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1. Introduction

Our ever increasing understanding of interactions in the atomic and sub-atomic
regime is a great success of quantum mechanics. During the 20th century, elaborate
theories describing the interaction between atoms and molecules by electromag-
netic forces have been developed [1]. While systems of few atoms can precisely be
described by chemical bonding and physical interactions between individual atoms,
this approach is not expedient for the description of binding between mesoscopic
and macroscopic bodies. For such objects, binding is described phenomenologically
as adhesion [2], which is commonly discussed in the framework of integral physi-
cal interaction. As the transition between both types of descriptions is fluent, the
correct interpretation of force measurements at the nanoscale is a complex matter.
To validate interpretations, precise quantitative measurements of nanoscale forces
are needed.

The measurement of forces between atoms, molecules and nanoscale objects has
been pushed to the physical limits [3, 4, 5] and is of great interest in diverse fields
of science and technology including high-resolution analysis of inorganic [6, 7],
organic [8, 9, 10], and biological surfaces [11, 12, 13], three-dimensional force map-
ping [14, 15, 16, 17], Casimir force measurements [18], nanomechanical material
characterization [19, 20, 21, 22, 23], capillary force studies [24, 25, 26, 27, 28],
hydration layer analysis [29, 30, 31, 32], the study of atom-specific reactivity [33,
34], mechanochemisty [35, 36, 37], quantum dot microscopy [38] and single-spin
detection [39, 40].

The technique of frequency modulated non-contact atomic force microscopy (FM
NC-AFM) is a powerful tool for measuring forces between an oscillating sharp tip
and a surface of any kind with resolution down to the atomic scale [41, 42, 43, 44].
However, the correct interpretation of force measurements at the nanoscale is most
difficult as it is the crossover regime where attractive and repulsive forces between
individual atoms and forces between mesoscopic bodies act together [2]. In this
regime, the force-distance law is not a simple function of the body separation, but
is commonly described by the sum of contributions based on different models [45].
Utmost precision in measuring and analysing a force-distance curve is required to
test models and to quantify nanoscale interactions. Besides conceptual difficulties
in describing tip-surface forces, there are experimental peculiarities severely limiting
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1. Introduction

accurate force measurements. First, the main measurement signal in NC-AFM is
not the force, but the frequency shift of the resonance frequency of the high-Q force
probe oscillating in the force field of the sample [44]. The force curve is derived from
distant-dependent frequency shift data by numerical deconvolution [46, 47], which
is often referred to as force inversion. The result of this inversion can be ill-posed
[48], can exhibit large errors in a range of relevant amplitudes [49], or can include
severely amplified detection noise [50]. Second, force inversion algorithms yield valid
results only if the oscillation amplitude is known precisely [47, 49]. Third, strong
gradients in the force field make the measurement susceptible to minute deviations
of the probe trajectory from the target curve as they result, for example, from
thermal drift even when applying active drift compensation [51, 52].

Within the scope of this thesis, the introduction of the force curve alignment (FCA)
method [53] is one major achievement. The FCA method facilitates the accurate
and precise measurement of force curves by circumventing the experimental pe-
culiarities and ultimately removing systematic errors in widely accepted practice.
The general concept is the repetitive measurement of the tip-surface interaction
with different probe oscillation amplitude, delivering a data-set, which is robust
against disturbing impacts. While the presence of systematic errors can hardly be
identified from a single force curve, a match of individual force curves by an optimi-
sation algorithm enables a self-consistent determination of the error-free tip-surface
interaction force. Furthermore, a successful application of the FCA method inher-
ently yields the correct value of the probe oscillation amplitude solving another key
challenge of force retrieval from frequency shift data.

The application of the FCA method in the course of this thesis uncovered an of-
ten ignored source for systematic error in force retrieval from frequency shift data,
namely, a tilt of the probe with respect to the surface normal. A tacit assumption
in prevalent AFM theory [44] and inversion algorithms [46, 47] is that the axis of
data acquisition (data recording path) is parallel to the axis of probe oscillation (tip
sampling path). However, in a typical experimental setup this is not the case, as
there are often angles ranging from 10° to 20° present between both axes for tech-
nical reasons. Consequences of the inclined AFM probe mount have be identified
before [54, 55, 56, 57]. In this work, the established mathematical description for
dynamic atomic force microscopy [44] is extended by including free orientations of
the tip sampling and data recording path [58] allowing to avoid systematic errors
due to probe inclination in the interpretation of force curve and imaging data.

The high sensitivity of FM NC-AFM towards nanoscale forces, allows to observe
the influence of charge state changes in nano-objects from the electrostatic part of
the tip-sample interaction with high precision [59, 60, 61]. However, the quantifi-
cation of a static charge contained in a nano-object on the sample surface using
a FM NC-AFM is not yet achieved. To solve this challenge, in this work, the

2



technique of charge force microscopy (CFM) aiming at the precise quantification
of static charges located in, on or above the sample substrate is implemented on
the fundament of the protocols for accurate force curve measurements developed in
the present work. Technically, CFM is based on frequency modulated closed-loop
Kelvin probe force microscopy (FM-CL KPFM) [62, 63, 64], a nanoscale imaging
technique that is rooted in the measurement of contact potential differences (CPD)
[65] and work function differences [66] between tip and sample for metal or semi-
conductor surfaces. The dynamic technique for measuring electrostatic tip-sample
interaction involves the oscillation of the force probe as well as an oscillating bias
voltage applied between tip and sample support. In CFM, the signals at the bias
oscillation frequency and its first harmonic are measured by side-band detection en-
abling the quantification of charges by a two-step procedure within the frame-work
of CFM theory [67, 68, 69, 70]. In the first step, distance-dependent data of the
tip-surface capacitance is retrieved from evaluating the signal measured at the first
harmonic of the bias oscillation frequency yielding parameters for the electrostatic
model [71]. In the second step, the electrostatic model is used to analyse the CFM
signal measured at the bias oscillation frequency yielding charge quantification of
charges in the tip-sample system.

In this work, the theoretical foundation of CFM based on the considerations in [67,
68, 69, 70] has been developed, simulations regarding CFM signal generation have
been carried out identifying distant-dependent CFM data as most elucidative for
charge quantification, and the two-step routine has been implemented for retrieving
the charge from such data. The CFM technique has been applied to experimental
data obtained for CeO2 supported Au nano-clusters, which hold a static charge [72,
73, 74, 75], allowing the quantification of the contained charge.

This thesis is organized as follows: In chapter 2 the forces contributing to the tip-
surface interaction are discussed, where special emphasis is given to the description
of electrostatic forces due to charges. In chapter 3, the principle of NC-AFM is
explained and the experimental setup of FM NC-AFM with CFM is presented.
Chapter 4 revisits the fundamentals of quantitative AFM theory before the FCA
method is presented in chapter 5. Subsequently, in chapter 6, the established
quantitative AFM theory is expanded to allow a description variable tip sampling
paths in respect to the data recording path. In chapter 7, the theory behind CFM
is presented and formal descriptions of important CFM signals are introduced.
Simulations regarding the CFM signal generation, most important parameters for
the electrostatic model, and for developing the routine for charge quantification
based on distant-dependent CFM data are shown in chapter 8. The experimental
application of CFM in the two-step procedure for obtaining the static charge of
Au/CeO2 nano-clusters is presented in chapter 9.
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2. Tip-sample interaction forces

The idea of any atomic force microscope (AFM) is the measurement of nanoscale
interaction forces acting between a sharp tip and a sample surface. Depending on
the distance zts between tip and sample surface, the tip-sample interaction force Fts
is either repulsive (Fts > 0), attractive (Fts < 0) or vanishes at an equilibrium point
or at sufficiently large distances. In this chapter, the fundamental ideas and math-
ematical models for describing this force are reported. The chapter is organised
as follows: In section 2.1, the composition of the Fts is generally described naming
possible contributions and classifying those into short- and long-range forces. The
most important short-range interactions are described in section 2.2. Subsequently
the long-range contributions to Fts are discussed in section 2.3, where special at-
tention is given to the discussion of the electrostatic interaction in a tip-sample
capacitor (see section 2.3.2) due to its fundamental importance to the CFM the-
ory. In the concluding section 2.4, models for the separate contributions from the
previous sections are merged to describe the overall tip-sample force Fts.

2.1. Composition of the tip-sample force

The tip-sample interaction Fts is a non-linear function of the distance between tip
and sample surface zts (see Figure 2.1) and is composed of various forces, which
can be roughly distinguished into short- and long-range forces. Short-range forces
decline at least with ∝ z−6

ts or faster with increasing tip-sample distance zts while
long-range forces decrease with ∝ z−5

ts . . . z−1
ts . Consequently short- and long-range

forces act differently on a sharp tip in near proximity of a sample surface as exem-
plified in Figure 2.1. The short-range forces prevalently act between the frontmost
tip-apex atoms and the nearest surface atoms. As the short-range tip-sample forces
result from the interaction between few or single atoms, these are here classified
under the term atomic forces Fatomic. In contrast, the long-range force contributions
to Fts interact not only with the tip apex atoms but also with the complete meso-
scopic body of the tip. For that reason, the long-range forces will be referred to as
body forces Fbody in the following. Considering both contributions, the tip-sample
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2. Tip-sample interaction forces

interaction force Fts can formally separated into

Fts(zts) = Fatomic(zts) + Fbody(zts) (2.1.1)

For a further separation one has to consider the different types of nanoscale forces
acting between tip and sample. Generally these are van der Waals (FvdW), electro-
static (Fel), magnetic (Fmag) and chemical forces (Fchem) [45]. The magnetic force
can be neglected, if a non-magnetic tip-sample system is studied or if magnetic in-
teractions are governed by an external field [76]. As only non-magnetic tip-sample
systems are considered in this work, the magnetic forces Fmag are omitted in the fol-
lowing derivations. The remaining forces are classified according to relation (2.1.1).

tip cone

tip apex

surface

Fbody

Fatomic

z

zts

0

Figure 2.1.: Schematic sketch of the forces acting on a tip in near vicinity of a
sample surface. The long-range interactions as van der Waals body
forces F body

vdW and electrostatic forces Fel are given between the whole
body of the tip, (consisting of the apex, cone and lever) and the sample
surface body. Those interactions are represented by Fbody (green). The
short-range forces act between the frontmost atoms of the tip apex and
the nearest surface atoms. These are indicated by the blue colour and
represented by Fatomic.

The atomic tip-sample force Fatomic can be expressed as

Fatomic(zts) = Fchem(zts) + F atomic
vdW (zts) (2.1.2)

The first contribution are chemical forces Fchem which have their origin in com-
plex quantum mechanical interactions between atoms giving rise to covalent bond-
ing. They become relevant at tip-sample distances in the range of atomic bond-
ing lengths [41]. The second contribution are short-range interatomic van der
Waals forces F atomic

vdW acting between the frontmost tip-atoms and nearest surface
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2.1. Composition of the tip-sample force

atoms. They will become predominant at tip-sample distances above atomic bond-
ing lengths (zts > 1 nm), where the chemical forces vanish. In the case of ions
and dipoles located at the tip and surface also their long-range coulomb interaction
has to be considered as additional contribution to Fatomic. In this overview for the
tip-sample forces considering only non-polar atoms, these interactions are omitted.

The long-range body force Fbody is separated into

Fbody(zts, V ) = F body
vdW (zts) + F body

el (zts, V ) (2.1.3)

Where F body
vdW represents van-der Waals body interaction between tip body and

sample surface, which results from integrating the atomic van-der Waals interac-
tions over the entire tip geometry. While the interatomic van-der Waals forces are
short-range, the integrated van-der Waals body interaction F body

vdW between entire
tip body and sample behaves as ∝ z−3

ts ...z−1
ts and thus is a long-range background

force contributing to Fbody. The second contribution to the body force Fbody are
the long-range electrostatic forces F body

el (zts, V ) present between conductive tip and
sample at different potentials [62] and for electrostatic charges trapped in the re-
spective tip-sample system [68, 70]. Considering the conductive tip and sample
system as a capacitor with a potential difference V , the electrostatic interaction
yields an attractive force ∝ V 2 [41]. Accounting relation (2.1.1) considering equa-
tions (2.1.2) and (2.1.3), the overall tip-sample interaction force can be written
as

Fts(zts, V ) = Fchem(zts) + F atomic
vdW (zts) + F body

vdW (zts) + F body
el (zts, V ) (2.1.4)

where all contributions exhibit a specific dependence on the tip-sample distance zts.
Models for describing the specific distant-dependent behaviour of each contribution
will be discussed in the subsequent sections.
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2. Tip-sample interaction forces

2.2. Atomic forces

In this section, models for the forces contributing to the atomic interaction Fatomic
between tip and sample are explained in more detail. Model parameters that are
used for a fit to experimental data are introduced.

2.2.1. The short-range chemical interaction force

The chemical interaction force between tip and sample Fchem(zts) arises from the
orbital overlap between tip-apex atoms and the nearest surface resulting in the
formation of a covalent bond. This interaction becomes prevalent for tip-sample
distances in the range of chemical bonds, which is zts < 1 nm. The chemical forces
yield the atomic and orbital resolution capabilities of NC-AFM [77]. Depending
on how the atom orbitals interact, the resulting interaction force can either be at-
tractive or repulsive [41]. The exact interaction of the overlapping atomic electron

Morse potential
Eb 4.638 zJ
σ0 850 pm
κ 2.50 nm−1

Table 2.1.: Morse potential parameters for a Si-Si interaction adapted from [49].

wave functions can be determined by solving the Schrödinger equation. However,
for realistic cases, the solution of this partial differential equation becomes rather
complex [41]. This is due to the anisotropy of chemical bonding and additional con-
tributions by neighbour and next-neighbour interactions where a correct description
of these requires a precise knowledge of the atomic structure of the interacting tip
apex, surface site and atomic relaxation [78, 79]. For a qualitative understanding of
the chemical interaction between tip and sample, it is sufficient, to use models de-
scribing the bonding between only two atoms. One of those is the Morse potential
[49, 45, 80, 2]

UMorse(z) = Eb
[︂
−2e−κ(z−σ0) + e−2κ(z−σ0)

]︂
(2.2.5)

Originally this is an approximate description for the potential energy for the nuclei
of a diatomic molecule at distance z [81]. Here, Eb is the bonding energy (well
depth) of the dissociated atoms, z the distance between the interacting atoms, σ0
the equilibrium bond distance (the position of the potential well minimum at −Eb)
and κ describes the width of the potential well. By considering the tip-sample
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2.2. Atomic forces

distance zts between the frontmost tip atom and the nearest surface atom as the
interaction range z in the Morse potential (2.2.5), the first derivative provides

FMorse(zts) = −dUMorse

dzts
= 2κEb

[︂
−e−κ(zts−σ0) + e−2κ(zts−σ0)

]︂
(2.2.6)

This force relation qualitatively describes the behaviour of the chemical interaction
force Fchem(zts) ≈ FMorse(zts) between a tip apex atom and a sample atom. The
first term of FMorse describes the attractive interaction (indicated by the negative
sign) and the second term represents the repulsion. The behaviour of FMorse(zts)
for two silicon atoms (one at the tip and one at the surface) in interaction as func-
tion of their distance zts is exemplified in Figure 2.2. Parameters for calculation
of the Si-Si interaction are adapted from [49] and are depicted in Table 2.1. In

tip apex

surface atoms

repulsive 
interaction

attractive 
interaction

Figure 2.2.: Qualitative model for the chemical interaction force Fchem as function
of the tip-sample distance zts. For modelling, the force FMorse(zts) as
function of zts is calculated from the Morse potential (2.2.5), which
describes the interaction between front-most tip atom and nearest sur-
face atom as depicted in the inset. The Morse force FMorse (blue line)
is the sum of an attractive contribution (green line) and a repulsive
contribution (red line). For the calculations a Si-Si interaction is con-
sidered, where the parameters depicted in Table 2.1 are adapted from
[49].

