/HICSS.2005.663.

[312] Qoitech AB. The otii server, 2021. URL https://www.qoitech.com/help/tcpserver/. Last
Access: August 3rd, 2022.

[313] Qoitech AB. Otii arc, 2023. URL https://www.qoitech.com/otii-arc-pro/. Last Access:
July 3rd, 2023.

[314] Qt Group. Qt 5.15, 2022. URL https://doc.qt.io/qt-5/. Last Access: August 3rd, 2022.

[315] G. Qu, N. Kawabe, K. Usami, and M. Potkonjak. Function-level power estimation
methodology for microprocessors. In Proceedings of the 37th Annual Design Automation
Conference, DAC ’00, pages 810–813, Los Angeles, CA, USA, 5–9 June 2000. ACM.
ISBN 978-1-58113-187-1. doi: 10.1145/337292.337786.

https://www.qoitech.com/help/tcpserver/
https://www.qoitech.com/otii-arc-pro/
https://doc.qt.io/qt-5/

232 BIBLIOGRAPHY

[316] A. Raghunathan, S. Dey, and N. Jha. Register-transfer level estimation techniques
for switching activity and power consumption. In Proceedings of the International
Conference on Computer Aided Design, pages 158–165, San Jose, CA, USA, 10–14 Nov.
1996. doi: 10.1109/ICCAD.1996.569539.

[317] RAKwireless Technology Co. RAK811-Module: Datasheet, 2021. URL https://docs.
rakwireless.com/Product-Categories/WisDuo/RAK811-Module/Datasheet/. Last Access:
August 3rd, 2022.

[318] Raspberry Pi Ltd. Raspberry Pi Zero W, 2023. URL https://www.raspberrypi.com/
products/raspberry-pi-zero-w/. Last Access: April 1st, 2023.

[319] A. Ray, C. Ackermann, R. Cleaveland, C. Shelton, and C. Martin. Functional and
nonfunctional design verification for embedded software systems. In M. V. Zelkowitz,
editor, Advances in Computers, volume 83, chapter 6, pages 277–321. Elsevier, 2011.
doi: 10.1016/B978-0-12-385510-7.00006-0.

[320] G. Reggio, M. Leotta, F. Ricca, and D. Clerissi. What are the used UML diagrams?
A preliminary survey. In Proceedings of 3rd International Workshop on Experiences
and Empirical Studies in Software Modelling, volume 1078 of EESSMod ’13, pages 3–12,
2013.

[321] L. Reinfurt, U. Breitenbücher, M. Falkenthal, F. Leymann, and A. Riegg. Internet of
things patterns. In Proceedings of the 21st European Conference on Pattern Languages
of Programs, EuroPlop ’16, Kaufbeuren, Germany, 6–10 July 2016. ACM. ISBN
978-1-4503-4074-8. doi: 10.1145/3011784.3011789.

[322] L. Reinfurt, U. Breitenbücher, M. Falkenthal, F. Leymann, and A. Riegg. Internet
of things patterns for devices. In Proceedings of the 9th International Conferences on
Pervasive Patterns and Applications, PATTERNS ’17, pages 117–126, Athens, Greece,
19–23 Feb. 2017.

[323] L. Reinfurt, U. Breitenbücher, M. Falkenthal, F. Leymann, and A. Riegg. Internet of
things patterns for devices: Powering, operating, and sensing. International Journal on
Advances in Internet Technology, 10(3&4):106–123, 2017.

[324] L. Reinfurt, U. Breitenbücher, M. Falkenthal, F. Leymann, and A. Riegg. Internet of
things patterns for device bootstrapping and registration. In Proceedings of the 22nd
European Conference on Pattern Languages of Programs, EuroPLoP ’17, 12–16 July
2017. doi: 10.1145/3147704.3147721.

[325] L. Reinfurt, U. Breitenbücher, M. Falkenthal, F. Leymann, and A. Riegg. Internet
of things patterns for communication and management. In J. Noble, R. Johnson,
U. Zdun, and E. Wallingford, editors, Transactions on Pattern Languages of Program-
ming IV, volume 10600 of Lecture Notes in Computer Science, pages 139–182. Springer
International Publishing, Cham, Switzerland, 2019. ISBN 978-3-030-14290-2. doi:
10.1007/978-3-030-14291-9 5.

[326] A. Rodrigues da Silva. Model-driven engineering: A survey supported by the unified
conceptual model. Computer Languages, Systems & Structures, 43:139–155, 2015. ISSN
1477-8424. doi: https://doi.org/10.1016/j.cl.2015.06.001.

https://docs.rakwireless.com/Product-Categories/WisDuo/RAK811-Module/Datasheet/
https://docs.rakwireless.com/Product-Categories/WisDuo/RAK811-Module/Datasheet/
https://www.raspberrypi.com/products/raspberry-pi-zero-w/
https://www.raspberrypi.com/products/raspberry-pi-zero-w/

BIBLIOGRAPHY 233

[327] F. T. Rodríguez, F. Lonetti, A. Bertolino, M. P. Usaola, and B. P. Lamancha. Ex-
tending UML testing profile towards non-functional test modeling. In Proceeding of the
2nd International Conference on Model-Driven Engineering and Software Development,
MODELSWARD ’14, pages 488–497, Lisbon, Portugal, 7–9 Jan. 2014.

[328] D. Rossi, I. Loi, A. Pullini, and L. Benini. Ultra-low-power digital architectures for
the internet of things. In Enabling the Internet of Things: From Integrated Circuits to
Integrated Systems, volume 59, pages 69–93. Springer International Publishing, Cham,
Switzerland, 2017. ISBN 978-3-319-51480-2. doi: 10.1007/978-3-319-51482-6 3.

[329] A. Sabbaghi and M. R. Keyvanpour. State-based models in model-based testing: A
systematic review. In Proccedings of the 4th International Conference on Knowledge-
Based Engineering and Innovation, KBEI ’17, pages 942–948, Tehran, Iran, 22 Dec.
2017. doi: 10.1109/KBEI.2017.8324934.

[330] S. A. Safdar, M. Z. Iqbal, and M. U. Khan. Empirical evaluation of UML modeling
tools – a controlled experiment. In G. Taentzer and F. Bordeleau, editors, Modelling
Foundations and Applications, volume 9153 of Lecture Notes in Computer Science, pages
33–44. Springer International Publishing, Cham, Switzerland, 2015. ISBN 978-3-319-
21150-3. doi: 10.1007/978-3-319-21151-0 3.

[331] C. Sahin, F. Cayci, I. L. M. Gutiérrez, J. Clause, F. Kiamilev, L. Pollock, and K. Win-
bladh. Initial explorations on design pattern energy usage. In Proceedings of the 1st
International Workshop on Green and Sustainable Software, GREENS ’12, pages 55–61,
Zurich, Switzerland, 3 June 2012. doi: 10.1109/GREENS.2012.6224257.

[332] K. A. Saleh. Software Engineering. J. Ross Publishing, Inc., Fort Lauderdale, FL,
USA, 2009. ISBN 978-1-932159-94-3.

[333] K. O. M. Salih, T. A. Rashid, D. Radovanovic, and N. Bacanin. A comprehensive
survey on the internet of things with the industrial marketplace. Sensors, 22(3), 19 Jan.
2022. ISSN 1424-8220. doi: 10.3390/s22030730.

[334] C. Sánchez, G. Schneider, W. Ahrendt, E. Bartocci, D. Bianculli, C. Colombo, Y. Falcone,
A. Francalanza, S. Krstić, J. M. Lourenço, D. Nickovic, G. J. Pace, J. Rufino, J. Signoles,
D. Traytel, and A. Weiss. A survey of challenges for runtime verification from advanced
application domains (beyond software). Formal Methods in System Design, 54(3):
279–335, 2019. ISSN 1572-8102. doi: 10.1007/s10703-019-00337-w.

[335] D. Sas and P. Avgeriou. Quality attribute trade-offs in the embedded systems industry:
an exploratory case study. Software Quality Journal, 28(2):505–534, 2020. ISSN
1573-1367. doi: 10.1007/s11219-019-09478-x.

[336] M. Schaarschmidt, C. Fuhrmann, M. Uelschen, C. Westerkamp, and E. Pulvermüller.
Energieeffiziente Entwurfsmuster für das Internet der Dinge - Möglichkeiten und Per-
spektiven für Single- und Multicore. In Tagungsband Embedded Software Engineering
Kongress, pages 511–522, Sindelfingen, Germany, 3–7 Dec. 2018. (in German).

[337] M. Schaarschmidt, M. Uelschen, E. Pulvermüller, and C. Westerkamp. Framework of
software design patterns for energy-aware embedded systems. In Proceedings of the 15th

234 BIBLIOGRAPHY

International Conference on Evaluation of Novel Approaches to Software Engineering,
ENASE ’20, pages 62–73, Online Streaming, 5–6 May 2020. INSTICC, SciTePress.
ISBN 978-989-758-421-3. doi: 10.5220/0009351000620073.

[338] M. Schaarschmidt, M. Uelschen, E. Pulvermüller, and C. Westerkamp. Energy-aware pat-
tern framework: The energy-efficiency challenge for embedded systems from a software
design perspective. In R. Ali, H. Kaindl, and L. A. Maciaszek, editors, Evaluation of
Novel Approaches to Software Engineering, volume 1375 of Communications in Computer
and Information Science, pages 182–207, Cham, Switzerland, 27 Feb. 2021. Springer
International Publishing. ISBN 978-3-030-70006-5. doi: 10.1007/978-3-030-70006-5 8.

[339] M. Schaarschmidt, M. Uelschen, and E. Pulvermüller. Power consumption estimation
in model driven software development for embedded systems. In Proceedings of the 16th
International Conference on Software Technologies, volume 1 of ICSOFT ’21, pages 47–
58, Online Streaming, 6–8 July 2021. INSTICC, SciTePress. ISBN 978-989-758-523-4.
doi: 10.5220/0010522700470058.

[340] M. Schaarschmidt, M. Uelschen, and E. Pulvermüller. Towards power consumption
optimization for embedded systems from a model-driven software development perspec-
tive. In H.-G. Fill, M. van Sinderen, and L. A. Maciaszek, editors, International
Conference on Software Technologies, volume 1622 of Communications in Computer
and Information Science, pages 117–142, Cham, Switzerland, 18 July 2022. Springer
International Publishing. ISBN 978-3-031-11513-4. doi: 10.1007/978-3-031-11513-4 6.

[341] M. Schaarschmidt, M. Uelschen, and E. Pulvermüller. Hunting energy bugs in embedded
systems: A software-model-in-the-loop approach. Electronics, 11(13), 2022. ISSN 2079-
9292. doi: 10.3390/electronics11131937. URL https://www.mdpi.com/2079-9292/11/13/
1937.

[342] P. R. Schaumont. A practical introduction to hardware/software codesign. Springer
Science & Business Media, New York, NY, USA, 2012. ISBN 978-1-46143736-9. doi:
10.1007/978-1-4614-3737-6.

[343] I. Schieferdecker and A. Hoffmann. Model-based testing. In P. A. Laplante, editor,
Encyclopedia of Software Engineering, pages 556–570. Taylor & Francis, London, UK,
2010. doi: 10.1081/E-ESE-120044686.

[344] M. Schneider, H. Blume, and T. G. Noll. Power estimation on functional level for
programmable processors. Advances in Radio Science, 2:215–219, 2004. doi: 10.5194/
ars-2-215-2004.

[345] M. Schumacher, E. Fernandez-Buglioni, D. Hybertson, F. Buschmann, and P. Sommerlad.
Security Patterns: Integrating Security and Systems Engineering. John Wiley & Sons
Ltd, Chichester, UK, 2005. ISBN 978-0-470-85884-4.

[346] M. Segura, T. Poggi, and R. Barcena. A generic interface for x-in-the-loop simulations
based on distributed co-simulation protocol. IEEE Access, 11:5578–5595, 2023. doi:
10.1109/ACCESS.2023.3237075.

https://www.mdpi.com/2079-9292/11/13/1937
https://www.mdpi.com/2079-9292/11/13/1937

BIBLIOGRAPHY 235

[347] M. Seidl, M. Scholz, C. Huemer, and G. Kappel. UML @ classroom: An introduction to
object-oriented modeling. Undergraduate Topics in Computer Science. Springer, Cham,
Switzerland, 1st edition, 2015. ISBN 978-3-31912741-5.

[348] B. Selic and S. Gérard. Modeling and analysis of real-time and embedded systems with
UML and MARTE: Developing cyber-physical systems. Morgan Kaufmann, Waltham,
MA, 2014. ISBN 978-0-124-16656-1.

[349] B. Selic, G. Gullekson, and P. T. Ward. Real-Time Object-Oriented Modeling. John
Wiley & Sons, Inc., New York, NY, USA, 1994. ISBN 978-0-471-59917-3.

[350] Semtech Corporation. An In-depth Look at LoRaWAN™ Class A De-
vices, 2019. URL https://lora-developers.semtech.com/uploads/documents/files/
LoRaWAN Class A Devices In Depth Downloadable.pdf. Last Access: August 3rd, 2022.

[351] Semtech Corporation. SX1276/77/78/79 Datasheet Rev. 7, 2020. URL https://
www.semtech.com/products/wireless-rf/lora-core/sx1276. Last Access: August 3rd, 2022.

[352] E. Senn, N. Julien, J. Laurent, and E. Martin. Power consumption estimation of a C
program for data-intensive applications. In G. Goos, J. Hartmanis, J. van Leeuwen,
B. Hochet, A. J. Acosta, and M. J. Bellido, editors, Integrated Circuit Design. Power
and Timing Modeling, Optimization and Simulation, volume 2451 of Lecture Notes in
Computer Science, pages 332–341. Springer Berlin Heidelberg, Berlin, Heidelberg, 2002.
ISBN 978-3-540-44143-4. doi: 10.1007/3-540-45716-X 33.

[353] E. Senn, J. Laurent, E. Juin, and J.-P. Diguet. Refining power consumption estimations
in the component based AADL design flow. In Proceedings of the 2008 Forum on
Specification, Verification and Design Languages, pages 173–178, Stuttgart, Germany,
23–25 Sept. 2008. IEEE. doi: 10.1109/FDL.2008.4641441.

[354] N. Sharma, M. Shamkuwar, and I. Singh. The history, present and future with IoT. In
V. E. Balas, V. K. Solanki, R. Kumar, and M. Khari, editors, Internet of Things and Big
Data Analytics for Smart Generation, pages 27–51. Springer International Publishing,
Cham, Switzerland, 2019. ISBN 978-3-030-04203-5. doi: 10.1007/978-3-030-04203-5 3.

[355] H. Shokry and M. Hinchey. Model-based verification of embedded software. IEEE
Computer, 42:53–59, 04 2009. doi: 10.1109/MC.2009.125.

[356] T. Shu, M. Xia, J. Chen, and C. De Silva. An energy efficient adaptive sampling
algorithm in a sensor network for automated water quality monitoring. Sensors, 17(11),
2017. ISSN 1424-8220. doi: 10.3390/s17112551. URL https://www.mdpi.com/1424-8220/
17/11/2551.

[357] S. Siegl., V. Entin., R. German., and G. Kiffe. Model driven testing with time aug-
mented Markov chain usage - computations and test case generation algorithms for
time augmented markov chain usage models. In Proceedings of the 4th International
Conference on Software and Data Technologies, volume 1 of ICSOFT ’09, pages 202–207.
INSTICC, SciTePress, 2009. ISBN 978-989-674009-2. doi: 10.5220/0002255902020207.