Figure 2.2, FMorse(zts) is shown as a blue line while its attractive and repulsive
terms are depicted in green and red. For large tip-sample distances, the chemical
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2. Tip-sample interaction forces

interaction force FMorse approaches zero, due to the lack of overlap between the
atom orbitals (see the blue line in Figure 2.2). If the tip approaches the sample
surface in the range of chemical bonding, the orbitals of the outermost open shells
of the tip apex and surface atoms start to overlap. The resulting chemical interac-
tion force is attractive, if that orbital overlap reduces the boding energy between
the interacting atoms. Considering such a case, relation FMorse(zts) reproduces an
increasing attraction until the force minimum at zts = ln(2)/κ + σ0, where the
strongest attractive force −1

2κEb acts between the atoms. Past the minimum, the
attractive force decreases again until the equilibrium bonding distance is reached
at zts = σ0. Here, the Morse potential (2.2.5) is minimal at −Eb and, hence, the
interaction force between the atoms is zero FMorse(zts = σ0) = 0. In the case that
the tip approaches the surface even further, the resulting interaction force becomes
increasingly repulsive (grey box in Figure 2.2). This is due to the strong deforma-
tion of all orbitals by the electrostatic repulsion between the electrons and atomic
nuclei brought in too close vicinity. An additional and simultaneous effect is, that
the overlap of inner closed-shell orbitals is hampered by the Pauli Principle: two
electrons can only be in the same volume if they have a different velocity (rep-
resented by their quantum state). For the overlap of the closed-shell orbitals the
kinetic energy of the internal motion of the excess electrons has to be augmented
(brought to a higher state). This energy has to be supplied with the approach
of both atoms, which also results in a repulsion [82]. Relation (2.2.6) reproduces
that behaviour FMorse(zts < σ0) > 0, where the tip-sample distance becomes much
smaller than the equilibrium bond distance zts < σ0.
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2.2. Atomic forces

2.2.2. The interatomic van der Waals force

Van der Waals force is responsible for many macroscopic phenomena like surface
tension, wetting behaviour, adhesion and binding in biosystems [2]. While its ef-
fect can be observed on the macroscopic scale, the van der Waals force originates
from interatomic and intermolecular interactions. Due to their long-range prop-
erties, these will strongly contribute to the atomic tip-sample interaction Fatomic,
especially at distances where the short-range chemical forces start to vanish. Three
distinct contributions are combined under the term of the van der Waals forces [2].
The induction force (Debye force), the orientation force (Keesom force) and the
dispersion force (London force) [82]. Consider two dissimilar atoms 1 and 2 with
non-zero permanent dipole moments µ1 and µ2, the polarizabilities α01 and α02 and
each having only one single absorption frequency ν1 and ν2. Both these atoms are
assumed to be located in vacuum and at a given temperature T ̸= 0 interacting over
the distance r with each other. The van der Waals interaction potential between
atoms 1 and 2 can be written as [2]

UvdW(r) = −C1,2
vdW
r6 = −

[︂
C1,2

ind + C1,2
orient + C1,2

disp

]︂
r6

= − 1
(4πϵ0)2r6

⎡⎢⎢⎢⎢⎣(µ2
1α02 + µ2

2α01)⏞ ⏟⏟ ⏞
Debye

+ µ2
1µ

2
2

3kBT⏞ ⏟⏟ ⏞
Keesom

+ 3α01α02hν1ν2

2(ν1 + ν2)⏞ ⏟⏟ ⏞
London

⎤⎥⎥⎥⎥⎦ (2.2.7)

where kB is the Boltzmann constant and the notation with 1,2 indicates the specific
dependency on the respective material combination between atoms 1 and 2. The
first term C1,2

ind/r6 describes the energy contribution by the induction effect (Debye
effect), where the permanent dipole moment µ1 of atom 1 induces an additional
dipole moment in atom 2 and vice versa. The second term C1,2

orient/r6 describes
the average energy contribution due to the relative orientation between µ1 and µ2
calculated for all possible orientations according to Boltzmann statistics (Keesom
or orientation effect). The third term C1,2

disp/r6 is the energy contribution due to the
dispersion force as described by London [82]. Their origin are quantum mechanical
charge fluctuations given in any atom causing instantaneous dipole moments. These
fluctuating dipoles generate an electric field interacting with the polarisability of
other atoms inducing in-phase dipole moments there, which in return interact with
those instantaneous dipole moments [82, 2]. While the first two interactions C1,2

ind
and C1,2

orient are only present if the interacting atoms 1 and 2 exhibit permanent dipole
moments, the dispersion force is omnipresent, since its contribution is independent
of permanent dipole moments. This means, that the dispersion forces act between
all atoms and molecules, even non-polar and neutral ones, and generally exceed the
dipole-dependent induction and orientation force, except for small, highly polar
molecules [2]. If tip and sample consist only of non-polar atoms interacting with
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2. Tip-sample interaction forces

each other via vacuum, the van der Waals interaction potential (2.2.7) can be
reduced to the dispersion term

UvdW(r) = −
C1,2

disp

r6 = −3
2

α01α02

(4πϵ0)2r6
hν1ν2

(ν1 + ν2)
(2.2.8)

The equation for the dispersion interaction energy introduced by London [82] pro-
vides fairly accurate results for interatomic vacuum interaction, although these are
usually lower than values determined with more elaborate models as those take
additional absorption frequencies and quadrupole interactions into account as well
[83, 2]. In vacuum the dispersion interaction is exclusively attractive, however, for
the same reasons already discussed in the previous section, two atoms cannot get
unlimited close to each other. The Lennard-Jones potential [84] takes this circum-
stance into consideration by adding an empirical short-range repulsive term to the
dispersion interaction term. It is a frequently used qualitative model (alternatively
to the Morse potential) for describing the atomic tip-sample interaction Fatomic as
function of the distance r = zts [80, 41, 2]. The Lennard-Jones potential between
one tip apex atom and one surface atom is given by

ULJ(zts) = 4Eb

[︄(︃
r0

zts

)︃12
−
(︃

r0

zts

)︃6
]︄

(2.2.9)

Here r0 is the atom-atom distance, where the Lennard-Jones potential becomes
zero (ULJ(zts = r0) = 0) and Eb is the bonding energy between the two atoms.
The minimum of the Lennard-Jones potential is given at the atom-atom distance
zts = σ0 = 21/6r0, where σ0 is the equilibrium bonding distance which is comparable
to the one of the Morse potential (2.2.5). The attractive contribution ∝ z−6

ts to the
interaction potential is based on the London dispersion term (2.2.8) while the other
contribution ∝ z−12

ts is an empirically chosen description of the repulsive interaction
between two atoms in close proximity. The atomic interaction force between tip and
sample according to the Lennard-Jones potential is given by the negative derivative
in respect to zts, which reads as

FLJ = −∂ULJ

∂zts
= 24Eb

r0

[︄
2
(︃

r0

zts

)︃13
−
(︃

r0

zts

)︃7
]︄

(2.2.10)

For better comparability to the Morse force FMorse, the parameter r0 from the
Lennard-Jones Potential can expressed by the equilibrium distance σ0 via relation
r0 = 2−1/6σ0, which yields

FLJ = 12Eb

σ0

[︄(︃
σ0

zts

)︃13
−
(︃

σ0

zts

)︃7
]︄

(2.2.11)

In Figure 2.3, the behaviour of the Lennard-Jones force FLJ as function of the tip-
sample distance zts is depicted in comparison with the force FMorse resulting from
the Morse potential (2.2.6). Both are calculated assuming the same equilibrium
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2.2. Atomic forces

Lennard-Jones potential
Eb 4.638 zJ
σ0 850 pm
r0 = σ0/21/6 757.26 pm

Table 2.2.: Lennard-Jones potential parameters for a Si-Si interaction adapted from
[49].

bonding distance σ0 (zero point of force) and bonding energy Eb for a Si-Si interac-
tion [49]. The parameters for calculating FMorse and FLJ are depicted in Tables 2.1
and 2.2 respectively. For the interatomic Si-Si interaction, the Lennard-Jones force
FLJ shows a much sharper and deeper minimum at zts = (13/7)1/6σ0 than the Morse
interaction force FMorse at ln(2)/κ + σ0. This difference can be lead back to the
additional parameter κ describing the width of the potential well in FMorse, which is
missing in FLJ. For different atomic interactions with higher values for κ the Morse
force FMorse can exhibit a much sharper minimum. Furthermore, the attractive
contribution of FLJ declines much faster than FMorse until the force becomes zero at
the equilibrium bonding distance at zts = σ0. Past this point, FMorse converges to a
finite value at zts = 0 while FLJ diverges to infinity. Consequently, the description
of the repulsive interaction is much steeper from FLJ in comparison with FMorse.
Due to its finite value at zts = 0, the Morse force FMorse would allow two atoms to
get infinitely close to each other, if an external force is sufficiently high enough. As
this is not allowed, the Lennard-Jones force FLJ is much better suited for describing
high repulsions than FMorse, which is only a correct description of the interatomic
repulsion near its minimum. Both FMorse and FLJ are commonly used models for
the force acting between two interacting atoms [2] and are frequently applied when
qualitatively describing the atomic tip-sample interaction Fatomic [80]. Which po-
tential of both has to be chosen, depends on the exact application. While the Morse
potential is better suited for qualitatively describing the chemical interaction due
to covalent bonds, the Lennard-Jones potential is more applicable for non-covalent,
physical bonds between atoms as those are based on the van der Waals interaction
[2].
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2. Tip-sample interaction forces

repulsive 
interaction

attractive 
interaction

tip apex

surface atoms

Figure 2.3.: Interaction force FLJ between two silicon atoms as function of the tip-
sample distance zts derived from the Lennard-Jones potential as
qualitative model for the atomic tip-sample interaction Fatomic. The
complete force FLJ is depicted in blue, while its composing attractive
and repulsive contributions are shown in green and red respectively.
For comparison the Morse force FMorse from the previous Figure 2.2
is indicated by a dashed black line. Parameters for calculation of the
Si-Si interaction are shown in Table 2.2.
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2.3. Body forces

2.3. Body forces

In this section the long-range physical forces acting between the whole body of the
tip and the surface are discussed. For several tip geometries, a mathematical model
will be introduced.

2.3.1. The non-retarded van der Waals force acting between tip
and sample body

While the interatomic van der Waals force quickly vanishes with increasing dis-
tance, van der Waals interaction between macroscopic bodies is present even at
long-range distance regimes. Thereby the van der Waals body-body interaction
is prone to retardation effects, which are due to the finite propagation time of the
electromagnetic interactions between the fluctuating dipoles in each atom the inter-
acting bodies consist of. If the time required for the signal to travel the distance r
between two atoms becomes comparable or greater than the characteristic evolution
time of the interacting atoms, the interaction cannot be considered as instantaneous
any more [85]. In this case, retardation effects occur in the van der Waals interac-
tion, which can be described by perturbation theory [86]. One main result of these
calculations is, that the retardation-corrected van der Waals interaction varies with
1/r7 at distances above 20 nm [85] instead of 1/r6 as known from the London
dispersion force (2.2.8).1 The Hamaker approach [89] for modelling the van der
Waals interaction between macroscopic bodies exclusively considers non-retarded
van der Waals interactions. Utilising this approach for modelling F body

vdW is justified
when exclusively discussing small tip-sample distance regimes zts < 10 nm [77]. To

van-der-Waals body-body interaction
H 357.619 zJ
Θ 29.7°
R 5 nm
znt 583.04 pm

Table 2.3.: Parameters for calculation of F body
vdW based on relation (2.3.13) found by

fitting experimental data [53].

calculate the total non-retarded van der Waals interaction between non-polar tip
and sample body F body

vdW , the London dispersion (2.2.8) between each atom in the
1Further reading regarding retardation effects can be found in [87, 88, 2]

15



2. Tip-sample interaction forces

tip body and each atom of the sample has to be taken into consideration. This is
possible by following the assumptions made in the Hamaker approach [89]. The
first assumption is, that non-retarded van der Waals interactions are additive in
such a way that the total interaction can be found by a pairwise summation of the
individual interatomic van der Walls interactions between the atoms. By further
considering a continuous medium, that summation can be replaced by integration
over the volumes V of the interacting bodies, where each atom occupies the finite
volume dV with a number density ρ. The last assumption is that the material is
homogeneous and isotropic, so that the number density ρ and the interaction co-
efficient do not change over the body volumes. Combining these assumptions with
relation (2.2.8), the non-retarded total van der Waals interaction force between two
arbitrarily shaped bodies can be described via the Hamaker integral [89]

F body
vdW = −ρ1ρ2

∫︂
V1

∫︂
V2

∇UvdWdV1dV2 (2.3.12)

Here ρ1 is the density of the tip with the volume V1 and ρ2 the density of the
sample surface with the volume V2. It is immediately apparent, that the non-
retarded total van der Waals force (2.3.12) acting between the tip and sample
bodies is strongly dependent of the respective body shapes. No matter what exact
tip-sample geometries are considered, the execution of this double volume integral
is challenging. This challenge has been addressed in literature for several different
tip-sample geometries [90, 45, 91]. An extensive comparison and classification of
those model calculations can be found in [77]. Argento and French [90] derive
a relation for the non-retarded total tip-sample van der Waals interaction force
between a radial symmetric parametrised tip model and a flat sample surface. The
tip model consist of cone with a half-opening angle Θ which is terminated by a
half-sphere with the radius R (see inset of Figure 2.4). The tip model is rotational
symmetric along the z-axis, and hence parametrised along the cone height parallel
to z using the cone radius r(z). Furthermore, the maximum cone radius rmax at the
upper end of the tip cone is assumed to be exceedingly bigger than the remaining
tip dimensions. The resulting relation describing the van der Walls body-body
interaction for the here considered tip-sample system is given by [90]

F body
vdW (ẑ) = − HR2(sin Θ − 1)((R − ẑ) sin Θ − R − ẑ)

6ẑ2(R + ẑ − R sin Θ)2 (2.3.13)

− H tan Θ((ẑ + R) sin Θ + R cos(2Θ))
6 cos(Θ)(ẑ + R − R sin Θ)2

where
H = H1,2 = π2C1,2

dispρ1ρ2 (2.3.14)

is the Hamaker constant, which magnitude reflects the strength of the van der
Waals interactions between the tip and sample bodies with the number densities ρ1
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and ρ2 in vacuum [89]. Note that H = H1,2 is (as C1,2
disp) specific for the respective

combination of materials in tip and sample. Further is

ẑ = zts + ∆znt (2.3.15)

the distance between tip and sample, where ∆znt describes the height of a pos-
sible nano-tip attached to the mesoscopic tip. The distant-dependent behaviour
of the long-range van der Waals body-body interaction F body

vdW described by relation
(2.3.13) is depicted in Figure 2.4. The parameters utilised for calculation are shown
in Table 2.3, resulting from fits to own measurement data [53]. In comparison to

sample

Figure 2.4.: Non-retarded van der Waals body-body interaction force F body
vdW be-

tween a radial symmetric parametrised tip and a flat sample surface
as function of the tip-sample distance zts (green line). For comparison
the Lennard-Jones force FLJ from the previous Figure 2.3 is shown
as a black dashed line. The inset shows the rotational symmetric
parametrised tip model considered by Argento and French [90] dur-
ing the derivation of relation (2.3.13) for describing F body

vdW . The tip
consists of a sphere with the radius R which terminates a cone with
half-opening angle Θ. That model is rotational symmetric along the
z-axis, and hence parametrised using the cone radius r(z). The maxi-
mum radius of the cone rmax is assumed to be exceedingly bigger than
the remaining tip dimensions. Parameters for calculation of F body

vdW are
depicted in Table 2.3.

the interatomic van der Waals interactions described by the Lennard-Jones force
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(2.2.10), the non-retarded van der Waals force between the entire tip and sample
body (2.3.13) shows exclusively attractive behaviour and decreases to zero much
slower with increasing tip-sample distance zts. This is due to the ∝ z−2

ts depen-
dency of the attractive van der Waals body-body interaction instead of the ∝ z−6

ts
behaviour of the interatomic van der Waals force presented in section 2.2.2. Ac-
cording to the parametrised tip model, the body-body van der Waals interaction
between tip and sample F body

vdW acts as a strong, long range attractive background
force which is present in every tip-sample system due to the omnipresence of the
dispersion force (2.2.8). Within small tip-sample distance regimes zts < 10 nm,
where retardation effects are negligible [85, 88], equation (2.3.13) is a good approx-
imation for the distant-dependent van der Waals tip-sample body-body interaction
F body

vdW (zts).

2.3.2. Electrostatic force

Conductive tip and metallic sample support electrically connected via an exter-
nal voltage source Vext, together with the sample substrate located in the gap
in-between form a tip-sample capacitor. The long-range electrostatic force F body

el
acting on the tip is determined by the electrostatic characteristics given in the
tip-sample capacitor, namely, the capacitance, possible charges located in, on or
above the probed substrate and the potential resulting from the capacitor plates
and charges. Furthermore, F body

el is a function of the tip-sample distance zts and
the potential difference V between tip and sample support. In return, the potential
difference is determined by a possible contact potential difference between tip and
sample support and the externally applied voltage Vext. The general principle of
CFM is, to adjust the external voltage Vext (and thus the potential difference V ) in
such way, that the electrostatic force F body

el (zts, V ) acting on the tip is minimized.
The adjusted external voltage Vext = V min

bias where F body
el (zts, V ) becomes minimal

is the CFM signal which contains information on the contact potential difference
and charges in the tip-sample capacitor. Based on a quantitative description of the
electrostatic force F body

el (zts, V ) the information on the charges and contact poten-
tial difference can be extracted from V min

bias . Hence, the precise description of the
electrostatic force F body

el (zts, V ) is fundamental to the quantitative CFM evaluation.

A relation for the electrostatic force acting on a finite metallic conductor in a
general system of several electrically connected conductors at maintained potentials
and fixed point charges in-between their gaps has been derived in the work of
Kantorovich et al. [67]. By adapting the work of Kantorovich et al., the electrostatic
force F body

el acting in a tip-sample capacitor with dielectric substrate and charges
located in-between its gap has been described [70]. Based on that description of
the electrostatic tip-sa F body

el , the quantitative CFM theory is developed [68, 69,
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70]. For a precise understanding of correct CFM data evaluation, all required
derivation steps and assumptions for obtaining the crucial quantitative description
of F body

el will be presented here extensively, starting with the general considerations
of Kantorovich et al..

2.3.2.1. Model and derivation

Kantorovich et al. [67] considers the accumulated potential energy within the elec-
tric field of a system, which contains a set of m finite metallic conductors of arbitrary
shape at fixed potentials {Φm} and a distribution of any number N of point charges
{qi} fixed at positions {ri} outside of the conductors. In the case of a spatial move-
ment of any conductor m in that system, it is assumed that ideal, external batteries
maintain the potentials {Φm} of the conductors by redistributing the charges {Qm}
located at their finite surfaces. By incorporating the work carried out by the bat-
teries upon spatial movement of any conductor m into the resulting change of the
systems potential energy, a effective energy relation is derived. The negative spatial
derivative of that effective energy is equal to the electrostatic force acting on that
conductor m.

For describing the electrostatic tip-sample force F body
el for a system as exemplified

in Figure 2.5 the number of conductors considered by Kantorvich et al. can be
reduced to two [68, 69, 70]. In that case, one arbitrarily shaped conductor represents
the tip at a fixed potential Φ1 and the other conductor represents the metallic
sample support at potential Φ2. The depiction of both conductors in Figure 2.5 is
a exemplification for any possible tip-sample geometry, because the theory covers
arbitrarily shaped finite conductors without making any assumptions regarding to
their dimensions. As both conductors are connected electrically via the external
battery Vext, their respective fixed electrostatic potentials Φ1 and Φ2 include the
contact potential difference VCPD which can build up between both conductors.
Consequently the actual potential difference between tip and back-electrode is given
by [70]

V = Φ1 − Φ2 = Vext − VCPD (2.3.16)
Note at this point, that the introduction of a global contact potential difference
VCPD is equivalent with the assumption that both conductor surfaces (tip and sam-
ple support), are homogeneous in respect to their respective work function. Further,
for describing a possible dielectric substrate different local permittivity values ϵs(r)
in the space between both conductors are incorporated in addition to the original
theoretical work [70]. The point charges qi depicted in Figure 2.5 are exemplary
and could be placed anywhere in-between the two conductors, where their respec-
tive positions ri are relative to the zero position on the dielectric substrate below
the tip. The distance in z-direction between the lowest point of the tip and the
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metallic sample support

dielectric substrate

metallic tip

Figure 2.5.: Setup of a tip-sample system consisting of a metallic tip and a metallic
sample support between which the external voltage Vext is applied to
maintain the respective surface potentials Φ1 and Φ2. The dielectric
medium can be considered by different local dielectric permittivity ϵs
in specific parts of of the space between both metals. The placement
of the included point charges qi at positions ri is exemplary.

dielectric substrate is the tip-sample distance zts. Assuming a linear and isotropic
dielectric medium and taking the integral over the volume outside both conductors
(as inside the field vanishes) and application of the Poisson equation for the field
provides a relation for the total potential energy within the electric field as [67, 70,
92] (full derivation in Appendix A.1)

Uel,f = 1
2
∑︂

i
qiΦ(ri) + 1

2 (Φ1Q1 + Φ2Q2) (2.3.17)

where the first sum is taken over all point charges and the second sum includes
both conductors. The electrostatic potential Φ(r) in the system is determined by
the external voltage Vext, the dielectric medium ϵs, the point charges qi and the
conductors. Thereby, Q1 and Q2 are the charges generated at the surfaces of the
conductors to maintain their potentials Φ1 and Φ2 imposed by the external voltage
Vext. The charge Qm located on the respective conductor surface m = 1, 2 is given
by [67, 70] (see also Appendix A.1)

Qm = −ϵ0ϵs

∮︂
Sm

∇Φ(r) · n ds = −ϵ0ϵs

∮︂
Sm

∂Φ(r)
∂n

ds . (2.3.18)

where ∂/∂n indicates the derivation in direction of the outward normal vector n
of the respective conductor surface Sm [93, 92, 94]. The integration over the field
gradient in direction of n is taken over the whole conductor surface Sm where ϵs
is the relative permittivity of the surrounding medium. It has been shown, that
the integral over a remote metal surface at infinity (which surrounds the complete
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considered system) vanishes, since the potential converges to zero at large distance
[92]. Hence, in the scope of this calculation it is not possible to consider infinitely
large objects. [67]. Note, that relation (2.3.18) also means, that both conductors
in the system are considered in a macroscopic manner.

In order to derive the electrostatic force Fel acting on the tip in the system described
by relation (2.3.17), a movement δzts of that tip is introduced [92, 67, 70]. It is
assumed here, that the presence and movement of the tip does neither modify the
positions of the point charges qi, nor the position of the dielectric medium, what
implies that possible relaxation effects are neglected in this calculation. Due to
the tip movement, the potential Φ(r) in the system (2.3.17) changes by δΦ(r).
Accordingly the potential of each conductor m deviates from its initial value Φm,
which has to be compensated by a charge flow δQm via the external battery. In
consequence, the complete work done in the system consists of the change of the
potential energy within the field (2.3.17) and the work carried out by the battery for
the surface charge redistribution between both conductors (δQ1 +δQ2 = 0) in order
to maintain their respective potentials Φ1 and Φ2. By understanding the battery
as a part of the system, the work carried out by it has to reduce the total potential
energy of the system and hence is taken with a minus sign in that relation. This
leads to an expression for the effective energy of the system [67] (for mathematical
depiction see appendix A.2)

U eff
el = 1

2
∑︂

i
qiΦ(ri) − 1

2 (Φ1Q1 + Φ2Q2) (2.3.19)

which is the potential energy within the field reduced by the work contribution of
the battery as part of the system. In comparison to the potential energy of the
field alone (2.3.17), the main difference is the minus sign. Kantorovich et al. [67]
point to the importance of that difference by showing that relation (2.3.17) does
not provide the correct potential energy for a probe point charge far away from the
conductors, whereas the relation (2.3.19) for the effective energy does. For deriving
a valid relation for the electrostatic force imposed on the tip upon movement in the
system, it is crucial to consider the change of the total potential energy including
the work carried out by the battery for the charge flow for compensation. The
electrostatic force imposed on the tip upon movement is directly related to the
change of that effective energy U eff

el as a function of the tip position

Fel = −∂U eff
el

∂zts
(2.3.20)

where the minus sign follows the general principle that conservative forces act to-
wards reduction of potential energy. The calculation of the electrostatic force by
relation (2.3.20) from the systems effective energy (2.3.19) requires the knowledge
of the unknown potential distribution Φ(r) and the surface charges Qm. However,
these are implicitly dependent on the charges (qi, ri) and the fixed potentials Φ1
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and Φ2 of the conductors. Addressing this difficulty Kantorovich et al. [67] utilizes
a Green’s function approach to formally separate the potential Φ(r) in the system
into three terms

Φ(r) = Φvoid(r) +
∑︂

i,r̸=ri

1
4πϵ0

qi

|r − ri|
+ Φimg(r) (2.3.21)

where the first term is the potential of the charge free (N = 0, void) system
Φvoid, created by the conductors and their respective geometries and potentials
Φm. Consequently Φvoid(r) is, in contrast to Φ(r), independent of the point charges
qi. The second term is the summarized potential of the point charges, where the
self-action at r = ri of any point charge qi is excluded. The last term is the
image potential Φimg(r) due to image charges in the conductors induced by the
point charges qi. In the scope of the Green’s function approach, the induction
of additional charges Qind

m on each conductor surface due to the point charges is
considered. Consequently the overall surface charge on each respective conductor
is given by Qm = Qext

m + Qind
m , where Qext

m are the external charges pumped by the
battery and Qind

m the induced charges (which resemble the image charges to qi).
Based on that consideration the identity [67, 70]

1
2
∑︂

i
qiΦvoid(ri) = 1

2
∑︂
m

Qext
m Φm − 1

2
∑︂
m

QmΦm (2.3.22)

can be derived. Therefore, the self-energy change of the conductor due to the in-
duced charges is equal to minus half the energy of the point charges in the field
of the bare conductors [67]. Inserting the formal separation (2.3.21) and the iden-
tity (2.3.22) resulting from the Green’s function approach into relation (2.3.19),
one obtains the final separation of the systems effective energy into four energy
contributions [67, 70]

U eff
el = − 1

2
(︂
Φ1Q

ext
1 + Φ2Q

ext
2

)︂
+
∑︂

i
qiΦvoid(ri)

+ 1
8πϵ0

∑︂
i

∑︂
j,j̸=i

qiqj

|ri − rj|
+ 1

2
∑︂

i
qiΦimg(ri)

= UC + Uq-C + Uq-q + Uimg (2.3.23)

The first term UC describes energy contribution by the capacitance of the charge
free (N = 0) system. This becomes more obvious, after short transformations of
that term. Starting with the requirement Qext

1 = −Qext
2 = Qext of the external

battery, which allows to express the remaining potential difference between Φ1 and
Φ2 via V (2.3.16). Further, introducing the capacitance of the charge free system as
Cvoid = Qext/V yields the well- known negative energy contribution of the capacitor
[64, 69, 70]

UC = −1
2CvoidV 2 (2.3.24)
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The second term Uq-C describes the interaction between point charges qi and the
conductors excluding any image charge interaction. For a tip-sample system de-
limited by two conductors, the potential Φvoid(ri) at the charge position ri directly
scales with the potential difference V between both of these conductors. In that
case, a normalized electric potential Φ̂void = Φvoid/V can be utilized providing a
relation for the second term as

Uq-C =
∑︂

i
qiΦ̂void(ri)V (2.3.25)

All pairwise Coulomb-interactions between the charges qi are considered in the third
term

Uq-q = 1
8πϵ0

∑︂
i

∑︂
j,j̸=i

qiqj

|ri − rj|
(2.3.26)

of the systems effective energy (2.3.23). As charges qi in the tip-sample system are
assumed to be fixed at their respective positions ri and independent of the presence
and movement of the tip in zts, their pairwise Coulomb-interactions Uq-q will not
contribute to the electrostatic tip-sample force. The fourth term Uimg of the systems
effective energy (2.3.23) describes the contribution due to image interactions, where
the image potential Φimg(r) can be further expressed as [67, 70]

Φimg(r) = 1
ϵ0

∑︂
j

qjϕind(r, rj) (2.3.27)

where ϕind(r, rj) is the potential at position r caused by the image charge induced
by charge qj at position rj described by a Green’s function. Inserting this relation
into the image interaction term yields

Uimg = 1
2ϵ0

∑︂
i

∑︂
j

qiqjϕind(ri, rj) (2.3.28)

Inserting the relations (2.3.24) to (2.3.28) into the expression of the effective energy
(2.3.23) now allows to calculate the electrostatic force as

F body
el (zts, V ) = 1

2
∂Cvoid

∂zts
· V 2

−
N∑︂

i=1
qi

∂Φ̂void(ri)
∂zts

· V

− 1
2ϵ0

N∑︂
i=1

N∑︂
j=1

qiqj
∂ϕind(ri, rj)

∂zts

= FC(zts, V ) + Fq-C(zts, qi, V ) + Fimg(zts, qi)

(2.3.29)

(2.3.30)

which is the final result of this section. In the following, the properties of the
electrostatic force and its three contributions are discussed.
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2. Tip-sample interaction forces

2.3.2.2. Properties and voltage dependency

The electrostatic force (2.3.29) in any tip-sample capacitor as exemplified in Fig-
ure 2.5 is composed of the capacitance interaction FC(zts, V ) between tip and sample
support, the charge-capacitor interaction Fq-C(zts, qi, V ) and the image charge in-
teraction Fimg(zts, qi). All contributions are dependent on the tip-sample distance
zts, the respectively given geometries of tip and sample as well as the dielectric sub-
strate in the gap in-between. Differences occur when comparing the dependencies
on the point charge configuration qi and the potential difference V between tip and
sample support. While the capacitance interaction FC(zts, V ) is independent of the
charges qi and ∝ V 2, the charge-capacitor interaction Fq-C(zts, qi, V ) does depend
on qi and scales linearly with V , whereas the image charge interaction is dependent
on the charges qi alone and constant with respect to V .