[358] S. Siegl, K.-S. Hielscher, and R. German. Introduction of time dependencies in
usage model based testing of complex systems. In Proceedings of the 2010 IEEE

https://lora-developers.semtech.com/uploads/documents/files/LoRaWAN_Class_A_Devices_In_Depth_Downloadable.pdf
https://lora-developers.semtech.com/uploads/documents/files/LoRaWAN_Class_A_Devices_In_Depth_Downloadable.pdf
https://www.semtech.com/products/wireless-rf/lora-core/sx1276
https://www.semtech.com/products/wireless-rf/lora-core/sx1276
https://www.mdpi.com/1424-8220/17/11/2551
https://www.mdpi.com/1424-8220/17/11/2551

236 BIBLIOGRAPHY

International Systems Conference, pages 622–627, San Diego, CA, USA, 5–8 Apr. 2010.
doi: 10.1109/SYSTEMS.2010.5482341.

[359] Silicon Laboratories. CP2102/9 single-chip usb-to-uart bridge, 2017. URL https://
www.silabs.com/documents/public/data-sheets/CP2102-9.pdf. Last Access: August 3rd,
2022.

[360] J. Singh, K. Naik, and V. Mahinthan. Impact of developer choices on energy consumption
of software on servers. Procedia Computer Science, 62:385–394, 2015. ISSN 18770509.
doi: 10.1016/j.procs.2015.08.423.

[361] C. U. Smith and L. G. Williams. Software Performance Engineering, pages 343–
365. Springer US, Boston, MA, USA, 2003. ISBN 978-0-306-48738-5. doi: 10.1007/
0-306-48738-1 16.

[362] I. Sommerville. Software engineering. Pearson, Harlow, Essex, England, 10th edition,
2016. ISBN 978-1-292-09613-1.

[363] M. Sourouri, E. B. Raknes, N. Reissmann, J. Langguth, D. Hackenberg, R. Schöne,
and P. G. Kjeldsberg. Towards fine-grained dynamic tuning of hpc applications on
modern multi-core architectures. In Proceedings of the International Conference for
High Performance Computing, Networking, Storage and Analysis, SC ’17, Denver, CO,
USA, 12–17 Nov. 2017. doi: 10.1145/3126908.3126945.

[364] SparxSystems Software GmbH. Enterprise architect, 2022. URL https://www.
sparxsystems.eu/enterprise-architect/. Last Access: August 3rd, 2022.

[365] A. Speck. Robot simulation and monitoring on real controllers (RoboSiM). In 10th
European Simulation Symposium and Exhibition, ESS ’98, pages 482–489, Nottingham,
UK, 26–28 Oct. 1998.

[366] A. Speck and H. Klaeren. Robosim: Java 3D robot visualization. In 25th Annual
Conference of the IEEE Industrial Electronics Society, volume 2 of IECON ’99, pages
821–826, San Jose, CA, USA, 29 Nov.–3 Dec. 1999. doi: 10.1109/IECON.1999.816506.

[367] A. Spillner and T. Linz. Software Testing Foundations: A Study Guide for the Certified
Tester Exam. dpunkt, Heidelberg, Germany, 5th edition, 2021. ISBN 978-3-86490-834-7.

[368] A. Spillner and K. Vosseberg. The W-MODEL. strengthening the bond between
development and test. In Proceedings of the Software Testing Analysis & Review
Conference, STAReast ’02, pages 15–17, Orlando, FL, USA, 13–17 May 2002.

[369] T. Stahl and M. Völter. Model-driven software development: Technology, engineering,
management. John Wiley, Chichester, UK, 2006. ISBN 978-0-470-02570-3.

[370] S. Steinke, M. Knauer, L. Wehmeyer, and P. Marwedel. An accurate and fine grain
instruction-level energy model supporting software optimizations. In Proceedings of the
International Workshop on Power And Timing Modeling, Optimization and Simulation,
PATMOS ’01, Yverdon-les-Bains, Switzerland, 26–28 Sept. 2001.

[371] STMicroelectronics. STM32L476xx Datasheet, 2019. URL https://www.st.com/resource/
en/datasheet/stm32l476je.pdf. Last Access: August 3rd, 2022.

https://www.silabs.com/documents/public/data-sheets/CP2102-9.pdf
https://www.silabs.com/documents/public/data-sheets/CP2102-9.pdf
https://www.sparxsystems.eu/enterprise-architect/
https://www.sparxsystems.eu/enterprise-architect/
https://www.st.com/resource/en/datasheet/stm32l476je.pdf
https://www.st.com/resource/en/datasheet/stm32l476je.pdf

BIBLIOGRAPHY 237

[372] STMicroelectronics. STM32CubeMX, 2022. URL https://www.st.com/en/
development-tools/stm32cubemx.html. Last Access: June 1st, 2022.

[373] A. Sumaray and S. K. Makki. A comparison of data serialization formats for optimal
efficiency on a mobile platform. In Proceedings of the 6th International Conference on
Ubiquitous Information Management and Communication, ICUIMC ’12, Kuala Lumpur,
Malaysia, 20–22 Feb. 2012. ACM. ISBN 978-1-4503-1172-4. doi: 10.1145/2184751.
2184810.

[374] J. Svennebring, J. Logan, J. Engblom, and P. Strömblad. Embedded multicore: An
introduction (rev. 0), 2009. URL https://www.nxp.com/files-static/32bit/doc/ref manual/
EMBMCRM.pdf. Last Access: August 3rd, 2020.

[375] T. K. Tan, A. Raghunathan, and N. K. Jha. Software architectural transformations: a
new approach to low energy embedded software. In Design, Automation, and Test in
Europe Conference and Exhibition, pages 1046–1051, Munich, Germany, 7 Mar. 2003.
IEEE Computer Society. ISBN 978-0-7695-1870-1. doi: 10.1109/DATE.2003.1253742.

[376] K. Tanaka, S. Inaho, M. Hatano, Y. Kuroki, M. Yoo, and T. Yokoyama. An extended
Simulink to UML model transformation tool for embedded control software development.
In Proceedings of the 2017 International Conference on Industrial Design Engineering,
ICIDE ’2017, pages 76–81, Dubai, United Arab Emirates, 29–31 Dec. 2017. doi:
10.1145/3178264.3178284.

[377] J. Tatibouët, A. Cuccuru, S. Gérard, and F. Terrier. Formalizing execution semantics of
UML profiles with fUML models. In J. Dingel, W. Schulte, I. Ramos, S. Abrahão, and
E. Insfran, editors, Model-Driven Engineering Languages and Systems, volume 8767 of
Lecture Notes in Computer Science, pages 133–148. Springer International Publishing,
Cham, Switzerland, 2014. ISBN 978-3-319-11652-5. doi: 10.1007/978-3-319-11653-2 9.

[378] Texas Instruments Incorporated. Ultra-low power (ULP) advisor, 2022. URL https:
//software-dl.ti.com/ccs/esd/documents/ccs ulp advisor.html. Last Access: August 3rd,
2022.

[379] Texas Instruments Incorporated. MSP430 microcontrollers, 2022. URL https://
www.ti.com/microcontrollers-mcus-processors/microcontrollers/msp430-microcontrollers/
overview.html. Last Access: August 3rd, 2022.

[380] The MathWorks, Inc. MATLAB, 2021. URL https://www.mathworks.com/products/
matlab. Last Access: August 3rd, 2022.

[381] The MathWorks, Inc. ThingSpeak, 2021. URL https://www.thingspeak.com/. Last
Access: August 3rd, 2022.

[382] The MathWorks, Inc. Arduino Support – MATLAB & Simulink, 2022. URL https://
www.mathworks.com/products/hardware/arduino.html. Last Access: August 3rd, 2022.

[383] The MathWorks, Inc. Simulink - Simulation and Model-Based Design, 2022. URL
https://www.mathworks.com/products/simulink.html. Last Access: August 3rd, 2022.

[384] The MathWorks, Inc. Stateflow, 2022. URL https://www.mathworks.com/products/
stateflow.html. Last Access: August 3rd, 2022.

https://www.st.com/en/development-tools/stm32cubemx.html
https://www.st.com/en/development-tools/stm32cubemx.html
https://www.nxp.com/files-static/32bit/doc/ref_manual/EMBMCRM.pdf
https://www.nxp.com/files-static/32bit/doc/ref_manual/EMBMCRM.pdf
https://software-dl.ti.com/ccs/esd/documents/ccs_ulp_advisor.html
https://software-dl.ti.com/ccs/esd/documents/ccs_ulp_advisor.html
https://www.ti.com/microcontrollers-mcus-processors/microcontrollers/msp430-microcontrollers/overview.html
https://www.ti.com/microcontrollers-mcus-processors/microcontrollers/msp430-microcontrollers/overview.html
https://www.ti.com/microcontrollers-mcus-processors/microcontrollers/msp430-microcontrollers/overview.html
https://www.mathworks.com/products/matlab
https://www.mathworks.com/products/matlab
https://www.thingspeak.com/
https://www.mathworks.com/products/hardware/arduino.html
https://www.mathworks.com/products/hardware/arduino.html
https://www.mathworks.com/products/simulink.html
https://www.mathworks.com/products/stateflow.html
https://www.mathworks.com/products/stateflow.html

238 BIBLIOGRAPHY

[385] The Things Industries B.V. The things network, 2022. URL https://www.
thethingsnetwork.org/. Last Access: August 3rd, 2022.

[386] J. Tidwell, C. Brewer, and A. Valencia. Designing interfaces. O’Reilly Media, Inc.,
Sebastopol, CA, USA, 3rd edition, 2020. ISBN 978-1-4920-5196-1.

[387] V. Tiwari, S. Malik, A. Wolfe, and M.-C. Lee. Instruction level power analysis and
optimization of software. In Proceedings of the 9th International Conference on VLSI
Design, pages 326–328, Bangalore, India, 3–6 Jan. 1996. doi: 10.1109/ICVD.1996.
489624.

[388] A. Tobola, F. J. Streit, C. Espig, O. Korpok, C. Sauter, N. Lang, B. Schmitz, C. Hof-
mann, M. Struck, C. Weigand, H. Leutheuser, B. M. Eskofier, and G. Fischer. Sampling
rate impact on energy consumption of biomedical signal processing systems. In Pro-
ceedings of the 2015 IEEE 12th International Conference on Wearable and Implantable
Body Sensor Networks (BSN), pages 1–6, Cambridge, MA, USA, 9–12 June 2015. doi:
10.1109/BSN.2015.7299392.

[389] C. Trabelsi, R. Ben Atitallah, S. Meftali, J.-L. Dekeyser, and A. Jemai. A model-driven
approach for hybrid power estimation in embedded systems design. EURASIP Journal
on Embedded Systems, 2011(1), 2011. doi: 10.1155/2011/569031.

[390] F. Tränkle. Modellbasierte Entwicklung Mechatronischer Systeme: mit Software- und
Simulationsbeispielen für Autonomes Fahren. De Gruyter Oldenbourg, 2021. ISBN
978-3-11072352-6. doi: 10.1515/9783110723526. (in German).

[391] M. Uelschen and M. Schaarschmidt. Software design of energy-aware peripheral control
for sustainable internet-of-things devices. In Proceedings of the 55th Hawaii International
Conference on System Sciences, HICSS ’22, Maui, HI, USA, 4–7 Jan. 2022. doi:
10.24251/HICSS.2022.933.

[392] M. Uelschen, M. Schaarschmidt, C. Fuhrmann, and C. Westerkamp. PowerMonitor:
Design pattern for modelling energy-aware embedded systems: Work-in-progress. In
Proceedings of the International Conference on Embedded Software Companion, EM-
SOFT ’19, New York, NY, USA, 13–18 Oct. 2019. ISBN 978-1-4503-6924-4. doi:
10.1145/3349568.3351551.

[393] M. Uelschen, M. Schaarschmidt, and J. Budde. Rapid-prototyping and early validation
of software models through uniform integration of hardware. In Proceedings of the
26th International Conference on Model Driven Engineering Languages and Systems,
MODELS ’23, Västerås, Sweden, 1–6 Oct. 2023. doi: 10.1109/MODELS58315.2023.
00019.

[394] B. Unhelkar. Software Engineering with UML. CRC Press, Boca Raton, FL, USA, 1st
edition, 2017. ISBN 978-1-138-29743-2. doi: doi.org/10.1201/9781351235181.

[395] F. Ünlü, L. Wawrla, and A. Diaz. Energy harvesting technologies for iot edge de-
vices. Energy Efficient End-use Equipment International Energy Agency, page 70,
July 2018. URL https://www.iea-4e.org/wp-content/uploads/publications/2018/07/
Energy Harvesting Final Report.pdf. Last Access: August 3rd, 2022.

https://www.thethingsnetwork.org/
https://www.thethingsnetwork.org/
https://www.iea-4e.org/wp-content/uploads/publications/2018/07/Energy_Harvesting_Final_Report.pdf
https://www.iea-4e.org/wp-content/uploads/publications/2018/07/Energy_Harvesting_Final_Report.pdf

BIBLIOGRAPHY 239

[396] P. Urard and M. Vučinić. IoT nodes: System-level view. In Enabling the Internet of
Things, volume 29, pages 47–68. Springer International Publishing, Cham, Switzerland,
2017. ISBN 978-3-319-51480-2. doi: 10.1007/978-3-319-51482-6 2.

[397] M. Utting and B. Legeard. Practical Model-Based Testing: A Tools Approach. Morgan
Kaufmann, 1st edition, 2006. ISBN 978-0-12-372501-1.

[398] M. Utting, A. Pretschner, and B. Legeard. A taxonomy of model-based testing. In
Working paper series, pages 1–18. The University of Waikato, Department of Computer
Science, Hamilton, New Zealand, 2006.

[399] M. Utting, A. Pretschner, and B. Legeard. A taxonomy of model-based testing ap-
proaches. Software Testing, Verification & Reliability, 22(5):297–312, Aug. 2012. ISSN
0960-0833. doi: 10.1002/stvr.456.

[400] L. S. Vailshery. Number of internet of things (IoT) connected devices world-
wide from 2019 to 2030, by communications technology. Technical report,
Statista GmbH, Statista, 2022. URL https://www.statista.com/statistics/1194688/
iot-connected-devices-communications-technology/. Last Access: December 6th, 2022.

[401] L. S. Vailshery. Number of internet of things (IoT) connected devices world-
wide from 2019 to 2021, with forecasts from 2022 to 2030. Technical report,
Statista GmbH, Statista, 2022. URL https://www.statista.com/statistics/1183457/
iot-connected-devices-worldwide/. Last Access: December 6th, 2022.

[402] A. Valmari. The state explosion problem. In Lectures on Petri Nets I: Basic Models:
Advances in Petri Nets, pages 429–528. Springer Berlin Heidelberg, Berlin/Heidelberg,
Germany, 1998. ISBN 978-3-540-49442-3. doi: 10.1007/3-540-65306-6 21.

[403] D. Vandevoorde, N. M. Josuttis, and D. Gregor. C++ templates: The complete guide.
Addison-Wesley, Boston, MA, USA, 2nd edition, 2018. ISBN 978-0-321-71412-1.

[404] VDI/VDE. Vdi/vde 2206: Development of mechatronic and cyber-physical systems.
Technical report, VDI, Düsseldorf, Germany, 2021.