The first two contributions FC(zts, V ) and Fq-C(zts, qi, V ) to the electrostatic force
(2.3.29) require the characterization of the given void tip-sample capacitor by cal-
culation of the capacitance Cvoid(zts) and the electrostatic potential Φ̂void(zts). This
can in special cases be performed analytically [67, 95, 96] and in general numeri-
cally [71]. However, the calculation for the image charge contribution Fimg(zts, qi)
is a challenge, especially for realistic tip-sample geometries and larger number of
charges in the gap [70]. Conveniently, the image charge interaction does not con-
tribute to the CFM signal V min

bias as it is independent of the given potential difference
V between tip and sample. Hence, in the evaluation of CFM data it is sufficient to
evaluate the contributions by FC(zts, V ) and Fq-C(zts, qi, V ) (see chapter 7 for more
detail).

To exemplify the voltage and distance dependence of the electrostatic force (2.3.29),
a simple sphere-sample model (S model) as depicted in the inset of Figure 2.6(b)
can be used. Here, a conductive sphere with radius rsphere at a constant potential
in vacuum is assumed as the tip, which is at distance zts to the sample given by
a dielectric half-space of relative permittivity ϵs. Consequently, the back-electrode
is assumed to be located at −∞ which is justified as the typical thickness of sam-
ples used in AFM is magnitudes larger than the investigated tip-sample distance
regimes. Furthermore, a point charge q = −1 e is placed on the sample surface
at r = [0, 0, 0] centred below the sphere. Calculation of the electrostatic capac-
itance Cvoid(zts) and normalized potential Φ̂void(zts) required for FC(zts, V ) and
Fq-C(zts, qi, V ) is straightforward for for the S model using a infinite image charge
series (see Appendix A.3). Due to the simple geometries in this model, the image
charge interaction between tip sphere and point charge q on the sample surface can
be calculated analytically and is given by [93, 67]

Fimg(zts, q) = − 1
4πϵ0

q2ztsrsphere

(z2
ts − r2

sphere)2 (2.3.31)
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2.3. Body forces

Parameters assumed for the S model are are listed in Table 2.4. In Figure 2.6(a),
the dependence of the electrostatic force F body

el (red) and its components FC (blue),
Fq-C (green) and Fimg (horizontal dotted line) on a externally applied bias voltage
Vext = Vbias at a fixed tip-sample distance zts = 2 nm for the S model is depicted.
The external voltage Vext counteracts with VCPD in the total potential difference V
between tip and sample as described in relation (2.3.16).

sphere-sample model
rsphere 5 nm
ϵs 24
VCPD 1 V

Table 2.4.: Assumed parameters for the S model utilised in the exemplification of
F body

el .

The force contribution by the void tip-sample capacitor FC(zts, V ) is a parabolic
function in V (blue line in Figure 2.6(a)). Independent of the sign of V and the point
charges, the force contribution FC(zts, V ) will be attractive due to ∂Cvoid/∂zts < 0
for all zts (see Figure A.4(d) in appendix). Consequently, in respect to Vext the ca-
pacitance interaction force FC(zts, V ) always follows a downward-opened parabola,
which has its maximum at Vext = VCPD where the total potential difference V
between tip and sample support and thus FC(zts, V ) become zero.

The interaction between point charges and the tip-sample capacitor Fq-C(zts, qi, V )
is a linear function in respect to Vext (green line in Figure 2.6(a)). Depending on the
signs of qi and the resulting potential difference V , this force contribution can either
be attractive or repulsive. In this example, a negative charge q = −1 e below the tip
is assumed. Due to ∂Φ̂void/∂zts < 0 for all zts (see Figure A.4(c) in appendix), the
charge-capacitor interaction Fq-C(zts, qi, V ) contributing to the electrostatic force
F body

el is repulsive for Vext < VCPD (V < 0) and attractive for Vext > VCPD (V > 0).

The image charge interaction Fimg(zts, q) is independent of V and thus contributes
to the electrostatic force F body

el in respect of Vext as a constant, attractive force
offset as indicated by a horizontal dotted line in Figure 2.6 (a).

The electrostatic force F body
el is the sum of all contributions FC(zts, V ), Fq-C(zts, q, V )

and Fimg(zts, q) and consequently combines their properties in respect to Vext. It
follows a downward opened parabola due to the capacitance force FC(zts, V ) which
tilted by the contribution of the charge-capacitor interaction Fq-C(zts, q, V ) and
offset by the image charge force Fimg(zts, q). The maximum of the parabolic curve
representing the minimum attractive electrostatic force (2.3.29) with respect to
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2. Tip-sample interaction forces

(a)

(b)

Figure 2.6.: Exemplification of the dependency of the electrostatic force (2.3.29),
(a) on a externally applied bias voltage Vext = Vbias at a constant
distance zts = 2 nm for a charge q = 1 e and (b) on the tip-sample
distance zts for different combinations of fixed values for q and V as
listed in Table 2.5. Both calculations are carried out based on the S
model depicted in the inset of (b) (see also appendix A.3). Parameters
assumed for the S model are listed in Table 2.4.

Vext = Vbias is found at

V min
bias = VCPD +

N∑︂
i=1

qi

∂Φ̂void

∂zts
∂Cvoid

∂zts

(2.3.32)
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2.3. Body forces

which is indicated as a vertical grey line in the exemplification shown Figure 2.6
(a). This relation describes the CFM signal for a static tip, which is obtained
when minimizing the attractive force on the tip by adjusting the external voltage to
Vext = V min

bias . In practice, however, an implementation of CFM in static AFM would
not be purposeful for two main reasons. First, the static deflection of the tip as
measure for the tip-sample force lies way below the detectability limit. Second, due
to the lack of higher harmonic signals, it is impossible to adequately characterize the
given tip-sample capacitor for correctly modelling Cvoid(zts) and Φ̂void(zts) required
for the quantitative evaluation of the static CFM signal using relation (2.3.32).

In Figure 2.6(b), the dependency of the electrostatic force F body
el (2.3.29) on the tip-

sample distance zts is shown for different configurations of q and V in the S model
as listed in Table 2.5. All other model parameters for calculation remain as listed
in Table 2.4. The capacitance configuration is given for a charge-free system q = 0
and any non-zero potential difference V between tip and back-electrode. Here,
the electrostatic force exclusively is given by the attractive capacitance interaction
F body

el = FC(zts, V ) (blue line in Figure 2.6(b)). Further, the distance-dependent
curvature of the electrostatic force F body

el is determined by Cvoid(zts) alone, which
is scaled by the respectively given potential difference V . For the exemplification
a potential difference V = 1 V is assumed.

configuration q in e V in V
capacitance 0 1
image charge -1 0
charge-tip attraction -1 1
charge-tip repulsion -1 -1

Table 2.5.: Parameters for the different configurations of the S model considered in
Figure 2.6.

The second configuration is a tip-sample capacitor containing a charge q ̸= 0 but the
potential difference V is equalized. Here, exclusively the image charge interaction
defines the electrostatic force F body

el = Fimg(zts, q) acting on the tip. For an assumed
single point charge q = −1 e centred below the tip (inset Figure 2.6(b)) the resulting
image charge interaction is strong at close distances zts and rapidly vanishes due
to its dependency ∝ z−3

ts .

In tip-sample capacitor configurations with non-zero charge q and potential dif-
ference V between its plates not only the image interaction Fimg but also FC and
Fq-C contribute to the electrostatic force F body

el acting on the tip. While FC and
Fimg are exclusively attractive, the charge-capacitor interaction Fq-C can be either
repulsive or attractive depending on the signs of q and V . If the charge q has
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2. Tip-sample interaction forces

the same sign as the voltage V , a repulsive interaction between charge and tip in
the capacitor occurs, which reduces the overall attractive electrostatic force F body

el
acting on the tip (red line). In contrast, if the charge q has the opposite sign as the
potential difference V between tip and sample support, the attractive electrostatic
force F body

el on the tip is amplified by the presence of that charge q in the tip-sample
capacitor (green line). In all cases, where the charge q is present also the image
interaction has to be accounted for as an additional contribution (black line). The
self-interaction of a single charge via its image charge always will be attractive.
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2.4. Model for the total tip-sample interaction

2.4. Model for the total tip-sample interaction

In the previous sections all force contributions considered in the total tip-sample
interaction (2.1.4) are described based on mathematical models and model param-
eters. In this section, these models and parameters are combined to gain an idea of
the overall properties of the total tip-sample interaction force Fts acting on the tip.
For convenience, all model parameters introduced throughout all previous sections
are collated in Table 2.6.

Due to the omnipresent nature of the dispersion forces, the tip-sample force Fts
will always be a mixture of both, the atomic interaction and Fatomic and F body

vdW . To
model this force composition of Fts, the Lennard-Jones force (2.2.10) and the van
der Waals body-body force (2.3.13) can be used to model the atomic and body
forces, which yields

F model1
ts (zts) =FLJ(zts) + F body

vdW (zts) (2.4.33)

=12Eb

σ0

[︄(︃
σ0

zts

)︃13
−
(︃

σ0

zts

)︃7
]︄

− HR2(sin Θ − 1)((R − ẑ) sin Θ − R − ẑ)
6ẑ2(R + ẑ − R sin Θ)2

− H tan Θ((ẑ + R) sin Θ + R cos(2Θ))
6 cos(Θ)(ẑ + R − R sin Θ)2

This or a comparable interaction will be present in every tip-sample system, only
the exact composition of the atomic and body forces will change depending on
the materials and geometries in the tip-surface system. The distance-dependent
behaviour of the tip-sample force model F model1

ts for a Si-Si tip-sample interaction
is depicted in Figure 2.7 (red line). For comparison the behaviour of its separate
contributions FLJ(zts) (blue line) and F body

vdW (zts) (green line) are depicted as well.
All parameters utilised for calculation can be found in Table 2.6.

For zts smaller than the equilibrium bonding length (Fatomic = 0), the short-range
repulsive atomic interactions are dominant and the tip-sample force Fts is repulsive.
If zts is in the range around the minimum of Fatomic the short-range attractive
forces are dominant in Fts. These become reinforced by the additional long-range
attractive body-body van der Waals interactions F body

vdW . In this interaction regime
the NC-AFM is typically operated, since here the best resolution is possible. At
tip-sample distances zts where the atomic interactions Fatomic start to vanish, the
long-range van der Waals force contributions to Fts remain.

If tip and sample support are electrically connected and charges are present in, on or
above the sample substrate located within their gap, the electrostatic interactions
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2. Tip-sample interaction forces

may strongly contribute to the total tip-sample force. For correctly modelling the
interaction in a tip-sample capacitor the model for the tip-sample force (2.4.33)
has to be expanded by the electrostatic force as described by (2.3.29), yielding the
relation

F model2
ts (zts, V ) =FLJ(zts) + F body

vdW (zts) + F body
el (zts, qi, V ) (2.4.34)

=12Eb

σ0

[︄(︃
σ0

zts

)︃13
−
(︃

σ0

zts

)︃7
]︄

− HR2(sin Θ − 1)((R − ẑ) sin Θ − R − ẑ)
6ẑ2(R + ẑ − R sin Θ)2

− H tan Θ((ẑ + R) sin Θ + R cos(2Θ))
6 cos(Θ)(ẑ + R − R sin Θ)2

+ 1
2

∂Cvoid

∂zts
· V 2

−
N∑︂

i=1
qi

∂Φ̂void(ri)
∂zts

· V

− 1
2ϵ0

N∑︂
i=1

N∑︂
j=1

qiqj
∂Φind(ri, rj)

∂zts

Based on this relation the effect of the electrostatic interaction to the total tip-
sample force for different cases can be visualised. For this exemplification the same
sphere-sample model as presented in Figure 2.6(b) and Appendix A.3 is used with
the parameters shown in Table 2.6. Analogous to the previous section, three differ-
ent configurations of the S model are assumed, namely, the capacitance, charge-tip
repulsion and charge-tip attraction (see Table 2.5). The resulting force curves
F model2

ts including the electrostatic interaction (2.4.34) are depicted in Figure 2.8
in comparison with the force curve F model1

ts without the electrostatic interaction
(2.4.33) represented as a black dashed line.

The capacitance interaction FC increases the range and attraction of the total
tip-sample force F model2

ts dependent on the given potential difference V . Adding
a point charge q = −1 e at r =[0 0 0] into the tip-sample capacitor also adds
contributions by the charge-capacitor force Fq-C and image charge interaction Fimg
into the tip-sample force. While the image charge interaction Fimg further increases
the attractive contribution by the electrostatic force to the tip-sample force, the
charge-capacitor Fq-C interaction is either attractive or repulsive depending on the
signs of q and V . For different signs the contribution by Fq-C is attractive (charge-
tip attraction) and for equal signs Fq-C becomes repulsive (charge-tip repulsion). All
cases shown in Figure 2.8 demonstrate the strong contribution of the electrostatic
interaction F body

el to the tip-sample force and its sensitivity towards the presence
of charges qi. Dependent on the applied voltage V and the charges qi present
in the tip-sample capacitor, the electrostatic contribution easily can exceed other
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repulsive
interaction

attractive
interaction

long-range

short-
range

Figure 2.7.: Model for the total tip-sample interaction force. Depicted is the re-
lation (2.4.33) as the sum of the contributing Lennard-Jones force
(2.2.10) and van der Waals body-body force (2.3.13) for the param-
eters listed in Table 2.6. While FLJ describes the atomic forces acting
between the frontmost tip atoms and the nearest surface atoms, the
long-range F body

vdW describes the van der Waals interaction between the
complete tip body with the sample.

contributing forces. However, as the atomic resolution capabilities in NC-AFM rely
on detecting the much smaller atomic forces Fatomic, an exceedingly big electrostatic
force F body

el is not desirable. For that reason NC-AFMs typically are operated with
electrically connected tip and sample support, allowing for minimization of the
electrostatic force by equalizing V via the external voltage source Vext. The external
voltage where the electrostatic force is minimal Vext = V min

bias is the CFM signal, as
it contains the information on qi and VCPD given in the tip-sample capacitor. The
theory for quantitatively extracting these information from CFM data obtained in
a dynamic NC-AFM measurement is described in chapters 7, 8 and 9.