[405] G. Venkatesh, J. Sampson, N. Goulding, S. Garcia, V. Bryksin, J. Lugo-Martinez,
S. Swanson, and M. B. Taylor. Conservation cores: Reducing the energy of mature
computations. ACM SIGARCH Computer Architecture News, 38(1):205–218, 13 Mar.
2010. ISSN 0163-5964. doi: 10.1145/1735970.1736044.

[406] A. Verma, A. Khatana, and S. Chaudhary. A comparative study of black box testing
and white box testing. International Journal of Computer Sciences and Engineering
(JSCSE), 5:301–304, Dec. 2017. ISSN 2347-2693. doi: 10.26438/ijcse/v5i12.301304.

[407] J. Vidal, F. de Lamotte, G. Gogniat, P. Soulard, and J.-P. Diguet. A co-design
approach for embedded system modeling and code generation with UML and MARTE. In
Proceedings of the 2009 Design, Automation & Test in Europe Conference & Exhibition,
DATE ’09, pages 226–231, Nice, France, 20–24 Apr. 2009. doi: 10.1109/DATE.2009.
5090662.

[408] Visual Paradigm International. Visual paradigm, 2022. URL https://www.
visual-paradigm.com/. Last Access: August 3rd, 2022.

https://www.statista.com/statistics/1194688/iot-connected-devices-communications-technology/
https://www.statista.com/statistics/1194688/iot-connected-devices-communications-technology/
https://www.statista.com/statistics/1183457/iot-connected-devices-worldwide/
https://www.statista.com/statistics/1183457/iot-connected-devices-worldwide/
https://www.visual-paradigm.com/
https://www.visual-paradigm.com/

240 BIBLIOGRAPHY

[409] M. C. Vuran, A. Salam, R. Wong, and S. Irmak. Internet of underground things
in precision agriculture: Architecture and technology aspects. Ad Hoc Networks, 81:
160–173, 2018. ISSN 1570-8705. doi: 10.1016/j.adhoc.2018.07.017.

[410] F. Wagner, R. Schmuki, T. Wagner, and P. Wolstenholme. Modeling Software with
Finite State Machines. Taylor & Francis, London, UK, 1st edition, 2006. ISBN
978-0-429-12137-1. doi: 10.1201/9781420013641.

[411] M. Wagner, A. Meroth, and D. Zöbel. Developing self-adaptive automotive systems.
Design Automation for Embedded Systems, 18(3–4):199–221, Sept. 2014. ISSN 0929-
5585. doi: 10.1007/s10617-013-9124-3.

[412] C. Watterson and D. Heffernan. Runtime verification and monitoring of embedded
systems. IET Software, 1(5):172–179, Oct. 2007. ISSN 1751-8806. doi: 10.1049/iet-sen:
20060076.

[413] R. Wei, D. S. Kolovos, A. Garcia-Dominguez, K. Barmpis, and R. F. Paige. Partial
loading of XMI models. In Proceedings of the ACM/IEEE 19th International Conference
on Model Driven Engineering Languages and Systems, MODELS ’16, pages 329–339,
2–7 Oct. 2016. doi: 10.1145/2976767.2976787.

[414] T. Wellhausen and A. Fiesser. How to write a pattern? In P. Avgeriou and A. Fiesser,
editors, Proceedings of the 16th European Conference on Pattern Languages of Programs,
EuroPLoP ’11, pages 1–9, Irsee, Germany, 13–17 July 2011. doi: 10.1145/2396716.
2396721.

[415] C. Westerkamp, A. Grunwald, and M. Schaarschmidt. LoRaWAN, NB IoT and other
radio networks for agricultural applications. In P. Roer, editor, ITG-Fb. 304: Mo-
bilkommunikation – Technologien und Anwendungen, ITG-Fachbericht, pages 127–130.
VDE-Verlag, Osnabrück, Germany, 18–19 May 2022. ISBN 978-3-80075873-9.

[416] World Bank Group. Commodity markets outlook: Causes and consequences of metal
price shocks. Technical report, World Bank, 2021. URL https://openknowledge.worldbank.
org/handle/10986/35458. Last Access: August 3rd, 2022.

[417] A. Wright, H. Andrews, B. Hutton, and G. Dennis. JSON schema: A media type for
describing JSON documents. Technical report, Internet Engineering Task Force, 2020.
URL https://datatracker.ietf.org/doc/html/draft-bhutton-json-schema-01. Last Access:
June 1st, 2022.

[418] C. Xiao, L. Zhao, T. Asada, W. Odendaal, and J. van Wyk. An overview of integratable
current sensor technologies, 12–16 Oct. 2003.

[419] Z. Yong and Z. Haoxin. PMSA003I Series Data Manual Version 2.6, 2018. Last Access:
August 3rd, 2022.

[420] K. Yu, D. Han, C. Youn, S. Hwang, and J. Lee. Power-aware task scheduling for
big.LITTLE mobile processor. In Proceedings of the 2013 International SoC Design
Conference (ISOCC), pages 208–212, Busan, Korea, 17–19 Nov. 2013. IEEE. ISBN
978-1-4799-1142-4. doi: 10.1109/ISOCC.2013.6864009.

https://openknowledge.worldbank.org/handle/10986/35458
https://openknowledge.worldbank.org/handle/10986/35458
https://datatracker.ietf.org/doc/html/draft-bhutton-json-schema-01

BIBLIOGRAPHY 241

[421] J. Zander, I. Schieferdecker, and P. J. Mosterman. A taxonomy of model-based testing
for embedded systems from multiple industry domains. In J. Zander, I. Schieferdecker,
and P. J. Mosterman, editors, Model-Based Testing for Embedded Systems, chapter 1,
pages 3–17. CRC Press, Boca Raton, FL, USA, Dec. 2011. ISBN 978-1-4398-1845-9.

[422] J. Zander-Nowicka. Model-based testing of real-time embedded systems in the automotive
domain. PhD thesis, Technische Universität Berlin, Fakultät IV - Elektrotechnik und
Informatik, Berlin, Germany, 2009.

[423] A. Zanella, N. Bui, A. Castellani, L. Vangelista, and M. Zorzi. Internet of things
for smart cities. IEEE Internet of Things Journal, 1(1):22–32, 2014. doi: 10.1109/
JIOT.2014.2306328.

[424] L. Zhang, B. Tiwana, R. P. Dick, Z. Qian, Z. M. Mao, Z. Wang, and L. Yang. Accurate
online power estimation and automatic battery behavior based power model generation
for smartphones. In Proceedings of the 2010 IEEE/ACM/IFIP International Conference
on Hardware/Software Codesign and System Synthesis, CODES+ISSS ’10, pages 105–
114, Scottsdale, AZ, USA, 24–29 Oct. 2010.

[425] W. Zhang, J. Williamson, and L. Shang. Power dissipation. In S. Bhunia and
S. Mukhopadhyay, editors, Low-Power Variation-Tolerant Design in Nanometer Silicon,
chapter 2, pages 41–80. Springer, Boston, MA, USA, 2011. ISBN 978-1-4419-7418-1.
doi: 10.1007/978-1-4419-7418-1 2.

[426] H.-Y. Zhou, D.-Y. Luo, Y. Gao, and D.-C. Zuo. Modeling of node energy consumption
for wireless sensor networks. Wireless Sensor Network, 03(01):18–23, 2011. ISSN
1945-3078. doi: 10.4236/wsn.2011.31003.

[427] Z. Zhu, S. Olutunde Oyadiji, and H. He. Energy awareness workflow model for wireless
sensor nodes. Wireless Communications and Mobile Computing, 14(17):1583–1600, Dec.
2014. doi: 10.1002/wcm.2302.

[428] S. Ziegler, R. C. Woodward, H. H.-C. Iu, and L. J. Borle. Current sensing techniques:
A review. IEEE Sensors Journal, 9(4):354–376, 4 Mar. 2009. doi: 10.1109/JSEN.2009.
2013914.

[429] R. Zurawski. Embedded Systems Handbook: Networked Embedded Systems. CRC Press,
Boca Raton, FL, USA, 2017. ISBN 978-1-4398-0762-0. doi: 10.1201/9781439807620.

Publications

Parts of this work have already been published. The respective core concepts and ideas have
been adapted within this thesis to provide an integrated approach. In the case of co-authored
publications, the author of this work has contributed fundamental and conceptual ideas to the
jointly and equally developed concepts. The author has also supervised student theses that
provided implementation contributions to presented concepts or adapted presented concepts to
address research questions not directly related to the core topics of this thesis. The publications
which are part of this thesis are listed below by their publication date in descending order.

Journals

• M. Schaarschmidt, M. Uelschen, and E. Pulvermüller. Hunting energy bugs in embedded
systems: A software-model-in-the-loop approach. Electronics, 11(13), 2022. ISSN 2079-
9292. doi: 10.3390/electronics11131937. URL https://www.mdpi.com/2079-9292/11/13/

Conferences (Peer-Reviewed)

• M. Uelschen, M. Schaarschmidt, and J. Budde. Rapid-prototyping and early validation
of software models through uniform integration of hardware. In Proceedings of the 26th
International Conference on Model Driven Engineering Languages and Systems, MOD-
ELS ’23, Västerås, Sweden, 1–6 Oct. 2023. doi: 10.1109/MODELS58315.2023.00019.

• M. Uelschen and M. Schaarschmidt. Software design of energy-aware peripheral control
for sustainable internet-of-things devices. In Proceedings of the 55th Hawaii International
Conference on System Sciences, HICSS ’22, Maui, HI, USA, 4–7 Jan. 2022. doi:
10.24251/HICSS.2022.933

• M. Schaarschmidt, M. Uelschen, and E. Pulvermüller. Power consumption estimation
in model driven software development for embedded systems. In Proceedings of the 16th
International Conference on Software Technologies, volume 1 of ICSOFT ’21, pages 47–
58, Online Streaming, 6–8 July 2021. INSTICC, SciTePress. ISBN 978-989-758-523-4.
doi: 10.5220/0010522700470058

• M. Schaarschmidt, M. Uelschen, E. Pulvermüller, and C. Westerkamp. Framework of
software design patterns for energy-aware embedded systems. In Proceedings of the 15th
International Conference on Evaluation of Novel Approaches to Software Engineering,
ENASE ’20, pages 62–73, Online Streaming, 5–6 May 2020. INSTICC, SciTePress. ISBN
978-989-758-421-3. doi: 10.5220/0009351000620073. Best Student Paper Award.

243

https://www.mdpi.com/2079-9292/11/13/

244 PUBLICATIONS

• M. Uelschen, M. Schaarschmidt, C. Fuhrmann, and C. Westerkamp. PowerMonitor:
Design pattern for modeling energy-aware embedded systems: Work-in-progress. In
Proceedings of the International Conference on Embedded Software Companion, EMSOFT
’19, New York, NY, USA, 13–18 Oct. 2019. ISBN 978-1-4503-6924-4. doi: 10.1145/
3349568.3351551

• A. Grunwald, M. Schaarschmidt, and C. Westerkamp. LoRaWAN in a rural context:
Use cases and opportunities for agricultural businesses. In P. Roer, editor, Proceedings
of the Mobile Communication-Technologies and Applications; 24. ITG-Symposium, ITG-
Fachbericht, pages 134–139. VDE-Verlag GmbH, Osnabrück, Germany, 15–16 May
2019

Book Chapters

• M. Schaarschmidt, M. Uelschen, and E. Pulvermüller. Towards power consumption op-
timization for embedded systems from a model-driven software development perspective.
In H.-G. Fill, M. van Sinderen, and L. A. Maciaszek, editors, International Conference
on Software Technologies, volume 1622 of Communications in Computer and Informa-
tion Science, pages 117–142, Cham, Switzerland, 18 July 2022. Springer International
Publishing. ISBN 978-3-031-11513-4. doi: 10.1007/978-3-031-11513-4_6

• M. Schaarschmidt, M. Uelschen, E. Pulvermüller, and C. Westerkamp. Energy-aware
pattern framework: The energy-efficiency challenge for embedded systems from a soft-
ware design perspective. In R. Ali, H. Kaindl, and L. A. Maciaszek, editors, Evaluation of
Novel Approaches to Software Engineering, volume 1375 of Communications in Computer
and Information Science, pages 182–207, Cham, Switzerland, 27 Feb. 2021. Springer
International Publishing. ISBN 978-3-030-70006-5. doi: 10.1007/978-3-030-70006-5_8

Others

• M. Schaarschmidt, C. Fuhrmann, M. Uelschen, C. Westerkamp, and E. Pulvermüller.
Energieeffiziente Entwurfsmuster für das Internet der Dinge - Möglichkeiten und Per-
spektiven für Single- und Multicore. In Tagungsband Embedded Software Engineering
Kongress, pages 511–522, Sindelfingen, Germany, 3–7 Dec. 2018. (in German)

Supervised Student Theses

• J. Budde. Entwurf und Entwicklung einer Hardware-in-the-Loop Plattform zum Rapid-
Prototyping modellbasierter Software. Master’s thesis, Faculty of Engineering and Com-
puter Science, Osnabrück University of Applied Sciences, 2022. (in German)

• S. Balzer. Entwicklung eines Model-In-The-Loop-Ansatzes zur Energieoptimierung von
Sensorknoten für das Internet of Things. Bachelor’s thesis, Faculty of Engineering and
Computer Science, Osnabrück University of Applied Sciences, 2020. (in German)

PUBLICATIONS 245

In addition, the author has contributed to the scientific community through his work as a
research associate with the following publications:

Conferences (Peer-Reviewed)

• C. Westerkamp, A. Grunwald, and M. Schaarschmidt. LoRaWAN, NB IoT and other
radio networks for agricultural applications. In P. Roer, editor, ITG-Fb. 304: Mo-
bilkommunikation – Technologien und Anwendungen, ITG-Fachbericht, pages 127–130.
VDE-Verlag, Osnabrück, Germany, 18–19 May 2022. ISBN 978-3-80075873-9

• L. Huning, T. Osterkamp, M. Schaarschmidt, and E. Pulvermüller. Seamless integration
of hardware interfaces in UML-based MDSE tools. In Proceedings of the 16th Interna-
tional Conference on Software Technologies, volume 1 of ICSOFT ’21, pages 233–244,
Online Streaming, 6–8 July 2021. INSTICC, SciTePress. ISBN 978-989-758-523-4. doi:
10.5220/0010575802330244

• M. Haverkamp, A. Grunwald, C. Westerkamp, and M. Schaarschmidt. Weitverkehrs-
funkvernetzung für landwirtschaftliche Anwendungsfälle: LoRaWAN und NB-IoT für Un-
terflursensoren im Precision Farming. In M. Gandorfer, A. Meyer-Aurich, H. Bernhardt,
F. X. Maidl, G. Fröhlich, and H. Floto, editors, 40. GIL-Jahrestagung, Digitalisierung
für Mensch, Umwelt und Tier, pages 97–102, Weihenstephan, Freising, Germany, 17–18
Feb. 2020. Gesellschaft für Informatik e.V. (in German)

• T. Thurow, M. Schaarschmidt, and C. Westerkamp. Funkbasierte 3D-indoorlokalisierung
unter der Verwendung des Chan-Ho-Algorithmus. In P. Roer, editor, ITG-Fb. 278: Mo-
bilkommunikation, ITG-Fachbericht, pages 69–74. VDE-Verlag, Osnabrück, Germany,
16–17 May 2018. ISBN 978-3-80074577-7. (in German)

• D. Pieper, M. Schaarschmidt, and C. Westerkamp. Kontextbezogene Verbindungstyp-
analyse für webbasierte Videokonferenzen in HTML5. In P. Roer, editor, ITG-Fb. 258:
Mobilkommunikation, ITG-Fachbericht, pages 107–112. VDE-Verlag GmbH, Osnabrück,
Germany, 7–8 May 2015. ISBN 978-3-80073937-0. (in German)

Book Chapters

• M. Schaarschmidt, C. Westerkamp, and H. Knöchel. Anbindung von Software-Agenten
an Sensorknoten und mobile Systeme. In B. Vogel-Heuser, editor, Softwareagenten in
der Industrie 4.0, chapter 7, pages 125–148. De Gruyter Oldenbourg, Berlin, Germany,
2018. ISBN 978-3-11052458-1. doi: 10.1515/9783110527056-007. (in German)

Workshops

• M. Schaarschmidt, C. Westerkamp, A. Hennewig, D. Pieper, H. Speckmann, and W. Bisle.
Content adaptive signal compression for remote SHM and NDT operation. In F.-K.
Chang and F. Kopsaftopoulos, editors, Proceedings of the 10th International Workshop
on Structural Health Monitoring, IWSHM ’15, Stanford, CA, USA, 1–3 Sept. 2015.
Destech Publications. doi: 10.12783/SHM2015/148

246 PUBLICATIONS

Posters

• D. Kuemper, E. Reetz, M. Schaarschmidt, M. Fischer, E. Pulvermueller, and R. Toenjes.
Test framework for IoT-based services - a knowledge driven approach. In 2014 European
Conference on Networks and Communications, EuCNC ’14, Bologna, Italy, 23–26 June
2014. ISBN 978-1-4799-5280-9

List of Acronyms

AADL Architecture Analysis & Design Language
ADC Analog-to-Digital Converter
ALF Action Language for Foundational UML
API Application Programming Interface
ASM Assembly
ATL Atlas Transformation Language
CAN Controller Area Network
CIM Computing Independent Model
CMOS Complementary Metal-Oxide-Semiconductor
CMSIS Common Microcontroller Software Interface Standard
CPU Central Processing Unit
CSV Comma-separated Values
DAC Digital-to-Analog Converter
DCP Distributed Co-Simulation Protocol
DDD Domain-driven Design
DFS Dynamic Frequency Scaling
DIP Dependency Inversion Principle
DMA Direct Memory Access
DMAD Direct Memory Access Delegation
DSL Domain-specific Language
DPA Direct Power Analysis
DVFS Dynamic Voltage Scaling
DVS Dynamic Voltage and Frequency Scaling
EAS Energy-aware Sampling
EBC Event-based Computing
EBNF Extended Backus–Naur Form
EMF Eclipse Modeling Framework
FLPA Functional-level Power Analysis

247

248 LIST OF ACRONYMS

FPGA Field-programmable Gate Array
FSM Finite State Machine
fUML Foundational UML
GPO General Purpose Output
GPIO General Purpose Input/Output
GRM Generic Resource Model
GUI Graphical User Interface
HAL Hardware Abstraction Layer
HiL Hardware-in-the-Loop
HRM Hardware Resource Modeling
I2C Inter-Integrated Circuit
id Identifier
IIoT Industrial Internet of Things
ILPA Instruction-level Power Analysis
ISR Interrupt Service Routine
IoT Internet of Things
IPA Indirect Power Analysis
IP Intellectual property
JSON JavaScript Object Notation
LED Light-emitting Diode
LoRa Long Range
LoRaWAN Long Range Wide Area Network
LPWAN Low Power Wide Area Network
MARTE Modeling and Analysis of Real-Time and Embedded systems
MBD Model-based Development
MBE Model-based Engineering
MBT Model-based Testing
MCU Microcontroller Unit
MDA Model-driven Architecture
MDD Model-driven Development
MDE Model-driven Engineering
MDSD Model-driven Software Development
MiL Model-in-the-Loop
MOF Meta Object Facility
MOSFET Metal-Oxide-Semiconductor Field-Effect Transistor
MPU Microprocessing Unit

LIST OF ACRONYMS 249

NB-IoT Narrowband Internet of Things
NFC Near Field Communication
NFR Non-functional Requirement
NFP Non-functional Property
OCL Object Constraint Language
OMG Object Management Group
PAP Power Analysis Profile
PiL Processor-in-the-Loop
PIM Platform Independent Model
POSIX Portable Operating System Interface
PSM Platform Specific Model
PWM Pulse-width Modulation
QA Quality Assurance
QoS Quality of Service
QoS&FT UML Profile for Modeling Quality of Service and Fault Tolerance

Characteristics and Mechanisms
RAM Random-access Memory
ReqIF Requirements Interchange Format
ROM Read-only Memory
RPC Remote Procedure Call
RQ Research Question
RTC Real-time Clock
RTL Register Transfer Level
RX Receive
SDXP Simulation Data eXchange Protocol
SI International System of Units
SiL Software-in-the-Loop
SMiL Software-Model-in-the-Loop
SoC System-on-Chip
SPI Serial Peripheral Interface
SPTP UML Profile for Schedulability, Performance, and Time Specification
SUT System Under Test
SysML Systems Modeling Language
TCP Transmission Control Protocol
TTN The Things Network
TVL Tag Value Language

250 LIST OF ACRONYMS

TX Transmit
UC2E Unit for Central Control and Estimation
UART Universal Asynchronous Receiver Transmitter
UML Unified Modeling Language
UTP2 UML Testing Profile 2
UUID Universally Unique Identifier
VSL Value Specification Language
XiL X-in-the-Loop
XML Extensible Markup Language
XMI XML Metadata Interchange

List of Figures

1.1 Framing and associated RQs of this thesis. 11
1.2 Relations between main chapters with addressed research questions. 14

2.1 Schematic for a shunt-based current measurement. 20
2.2 Generic block diagram of an embedded system architecture. 22
2.3 Number of worldwide active IoT devices in billion from 2019 to 2022 and

forecasts to 2032. 26
2.4 Common application domains of IoT . 27
2.5 Classification of requirements in software engineering. 28
2.6 Categories of quality attributes to define NFRs. 29
2.7 Relations between the model-driven concepts. 37
2.8 Transformation process between models. 40
2.9 MARTE architecture and profile overview. 43
2.10 Excerpt of the Resource and ResourceUsage stereotype definitions (GRM

profile). 44
2.11 Structure of the HRM profile. 44
2.12 The HwPower sub-profile as part of the HRM profile 45
2.13 Excerpt of the MARTE NFP profile. 47
2.14 Excerpt of the MARTE model library with measurement units and basic NFP

data types. 48
2.15 Levels of software testing. 50
2.16 Dimensions of software testing. 52
2.17 Black-box, grey-box, and white-box testing in relation to their level of granu-

larity and required level of knowledge. 53
2.18 Taxonomy of Model-based Testing. 56
2.19 Diagram of an open-loop testing setup. 57
2.20 Diagram of a closed-loop testing setup. 58
2.21 Illustration of the V-model with XiL tests to verify quality gates. 59
2.22 Runtime monitoring for the power consumption estimation approach. 63
2.23 Power savings and estimation efficiency for different hardware and software levels. 65
2.24 A 4-quadrant diagram comparing related work in power consumption modeling

and estimation according to the system view and level of abstraction criteria. . 66

3.1 Developer workflow describing the usage of the presented concepts. 78
3.2 Vision of the enhanced MDD process with the presented developer workflow

applied. 80
3.3 Stereotypes to describe requirements for scenarios. 82

251

252 LIST OF FIGURES

3.4 Excerpt of a scenario definition with applied scenario-specific stereotypes. . . . 83
3.5 Requirements for a LPWAN module of an exemplary scenario. 88

4.1 Energy-aware design pattern template structure. 91
4.2 Power-timing diagram as a variation of the developed graphical representation. 93
4.3 Power-timing diagram of the EAS design pattern. 97
4.4 Power-timing diagram of the EBC design pattern. 99
4.5 Structure and components of the PowerMonitor design pattern reference im-

plementation. 102
4.6 Power-timing diagram of the PowerMonitor design pattern. 103
4.7 Power-timing diagram for the DMAD design pattern. 106
4.8 Exemplary software design using the Mirroring design pattern. 108
4.9 Power-timing diagram of the Mirroring design pattern for a dual-core CPU. . . 109
4.10 Power-timing diagram of the Race-To-Sleep design pattern in a dual-core scenario.112

5.1 Overview and relations between the concepts and methods for a power con-
sumption estimation. 115

5.2 Abstract classes with basic power-related functions to define hardware compo-
nent models. 123

5.3 Relations between UML, MARTE, and the PAP. 124
5.4 Overview of PAP profiles and sub-profiles. 126
5.5 Additional data types for the MARTE library to describe voltage and electric

current . 126
5.6 HardwareAbstraction sub-profile package. 127
5.7 Class definition of the dimmable LED example. 128
5.8 Example data type definition using utility types of the MARTE model library. 129
5.9 HardwareBehavior sub-profile package. 129
5.10 Annotated state diagram of the dimmable LED example. 132
5.11 Indirect Power Analysis (IPA) method to derive energy traces without a con-

nected hardware platform. 135
5.12 Direct Power Analysis (DPA) concept to derive energy traces based on interac-

tions with a real hardware platform. 137

6.1 DPA concept using IBM Rhapsody as MDD tool and Qoitech Otii Arc as
measuring device. 139

6.2 Integration of Helpers into IBM Rhapsody . 144
6.3 Sequence of the JSON-based interchange file creation process. 145
6.4 UML classes of the messaging framework. 149
6.5 Three-layered architecture of the policy-oriented HAL. 151
6.6 Overview of the policy-oriented HAL profile. 152
6.7 Stereotypes defining AccessPolicy variants. 153
6.8 Exemplary implementation of the policy-based device pattern. 153
6.9 Policy-oriented HAL example for a lamp class with BitAccess policy. 154
6.10 Policy-oriented HAL example for a sensor connected via I2C. 155
6.11 Screenshots showing the hardware component model import view and the con-

figuration and estimation view of the UC2E tool. 156
6.12 Sequence diagram to enable a peripheral device. 157

LIST OF FIGURES 253

6.13 Simplified sequence diagram to retrieve data from the Model-Testbed. 158
6.14 Sequence diagram to demonstrate power mode changes of the Model-Testbed. . 158
6.15 Mapping of hardware component models in C++. 160
6.16 Block diagram showing principal parts and usage of the Model-Testbed. 162
6.17 Basic architecture of the firmware. 164
6.18 Images of basic Model-Testbeds. 166
6.19 Images of advanced the Model-Testbed. 167
6.20 Block diagram of the advanced Model-Testbed. 167
6.21 Model-RPC communication between a system model and a Model-Testbed. . . . 172

7.1 Test setup showing the Model-Testbed with connected peripherals and the
Qoitech Otii Arc. 176

7.2 Block diagram of the beehive microclimate sensor node connected to the TTN. 177
7.3 The prototype microclimate sensor node applied in a beehive. 177
7.4 Bosch BME280 hardware component model as UML class diagram modeled

with IBM Rhapsody. 179
7.5 UML behavioral state machine of the Bosch BME280 modeled with IBM Rhap-

sody. 180
7.6 UML behavioral state machine of the RAK811 LoRa module modeled with

IBM Rhapsody. 180
7.7 Receive windows and delays for LoRaWAN class A devices. 182
7.8 Class diagram of the beehive microclimate sensor node modeled in IBM Rhapsody.183
7.9 UML behavioral state machine of the software application modeled with IBM

Rhapsody. 184
7.10 Energy trace generated by the UC2E tool. 187
7.11 Energy trace for the case study evaluation w/ simulation deviations highlighted.188
7.12 Analysis of a software application with and w/o a software-related energy bug. 190
7.13 Comparison of the beehive microclimate software model w/ and w/o energy bug.191
7.14 Time delay for activating a single GPIO as a comparison between a native

execution on the MCU and the DPA. 192
7.15 Statistical evaluation of the time delay tD in DPA. 193
7.16 Time delays of the simulation environment and the message transmission. . . . 194
7.17 Effect of time delays for the example application with a one second interval. . . 195

A.1 Model abstractions defined in MDA . 264
A.2 Four-layered MOF architecture . 265
A.3 Overview of UML diagram types. 267
A.4 An example of a single class in the UML 2.5.1 notation. 268
A.5 An example of a UML class diagram in the UML 2.5.1 notation. 269
A.6 Example of a UML profile diagram in the UML 2.5.1 notation. 270
A.7 Example of a UML state machine diagram in the UML 2.5.1 notation. 272
E.8 Schematic of the NXP LPC54114 Breakout Board. 287
E.9 Pinout of the NXP LPC54114 Breakout Board. 288

List of Listings

2.1 Examples of VSL variable definitions and expression usage. 46
5.1 Selected parts of the MARTE VSL specification for variables described in EBNF.133
6.1 Structure of the JSON-based interchange format for hardware component models.141
6.2 Basic structure of the Attributes object. 142
6.3 Basic structure of the Settings object. 142
6.4 Basic structure of the States object. 143
6.5 Basic structure of the Transitions object. 143
6.6 Pin-like access policy example as a BitAccess policy variant. 154
6.7 Implementation of a device layer class in C++ using a predefined BitAccess

policy. 154
6.8 Basic structure of a Model-RPC request message. 169
6.9 Exemplary Model-RPC response message. 169
6.10 Basic example of a Model-RPC to change the power mode of a Model-Testbed. . 170
6.11 Basic example of a Model-RPC request to get an analog value of a single GPIO.171
7.1 Expression for the variable execution time in the TX state of the RAK811. . . 181
C.1 Exemplary model-to-text transformation from IBM Rhapsody to the JSON-

based interchange format. 276
D.1 Basic JSON Schema definition of the configType data type used in Model-RPC.283
D.2 Model-RPC write method for UART specified with OpenRPC version 1.2.6. . . 284

255

List of Tables

1.1 Relationship between core publications and introduced RQs. 12

2.1 Classification of restricted devices based on RFC 7228 [51]. 23
2.2 Exemplary hardware devices with their average energy characteristics. 24

4.1 Classification and Categorization of six energy-aware design patterns. 95

6.1 Basic structure of the Register message type. 146
6.2 Basic structure of the Behavior message type. 147
6.3 Basic structure of the Action request message type. 147
6.4 Basic structure of the Action response message type. 148
6.5 Model-RPC methods for the system class. 170
6.6 Model-RPC methods for the pin class. 171
6.7 Model-RPC methods for the pwm class. 171
6.8 Model-RPC methods for the uart class. 172
6.9 Model-RPC methods for the i2c class. 173

7.1 Operating states, power consumption and execution times of components for
the beehive microclimate sensor node. 178

7.2 Configuration parameters of the RAKwireless RAK811 hardware component
model. 181

A.1 Comparison of well-known MDD tools for UML-based modeling languages. . . 266
A.2 Feature comparison of MDD tools. 266
B.1 Tags of the HwAbstraction stereotype (HardwareAbstraction package). 273
B.2 Tags of the HwBehavioralState and HwBehavioralTransition stereotypes

(HardwareBehavior package). 274
C.1 Mapping of hardware component models by the UC2E tool. 278
D.1 Properties of the Model-RPC configType data structure. 279
E.1 Power Mode Mapping for the developed Model-Testbeds. 286