In conclusion, the force a tip senses near a sample surface consists of a complex
entanglement of several nanoscale forces. An exact distinction between the sepa-
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2. Tip-sample interaction forces

Figure 2.8.: Distance-dependency of the total tip-sample interaction force (2.4.34)
including the electrostatic contribution (2.3.29) for different cases. The
first case is the void-tip sample capacitor for a voltage V = 1 V (blue
line), the second case is the tip-sample capacitor with a single point
charge q = −1 e located r =[0 0 0] below the tip for a voltage V = 1 V
(green line); and the third case is the tip-sample capacitor with a single
point charge q = −1 e located r =[0 0 0] below the tip for a voltage
V = −1 V (red line). For reference relation (2.4.33) for the tip-sample
force without the electrostatic interaction depicted as a black dashed
line. Parameters used for calculation are listed in Tables 2.6 and 2.5.

rate contributions is difficult, as there is no strict border between the descriptions
of short-range atomic forces Fatomic and the long-range body forces Fbody. In liter-
ature there are several approaches for extracting the chemical forces from the total
tip-sample force in a quantitative manner [97, 98, 45, 77]. A common approach
is the subtraction of the long-range force from the total force to yield the force
representing the chemical interaction. The long-range interaction as function of
tip-sample distance is either measured at a reference position with a well charac-
terised surface exhibiting low chemical activity [97] or calculated based on a model
[77, 45]. However, both approaches can be prone to systematic errors. In the first
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2.4. Model for the total tip-sample interaction

case, force curves from different locations on the surface are subtracted. Since the
tip-sample force strongly depends on the surroundings of the tip near the sample
surface, this approach is only valid if the surface is completely isotropic. The second
approach is limited by the quality of the utilised model for the tip-sample system
fitted to the experimental data, to characterise the long-range interaction [98]. In
the end, both approaches require a correctly quantified tip-sample force beforehand.
The FCA method, a procedure for obtaining accurate and precise tip-sample force
data with dynamic NC-AFM will be presented in chapter 5. However, therefore
the functionality and theory of dynamic NC-AFM have to be understood first.

Morse potential van-der-Waals body-body interaction
Eb 4.638 zJ H 357.619 zJ
σ0 850 pm Θ 29.7°
κ 2.50 nm−1 R 5 nm

znt 583.04 pm
Lennard-Jones potential electrostatic interaction
Eb 4.638 zJ rsphere 5 nm
σ0 850 pm ϵs 24
r0 = σ0/21/6 757.26 pm VCPD 1 V

Table 2.6.: Collated list of model parameters for tip-sample force calculation from
Tables 2.1, 2.2, 2.3 and 2.4.
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In dynamic NC-AFM, the amplitude and frequency change imposed on the resonant
oscillation of a force sensor by the distant-dependent attractive interactions between
tip and sample are detected. Thereby the resonance frequency and amplitude of the
free oscillation far away from the sample are used as reference. If the oscillating force
sensor is brought into close proximity to the sample surface, the tip-movement in the
attractive force field of the surface detunes the resonant oscillation. Consequently,
the force sensor oscillates at a new amplitude and resonance frequency. If there
are no experimental constraints, the information of the tip-sample interaction is
distributed over these two observables of the sensor oscillation. To shift the effect
of the tip-sample interaction to one observable, a control loop for the force sensor
oscillation is used in the NC-AFM which maintains one observable of the oscillation
constant while detecting the other. Based on these two configurations, two types
of NC-AFM operation can be implemented.

One is amplitude modulated NC-AFM (AM NC-AFM) where the oscillation fre-
quency is maintained while the amplitude change is detected as the main signal.
The other configuration exclusively considered in this work, is frequency modulated
NC-AFM (FM NC-AFM) [99] where the sensor oscillation amplitude is maintained
constant while the frequency shift from its eigenfrequency is detected as the main
signal. For any centre position zc of tip oscillation zts(t), the frequency shift is
related to the cycle-averaged tip-sample force gradient acting on the tip within the
turning points zc − A and zc + A. Within the framework of quantitative AFM
theory (see chapter 4), the tip-sample force can be calculated from frequency shift
data mapped as function of zc [47] (see section 4.6). This requires the knowledge
of the exact force sensor properties and the given physical oscillation amplitude.

The relevant force sensor properties, the schematic setup of FM NC-AFM used in
this work and amplitude calibration procedures are topic in this chapter. A well
working FM NC-AFM and precise interaction force detection are prerequisite for
charge force microscopy (CFM). The technical implementation and principles for
CFM measurements based on frequency modulated closed-loop kelvin probe force
microscopy (FM CL-KPFM) [63, 64] will be discussed in this chapter as well.
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3. NC-AFM principle and setup

3.1. Force sensor

The properties of force sensors have a significant influence on the performance of
a NC-AFM [80]. Three types of force sensors are commercially available for use in
NC-AFM namely silicon cantilevers [100, 101], quartz tuning forks [102, 103] and
length-extensional resonators (LER) [104, 105, 106]. While these force sensors are
different in application-relevant details [107], their general functionality is based
on the same principle. The force sensor is a sensitive, linearly responding spring
transforming nanoscale forces acting between tip and sample into a measurable
signal. Typically force sensors are built in such a way, that they are rigid in two
axes and relatively soft in the third axis used for sensing tip-sample forces [80].
The silicon cantilever with integrated tip as schematically depicted in Figure 3.1
is a good example for this design. It consists of a sharp tip located at the free
end of a cantilever beam of length l attached to a much larger support chip. The
sensor is etched as one part from a silicon-wafer [101] in such way, that its tip is
oriented in [001] crystal direction [80]. The anisotropic etching rates of Si allow to
etch tips with a very sharp apex along that direction [108]. The cross-section of the
cantilever beam is trapezoidal due to the etching planes utilised in the production
[101, 80] and characterized by a bottom width wb, a top width wt and the thickness
t. As depicted in Figure 3.1, the thickness t of the beam is significantly smaller than
its mean width w̄ = (wb + wt)/2. Consequently, the beam is rigid against torsion
around the x-axis as well as in the y-direction while the deflection in z-direction is
favourable. Hence, the beam can easily be driven via the support chip to oscillate
exclusively in z-direction for sensing forces. The properties of interest for any force
sensor are its modal stiffness k0, its eigenfrequency f0 and the quality factor Q0.

Figure 3.1.: Bottom and side view of a microfabricated silicon cantilever
(schematic).
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The stiffness k of the cantilever beam acting against a static deflection in direction
of its tip (z-direction in Figure 3.1) can be derived by solving the static Euler-
Bernoulli equation considering deflections much smaller then the beam length (lin-
ear response) yielding [109, 110]

k = 3Y Iy

l3 (3.1.1)

where Y is the Young’s modulus of the cantilever material and Iy is the second
moment of inertia, a property of the cross-section geometry of the beam, measuring
its stiffness against bending. Considering cross-section of the cantilever in the y, z-
plane as shown in Fig. 3.1 its second moment of area acting against bending in
z-direction is given by

Iy =
∫︂ ∫︂

z2 dz dy (3.1.2)

integrated over the respective cross-section area of the beam. The eigenfrequency
f0 and all higher harmonics of the silicon cantilever oscillation can be derived from
the dynamic Euler-Bernoulli equation [80]. Assuming the silicon cantilever to be a
homogeneous, harmonically oscillating beam with an amplitude much smaller than
its length, the eigenfrequency of its n-th harmonic is given by

fn = κ2
n

2πl2

√︄
Y Iy

ρmAyz
with n = 0, 1, 2, . . . (3.1.3)

where κn is the n-th oscillation mode eigenvalue of the differential equation, ρm the
mass density of the beam material and Ayz the cross-section area. Note, an char-
acteristic equation for calculation of the eigenvalues κn results form the boundary
conditions describing the cantilever as an elastic beam fixed at one end and free
at the other end. If a tip mass mtip at the free end of the cantilever is taken into
consideration as well, the characteristic equation describing its eigenvalues κn reads
as [110]

1 + cos(κn) cosh(κn) + κn
mtip

ρmAyzl
[cos(κn) sinh(κn) − sin(κn) cosh(κn)] = 0 (3.1.4)

The modal stiffness kn of the cantilever oscillating in the n-th mode can be derived
by inserting the static stiffness relation (3.1.1) into the eigenfrequency equation
(3.1.3), yielding

kn = 12π2ρmAyzl

κ4
n

f 2
n with n = 0, 1, 2, . . . (3.1.5)

For the fundamental mode n = 0, the modal stiffness k0 is approximately the same
as the stiffness k against static deflection k0 ≈ k [110].

The quality factor Q of a damped harmonic oscillation, such as the cantilever is
defined as the ratio between the energy U stored in the oscillation and the energy
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dissipation ∆U per oscillation cycle [111]:

Q0 = 2πU

∆U
(3.1.6)

The effective Q-factor of the oscillating cantilever Qeff is the reciprocal to the total
damping of the system and consists of several contributions [112], for instance, the
intrinsic damping of the vibrating beam [111, 113, 114, 115, 116], the damping by
the cantilever fixation via its support in the microscope [117], or damping by the
surrounding medium [111, 118, 119]. The effective quality factor Qeff determines
the width of the resonance peak of the sensor oscillation, that can be described
as a damped, driven harmonic oscillator (see 4.2). A high Qeff results in a narrow
resonance peak allowing for a signal detection with high signal to noise ratio. Hence
force sensors with high Q0-factors are preferable in FM NC-AFM [99]. Typical Q-
factors for 300 kHz silicon cantilevers range between 10000 and 40000 [120]. In this

Property Nominal Value Specified Range
Resonance frequency f0 [kHz] 330 204-497
Force constant k0 [N m−1] 42 10-130
Thickness t [µm] 4 3-5
Mean width w [µm] 30 22.5-37.5
Length l [µm] 125 115-135

Table 3.1.: Characteristic properties of the PPP-NCH silicon cantilevers and
platinum-iridium (PtIr5) coated silicon cantilevers PPP-NCHPt from
Nanosensors™. The values are from the corresponding data sheet pro-
vided by the producer.

work, silicon cantilevers (PPP-NCH ) and platinum iridium (PtIr5) coated silicon
cantilevers (PPP-NCHPt) from Nanosensors™ are used. Both sensor types con-
sists of highly doped silicon to dissipate static charge and are chemically inert, where
the (PPP-NCHPt) sensor exhibits an additional 25 nm double layer chromium Cr
and platinum-iridium (PtIr5) coating on both sides of the cantilever including the
tip. The nominal values for the characteristic parameters of both sensor types pro-
vided by the producer are shown in Tab. 3.1. These vary in the specified range due
to uncertainties in the microfabrication process by etching. For the same reason
also the tip height varies in the range from 10 µm to 15 µm. While the PPP-NCH
sensors are produced with tip radii < 10 nm the PPP-NCHPt sensors exhibit tip
radii < 25 nm. Hence the PPP-NCH sensors typically provide better resolution
capabilities than the PPP-NCHPt sensors and are used in applications where high
lateral resolution is required. While the PPP-NCHPt provide lower resolution in
NC-AFM experiments, their great advantage is their higher conductivity due to
their coating. For this reason, these sensors are a perfect fit for measuring electro-
static tip-sample forces as this requires high electrical conductivity (see Sec. 2.3.2).
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3.2. Frequency modulated non-contact atomic force
microscopy (FM NC-AFM)

The FM NC-AFM detects a voltage signal related to the frequency shift ∆f expe-
rienced by a resonantly oscillating force sensor due to the forces acting between its
tip and the sample while maintaining a constant oscillation amplitude [99]. Based
on the ∆f signal the structure of any well prepared sample surface can be explored
with atomic resolution [80]. This requires the finely tuned cooperation of several
control loops and detection devices. A typical setup of a cantilever-based FM NC-
AFM is exemplified Figure 3.2, where the elements for driving and detecting the
resonant probe oscillation as well as the devices for positioning and scanning the
sample below the tip are depicted. The additional control loop for measuring and
minimizing the electrostatic tip-sample forces required for charge force microscopy
(CFM) based on a frequency modulated Kelvin probe force microscopy implemen-
tation (FM CL-KPFM) is depicted in the red box of Figure 3.2. In this section,
first, the fundamental functionality of FM NC-AFM is explained, whereby the ex-
ternal voltage Vext is considered as constant. Second, the FM CL-KPFM loop for
measuring and minimizing the electrostatic interactions by applying an variable
external voltage Vext(t) between tip and sample support is discussed.

Sample and cantilever support chip are both fixed to metallic structures with elec-
trical contacts. The sample support is mounted on a piezoceramic tube scanner
enabling fine positioning in x, y and z direction relative to the fixed force sen-
sor. That tube scanner, in return, is mounted on another piezo element utilised
for coarse positioning in x and z direction. By this the force sensor tip can be
brought into interaction range with the surface and all movement required during
measurement can be performed. Typically cantilevers are mounted with a small
tilt by an angle α towards the sample to avoid that the cantilever rather than the
tip touches the surface. The angle α therefore also is the angle between sample
surface normal and oscillation direction of the cantilever. This circumstance has
consequences for the quantitative evaluation of NC-AFM data [58], which will be
addressed in chapter 6.

To enable a driven oscillation of the cantilever, its support is mounted on the drive
piezo. For FM NC-AFM operation, the cantilever is driven to permanently oscillate
at resonance with a constant amplitude controlled by the oscillation feedback loop.
Core part of the cantilever excitation is the phase locked loop (PLL) providing
the drive signal Vexc(t) for the cantilever excitation and measuring its response.
The PLL consists of a phase-detector, voltage-controlled oscillator (VCO) and a
control-loop [41]. For the cantilever excitation, the VCO generates a sinusoidal
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3. NC-AFM principle and setup

Figure 3.2.: Schematic overview of a cantilever based NC-AFM in the frequency
modulation mode. The components required for FM NC-AFM and
CFM are framed in grey and red, respectively. Input parameters, which
are set previous to the measurement are depicted in green.

signal
Vexc(t) = V exc

A sin(2πfexct) (3.2.7)

with excitation amplitude V exc
A and excitation frequency fexc. This is sent as the

driving signal to the drive piezo via the amplitude control unit regulating the mag-
nitude of V exc

A to obtain the desired value V set
A for the oscillation amplitude. The

voltage D proportional to the adjustment of V exc
A is a measure for the mean dissi-

pated energy. The cantilever, as a harmonic oscillator, will follow the drive signal
Vexc(t) with the same frequency fexc and an a priori unknown physical amplitude
A. The cantilever oscillation is measured as a function of time via the optical beam
deflection (OBD) method [121, 41]. Here, the light emitted by a laser is reflected
from the back of the cantilever onto a position sensitive detector (PSD). The cur-
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3.2. Frequency modulated non-contact atomic force microscopy (FM NC-AFM)

rent signals caused by the cantilever oscillation are converted by a transimpedance
amplifier into the deflection signal (sensor signal)

Vsig(t) = V0 + VA cos(2πfexct + φ) (3.2.8)

Where V0 is an offset voltage resulting from the current centre position of the
cantilever oscillation, VA is the measured oscillation amplitude voltage related to
the physical oscillation amplitude A (see section 3.4), fexc the current frequency
of the cantilever due to the excitation and φ is the phase shift relative to the
excitation Vexc(t). The offset voltage V0 occurs if the reflected laser point is not
perfectly centred on the PSD. This is due to uncertainties in the adjustment of
the OBD and the static deflection qs of the cantilever centre position caused by
the tip-sample interaction. The offset V0 is eliminated by a high-pass filter before
entering the input of the PLL. Note, that thermal noise and detection system noise
is always present in the deflection signal Vsig(t) [122, 123, 50].

The PLL and amplitude control receive the AC part of the sensor signal and the
PLL continuously detects the phase shift φ between the deflection signal Vsig(t)
and the excitation signal Vexc(t) generated by the VCO. To maintain the phase
resonance constant at φ = −π/2, the VCO-generated excitation frequency fexc is
adjusted by the PLL to permanently match the current resonance frequency fres of
the cantilever.

For large distances zts between tip and surface (retracted state), the resonance
frequency of the PLL-driven cantilever equals its eigenfrequency fexc = fres = f0 as
there is no tip-sample interaction. Prior to any experiment that eigenfrequency f0
is determined in the retracted state by frequency sweeping and given as reference
point to the PLL. If the tip is in interaction range (approached state), the excitation
frequency fexc of the cantilever shifts from f0 due to the tip-sample interaction. The
resulting frequency shift

∆f = fexc − f0 (3.2.9)

is detected by the PLL. This effect can be directly observed, when measuring the
frequency spectrum of the deflection signal received at the input of the PLL with
another Lock-In device (here Zürich Instruments HF2LI) for the retracted and ap-
proached state as shown in Figure 3.3. In the retracted state (blue) the cantilever
oscillates at its eigenfrequency fexc = f0 set as reference for the PLL. After approach
(orange), the resonance frequency of the cantilever fres is detuned by ∆f < 0 due to
the tip-sample interaction forces. The PLL follows that detuning by ∆f < 0 with
the excitation frequency fexc because it adjusts fexc = fres for maintaining phase
resonance. The output voltage of the PLL is proportional to ∆f and, therefore,
a measure for the tip-sample interaction. It is either recorded as the main mea-
surement signal or forwarded to the zp-feedback loop controlling the tip-surface
distance.
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3. NC-AFM principle and setup

Figure 3.3.: Spectra of the sensor signal (3.2.8) of a PPP-NCH silicon cantilever in
the Omicron UHV AFM/STM for the retracted (blue) and approached
(orange) state in comparison. Both spectra are measured at the input
of the PLL of the RHK R9 with a Zürich Instruments HF2LI over
20 averages. In the retracted state (blue) the cantilever is driven to
oscillates at its eigenfrequency fexc = f0 set as reference for the PLL.
In the approached state the resonance frequency of the cantilever fexc
is detuned by ∆f < 0 due to the tip-sample interaction forces.

This choice determines the imaging mode in FM NC-AFM. In the constant height
mode, the frequency shift ∆f from the PLL is measured directly as a function of
the lateral position (x, y) while scanning at a fixed piezo position zp. Thus the
frequency shift contrast due to the varying tip-sample interaction is the measure-
ment signal [80]. As the zp-position is kept constant, this method is only viable for
atomically flat surfaces or small sampling areas. For more corrugated surfaces, the
constant frequency-shift (topography) mode is used instead. Here, the zp-feedback
loop utilises the ∆f signal from the PLL via the scan controller to control the zp-
position of the sample while scanning along the x- and y- directions. The current
∆f value is compared to a given set-point ∆fset in the scan controller. In the case
of a mismatch, the zp-position is adjusted accordingly. Measuring the changes ∆zp
as a function of the lateral position (x, y) provides the topography of the sample
surface.
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3.3. Charge force microscopy (CFM)

The contribution of charges located in, on or above the sample substrate to the elec-
trostatic force F body

el (2.3.29) is dependent on the potential difference V between
tip and sample support. Charge force microscopy (CFM) aims for quantification
of those charges by measuring their voltage-dependent contribution to the electro-
static force F body

el imposed on the oscillating tip in FM NC-AFM. The main concept
is, to measure and minimize voltage-dependent spectral components of the electro-
static force F body

el (2.3.29) which occur when modulating the potential difference V
between tip and sample support. To accomplish this, the external voltage

Vext(t) = Vbias + Vel cos(2πfelt) (3.3.10)
is applied between tip and sample support, which is composed of a loop regulated
voltage Vbias and an oscillating voltage with amplitude Vel and frequency fel gen-
erated by an oscillator. The voltage-dependent components of F body

el follow the
oscillation of Vext(t) with frequency fel. The approached cantilever senses the oscil-
lation of the electrostatic force while oscillating itself with the frequency fexc. This
causes several spectral components in the deflection signal received by the PLL,
which can be described by (see chapter 7 for mathematical description)

V fel
sig (t) = V0 + VA cos(2πfexct + φ) (3.3.11)

+ V fel
A cos(2πfelt)

+ V 2fel
A cos(2π(2fel)t)

+ V fexc+fel
A cos(2π(fexc + fel)t + φ)

+ V fexc−fel
A cos(2π(fexc − fel)t + φ)

+ V fexc+2fel
A cos(2π(fexc + 2fel)t + φ)

+ V fexc−2fel
A cos(2π(fexc − 2fel)t + φ)

Where V f
A is the measured signal amplitude voltage at the respective frequency

f . For exemplification, the deflection signal spectrum of a cantilever in tip-surface
interaction at ∆f = −5 Hz with active voltage modulation Vext(t) is shown in
Figure 3.4(a). The shown deflection signal spectrum resulting from Vbias = 0,
Vel = 1 V and fel = 1567 Hz in constant frequency-shift mode is measured at the
PLL input using another spectrum analyser (Zurich Instruments HF2LI). Even
though the experimental deflection signal spectrum is subject to noise [123, 50, 124],
the spectral components due to the voltage modulation can be easily identified.
The signal V fexc±fel

A at side-band frequency fexc ± fel contains the CFM signal,
while further information on the capacitance between tip and sample support are
contained in the signal V fexc±2fel

A at side-band frequency fexc ± 2fel.

In this CFM implementation, the signals V fexc±fel
A and V fexc±2fel

A at frequencies
fexc ± fel and fexc ± 2fel are measured with side-band detection using two separate
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3. NC-AFM principle and setup

Lock-In amplifiers LIA 1 and LIA 2. Because the oscillation frequencies of both
signals are related to fexc, they constantly change according to the changes of fexc
due to the current tip-sample interaction. Therefore, the deflection signal V fel

sig (t)
is demodulated at the current excitation frequency fexc by multiplying it with a
reference oscillation cos(2πfexct) from the PLL before it is given as input signal
to the Lock-In amplifiers. Effectively that demodulation resembles a shift of all
spectral components of the deflection signal by fexc. Consequently the current
excitation frequency fexc of the cantilever permanently is the zero-frequency in the
demodulated deflection signal V fel

sig (t) cos(2πfexct). Hence the signals at fexc ± fel
and fexc ± 2fel now are fixed at frequencies fel and 2fel of the demodulated signal
which is input to the Lock-In amplifiers LIA 1 and LIA 2. These then can detect
the signals V fexc±fel

A and V fexc±2fel
A at reference frequencies fel and 2fel independent

of the excitation frequency fexc.

Technically the CFM implementation for measuring the signal V fexc±fel
A is equal to

a FM CL-KPFM setup. It is a feedback loop based on the signal V fexc±fel
A and its

dependency on the applied bias voltage Vbias and the modulation amplitude voltage
Vel. Within in the feedback loop the signal V fres±fel

A is minimized by adjusting
Vbias. To accomplish this, LIA 1 is used in the feedback loop to constantly measure
V fexc±fel

A at reference frequency fel in the demodulated deflection of the PLL output.
The detected signal amplitude V fexc±fel

A is given to the Kelvin feedback, where the
voltage Vbias is adjusted for minimization of V fexc±fel

A . Consequently, the component
V fexc±fel

A constantly vanishes as seen in Figure 3.4(b). The bias voltage Vbias =
V min

bias where the signal amplitude V fexc±fel
A vanishes is the CFM signal, which yields

information on the charges qi present in the tip-sample capacitor and the contact
potential difference VCPD between tip and back electrode. The quantitative theory
for evaluating the CFM signal V min

bias will be discussed in chapter 7.

The signal V fres±2fel
A is detected by LIA 2 synchronized to the reference frequency

2fel. This signal is related to the capacitance of the tip-sample capacitor and is
dependent on Vel and independent of Vbias (see chapter 7). Therefore the signal
V fres±2fel

A is not affected directly by an active CFM feedback loop. However, when
comparing the signal peaks V fres±2fel

A in Figure 3.4 (a) and (b) a noticeable increase
of that signal peak can be observed. This is due to the active zp-feedback loop in the
constant frequency-shift mode. The electrostatic force minimization by the CFM
feedback loop equals a decrease of the total tip-sample interaction at the current
piezo position zp of the tip. For maintaining the frequency shift constant at the
given set-point ∆f = ∆fset, the zp-feedback loop consequently reduces the distance
between tip and sample causing the increase of the capacitance signal V fres±2fel

A . A
vivid example for this effect is the capacitance increase of a plate capacitor which
plates are brought closer to each other.

Note, to exclude cross-talk in CFM, it is important, that the side-bands fres +
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(a)

(b)

open-loop

closed-loop

Figure 3.4.: Spectra of the deflection signal (3.3.11) of a PPP-NCH silicon can-
tilever in the Omicron UHV AFM/STM measured in the approached
state with active bias modulation (3.3.10) using Vel = 1 V and fel =
1567 Hz for two different cases: (a) For an inactive CFM feedback
(open-loop) and zero bias voltage Vbias = 0. (b) For an active CFM
feedback (closed-loop) adjusting the bias voltage to Vbias = V min

bias .
Each frequency-spectrum is measured at the PLL input of the RHK
R9™with a spectrum analyser (Zurich Instruments HF2LI™) over 20
averages.

fel and fres + 2fel are outside of the PLL bandwidth detecting the signal at fres.
This is realised by a careful choice of the PLL bandwidth settings and modulation
frequency fel. Typically the bandwidths of the PLL and LIAs are chosen tight, to
suppress as much as possible noise and interference (artefact peaks in the spectra
of Figure 3.4).
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3. NC-AFM principle and setup

3.4. Amplitude calibration and sensor inclination

A key quantity in NC-AFM is the physical oscillation amplitude A of the sensor, as
it is required for the force deconvolution from ∆f(zp) data [47]. Thereby A is not
directly accessible in experiment, but assumed to be proportional to the measured
voltage amplitude VA with S being the factor of proportionality. The amplitude
then is given by relation

A = S · VA (3.4.12)
Experimentally determining a value for S is referred to as amplitude calibration.
Various methods for amplitude calibration have been used in the field of NC-AFM.
While some methods rely on a systematic variation of the amplitude voltage set-
point V set

A in the presence of tip-sample interaction with active zp-feedback [125,
126, 127], other methods are based on interferometry [128, 129]. The latter in
principle yield very precise distance measurements as they use the wavelength and
speed of light as reference, but are prone to systematic error introduced by a mis-
alignment of the laser spot on the cantilever. Furthermore, interferometric methods
are not possible for a OBD based NC-AFM as presented here.

From the methods involving the tip-sample interaction the constant γ-method [125]
based on an approximation by the normalized frequency shift γ = k0A

3/2∆f/f0
[130] appears conceptually advantageous. In the calibration experiment, the am-
plitude voltage set-point V set

A is stepwise increased, while the given normalized
frequency shift set-point γset is maintained constant by adjusting the frequency
shift set-point ∆fset. In the topography mode, the zp-feedback loop adjusts the
piezo position zp accordingly. The amplitude calibration factor S = ∆zp/∆V set

A is
the slope of the graph of piezo positions zp as function of the voltage amplitude
set-points V set

A . Although, it is possible to obtain a fairly precise amplitude calibra-
tion with the constant γ-method at excessively high set-points for the normalized
frequency shift γset, it is not reliable when reasonable set-points γset are chosen for
preventing a tip-crash into the sample [53] (see chapter 5).

The serious limitations of popular amplitude calibration procedures have led to
the development of the force curve alignment (FCA) method [53] in the scope of
this work (see chapter 5). The FCA method is based on successive measurements
of ∆f(zp) curves for systematically chosen amplitude voltage set-points V set

A . The
iterative alignment optimisation of the force curves deconvoluted from the measured
∆f(zp, V set

A ) by adjusting the value for S and correcting drift yields inherently
the accurate results for the amplitude calibration and drift correction parameters.
Beyond that, the FCA method provides the true tip-surface interaction force curve
which is the foundation for successful evaluation of distant-dependent CFM-data.
Based on a correct amplitude calibration also the physical oscillation amplitudes
of the other spectral components caused by the modulated electrostatic force can
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be described. The calibration factor provides the physical capacitance signal A2fel
from the voltage V fexc±2fel

A as

A2fel = S · V fexc±2fel
A (3.4.13)

In principle, all amplitude calibration methods are straightforward. However, the
typical tilt of the cantilever towards the sample by angle α as previously indicated
in Figure 3.2 has to be addressed, when aiming for the determination of the true
physical oscillation amplitude A of the sensor. Calibration methods which utilise
an active zp-feedback loop will first hand retrieve the cantilever amplitude Az in
respect to the z-axis. However, the physical oscillation direction is parallel to
cantilever beam normal which does not align with the z-axis if the cantilever is
tiled towards the sample as sketched in Figure 3.5. From that sketch directly the
relation between both amplitudes can be obtained as

Az = A cos(α) (3.4.14)

Considering relations (3.4.12) and (3.4.14) provides the sensitivity factor with re-
spect to the z-axis

Sz = S cos(α) (3.4.15)
Which is the amplitude calibration factor which is actually retrieved by the γ- and
FCA-method in case of a cantilever inclination α ̸= 0. Hence, for obtaining the
calibration factor S providing the physical oscillation amplitude A when multiplied
with the current amplitude voltage VA the factor cos(α) has to be considered.
Another effect occurring due to the cantilever inclination is a lateral movement of
the tip by

∆x = Az tan(α) (3.4.16)
In one oscillation cycle the tip moves laterally by a range of 2∆x along the sample
surface. While this will have no serious effect for an isotropic surface, above a nano-
feature as an adsorbed atom, molecule or atomic cluster, the tip will be affected
by lateral force gradients during its oscillation. In this case, the measured ∆f -
data will not provide the correct tip-sample force when evaluated in respect to
the z-axis as it is done in the fundamental quantitative AFM theory [44] where
a non-tilted sensor is considered. Consequently, a neglected cantilever inclination
can be an source for systematic error when measuring force curves, especially when
the sample surface is not isotropic. However, a post-process amplitude calibration
via the FCA method uncovers systematic errors in obtained experimental data (see
chapter 5). Furthermore, for considering the effects of an inclined tip oscillation on
force measurements the fundamental quantitative AFM theory [44] is enhanced in
[58] allowing an arbitrary oscillation direction of the tip. The publication [58] has
been produced in the context of this work and can be found in chapter 6.