257

List of Symbols

Electrical Fundamentals

Notation Description Page

α Activity factor 19
CL Load capacitance of the CMOS logic 19
E Electric energy 19
f Operating or clock frequency 19
I Electric current 18
Ileak Leakage current 19
Ishort Short-circuit current 18
P Electric power 18
Pdyn Dynamic power consumption (in CMOS cicuits) 18
Pshort Short-circuit power consumption (in CMOS circuits) 18
Pstatic Static power consumption (in CMOS circuits) 18
Pswitch Switching power consumption (in CMOS circuits) 18
Q Electric charge 17
t Time 18
U Voltage 18
Vdd Supply voltage 18

Model Transformation

Notation Description Page

fm Formalism 40
m Model 40
mm Metamodel 40
R Mapping rules 40
s System 40

259

260 LIST OF SYMBOLS

Scenarios and Energy Bugs

Notation Description Page

Ci Hardware component i 85
ECi Energy consumption of hardware component i 85
Equ Energy available for a period T 85
ES Energy consumption of a SUT 85
Idmax Maximum current demand for a point in time 85
PCi Electric power consumption of hardware component i 85
PtmSi Scenario execution probability 84
PS Electric power consumption of a SUT 85
Smeasure Scenario for the measurment phase 87
Ssleep Scenario for the sleep phase 87
Stransmit Scenario for the transmit phase 87
S Scenario 81
Stc Scenario of a test case 82
Stc Scenario of a test case with periodic execution 83ˆ︁Stc Scenario of a test case containing probabilities 83
tmeasure Time to end execution of Smeasure 87
tsleep Time to end execution of Ssleep 87
ttransmit Time to end execution of Stransmit 87
T Time period 83
tc Test case 82

Software Design Pattern Framework

Notation Description Page

c Duration (time) 97
CP Computing power 97
D Power cycle 97
D′ Relaxed power cycle 97
Eadd Addtional energy consumption of design patterns 110
Edma Energy consumption of the DMAD design pattern 106
Einterrupt Energy consumption for interrupts (EAS design pattern) 100
Emonitor Energy consumption of the PowerMonitor design pattern 103
Enormal Energy consumption without design pattern 98
Epolling Energy consumption for polling (EAS design pattern) 100
Erelaxed Reduced energy consumption (EAS design pattern) 98
Esave Energy savings of design patterns 110
EBP Energy balance 94
ηC Current demand cut-off factor 94
ηP Effort-saving ratio 94
fc Control flow 102
fmax Maximum frequency of the signal 96
fs Sequentially performed proportion of an algorithm 113
fsample Sampling frequency 96
p Number of CPU cores 113
Pi Power state i 97
S Speedup 113
thit Duration of a hit (EBC design pattern) 100
tinterrupt Duration of an interrupt (EBC design pattern) 100
tmiss Duration of a miss (EBC design pattern) 100
TP Parallel execution time 113

LIST OF SYMBOLS 261

Notation Description Page

TS Sequential execution time 113
T Time period 97
T ′ Relaxed time period 97

Hardware Modeling

Notation Description Page

Ahc Attributes of a hardware component model 121
δ Initial power state 119
Ees Energy consumption of an embedded system 120
EMhc Energy model of a hardware component model 121
Iδ Electric current consumption of a transition 119
Is Electric current consumption of a state 119
Ohc Operations of a hardware component model 121
Pes Power consumption of an embedded system 120
s0 Initial power state 119
Σ Input alphabet 119
Sp Finite set of power states 119
Ts Execution time of a state 119
Tt Execution time of a transition 119
Vc Supply voltage of a hardware component 119

Evaluation

Notation Description Page

∆t Time difference 194
Q1 Lower quartile 193
Q3 Upper quartile 193
Sa Scenario for the active phase of the system 185
Ss Scenario for the sleep phase of the system 185
St Scenario for the transmit phase of the system 185
Stl Test lab scenario 185
σ Standard deviation 193
tD Total time delay 192
tDC Time delay for communication
tDI Time delay for interpretation
tDP Time delay for message processing 193
x̃ Median 193

Appendix

A Supplemental Background

This chapter provides additional information as advanced knowledge for background discussed
in Chapter 2 (p. 17 ff.). Supplemental background on architectural layers and metamodels
of MDA as the specific interpretation of MDD relying on OMG standards is presented in
Section A.1, while Section A.2 presents a comparison of MDD tools. Section A.3 gives a brief
introduction of UML and UML diagrams used in this thesis.

A.1 Model-driven Architecture (MDA)

This section gives a brief overview of MDA as an OMG-specific implementation of MDD
introduced in Section 2.5 (p. 37 ff.) with the specified architectural layers in introduced
Section A.1.1 and metamodels discussed in Section A.1.2.

A.1.1 Architectural Layers

A key concept of MDA is the three-layer architecture with different levels of abstraction to
achieve a separation of concerns. For each layer, MDA introduces a specific type of model.

The Computing Independent Model (CIM), as the most abstract layer, specifies business
activities and requirements of the system without referring to the implementation. It may
also contain parts that are not mapped to software implementations. Due to the focus on
business processes, the CIM is also denoted as a business or domain model [56, 272].

The Platform Independent Model (PIM) is part of the second layer of abstraction in which
logical aspects of the system, such as the structure and behavior, are addressed. Compared to
CIM, PIM describes only parts of the CIM based on formal modeling languages and contains
the formal specification of the architecture, structure, and functionality of a system regarding
defined requirements while being independent of any specific implementation technologies.
The provided level of abstraction enables the PIM to be mapped to one or more concrete
implementation platforms without the need for adjustments [56, 272, 369].

As part of the lowest layer, the Platform Specific Model (PSM) contains all information
regarding the structure and behavior of the systems. It utilizes specific technologies to imple-
ment the functionalities defined by a PIM for a specific platform. On this level, MDD tools
can use PSMs for simulations or code generation approaches to transform a PSM into generate
platform-specific source code. Figure A.1 shows the relation between CIM, PIM, and PSM.

Besides the aforementioned layer of abstraction and associated model representations,
MDA envisions a complete development process, from the description of business processes to
executable and platform-specific software applications. For such a process, model transforma-

263

264 APPENDIX

CIM - Computation

Independent Model

Computation Independent

Metamodel

describes

PIM - Platform

Independent Model

Platform Independent

Metamodel

describes

PSM - Platform

Specific Model

Platform Specific

Metamodel

describes

Source Code
Programming Language

Metamodel

describes

Model-to-Model Transformation Model Mapping

Model-to-Model Transformation

Model-to-Text Transformation

Model Mapping

Model Mapping

Business view with

context and requirements

Information- and algorithm-

aware specification,

technology independent

Detailed specification,

aware of the technical

implementation platform

Figure A.1: Model abstractions defined in MDA, adapted from [56].

tions are needed. However, to achieve an automatic transformation between different models,
detailed and formal model descriptions of the source and target models are required. Such
model descriptions are denoted as metamodels.

A.1.2 Metamodels

To perform a model transformation as described in Section 2.5.2 (p. 40 ff.), modeling languages
have to be specified in a formal manner. With models as primary artifacts, MDD and MDA
aim to follow the “everything is a model” principle as an analogy to the “everything is an
object” of object-oriented software development and “everything is a file” as one of the defining
features of the Unix operating system [48, 56]. As a logical consequence, so-called metamodels
are used to define a modeling language [56]. Metamodels, however, may, in turn, be described
by meta-metamodels. Due to their level of abstraction, meta-metamodels are often able to
define themselves with the same language elements they provide. As shown in Figure A.2,
the concepts and relations of models, metamodels, and meta-metamodels can be expressed by
using the four-layered architecture of the MOF standard, introduced by the OMG [56, 272]:

• Level M0 defines a real object or instance of a model located at level M1.

• Level M1 defines the structure and behavior of objects located at M0.

• The metamodel describing the concepts for models at level M1 is located at level M2.

• The meta-metamodel that specifies the concepts used at level M2 is located at level M3.

The MOF is typically used at M3 to define a metamodel such as UML. Besides the MOF,
Ecore, as part of the Eclipse Modeling Framework (EMF), may also be used at level M3,
which is tailored to Java for implementation purposes [56]. A transformation may also be a
model itself and, therefore, an instance of a transformation metamodel. For example, the ATL
may be used to specify rules for the transformation between two models, whereas the ATL
metamodel defines the syntax of the ATL language [56].

A. SUPPLEMENTAL BACKGROUND 265

M3

M2

M1

M0

Meta-Metamodel Meta Language

«conformsTo»

defines

Metamodel Language

«conformsTo»

defines

Model System

«conformsTo»

represents

Model Instance System Snapshot

«conformsTo»

represents

e.g., MOF

e.g., UML

e.g., Sensor

Class

e.g., Sensor

Class Instance

Figure A.2: Four-layered MOF architecture showing the relation between objects, models,
metamodels, and meta-metamodels, adapted from [56].

A.2 Tool Support in Model-driven Development (MDD)

An important aspect of MDD is the availability of tools to support the MDD process in terms
of modeling, transformation of models, and source-code generation. Over the previous decades,
various types of MDD tools have been developed, including open-source and proprietary solu-
tions. However, it is important to distinguish between drawing and modeling tools. According
to Brambilla et al. (2017) [56], an MDD tool must provide at least some of the following
functionalities:

• An MDD tool guarantees a minimum level of semantic meaning and model quality to
ensure compliance with metamodels.

• An MDD tool offers appropriate functionalities for model transformations, e.g., model-
to-model, model-to-text, and code generation, cf. Section 2.5.2 (p. 40 ff.).

• An MDD tool uses APIs to export and manipulate models and to customize code
generation.

• An MDD tool provides semantic-aware export formats such as the XMI [273].

For instance, modeling tools may use a concrete textual syntax to specify models without
drawing support. With drawing tools, developers may be able to create UML-like diagrams,
but these tools often lack a semantic description of the drawn models. As mentioned in [7],
Microsoft Visio [251] is one of the most widely used modeling tools. However, since Microsoft
Visio does not include any of the aforementioned functionalities, it is not considered as an
MDD tool in this thesis. Well-known MDD tools that provide some of the abovementioned
functionalities are Rhapsody [164], MagicDraw [90], Visual Paradigm [408], Enterprise Ar-
chitect [364], and MathWorks MATLAB [380] as examples of commercial MDD tools, and
Papyrus [104] as an example of an open-source solution. With the exception of MathWorks

266 APPENDIX

MATLAB, the aforementioned MDD tools provide software developers with multiple editors
to define UML models graphically. Table A.1 compares well-known MDD tools and their

MDD Tool (Version)
Supported Languages

UML SysML MARTE fUML(ALF)

Rhapsody (9.0.1) ✓ ✓ ✓ ✗

MagicDraw (19.0 LTR SP4) ✓ ✓ ✓ ✓
Visual Paradigm (17.0) ✓ ✓ ✗ ✗

Enterprise Architect (16.0) ✓ ✓ ✓ ✗

Papyrus (6.2.0) ✓ ✓ ✓ ✓

Table A.1: Comparison of well-known MDD tools for UML-based modeling languages. The
symbol ✓ indicates that the language is supported by the MDD tool, while the symbol ✗ in-
dicates no language support.

support of UML-based modeling languages introduced in Section 2.5.1 (p. 38 ff.). Besides
basic UML, languages such as SysML and MARTE are accepted and supported by well-known
MDD tools. On the other hand, the support of fUML [281] and the corresponding ALF [277]
can be considered insufficient, as shown in Table A.1.

Table A.2 briefly summarizes the features provided by MDD tools for UML. All introduced
MDD tools provide an environment for simulating selected UML diagram types, such as state
machine and activity diagrams. The most important languages for embedded systems, C and
C++, are well supported by the MDD tools in Table A.2, although the level of generation
varies. Furthermore, all MDD tools provide a model exchange based on XMI and API support.
For example, Rhapsody, MagicDraw, and Enterprise Architect offer a Java-based API that
allows software developers to interact with UML models and the code generation process.
Further comparisons between MDD tools can be found in [288, 330].

MDD Tool (Version) Simulation Code Generation Model
Exchange

API
Support

Rhapsody (9.0.1) AD, SMD C, C++, Java, Ada XMI ✓
MagicDraw (19.0 LTR SP4) AD, SMD Java, C#, C++ XMI ✓

Visual Paradigm (17.0) AD, SD C++, C#, Java, VB,
PHP, Ada, ActionScript XMI, XML ✓

Enterprise Architect (16.0) AD, ID, SMD C, C++, Java, Ada XMI ✓
Papyrus (6.2.0) AD, CD, CSD, SMD C++, Java XMI ✓

AD = Activity Diagram, CD = Class Diagram, CSD = Composite Structure Diagram, ID = Interaction
Diagram, SD = Sequence Diagram, SMD = State Machine Diagram

Table A.2: Feature comparison of MDD tools.

A.3 Unified Modeling Language (UML)

This section briefly introduces UML as the underlying specification MARTE is based on. It
also provides supplemental background on the notation of the diagrams used to define hardware
and software models in Chapters 5 to 7. UML specifies a set of fourteen different diagrams for
a graphical specification of the software application from different perspectives. Each diagram

A. SUPPLEMENTAL BACKGROUND 267

type can be interpreted as a different view for specific parts of the software application model.
Figure A.3 gives an overview of the diagram types defined in the UML specification [275], which

UML Diagrams

Profile

Diagram

Structure

Diagram

Behavior

Diagram

Class

Diagram

Component

Diagram

Composite

Structure

Diagram

Object

Diagram

Deployment

Diagram

Package

Diagram

Activity

Diagram

Interaction

Diagram

Use Case

Diagram

Sequence

Diagram

State

Machine

Diagram

Interaction

Overview

Diagram

Communication

Diagram

Timing

Diagram

Figure A.3: Overview of UML diagram types, adapted from [275]. Diagrams used in this
thesis are framed blue and with bold characters.

can be categorized into structural and behavioral diagrams. Structural diagrams describe the
overall structure and the relationship between different parts of the software application, e.g.,
hierarchy and inheritance of classes. Behavioral diagrams specify the flow-related behavior of
objects, e.g., instances of classes changing over time.

Besides the graphical notation in the form of diagrams as a human-readable notation,
the UML specification also provides a metamodel (cf. Section A.1.2, p. 264 f.) to specify
the abstract syntax of the UML and to add semantic meaning to the diagram descriptions.
The abstract syntax defines modeling concepts, their relationships, and a set of rules for
combining these concepts to create UML models. Additionally, the UML specification defines
semantics that describes how UML concepts can be realized and interpreted by MDD tools.
This enables features such as model transformation (cf. Section 2.5.2, p. 40 ff.), verification,
simulation, code generation, and modification of UML models via programming languages
using the provided API of MDD tools (cf. Section A.2, p. 265 ff.).

The blue-framed diagram types in Figure A.3 are used for different concepts in this thesis
and are introduced in the following sections with a focus on software development. This section
does not intend to cover the full specification of each diagram type. A detailed description may
be found in the specification [275] and literature such as [125, 347]. Section A.3.1 introduces
the UML class diagram. Section A.3.2 describes the UML profile diagram as another structural
diagram type mainly used to define extensions of the UML metamodel. In Section A.3.3, UML
state machine diagrams are introduced.

A.3.1 Class Diagram

A UML class diagram describes the static structure of a software application. Among all
diagrams presented in Figure A.3, the UML class diagram is the best-known and most-used di-
agram type of the UML specification applied in different phases of the software development
process with varying levels of detail and abstraction [125, 347]. The main elements of a UML
class diagram are classes, which are modeled with their properties and operations. These
structural characteristics are also denoted as features of a class.