47
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Figure 3.5.: Effect of the cantilever inclination towards the sample. The amplitude
Az is he projection of the physical oscillation amplitude A on the z-axis
perpendicular to the sample surface. The lateral movement of the tip
from the measurement position above the nano-feature is a function of
the physical amplitude A.
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In this chapter, the quantitative AFM theory based on the general approach intro-
duced in [44] is presented demonstrating the derivation of three fundamental AFM
equations. These link the measured observables of an AFM experiment and the
sensor properties with the physical properties of the tip-sample force. Due to the
general formalism, it is possible to quantitatively evaluate measurements taken in
any AFM mode based on the three AFM equations [44]. For the derivation of these
equations the harmonic approximation is used and it is further assumed that the
tip oscillation is exclusively perpendicular to the sample surface (A = Az). There-
fore, the tip-sampling path and the data recording path along the piezo axis zp
are parallel and all described tip-sample forces are normal forces F z

ts. This chapter
is organised as follows: First the general coordinates of NC-AFM will be formally
introduced in analogy to [58] where the force sensor is approximated by a harmonic
oscillator oscillating along the z-axis oriented normal to the sample surface. Sec-
ond, the transfer function for the driven, damped harmonic oscillation of the force
sensor in the case of negligible tip-surface interaction is derived. Third, the tip
movement in the force field of the sample is described within the harmonic approx-
imation yielding the three AFM equations. The here discussed fundamental AFM
theory is expanded in chapter 6 for describing non-parallel tip-sampling and data
recording paths.

4.1. Coordinates in NC-AFM

A precise definition of the involved probe and sample coordinates as well as the
probe dynamical parameters is prerequisite for the quantitative physical under-
standing of the data acquired with FM NC-AFM. In dynamic AFM, the tip-sample
force F⃗ts is measured as a function of the tip-sample position r⃗ts = which is usu-
ally described in Cartesian coordinates, where the origin is placed on the sample
surface in such way that the z-axis with unit vector e⃗z is oriented perpendicular to
the surface as depicted in Fig. 4.1. The tip-sample distance zts is measured along
the z-axis, while lateral movements are described by the x- and y-axes. In typical
AFM implementations, the force measurement is restricted to nominally measuring
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the normal component of the tip-sample force F z
ts = F⃗ts · e⃗z often denoted by FN.

The ideal force curve is a measurement of F z
ts(zts) at a fixed position (xts, yts) on

the sample surface while the measurement of F z
ts(xts, yts, zts) is referred to as force

mapping and measuring Fts(xts, yts) describes imaging in the original sense of force
microscopy as a raster scanning microscopy.

In a dynamic measurement of the tip-surface force, the force sensor acts as a high-
Q oscillator which elastically responds to F⃗ts by static and dynamic deflection de-
scribed by q⃗ = q · e⃗q where e⃗q describes the unit vector along the tip sampling path
during oscillation. The tip sampling path describes the path along which the tip
periodically moves during oscillation. Typically, this path is assumed to be straight
and parallel to e⃗z. Due to the properties of typical force sensors (see Sec. 3.1) it
can be assumed, that the sensor is infinitely stiff in directions perpendicular to
e⃗q and its response is linear along e⃗q. In that case, the static probe response in
interaction follows Hooke’s law F z

ts(xts, yts, zts) = kq, where k is the static sensor
force constant (3.1.1). In the dynamic mode, the force sensor is excited to oscillate
periodically along the q-axis q(t) = q(t + 1/fexc) following the excitation frequency
fexc. Dependent on the given fexc, the force sensor has the modal stiffness kn with
(n = 0, 1, 2 . . . ) (see relation 3.1.5). As the excitation frequency fexc in typical oper-
ation of dynamic AFM is chosen to be near the eigenfrequency of the fundamental
mode f0, the modal stiffness of the force sensor is given by k0 during oscillation.

To bring the tip in the desired interaction range with the surface and to perform
the movements required for imaging, force mapping and taking force curves either
sample or sensor are attached to coarse and fine positioning elements allowing
wide range and precise movement in all directions. The implementation of the
positioning system based on piezoelectric elements depends on the respective NC-
AFM construction. However, as only the relative positions between sensor and
sample surface are of interest in the quantitative AFM theory, generic coordinates
can be defined. In Figure 4.1, the respective positioning movements of a sensor
in respect to the sample, the sensor oscillation and its response to the tip-surface
force are illustrated for the case of parallel tip sampling and data recording paths.
Thereby the data recording path is the path along which the oscillating force sensor
is moved when taking a force curve. Here the data recording path is assumed to
be parallel to the movement direction of the piezo zp.

Before any measurement, the sensor assembly is at far away from the sample surface
and has to be moved towards the surface by the coarse positioning system. At the
end of this coarse approach (Figure 4.1(a)), the piezo rests in a relaxed state at
position zcrs and the tip at its starting position z0. In their relaxed state, the
z-piezo and sensor have the length l0

p and l0
s respectively. For the fine approach

(Figure 4.1(b)), a voltage is applied to the z-piezo causing its extension to the
length lp > l0

p that is described by a piezo position zp on the separate axis zp
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Figure 4.1.: NC-AFM coordinates [58], explanation in text.

with unit vector e⃗p and with the origin chosen to coincide with zcrs position. Unit
vectors e⃗z and e⃗p are chosen to point in the same direction so that a piezo extension
zp < 0 results in an approach of the tip towards the sample surface while zp > 0
indicates a tip retraction. The coarse and fine approach define the sensor position
zsen = z0 + zp which is equal to the tip-sample distance zts if the force Fts acting
on the tip is unmeasurable small as it is the case for sufficiently large zts. Upon
further approach, the tip experiences a measurable force resulting in a static sensor
displacement qs described on the q-axis with its origin chosen at zsen (Figure 4.1(c))
. Due to the static sensor displacement qs the tip moves from zsen to the tip
centre position zc = zsen + qs, which is equal to the new tip-sample distance zts.
The direction of e⃗q is chosen parallel to e⃗z, hence a sensor displacement q < 0
corresponds to a tip movement towards the surface. Note, that the tip centre
position zc cannot easily be set or determined in experiment for two reasons: The
static sensor displacement qs is governed by the a priori unknown force curve and
smaller than the detection limits of most NC-AFM implementations. In dynamic
NC-AFM operation at interaction range, the sensor oscillates with an amplitude A
symmetrically around qs with the turning points qs + A and qs − A (Figure 4.1(d)).
The momentary tip position at any time t is described by the displacement q(t)
and the position zts(t), where zmin

ts denotes the position of the lower turning point
of the oscillation.

In principal, tip-positions and sensor dynamics can well be described with positions
in respect to the z-axis. Practically, however, this axis is of limited use, because its
zero point cannot be defined in a reasonable way. This is due to the fact that neither
zcrs and l0

s can be determined with atomic scale precision, which would be needed
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for properly taking into account the force curve F z
ts(zts). Additionally a conceptual

difficulty is given in defining the position of the surface at the atomic scale. As every
force curve acquired on a surface diverges for zts → 0 (see section 2.4), one natural
choice of the z-axis origin would be the z-value approached by the diverging force.
This point, however, is not accessible in experiment. Instead, precise values for the
piezo position zp and the sensor displacement q(t) are experimentally available. To
derive a force-distance curve in a dynamic AFM experiment, the usual procedure is
therefore the measurement of the distant-dependent frequency shift ∆f(zp) of the
sensor excitation frequency fexc that results when phase resonance for the sensor
oscillation is maintained (see section 3.2) while measuring along the data recording
path [99]. The resulting ∆f(zp) curve is a convolution of the covered part of
the force curve F z

ts(zts) and a kernel depending on the stabilised sensor oscillation
amplitude A [46, 47]. A sophisticated analysis of the ∆f(zp) curves measured at
different oscillation amplitudes A yields a precise result for the force curve [53], yet
with an arbitrary origin along the the z-axis. In theoretical modelling and analysis
of tip-sample interactions, it has been established as a standard to represent force
curves as F z

ts = F z
ts(zmin

ts ) [47]. Due to the practical inaccessibly of zmin
ts for the

representation of experimental force curves, an axis ztip that is identical to the
z-axis except for an unknown offset δz0 for the tip starting position is used (see
Figure 4.1(d)). A force curve resulting form analysis of measured data can thus be
described as F z

ts(ztip) where ztip = zmin
ts − δz0.

4.2. Harmonic oscillator and transfer function

In the previous chapter (section 3.1) various force sensors utilised in NC-AFM have
been introduced. However, the utilised force sensor type is a detail of the setup and
should not transport enter the general AFM theory. As the oscillation amplitudes
used in NC-AFM are so small that a linear response of the displacement to an
external force can be expected, each force sensor is effectively a oscillating spring,
with the tip mass at its end. Consequently, the oscillation of any force sensor with
respect to the q-axis is mathematically described as a damped, driven harmonic
oscillator. For the interaction-free oscillation, the equation of motion is given by

mq̈(t) + kq(t) + γq̇(t) = Fexc(t) (4.2.1)
Where k is the stiffness of the sensor against static deflection in direction of q,
m the effective mass of the force sensor and γ the internal damping constant.
The externally applied excitation force Fexc(t) drives the sensor periodically with a
frequency fexc causing its periodic displacement q(t) with the same frequency and
the phase φ as response. The eigenfrequency of the harmonic oscillator is given by

f0 = 1
2π

√︄
k

m
(4.2.2)
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4.2. Harmonic oscillator and transfer function

and its quality factor is described by relation

Q0 =
√

km

γ
(4.2.3)

Inserting (4.2.2) and (4.2.3) into (4.2.1) and further considering k ≈ k0 yields the
relation

k0

(2πf0)2 q̈(t) + k0q(t) + k0

2πf0Q0
q̇(t) = Fexc(t) (4.2.4)

for the damped, driven and freely oscillating harmonic oscillator containing solely
properties which characterise the force sensor as introduced in Sec. 3.1. The sta-
tionary solution of equation (4.2.4) can be obtained by a Fourier transformation
ansatz [131]

F [g(t)] (f) = 1√
2π

∫︂ ∞

−∞
g(t)e−2πift dt (4.2.5)

where F [g(t)] (f) is a functional of the frequency f describing the Fourier trans-
formation (frequency spectrum) of the time-dependent function g(t). Applying the
Fourier transformation (4.2.5) allows the consideration of (4.2.4) in the frequency
domain as

k0

(2πf0)2 F [q̈(t)] (fexc) + k0F [q(t)] (fexc) + k0

2πf0Q0
F [q̇(t)] (fexc) = F [Fexc(t)] (fexc)

(4.2.6)
where the following identities regarding Fourier transformations of time derivatives
(derivation shown in Appendix A.4) have been used.

F [ġ(t)] (f) = 2πifF [g(t)] (f) (4.2.7)
F [g̈(t)] (f) = (2πif)2F [g(t)] (f) (4.2.8)

Equation (4.2.6) can be simplified to

F [q(t)] (fexc) = Gho(fexc) · F [Fexc(t)] (fexc) (4.2.9)

where
Gho(fexc) = 1

k0

[︄(︄
1 − f 2

exc
f 2

0

)︄
+ i

fexc

f0Q0

]︄ (4.2.10)

is the complex amplitude transfer function of the harmonic oscillator describing
the amplitude and phase transfer from the excitation to the oscillator response at
the current excitation frequency fexc. The transfer function Gho depends on the
known properties of the oscillator. Equation (4.2.9) shows, that the force sensor
oscillation spectrum F [q(t)] (fexc) depends on both, the externally applied excita-
tion spectrum F [Fexc(t)] (fexc) and the transfer function Gho(fexc). For harmonic
excitation as used in FM NC-AFM, the probe response is a single line spectrum

53



4. Quantitative AFM theory

representing a harmonic oscillation with amplitude and phase that are the experi-
mental observables. The probe oscillation amplitude is proportional to the absolute
value of the complex amplitude transfer function Gho(fexc)

|Gho(fexc)| = 1

k0

⌜⃓⃓⎷(︄1 − f 2
exc
f 2

0

)︄2

+
(︄

fexc

f0Q0

)︄2
(4.2.11)

The phase of the harmonic oscillation results from the fraction between the imagi-
nary and real part of Gho(fexc) and can be described as

φho = arctan2
⎡⎣− fexc

f0Q0
, 1 −

(︄
fexc

f0

)︄2
⎤⎦ =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

arctan

⎛⎜⎜⎜⎜⎜⎝
− fexc

f0Q0

1 −
(︄

fexc

f0

)︄2

⎞⎟⎟⎟⎟⎟⎠ : fexc < f0

−π

2 : fexc = f0

arctan

⎛⎜⎜⎜⎜⎜⎝
− fexc

f0Q0

1 −
(︄

fexc

f0

)︄2

⎞⎟⎟⎟⎟⎟⎠− π : fexc > f0

(4.2.12)
The definition via the arctan2 function is advantageous, as thus the phase φho is
a continuous function of the excitation frequency fexc. The amplitude (4.2.11) and
phase (4.2.12) as function of the normalised excitation frequency fexc/f0 for different
quality factors Q0 are depicted in Figure 4.2 (a) and (b) respectively. The force
sensor oscillation amplitude |Gho|(fexc) has a maximum if the excitation frequency
fexc matches the resonance frequency fres,0 which is described by

fres,0 = f0

√︄
1 − 1

2Q2
0

(4.2.13)

As typical quality factors Q0 of force sensors utilised in NC-AFM are in the magni-
tude of several thousands (see Sec. 3.1), the resonance frequency fres,0 of the freely
oscillating cantilever can be considered as equal to is eigenfrequency f0. The height
and width of the resonance peak at fexc = fres,0 is determined by the respective
quality factor Q0 which is related to the full width half maximum ∆fFWHM of the
peak via relation

Q0 =
√

3 f0

∆fFWHM
(4.2.14)

Hence, small values for Q0 result in lower, broader resonance peaks while larger
values yield higher, sharper peaks. The quality factor of any force sensor can be
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4.2. Harmonic oscillator and transfer function

determined from the width of its resonance peak and relation (4.2.14). For large
values of Q0, the phase φho as function of fexc/f0 approaches at resonance a sharp
step from 0 to −π. For respective smaller values of Q0, that step of φho turns into
a smooth transition from 0 to −π approached asymptomatically.

(a)

(b)

Figure 4.2.: a) Amplitude k0|Gho| and b) phase φho of the driven, damped harmonic
oscillator as function of the normalised excitation frequency fexc/f0
calculated for three different quality factors Q0.

If the excitation parameters are known, the relation (4.2.9) directly yields the sensor
displacement q(t) as solution. For a excitation as

Fexc(t) = Fs + F0 cos(2πfexct) (4.2.15)
containing a static force component Fs and an amplitude F0, the exact solution for
the displacement is given by

q(t) = qs + A cos(2πfexct + φ) (4.2.16)
with the static displacement qs = Fs/k0, the amplitude A = |Gho(fexc)|F0 and the
phase φ = φho(fexc).
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4.3. Tip movement in the force field of the sample

In a dynamic experiment, the tip is periodically brought to close proximity to
a sample surface and senses the normal tip-sample force F z

ts(zts(t), żts(t)) during
its oscillation [44]. Formally, the interaction is composed of conservative forces
parametrised by the tip-sample distance zts(t) (forces as presented in chapter 2)
and dissipative effects due to the tip movement described by the tip velocity żts(t).
Taking conservative and dissipative tip-sample forces F z

ts(zts(t), żts(t)) into account,
the equation of motion of the force sensor with tip-surface interaction is

k0

(2πf0)2 q̈(t) + k0q(t) + k0

2πf0Q0
q̇(t) = Fexc(t) + F z

ts(zts(t), żts(t)) (4.3.17)

Here, the solution as presented in the previous section is no longer expedient,
because F z

ts(zts(t), żts(t)) is dependent on q(t) via the relation zts(t) = z0 + zp + q(t)
(see Section 4.1 and Fig. 4.1(d)). Furthermore, due to the non-linear nature of the
tip-sample interaction force F z

ts(zts(t), żts(t)) in respect to the tip-sample distance
zts, the oscillation of the tip becomes anharmonic. In consequence, the differential
equation (4.3.17) cannot be analytically solved without the knowledge of the tip-
sample interaction F z

ts(zts(t), żts(t)) or using an adequate approximation.