268 APPENDIX

-serialNumber : string = 0
-supportedUpdateRates : int[1..3]
+calibrate() : boolean
+getSerialNumber() : int
+setSerialNumber(id : string) : void
+getSupportedUpdateRates() : int[1..3]
+measure() : float

Sensor

Visual Paradigm Standard(Schaarschmidt(Fachhochschule Osnabrueck))

Figure A.4: An example of a single class in the UML 2.5.1 notation [275].

Figure A.4 shows the graphical representation of an example UML class as a box with
three compartments that define, from top to bottom, the name, attributes, and operations
of the class. The syntax of attributes in the middle compartment of Figure A.4 consists of a
visibility marker, the name of the attribute, the data type, and optionally a multiplicity and
a default value. The visibility defines the access permission of the specific attribute. In UML,
the main permissions are private, public, and protected. Attributes marked as private (-) are
only accessible within the object itself. Access by objects of the same class and sub-classes is
denoted as protected (#), and the marker + indicates that any object can access the attribute
directly. The data type of an attribute can be a primitive data type (e.g., integer) or a
composite data type (e.g., another class). Additionally, rectangular brackets after the data
type define the multiplicity of an attribute if it, e.g., represents a set or list. For instance, with
the notation [minimum..maximum], an attribute may contain at least one and a maximum of
three elements [1..3], exactly three elements [3], or an indefinite amount of elements [*]
that may change during execution. Equal signs are used to define optional default values.

Operations are characterized by a visibility marker, a name, parameters, and the data
type of the return value. In a class diagram, the name of the operation is followed by a list of
parameters in parentheses which may be empty if no parameters are required. Parameters in
the parameter list are represented similarly to attributes, e.g., by defining the name and data
type. The return type is also optional and specifies the data type of the value returned as a
result of an operation call.

Besides the elements of the software application, a UML class diagram also describes the
relationship between those elements. Since the relationships between classes do not change
over time, this diagram type is considered static. Figure A.5 shows an example of a UML
class diagram and introduces additional semantics of the UML specification for class diagrams.
Relationships between classes are defined as lines. In UML, relationships are distinguished
graphically by the design of the line and the use of symbols, e.g., arrows, at the end of the
lines. Relationships covered in this thesis are associations, shared aggregations, compositions,
inheritances, and realizations [125, 347]:

Associations describe the binary relationship between two classes in which one class
instance can start actions on another. Graphically, associations are visualized by a solid
line between those two classes. With the use of directed edges, associations can be further
specified to indicate navigability between two instances of a class which can be unidirectional
and bidirectional. The unidirectional navigability indicates that an instance of a class has
knowledge about the instance of the other class and can access its public attributes and
operations. This is expressed with an open arrow at the end of the class whose attributes

A. SUPPLEMENTAL BACKGROUND 269

-supportedUpdateRates : int[1..3]
+calibrate() : boolean
+getSupportedUpdateRates() : int[1..3]
+measure() : float

Sensor

-serialNumber : string = 0
+getSerialNumber() : int
+setSerialNumber(id : string) : void

<<HardwareDevice>>
AbstractHardwareDevice

+powerOff() : boolean
+powerOn()

<<interface>>
IPowerControl -pin : int

-port : int
+Configuration(pin : int, port : int)
+getPort() : int
+getPin() : int

Configuration

TemperatureSensor HumiditySensor

- config

Visual Paradigm Standard(Schaarschmidt(Fachhochschule Osnabrueck))

Figure A.5: An example of a UML class diagram in the UML 2.5.1 notation [275].

and operations can be accessed. For bidirectional navigability, open arrows are placed at both
ends of the line.

Shared aggregations and compositions are special interpretations of associations and
define part of relationships between two classes.

• A shared aggregation expresses a weaker form of the part of relationship where parts
belong to the whole but can also exist independently of the whole. The notation of a
shared aggregation in a UML class diagram is defined as a line with a diamond on the
end of the class representing a whole. For example, the relationship between the classes
Sensor and Configuration in Figure A.5 is defined as a shared aggregation where the
instance of a Configuration is part of a Sensor instance but can also exist without a
specific Sensor instance, e.g., if the same configuration is (re-)used for other sensors.

• Compositions define a stronger bond between the whole and the part, graphically ex-
pressed as a filled diamond. In a composition, the part can not exist independently
without the whole.

Associations, shared aggregation, and compositions can be extended by adding multiplicities
on one or both ends. In Figure A.5, the multiplicity between Sensor and Configuration
is set to one at both ends because a Sensor instance only has one Configuration, and a
Configuration instance is part of one specific Sensor instance.

An inheritance describes a directed relationship between classes in which a specific class
inherits the attributes and operations from another class, e.g., the superclass. An inheritance
is visualized as a solid line with a triangle arrowhead pointing to the superclass. Figure A.5
shows two inheritances between AbstractHardwareDevice and Sensor and between Sensor,
TemperatureSensor, and HumiditySensor.

A realization defines a type of dependency where a class implements the behavior of
another class. Graphically, a realization is represented with a dashed line and a triangular
arrowhead. An interface realization is shown in Figure A.5 between the classes IPowerControl
and Sensor. The instance of TemperatureSensor and HumiditySensor implement the
operations defined by IPowerControl. Furthermore, stereotypes, represented with angular
brackets, can be added to classes refining their meaning. For example, the name compartment
of class IPowerControl in Figure A.5 has been extended with the stereotype «interface».

270 APPENDIX

This changes the semantic meaning of the defined class and turns the rectangle in its meaning
from a class to an interface. In object-oriented programming languages like C++, programs
are based on class constructs, and classes become objects at runtime. Classes extended with
the stereotype «interface» are interpreted as communication interfaces to be implemented
by other classes. Therefore, no instances of these classes exist at runtime. Stereotypes are
discussed in more detail in the following Section A.3.2.

A.3.2 Profile Diagram

A UML profile diagram specifies stereotypes as part of a profile. As an extension mechanism,
stereotypes are used to create new model elements by extending the vocabulary of UML.
In contrast to UML class diagrams where stereotypes are applied to classes, as shown in
Figure A.5 (p. 269), the UML profile diagram describes the structure and content of stereotypes
and the type of UML metamodel element to which they can be applied. Due to this, UML
profile diagrams are located at level M2 (cf. Section A.1.2, p. 264 ff.). An exemplary profile
diagram is illustrated in Figure A.6. The visual representation of a UML profile diagram is
similar to the UML class diagram. Stereotypes are described like classes with the additional
keyword stereotype above the name in the first compartment. In the second compartment,
properties and their data types are defined.

<<profile>> Hardware

<<metaclass>>
Class

 vendor : string
 productionYear : int {productionYear >= 2000}

<<stereotype>>
HardwareDevice

Visual Paradigm Standard(Schaarschmidt(Fachhochschule Osnabrueck))

Figure A.6: Example of a UML profile diagram in the UML 2.5.1 notation [275].

Additionally, constraints for properties may be described. If a stereotype is applied to a
UML element, the properties are denoted as key-values pars, also referred to as tagged values.
The second element of UML profile diagrams are metaclasses, which are represented as a box
with a name and the additional keyword metaclass. Solid lines with a filled arrow indicate
which metaclass is extended by a specific stereotype. In general, a stereotype may extend one
or more metaclasses. Figure A.6 shows an exemplary UML profile diagram with a stereotype
HardwareDevice consisting of two attributes, vendor as a string and productionYear as an
integer. The newly defined stereotype can be applied to UML class meta elements. Note that
the attribute productionYear has a constraint where values only higher or equal to 2000 are
accepted. In Figure A.5, the classes TemperatureSensor and HumiditySensor have been
extended with the HardwareDevice stereotype via inheritance to add information about the
vendor and year of production as additional metadata.

A.3.3 State Machine Diagram

Discrete event-driven behavior can be modeled by using a finite state-machine formalism.
The form of finite state automata used in the UML [275] is based on the object-oriented

A. SUPPLEMENTAL BACKGROUND 271

statecharts formalism presented in [155]. The UML specification [275] distinguishes between
two state machine types: behavioral state machines and protocol state machines. Behavioral
state machines specify the discrete behavior of classifiers, such as class instances, by modeling
system states and state transitions between states. State transitions are executed as a reaction
to events that may occur at certain points in time. On the other hand, protocol state machines
are used to express valid event sequences and the order of, e.g., operations calls, to which
a system must conform. Additionally, states of a protocol state machine do not have any
activities within the states. Instead, activities are only executed during transitions. In this
thesis, however, only diagrams for behavioral state machines are discussed. In the following,
characteristics and types of states and transitions are described and illustrated with an example.

States

The UML specification distinguishes between two types of states, namely pseudo states and
real states. Pseudo states do not have any internal activities and are transient, which means
that the state machine cannot remain in such states. The initial state is an example of a
pseudo state graphically represented as a filled black circle with no incoming edges. Normal
states and the final state are considered as real states. A normal state is represented in a UML
state machine diagram as a rectangle with rounded corners divided into two compartments.
The upper compartment contains the name of the state. In the lower compartment, internal
activities in the form of keyword/activity are specified, which may consist of multiple
actions. The keywords entry and exit suggest that the activity must be executed when a
state is entered or left. Activities after the keyword do are executed as long as the current
state is active. Final states are represented by a circle containing a smaller filled circle and
mark the end of a state sequence.

State Transitions

The change from a source state Ssource to a target state Starget is denoted as state transition,
i.e., Ssource → Starget. Graphically, state transitions are represented by a solid line and an
arrowhead that points from the source state Ssource to the target state Starget. State transitions
may have a set of properties graphically specified on top of the transition arrow as E(P)[G]/A,
with E as an event, P as an optional parameter list of the event E, G as a guard, and A
as the activity executed during the transitions. A guard represents a condition as a boolean
expression evaluated as true or false if an event specified for a transition occurs at a point in
time. If the guard is evaluated to true, the current state activities are terminated, the exit
activity performed, and the transition to the target state Starget executed. If the guard is
evaluated to false, no transition is performed. In the UML specification, several types of events
are defined, including signal event, call event, time event, change event, any receive event, and
completion event [347]. Signal events are asynchronous events for which the sender does not
wait for a response. Call events represent operation calls where the name of the event is equal
to the name of an operation. Time events enable transitions to be executed after a certain
time window, while change events are consistently evaluating a condition. If the condition is
satisfied, the change event is dispatched. If the transition should be executed when an event
of any type occurs, the any receive event type may be applied. As the last type of event,
the completion event is dispatched if the entry and do activities have been completed. State
transitions can be distinguished between internal transitions and external transitions. While

272 APPENDIX

external transitions are transitions between states, internal transitions trigger activities, but
they do not invoke a state transition, and therefore no entry and exit activities are performed.
A special form of external transition is called self-transition, where the source and target state
are equal, i.e., Ssource == Starget. Unlike the internal transition, entry and exit activities are
invoked when self-transitions are executed. If no guard or event is modeled for a transition, it
is executed after the entry and the do activity have been performed.

Example

Figure A.7 shows an exemplary UML state machine with the three states InitSystem, Mea-
sure, and Compare. A filled black circle denotes the initial state, while the final state is
illustrated by a circle with an additional inner-filled circle. Transitions in Figure A.7 have
been extended with guards, e.g., measuredVal>=100, and actions, e.g., setAlarm(). For
more information about the UML state machine diagram and UML diagrams in general,
see [100, 125, 138, 347].

do / calibrateSensor() entry / wait()
do / measure()

do / compareValue()
InitSystem Measure Compare

[measuredVal < 100]

[measureComplete == true]

[measuredVal >= 100] / setAlarm()

[initComplete == true]

Visual Paradigm Standard(Schaarschmidt(Fachhochschule Osnabrueck))

Figure A.7: Example of a UML state machine diagram in the UML 2.5.1 notation [275].

B. COMPLETE LIST OF TAGS FOR PAP STEREOTYPES 273

B Complete List of Tags for PAP Stereotypes
This section contains a complete list of tags for the stereotypes of the PAP profile developed
in this thesis. Table B.1 summarizes existing and newly defined tags of the HwAbstraction
stereotype, introduced in Section 5.3.3 (p. 127 ff.). Existing tags are introduced due to
the inheritance of the MARTE stereotype HwResource but are not required for the power
estimation process.

Tag Description Type

description A textual description of the component. NFP_String
endPoints HwResource connection points. HW_EndPoint[0..*]

frequencies1 Specifies a set of supported clock frequencies,
cf. Section 5.2.2 (p. 119 f.). NFP_Frequency[1..*]

frequency Specifies the clock frequency. NFP_Frequency[0..1]
ownedHW Specifies the owned sub-HwResources. HwResource[0..*]
p_HW_Services Specifies the provided services. HwResourceService[1..*]
r_HW_Services Specifies the required services. HwResourceService[0..*]
supplyVoltage1 Specifies the supply voltage. NFP_Voltage2

Table B.1: Tags of the HwAbstraction stereotype (HardwareAbstraction package) with ad-
ditional tags1 and data types2 introduced in this thesis that are not part of the MARTE
specification [275].

274 APPENDIX

Table B.2 summarizes the tags for the HwBehavioralState and HwBehavioralTransi-
tion stereotypes, introduced in Section 5.3.4 (p. 129 ff.). In addition to newly defined tags for
the power analysis process, they contain tags due to the inheritance of the MARTE stereotypes
ResourceUsage and HwResourceService.

Tag Description Data Type

current1 Electric current consumption of the
state/transition. NFP_ElectricCurrent[1..*]2

hasDynamic-
Consumption1

True, if the electric current consumption is
static, false otherwise. NFP_Boolean

hasDynamic-
ExecutionTime1

True, if the execution time is static, false
otherwise. NFP_Boolean

HwResourceService (HwPower Package)
consumption Consumed power. NFP_Power
dissipation Power dissipated, e.g., heat. NFP_Power
ResourceUsage (GRM Package)

allocatedMemory
Amount of memory that is demanded from or
returned to the resource. NFP_DataSize[*]

execTime Execution time of the state/transition. NFP_Duration[*]

energy
Amount of energy that will be permanently
consumed. NFP_Energy

msgSize Amount of data transmitted by the resource. NFP_DataSize[*]

powerPeak
The maximum power that is demanded and
should be available from the resource. NFP_Power[*]

usedMemory
Amount of memory that will be used from a
resource. NFP_DataSize[*]

Table B.2: Tags of the HwBehavioralState and HwBehavioralTransition stereotypes
(HardwareBehavior package) with additional tags1 and data types2 introduced in this thesis
that are not part of the MARTE specification [275].

C. MODEL TRANSFORMATION EXAMPLE 275

C Model Transformation Example

This section provides additional information for the model transformation process as a part
of the prototype implementation introduced in Section 6.1 (p. 140 ff.). Section C.1 provides
a more coherent and complete sample output of the developed IBM Rhapsody plug-in (cf.
Section 6.1.1, p. 140 ff.) for the dimmable LED example introduced in Section 5.3 (p. 124 ff.).
Section C.2 provides supplemental mapping information between the model interchange format
discussed in Section 6.1 (p. 140 ff.) and the representation of hardware component models in
C++ as part of the UC2E tool introduced in Section 6.4 (p. 155 ff.).

C.1 Model-to-Text Transformation

Listing C.1 shows the JSON-based description resulting from an exemplary model-to-text
transformation of the dimmable LED hardware component model discussed in Section 5.3.3
to 5.3.5 (p. 127 ff.) with the model interchange format introduced in Section 6.1.1 (p. 140 ff.).

1 {
2 "HardwareComponentModels": [
3 {
4 "Name": "DimmableLED",
5 "Attributes": {
6 "brightnessLevel": {
7 "id": "brightness",
8 "dataType": "PercentageInteger"
9 }
10 },
11 "Settings": {
12 "supplyVoltage": "(3.3,V)"
13 },
14 "States": {
15 "OFF": {
16 "name": "Off",
17 "id": "11f299b3-6734-4ecb-8850-5352c84b3b0a",
18 "behavior":{
19 "current": "(0,mA)",
20 "execTime": "",
21 "hasDynamicConsumption": false,
22 "hasDynamicExecTime": false
23 }
24 },
25 "ON": {
26 "name": "On",
27 "id": "c5df30c6-6c6c-4a72-b6c9-345cc9834942",
28 "behavior":{
29 "current": "((PAP.ATTR.brightness/100)*5,mA)",
30 "execTime": "",
31 "hasDynamicConsumption": false,
32 "hasDynamicExecTime": false
33 }
34 }
35 },
36 "Transitions": {
37 "0": {
38 "name": "0",
39 "initialTransition": true,

276 APPENDIX

40 "fromState": "",
41 "toState": "11f299b3-6734-4ecb-8850-5352c84b3b0a",
42 "behavior":{
43 "current": "(0,mA)",
44 "execTime": "(0,ms)",
45 "hasDynamicConsumption": false,
46 "hasDynamicExecTime": false
47 }
48 },
49 "1": {
50 "name": "1",
51 "initialTransition": false,
52 "fromState": "11f299b3-6734-4ecb-8850-5352c84b3b0a",
53 "toState": "c5df30c6-6c6c-4a72-b6c9-345cc9834942",
54 "behavior":{
55 "current": "(0,mA)",
56 "execTime": "(0, ms)",
57 "hasDynamicConsumption": false,
58 "hasDynamicExecTime": false
59 }
60 },
61 "2": {
62 "name": "2",
63 "initialTransition": false,
64 "fromState": "c5df30c6-6c6c-4a72-b6c9-345cc9834942",
65 "toState": "11f299b3-6734-4ecb-8850-5352c84b3b0a",
66 "behavior":{
67 "current": "(0,mA)",
68 "execTime": "(0,ms)",
69 "hasDynamicConsumption": false,
70 "hasDynamicExecTime": false
71 }
72 }
73 }
74 }
75]
76 }

Listing C.1: Exemplary model-to-text transformation from IBM Rhapsody to the JSON-based
interchange format based on the dimmable LED hardware component model.

C
.

M
O

D
EL

T
R

A
N

SFO
R

M
AT

IO
N

EX
A

M
PLE

277

C.2 Model Mapping of Hardware Component Models

Table C.1 describes the element-wise mapping for the text-to-model transformation of hardware component models from the JSON-
based interchange format (cf. Section 6.1.1, p. 140 ff.) to the C++-based hardware model of the UC2E (cf. Section 6.4, p. 155 ff.).
The model mapping between the interchange format and the UC2E tool is essential for IPA and DPA. It is used for the evaluation in
Chapter 7 (p. 175 ff.) to perform a power analysis and to derive energy traces.

JSON Element C++ Element Note

[’HardwareComponentModels’][i] – i as the number of the i-th hardware component model
in the JSON structure.

i["Name"] HwModel.baseName

Name of the hardware component. HwModel.name con-
tains the name of the instance and is set dynamically
during simulation.

i["Attributes"]["AttributeName"] HwAttribute
The data type is ignored since values in expressions
are always numeric.

i["Attributes"]["AttributeName"].id HwAttribute.id

i["Attributes"]["AttributeName"].value HwAttribute.value

i["Settings"]["id"] HwSetting
With id = HwModel.id and (value,unit) = Hw-
Model.value and HwModel.unit.

i[’States’][’stateId’] HWState

i[’States’][’stateId’].name HWState.name

i[’States’][’stateId’].id HWState.id

i[’States’][’stateId’][’behavior’].current HWState.current

i[’States’][’stateId’][’behavior’].execTime HWState.execTime

i[’States’][’stateId’][’behavior’]
.hasDynamicConsumption

HWState
.hasDynamicConsumption

i[’States’][’stateId’][’behavior’]
.hasDynamicExecutionTime

HWState.
hasDynamicExecutionTime

i[’Transitions’][’transitionId’] HWTransition

i[’Transitions’][’transitionId’].name HWTransition.name

i[’Transitions’][’transitionId’].initialTransition HWTransition.isInitialTransition

Continued on next page

278
A

PPEN
D

IX

Table C.1 – continued from previous page

JSON Element C++ Element Note
i[’Transitions’][’transitionId’].fromState HWTransition.fromState Reference based on HWState.id.
i[’Transitions’][’transitionId’].toState HWTransition.toState Reference based on HWState.id.
i[’Transitions’][’transitionId’][’behavior’]
.current

HWTransition.current

i[’Transitions’][’transitionId’][’behavior’]
.execTime

HWTransition.execTime

i[’Transitions’][’transitionId’][’behavior’]
.hasDynamicConsumption

HWTransition
.hasDynamicConsumption

i[’Transitions’][’transitionId’][’behavior’]
.hasDynamicExecutionTime

HWTransition
.hasDynamicExecutionTime

Table C.1: Mapping of hardware component models by the UC2E tool.

D. SUPPLEMENTARY INFORMATION ABOUT MODEL-RPC 279

D Supplementary Information about Model-RPC
This section contains supplementary information about the specified Model-RPC communi-
cation protocol (cf. Section 6.5.4, p. 168 ff.). Section D.1 provides a definition and JSON
schema description of the configType data structure introduced in Section 6.5.4 (p. 168 ff).
It is used to configure the developed Model-Testbeds. In Section D.2, an exemplary OpenRPC
schema specification for the UART write method is shown for the automatic validation of
Model-RPC messages.

D.1 The configType Object Structure

In Table D.1, each property of the configType object is listed along with the corresponding
data type and a brief description. The values field may contain a description of the value or
provides a set of values that can be used for a specific data type.

Property Type Description Values

name String Name of configuration -
date String Creation date of configuration -

gpio

Array GPIOs objects to configure Object with properties id and mode

id String Id of GPIO -

mode Number Selected mode for the GPIO
0: Input, 1: Output, 2: ADC, 3: Inter-
rupt (falling edge), 4: Interrupt (rising
edge), 5: Interrupt on change

pwm

Array PWM channel to configure Objects with properties id and state

id String Id of PWM -
state Number Enable/disable PWM channel 0: Off, 1: On

i2c

Array I2C interfaces to configure Objects with properties id and rate

id String Id of I2C -

rate Number Transfer rate 0: 100 kBit/s, 1: 400 kBit/s, 2: 1,000
kBit/s

uart

Array UART interfaces to configure Objects with properties id and baud

id String Id of UART -

baud Number Transfer rate

0: 9,600 Baud/s, 1: 14,400 Baud/s,
2: 19,200 Baud/s, 3: 38,400 Baud/s,
4: 57,600 Baud/s, 5: 115,200 Baud/s,
6: 128,000 Baud/s, 7: 256,000 Baud/s

spi

Array SPI interfaces to configure Objects with properties id and rate

id String Id of SPI -
rate Number Configure word-size 4–16-Bit

can

Array CAN interfaces to configure Objects with properties id, rate, and
filter

id String Id of CAN interface -

rate Number Data rate 0: 250 kBaud/s, 1: 500 kBaud/s, 2: 1,000
kBaud/s

filter Array List of filter IDs

Table D.1: Properties of the Model-RPC configType data structure.

280 APPENDIX

The following Listing D.1 provides a JSON schema description that can be used to validate
configType objects.

1 {
2 "$schema": "https://json-schema.org/draft/2020-12/schema",
3 "id": "configType",
4 "description": "ConfigType Definition.",
5 "properties": {
6 "name": {
7 "type": "string",
8 "description": "Name of the configuration.",
9 "title": "Name"
10 },
11 "date": {
12 "type": "string",
13 "description": "Date of the configuration.",
14 "title": "Date"
15 },
16 "gpio": {
17 "type": "array",
18 "description": "GPIO objects to configure.",
19 "items": {
20 "type": "object",
21 "properties": {
22 "id": {
23 "type": "string",
24 "description": "ID of the GPIO.",
25 "title": "id"
26 },
27 "mode": {
28 "type": "integer",
29 "description": "Selected mode of the GPIO.",
30 "title": "mode",
31 "minimum": 0,
32 "maximum": 4
33 }
34 },
35 "required": [
36 "id",
37 "mode"
38]
39 }
40 },
41 "pwm": {
42 "type": "array",
43 "description": "PWM channels to configure.",
44 "items": {
45 "type": "object",
46 "properties": {
47 "id": {
48 "type": "string",
49 "description": "ID of the PWM.",
50 "title": "id"
51 },
52 "state": {
53 "type": "integer",
54 "description": "Enable/disable PWM channel.",
55 "title": "state",

D. SUPPLEMENTARY INFORMATION ABOUT MODEL-RPC 281

56 "enum": [0,1]
57 }
58 },
59 "required": [
60 "id",
61 "state"
62]
63 }
64 },
65 "i2c": {
66 "type": "array",
67 "description": "I2C interfaces to configure.",
68 "items": {
69 "type": "object",
70 "properties": {
71 "id": {
72 "type": "string",
73 "description": "ID of the I2C.",
74 "title": "id"
75 },
76 "rate": {
77 "type": "integer",
78 "description": "Transfer rate of the I2C channel.",
79 "title": "rate",
80 "minimum": 0,
81 "maximum": 2
82 }
83 },
84 "required": [
85 "id",
86 "rate"
87]
88 }
89 },
90 "uart": {
91 "type": "array",
92 "description": "UART interfaces to configure.",
93 "items": {
94 "type": "object",
95 "properties": {
96 "id": {
97 "type": "string",
98 "description": "ID of the UART.",
99 "title": "id"

100 },
101 "baud": {
102 "type": "integer",
103 "description": "Transfer rate of the UART channel.",
104 "title": "baud",
105 "minimum": 0,
106 "maximum": 7
107 }
108 },
109 "required": [
110 "id",
111 "baud"
112]

282 APPENDIX

113 }
114 },
115 "spi": {
116 "type": "array",
117 "description": "SPI interfaces to configure.",
118 "items": {
119 "type": "object",
120 "properties": {
121 "id": {
122 "type": "string",
123 "description": "ID of the SPI.",
124 "title": "id"
125 },
126 "rate": {
127 "type": "integer",
128 "description": "Word size of the SPI channel.",
129 "title": "rate",
130 "minimum": 4,
131 "maximum": 16
132 }
133 },
134 "required": [
135 "id",
136 "rate"
137]
138 }
139 },
140 "can": {
141 "type": "array",
142 "description": "CAN interfaces to configure.",
143 "items": {
144 "type": "object",
145 "properties": {
146 "id": {
147 "type": "string",
148 "description": "ID of the CAN.",
149 "title": "id"
150 },
151 "rate": {
152 "type": "integer",
153 "description": "Data rate of the CAN channel.",
154 "title": "rate",
155 "enum": [0,1,2]
156 },
157 "filter": {
158 "type": "array",
159 "description": "List of Filter Ids.",
160 "items": {
161 "type": "object",
162 "properties": {
163 "id": {
164 "type": "string",
165 "description": "ID of the CAN filter.",
166 "title": "id"
167 }
168 }
169 }

D. SUPPLEMENTARY INFORMATION ABOUT MODEL-RPC 283

170 }
171 },
172 "required": [
173 "id",
174 "rate",
175 "filter"
176]
177 }
178 }
179 }
180 }

Listing D.1: Basic JSON Schema [417] definition of the configType data type used in Model-
RPC.

D.2 OpenRPC Schema Specification for the UART write Method

Listing D.2 provides an OpenRPC schema specification for the uart.write method of the
Model-RPC communication protocol.

1 {
2 "openrpc":"1.2.6",
3 "info":{
4 "title":"Model-RPC",
5 "version":"2.0.0"
6 },
7 "methods":[
8 {
9 "name":"uart.write",
10 "params":[
11 {
12 "name":"buffer",
13 "description":"data string to be transferred to controller",
14 "required":true,
15 "schema":{
16 "type":"string"
17 }
18 },
19 {
20 "name":"device",
21 "description":"identifier of the UART controller",
22 "required":true,
23 "schema":{
24 "$ref":"#/components/schemas/uartcontroller"
25 }
26 }
27],
28 "result":{
29 "name":"Success",
30 "schema":{
31 "type":"boolean"
32 }
33 },
34 "errors":[
35 {

284 APPENDIX

36 "code":-32602,
37 "message":"invalid method parameter(s)"
38 }
39]
40 }
41],
42 "components":{
43 "schemas":{
44 "uartcontroller":{
45 "type":"object",
46 "required":[
47 "controller"
48],
49 "properties":{
50 "controller":{
51 "type":"integer",
52 "minimum":0
53 }
54 }
55 }
56 }
57 }
58 }

Listing D.2: Model-RPC write method for UART specified with OpenRPC version 1.2.6 [283].

E. SUPPLEMENTARY INFORMATION ABOUT MODEL-TESTBEDS 285

E Supplementary Information about Model-Testbeds
This section contains further information about the developed Model-Testbeds presented in
Section 6.5 (p. 161 ff.). Section E.1 covers the mapping of power modes between the designed
HAL (cf. Section 6.3, p. 149 ff.) and the Model-Testbed firmware, which has been adapted for
a multi-MCU support. The schematics of the developed NXP LPC54114 breakout board are
provided in Section E.2.

E.1 Power Modes

This section describes the power mode mapping for different MCU architectures used in this
thesis for Model-Testbeds. The following Table E.1 shows the power mode specified by the HAL
(left column of Table E.1) and implemented by the Model-Testbed firmware (cf. Section 6.5.2,
p. 163 ff.) and the power modes provided by the used MCUs (middle column of Table E.1),
namely the Espressif ESP32, NXP LPC54114, and STMicroelectronics STM32L476. The data
in Table E.1 has been taken from data sheets [111, 269, 372] for each specific MCU.

Power Mode Description
HAL MCU

Espressif ESP32 [111]
ACTIVE Modem-sleep The CPU is operational, and the clock is configurable. The Wi-Fi /

Bluetooth baseband and radio are disabled. Expected power consump-
tion: 44-27 mA (Dual Core), 34-27 mA (Single Core) @ 160 MHz.

SLEEP Light-sleep The CPU is paused. The RTC memory, RTC peripherals, and the ultra-
low power co-processor are running. Any wake-up events, e.g., host,
RTC timer, or external interrupts, will wake up the CPU. Expected
power consumption: 0.8 mA.

DEEP_SLEEP Deep-sleep Only the RTC memory and RTC peripherals are powered. Wi-Fi and
Bluetooth connection data are stored in the RTC memory. The ultra-
low power co-processor is functional. Expected power consumption:
10 µA (RTC timer & RTC memory).

DEEP_PO–
WER_DOWN

Hibernation The internal 8 MHz oscillator and ultra-low co-processor are disabled.
The RTC recovery memory is powered down. Only one RTC timer on
the slow clock and certain RTC GPIOs are active. The RTC timer
or the RTC GPIOs can wake up the CPU from Hibernation mode.
Expected power consumption: 5 µA.

OFF OFF The CHIP_PU pin of the ESP32 is set to a low level; the CPU is powered
off. Expected power consumption: 1 µA.

NXP LPC54114 [269]
ACTIVE Active The CPU is operational, and the clock is configurable. Expected power

consumption: 9.9 mA with system clock @ 96 MHz (ARM Cortex-M4
core operates in active mode while the ARM Cortex-M0+ core is set
to the sleep mode).

SLEEP Sleep The system clock (CPU) and instruction execution are stopped until
reset or interrupt occurs. Peripheral functions may generate interrupts
to cause the CPU to resume execution. The CPU state and registers,
peripheral registers, and internal SRAM values are maintained, and the
logic levels of the pins remain static. Expected power consumption: 3
mA with system clock @ 96 MHz.

Continued on next page

286 APPENDIX

Table E.1 – continued from previous page

Power Mode Description
HAL MCU

DEEP_SLEEP Deep-sleep The system clock to the CPU is disabled. Analog blocks, the main
clock, and all peripheral clocks are powered down by default. The
flash memory is put in standby mode. The CPU state and registers,
peripheral registers, and internal SRAM values are maintained, and
the logic levels of the pins remain static. GPIO Pin Interrupts, GPIO
Group Interrupts, and selected peripherals such as USB, SPI, I2C,
UART, and RTC can be left running. The DMA may operate in deep-
sleep mode. Expected power consumption: 16 µA with SRAM0–3 and
SRAMX powered.

DEEP_PO–
WER_DOWN

Deep
power-down

Power is shut off to the entire chip except for the RTC power domain
and the RESET pin. The MPU can wake up via the RESET pin and the
RTC alarm. The contents of the SRAM and registers are not retained,
and all functional pins are tri-stated. Expected power consumption:
290 nA, with the RTC oscillator disabled.

OFF – Not provided.
STMicroelectronics STM32L476 [371]

ACTIVE Run CPU, DMA, and peripherals are active. Flash and SRAM are powered.
Expected power consumption: 10.2 mA @ 80 MHz with source code
and data processing running from Flash, external clock source (bypass
mode), and phase-locked loop enabled.

SLEEP Sleep CPU is stopped. All peripherals continue to operate and can wake up
the CPU when an interrupt or event occurs. Expected power consump-
tion: 2.96 mA @ 80 MHz with external clock source (bypass mode),
and phase-locked loop enabled and flash powered.

DEEP_SLEEP Standby The internal regulator, phase-locked loop, and high-speed external crys-
tal oscillators are switched off. The RTC may remain active while the
brown-out reset is permanently active. The MPU exits Standby mode
when an external reset, an RTC event occurs, or a failure is detected
on low-speed externals. Expected power consumption: 150 nA @ 3 V
w/o independent and RTC disabled watchdog or 317 nA @ 3 V w/
independent watchdog and RTC disabled.

DEEP_PO–
WER_DOWN

Shutdown w/
RTC

The internal regulator, phase-lock loop, and oscillators are switched
off. The RTC remains active. No power voltage monitoring is possible.
The mode can be exited by an external reset wake-up pin event or an
RTC event (alarm, periodic wake-up, timestamp, tamper). Expected
power consumption: 64.1 nA @ 3 V.

OFF Shutdown w/o
RTC

The internal regulator, phase-lock loop, oscillators, and RTC are
switched off. No power voltage monitoring is possible. The mode
can be exited by an external reset wake-up pin event or an RTC event
(alarm, periodic wake-up, timestamp, tamper). Expected power con-
sumption: 554 nA @ 3V with RTC clocked by low-speed external quartz
in low drive mode.

Table E.1: Power Mode Mapping for the developed Model-Testbeds.

E.
SU

PPLEM
EN

TA
RY

IN
FO

R
M

AT
IO

N
A

B
O

U
T

M
O

D
EL-T

EST
B

ED
S

287

E.2 NXP LPC54114 Breakout Board Schematics

Figure E.8 pictures the schematic of the breakout board designed for the NXP LPC54114, while the pinout is shown in Figure E.9.

1

1

2

2

3

3

4

4

D D

C C

B B

A A

Title

Number RevisionSize

A4

Date: 2.15.2023 Sheet of
File: Layout.SchDoc Drawn By:

5
3
2

4
1

SW1

KMR221GLFS

5
3
2

4
1

SW2

KMR221GLFS

5
3
2

4
1

SW3

KMR221GLFS

R2

2.2 kOhm

R1

2.2 kOhm

GND

GND

1
1

2
2

3
3

4
4

5
5

6
6

7
7

8
8

9
9

10
10

P1

Samtec FTSH-105-01-L-DV

Reset_SWD

Reset_SWD

SWDIO
SWCLK

R4
10 kOhm

R3
10 kOhm

GND

SWCLK
SWDIO

R5
100 kOhm

R6

100 Ohm

LPX54114 Breakout

V0.1

Marco Schaarschmidt

C1
0.01 uF

GND

GND

PIO0_29/ADC0_0
11

RTCXOUT
35

PIO1_16
7

PIO0_0
31

PIO0_1
32

PIO1_4/ADC0_7
18

VSS
25

VSSA
20

VSS
9

VDD
8

PIO0_24
2

PIO1_7/ADC0_10
27

PIO0_3
37

PIO0_22
63

PIO0_21
61

PIO1_1/ADC0_4
15

PIO0_30/ADC0_1
12

PIO1_17
10

PIO0_4
38

PIO0_5
39

PIO0_6
40

PIO0_23
1

PIO1_14
57

RESETN
64

VREFN
21

VREFP
22

RTCXIN
33

PIO1_15
62

PIO0_7
41

PIO0_8
43

VDDA
23

PIO1_2/ADC0_5
16

VDD
24

PIO0_31/ADC0_2
13

USB_DP
5

PIO0_9
44

PIO0_10
45

PIO0_11
46

PIO1_5/ADC0_8
19

PIO0_25
3

PIO0_2
36

PIO0_12
47

PIO1_8/ADC0_11
28

PIO0_13
48

PIO0_14/TCK
49

PIO0_15/TDO
50

PIO1_10
30

VDD
34

PIO1_11
42

PIO1_0/ADC0_3
14

USB_DM
6

SWCLK/PIO0_16
52

SWDIO/PIO0_17
53

VSS
55

PIO1_6/ADC0_9
26

PIO0_26
4

PIO1_12
51

VDD
56

PIO1_9
29

PIO0_18/TRST
58

PIO0_19/TDI
59

PIO0_20/TMS
60

PIO1_13
54

PIO1_3/ADC0_6
17

U1

LPC54114J256BD64QL

VDDA_23
VDD_8

VDD_24
VDD_34

VDD_56

C2

18 pF

C3
18 pF

1
2

Y1
32.768 kHz GND

2
2

1
1

J3

Power

VDD_LPC

VSS_LPC

GND

C4
0.01 uF

C5
0.1 uF

GND

VDD_LPC VDD_8

C6
Cap

C7
0.1 uF

GND

VDD_LPC VDD_24

C8
0.01 uF

C9
0.1 uF

GND

VDD_LPC VDD_34

C10
0.01 uF

C11
0.1 uF

GND

VDD_LPC VDD_56

C13
0.1 uF

GND

VDD_LPC VDDA_23

C12
10 uF

C15
0.1 uF

C14
0.1 uF

C16
10 uF

GND GND

VREFP_22
VREFN_21

VREFP_22

VREFN_21

VDD_LPC

VDD_LPCVDD_LPCVDD_LPC

PIO0_0
PIO0_1

PIO0_2
PIO0_3

PIO0_5
PIO0_6

PIO0_7
PIO0_8

PIO0_9
PIO0_10

PIO0_11
PIO0_12

PIO0_13
PIO0_14

PIO0_15

PIO0_18
PIO0_19

PIO0_20
PIO0_21

PIO0_22
PIO0_23

PIO0_24
PIO0_25

PIO0_26
PIO0_29

PIO0_30

PIO0_31 PIO1_0
PIO1_1

PIO1_2
PIO1_3

PIO1_4
PIO1_5

PIO1_6
PIO1_7

PIO1_8
PIO1_9

PIO1_10
PIO1_11
PIO1_12
PIO1_13

PIO1_14
PIO1_15

PIO1_16
PIO1_17

USB_DP
USB_DM

RESETN

PIO0_4

EX_REF

VDD_LPC

1
1

2
2

P2

asd

Figure E.8: Schematic of the NXP LPC54114 Breakout Board.

288
A

PPEN
D

IX

1

1

2

2

3

3

4

4

D D

C C

B B

A A

Title

Number RevisionSize

A4

Date: 2.15.2023 Sheet of
File: Pinout.SchDoc Drawn By:

1

3

5

7

9

11

13

15

17

19

21

23

25

27

29

31
32

30

28

26

24

22

20

18

16

14

12

10

8

6

4

2

J1

Connector L

1

3

5

7

9

11

13

15

17

19

21

23

25

27

29

31
32

30

28

26

24

22

20

18

16

14

12

10

8

6

4

2

J2

Connector R

PIO0_23
PIO0_24

PIO0_25
PIO0_26

USB_DP
USB_DM

PIO1_16
VSS_LPC

PIO1_17
PIO0_29

PIO0_30
PIO0_31

PIO1_0
PIO1_1

PIO1_2
PIO1_3

PIO1_4
PIO1_5

VSS_LPC

EX_REF
VDD_LPC

PIO1_6
PIO1_7

PIO1_8
PIO1_9

PIO1_10
PIO0_0

PIO0_1

VDD_LPC

PIO0_2
PIO0_3

PIO0_4
PIO0_5

PIO0_6 PIO0_7
PIO1_11

PIO0_8
PIO0_9

PIO0_10
PIO0_11

PIO0_12
PIO0_13

PIO0_14
PIO0_15

PIO1_12
SWCLK

SWDIO
PIO1_13

VSS_LPC
VDD_LPC

PIO1_14
PIO0_18

PIO0_19
PIO0_20

PIO0_21
PIO1_15

PIO0_22
RESETN

VSS_LPC

Marco Schaarsmidt

LPX54114 Breakout

V0.1

Figure E.9: Pinout of the NXP LPC54114 Breakout Board.

F. PROTOTYPE IMPLEMENTATION DETAILS 289

F Prototype Implementation Details
This section describes tools, technologies, and programming languages used for the proof-
of-concept implementation and hardware platform details for evaluating the case study in
Chapter 7 (p. 175 ff.).

Software

The UC2E tool has been developed with Qt 5.15.0 [314] using C++17 and is built with
optimization level O3. The Qoitech Otii Arc measuring device [313] has been updated to
firmware version 1.1.6, while the measurements are obtained by the Otii desktop application
in release 2.8.4. The firmware of the ESP32-based Model-TestBed has been developed using the
Espressif IoT development framework version 4.3.1 [112]. As a UML modeling and simulation
environment, IBM Rhapsody [164] in version 9.0.0 has been used.

Hardware

The host system executing IBM Rhapsody, the UC2E tool, and the Otii desktop application
is based on an Intel i5 6600 CPU, 16 GB RAM, 512 GB SSD, and is executing Windows
10 (Build 19044). The Qoitech Otii Arc measuring device offers a sample rate of 4 ksps for
current measurements in a range of ±19 mA and 1 ksps for a ±2.7 A range with an accuracy
of ±(0.1 % + 50 nA) and ±(0.1 % + 150 µA), respectively. For voltage measurement, the
Otii Arc provides a sample rate of 1 ksps with an expected accuracy of ±(0.1 % + 1.5 mV).

	Introduction
	Motivation
	Problem Statement and Scope of Research
	Research Challenges
	Research Questions and Contributions

	Limitations
	Thesis Outline

	Related Work and Background
	Electrical Power Measurement
	Physical Fundamentals
	Metrics
	Measurement Techniques

	Embedded Systems
	Architecture and Characteristics
	Embedded Software
	Internet of Things

	Software Requirements
	Overview
	Non-functional Requirements
	Related Work in the Field of Energy-related Misbehavior

	Software Design Patterns
	Formats and Classification of Patterns
	Related Work on Power and Energy Aspects of Design Patterns

	Model-driven Development (MDD)
	Modeling Languages
	Model Transformations

	Modeling of Embedded Systems with UML and MARTE
	Overview
	Basic Structure and Profiles
	Value Specification Language (VSL)
	Non-functional Properties

	Software Testing Principles
	Dimensions
	Dynamic Testing
	Model-based Testing (MBT)
	X-in-the-Loop (XiL) Testing
	Performance Analysis and Runtime Monitoring
	Related Work on the Integration of Virtual and Physical Hardware

	Related Work on Power Consumption Modeling and Estimation
	Low-level and Source Code-based Approaches
	Model-based Approaches
	UML-related Approaches

	Summary

	Overview
	Developer Workflow
	Scenarios
	Energy Bugs
	Energy Misbehavior
	Classification
	Example

	Software Design Pattern Framework
	Introduction
	Design Pattern Identification Process
	Adapted Design Pattern Template
	Energy-aware Design Pattern Catalog
	Energy-aware Sampling (EAS)
	Event-based Computing (EBC)
	PowerMonitor
	Direct Memory Access Delegation (DMAD)
	Mirroring
	Race-To-Sleep

	Power Estimation Concept for MDD
	Overview
	Hardware Modeling
	Characteristics
	Formal Definition of Hardware Component Models
	Integration into Software Models

	Power Analysis Profile (PAP)
	Overview
	MARTE Extension
	Hardware Abstraction Package
	Hardware Behavior Package
	Modeling Dynamic Power-related Behavior

	Power Analysis Methods
	Indirect Power Analysis (IPA)
	Direct Power Analysis (DPA)

	Prototype Implementation
	Model Transformation
	Textual Representation
	Enhancement of the MDD Tool

	Data Exchange
	Simulation Data eXchange Protocol (SDXP)
	Messaging Framework

	Policy-oriented Hardware Abstraction Layer
	Overview
	Three-layered Architecture
	Model Representation
	Application Example

	Unit for Central Control and Estimation (UC2E)
	Graphical User Interface
	Communication Principles
	Integration of Measuring Devices
	Power Consumption Estimation

	Hardware-based Model-Testbed
	Overview
	Software Layer
	Hardware Layer
	Model-RPC

	Evaluation
	Setup
	Case Study: Beehive Microclimate Sensor Node
	Overview
	Hardware Component Modeling
	Software Application Modeling
	Scenario Definition
	Power Consumption Estimation
	Detection of Energy Bugs

	Overall Performance of DPA
	Investigation of Time Delays
	Power and Timing Tradeoffs

	Conclusion
	Summary
	Outlook

	Bibliography
	Publications
	List of Acronyms
	List of Figures
	List of Listings
	List of Tables
	List of Symbols
	Appendix
	Supplemental Background
	Model-driven Architecture (MDA)
	Tool Support in Model-driven Development (MDD)
	Unified Modeling Language (UML)

	Complete List of Tags for PAP Stereotypes
	Model Transformation Example
	Model-to-Text Transformation
	Model Mapping of Hardware Component Models

	Supplementary Information about Model-RPC
	The configType Object Structure
	OpenRPC Schema Specification for the UART write Method

	Supplementary Information about Model-Testbeds
	Power Modes
	NXP LPC54114 Breakout Board Schematics

	Prototype Implementation Details