4.3.1. Harmonic approximation

The harmonic approximation is the commonly used approach for solving the equa-
tion of motion (4.3.17) and describing the tip movement in the force field of the
sample. Historically the harmonic approximation found application under several
different names in literature [80, 132, 133, 134, 135, 136]. The first assumption
within the harmonic approximation is, that the force sensor is driven exclusively
harmonically by the excitation force

F̃exc(t) = F0 cos(2πfexct) (4.3.18)

where F0 is the excitation force amplitude and the tilde ~ indicates that the marked
variable originates form the harmonic approximation. The second assumption is,
that the force sensor oscillation q(t) in the force field of the sample is has a harmonic
time dependence described by

q̃(t) = qs + A cos(2πfexct + φ) (4.3.19)

Hence, within the harmonic approximation, the tip deflection q̃(t) in interaction
with the surface is well defined and can fully be described by a limited set of ob-
servable parameters, namely, the static deflection qs, the oscillation amplitude A,
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4.3. Tip movement in the force field of the sample

current excitation frequency fexc and phase φ. Consequently the harmonic approx-
imation effectively acts as a frequency space filter for the force sensor oscillation
q(t) as it provides the probe transfer function at the fundamental mode oscillation
at fexc while higher harmonic components created by the tip-surface interaction
are suppressed. The harmonic approximation is valid if the tip-sample interaction
is merely a small disturbance of the harmonic deflection q̃(t) (the amplitudes of
higher harmonics in q(t) due to tip-surface interaction are negligibly small). As
tip-sample forces measured in NC-AFM are typically small, it is generally accepted
that the harmonic approximation well describes the probe dynamics for a non-zero
tip-sample interaction.

Considering the deflection q̃(t) within the coordinates of NC-AFM (see section 4.1)
the tip-sample distance then is given by

z̃ts(t) = z0 + zp + q̃(t)
= z0 + zp + qs + A cos(2πfexct + φ)
= zc + A cos(2πfexct + φ) (4.3.20)

and the tip-velocity as

̇̃zts(t) = ̇̃q(t) = −2πfexcA sin(2πfexct + φ) (4.3.21)

By applying the harmonic approximation, the equation of motion (4.3.17) can be
simplified to

k0

(2πf0)2
¨̃q(t) + k0q̃(t) + k0

2πf0Q0
q̃(t) = F̃exc(t) + F z

ts(z̃ts(t), ̇̃zts(t)) (4.3.22)

Here the tip movement is predefined by q̃(t), but the measurable parameters qs,
A, fexc and φ contained within depend on the a priori unknown tip-sample force
F z

ts(z̃ts(t), ̇̃zts(t)). Linking a general description of the a priori unknown tip-sample
force F z

ts(z̃ts(t), ̇̃zts(t)) via the equation of motion (4.3.22) with the measurable pa-
rameters qs, A, fexc and φ yields three fundamental equations of the quantitative
AFM theory [44]. These derivations will be shown in the following, starting with
the general description of the tip-sample force F z

ts(z̃ts(t), ̇̃zts(t)) probed by the har-
monically oscillating tip.
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4.3.2. Harmonic tip oscillation and force field model

In this section the tip oscillation in a model force field within the harmonic approx-
imation is exemplified for discussing the general properties of the a priori unknown
tip-sample force F z

ts(z̃ts(t), ̇̃zts(t)) which the tip senses on its path (z̃ts(t), ̇̃zts(t)).
Normally, the tip-sample force F z

ts(z̃ts(t), ̇̃zts(t)) defines the parameters qs, A, fexc
and φ of the tip oscillation described by z̃ts(t) and ̇̃zts(t) However, at this point,
the three AFM equations which solve the equation of motion (4.3.22) and link the
tip-sample force F z

ts(z̃ts(t), ̇̃zts(t)) with the oscillation parameters are not derived
yet. Therefore, in this example, the tip oscillation parameters required by z̃ts(t)
and ̇̃zts(t) are not calculated from the model force, but instead are set to predefined
values assuming an equilibrium state with the model force. The assumed param-
eters for the tip movement in the force field are listed in Table 4.1. First, the tip
movement described by the tip-sample distance z̃ts(t) and ̇̃zts(t) is discussed alone,
and subsequently the model force field is introduced for discussing the sampled force
F z

ts(z̃ts(t), ̇̃zts(t)). In Figure 4.3(a) the tip position z̃ts(t) and (b) the tip velocity
̇̃zts(t) as function of time as well as (c) the tip path in the ̇̃zts(t)-z̃ts(t) plane for one
cycle 1/fexc of the harmonic tip oscillation are depicted. The assumed parameters
for calculation can be found in Table 4.1.

tip oscillation z̃ts(t)
zc 4 nm
A 2 nm
fexc 300 kHz

Table 4.1.: Parameters used for calculation of the harmonic tip oscillation.

The tip-sample distance z̃ts(t) as function of time (Figure 4.3(a)) can be separated
via the tip velocity ̇̃zts(t) into two phases, namely the approach phase (blue) and
retract phase (green). In the approach phase the tip velocity is negative ̇̃zts ≤ 0
(see Figure 4.3(b)), here the tip moves towards the lower turning point zc −A of its
oscillation reducing its distance zts(t) to the sample (see Figure 4.3(a)). In return, a
positive tip velocity ̇̃zts ≥ 0 resembles the retract phase from the sample surface, as
here the tip moves away from the sample increasing the tip-sample distance zts(t).
In the ̇̃zts-z̃ts plane, the tip movement over one oscillation cycle 1/fexc is an ellipsoid
with its centre at [z̃ts, ̇̃zts] = [zc, 0] that is drawn as a circle by the choice of scaling
in Figure 4.3(c). On this ellipsoidal path the tip-sample force F z

ts(z̃ts(t), ̇̃zts(t)) is
probed by the tip.

For exemplification of a equilibrium state oscillation of the tip in interaction, it
can be assumed that the force field of the sample F z

ts(zts, żts) is a mathematically
smooth function in respect to zts and żts [44]. Following Borel’s lemma [131] the
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4.3. Tip movement in the force field of the sample

(a)

(b)

(c)

Figure 4.3.: Movement of the tip during harmonic oscillation. (a) Tip-sample dis-
tance z̃ts(t) and (b) tip velocity ̇̃zts(t) as function of time t as well as
the (c) tip path in the ̇̃zts(t)-z̃ts(t) plane for one cycle 1/fexc of the
harmonic tip oscillation. The movement consist of two phases, the ap-
proach phase (blue) and the retract phase (green) differentiated by the
different sign of the tip velocity ̇̃zts(t). The static case for ̇̃zts = 0 is
indicated by a black dashed line. Parameters for calculation are shown
in Table 4.1.

tip-sample force, as every other smooth function, can be developed in a Taylor
series as

F z
ts(zts, żts) = F z

ts(zts) +
∞∑︂

n=1
cnżn

ts (4.3.23)

Here the n = 0 term is the conservative distant-dependent static tip-sample force
F z

ts(zts) which is independent of żts. The rest of the polynomial describes the force
contributions dependent on the tip velocity żts. Considering the power of żts, the
terms of that polynomial can be separated into even and odd contributions with
respect to żts. The even contributions will be indifferent during approach and
retract phase of the tip, while the odd contributions will change their sign dependent
on the direction of the tip velocity żts.

To exemplify the effect of both contributions, an arbitrary force field F z
ts(zts, żts) is

calculated based on the Taylor series (4.3.23). The static force F z
ts(zts) is modelled

by F model1
ts (zts) (see equation 2.4.33) using the parameters listed in Table 2.6. The

remaining polynomial is terminated after n = 3 for convenience and the coefficients
c1, c2 and c3 are arbitrarily chosen to the values as listed in Table 4.2. The resulting
force field F z

ts(zts, żts) contains an equal number of even and odd terms with respect
to żts.
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tip velocity coefficients
c1 1 nN s m−1

c2 30 nN s2 m−2

c3 5 µN s m−3

Table 4.2.: Parameters used for calculation of the force field F z
ts(zts, żts).

In Figure 4.4(a) the force field F z
ts(zts, żts) is shown as function of tip-sample distance

zts and the tip-velocity żts (grey surface plot). The path of the conservative static
force F z

ts(zts) (as known from Fig. 2.7) is indicated by an orange line. The tip
oscillates harmonically (as described before in Fig. 4.3(c)) in the force field of the
sample F z

ts(zts, żts) sensing the interaction force F z
ts(z̃ts(t), ̇̃zts(t)) on its ellipsoid

path described by z̃ts(t) and ̇̃zts(t). As the probed tip-sample force on the tip path
F z

ts(z̃ts(t), ̇̃zts(t)) is a function of z̃ts(t) and ̇̃zts(t) which are given within the harmonic
approximation by (4.3.20) and (4.3.21) two general properties can be noted here.
One, the sampled tip-sample force F z

ts(z̃ts(t), ̇̃zts(t)) is a periodic function of time t
with the period T = 1/fexc. The second property of the probed tip-sample force
F z

ts(z̃ts(t), ̇̃zts(t)) results, when considering the equation of motion (4.3.22). As the
harmonic oscillation of the tip in the sample force field follows the excitation force
F̃exc(t) with the phase shift φ, the probed tip-sample force F z

ts(z̃ts(t), ̇̃zts(t)) has to
have the same phase shift φ in respect to the excitation.

Dependent on the respective symmetry of the sample force field F z
ts(zts, żts) with

respect to the tip velocity żts, the sampled interaction force F z
ts(z̃ts(t), ̇̃zts(t)) during

approach phase ̇̃zts(t) < 0 and retract phase ̇̃zts(t) > 0 can differ from each other.
To clarify this, the sampled force F z

ts(z̃ts(t), ̇̃zts(t)) in the [zts, żts = 0, F z
ts(zts)]-plane

of the conservative force has to be considered as shown in Figure 4.4(b). Here,
the interaction force sampled on the approach path F z

ts(z̃ts(t), ̇̃zts(t) < 0) strongly
differs from the interaction force sampled on the retract path F z

ts(z̃ts(t), ̇̃zts(t) > 0).
The consequence is a hysteresis of the sampled force F z

ts(z̃ts(t), ̇̃zts(t)) between the
turning points zc −A and zc +A of the tip oscillation. This yields dissipative effects,
as the enclosed area

∮︁
F z

ts(z̃ts(t), ̇̃zts(t)) dzts in between approach and retract path of
the sampled force F z

ts(z̃ts(t), ̇̃zts(t)) is the dissipated energy during each oscillation
cycle.

The strength of those dissipative effects depends on the symmetry of the force field
F z

ts(zts, żts) as a function of żts. If there are no odd components with respect to żts in
the force field F z

ts(zts, żts), the sampled interactions on approach and retract path are
equal. This is exemplified in Figure 4.4(c), where the sampled force F z

ts(z̃ts(t), ̇̃zts(t))
in the [zts, żts = 0, F z

ts(zts)]-plane for a tip oscillation in a force field F z
ts(zts, żts)

without any odd contributions (c1 = 0 and c2 = 0) is depicted. Here, approach
and retract path are identical which means that the enclosed area and dissipated
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4.3. Tip movement in the force field of the sample

energy are zero. Note, however, that the sampled force F z
ts(z̃ts(t), ̇̃zts(t)) slightly

differs from the static force F z
ts(zts, 0) due to the even force contribution by the tip

velocity ̇̃zts(t). The result of Figure 4.4(c) indicates, that the odd contributions
with respect to żts in the force field F z

ts(zts, żts) of the previous example shown in
Figure 4.4(b) are responsible for the dissipative effects.

In general, the force field and thus the probed tip-sample force F z
ts(z̃ts(t), ̇̃zts(t)) is

a sum of both, even and odd contributions [137, 138, 139, 44]

F z
ts(z̃ts(t), ̇̃zts(t)) = Feven(z̃ts(t), ̇̃zts(t)) + Fodd(z̃ts(t), ̇̃zts(t)) (4.3.24)

Where Feven contains all force contributions to the tip-sample force which are even
in respect to żts yielding

Feven(z̃ts, ̇̃zts) = F z
ts(z̃ts, − ̇̃zts) (4.3.25)

and Fodd contains all force contributions which are odd in respect to żts providing

Fodd(z̃ts(t), ̇̃zts(t)) = −Fodd(z̃ts, − ̇̃zts) (4.3.26)

The even and odd decomposition of the probed tip-sample force F z
ts(z̃ts(t), ̇̃zts(t)) as

shown in relation (4.3.24) is in line with the general mathematical theorem, that
every function can be expressed uniquely as sum of an even and odd functions [131].
Thereby, however, the terms Feven and Fodd are a mathematical description and do
not strictly resemble the separation in conservative and dissipative forces [137, 138,
139, 44]. Based on the periodicity of F z

ts(z̃ts(t), ̇̃zts(t)) and its parity decomposition
(4.3.24) into Feven and Fodd the solution ansatz for the equation of motion (4.3.22)
is developed in the next section.

4.3.3. Ansatz for solving the equation of motion

The probed tip-sample force F z
ts(z̃ts(t), ̇̃zts(t)) on the tip path is a priori unknown.

However, due to its sampling, F z
ts(z̃ts(t), ̇̃zts(t)) is a periodic function with frequency

fexc and as such can be generally expressed as a Fourier series [44]

F z
ts(z̃ts(t), ̇̃zts(t)) = F (0)

even +
∞∑︂

n=1
F (n)

even cos(2πnfexct + φ) +
∞∑︂

n=1
F

(n)
odd sin(2πnfexct + φ)

(4.3.27)

The phase φ accounts for the phase the tip oscillation and tip-sample force (4.3.24)
sampled by it have in relation to the driving force F̃exc(t). The zeroth order n = 0 of
the Fourier series considers a time-independent constant force offset of the sampled
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(a)

(b) (c)

Figure 4.4.: Exemplification of the harmonic tip oscillation in the normal force field
F z

ts(z̃ts(t), ̇̃zts(t)) of the sample (a) as function of the tip-sample distance
zts and the tip velocity żts and (b) its projection to the [zts, żts = 0, F z

ts]-
plane. For comparison, in (c) the [zts, żts = 0, F z

ts]-projection of the tip
oscillation for a force field F z

ts(z̃ts(t), ̇̃zts(t)) without the odd contribu-
tions c1 and c3. The paths of the approach phase żts ≤ 0 and retract
phase żts ≥ 0 of the tip oscillation in the force field F z

ts(z̃ts(t), ̇̃zts(t)) is
indicated by a blue or a green line respectively where an arrow indicates
the movement direction (see also Figure 4.3(c)). The conservative static
force F z

ts(zts) = F model1
ts (zts) is indicated by an orange line. Parameters

used for calculation of the tip movement and force field F z
ts(z̃ts(t), ̇̃zts(t))

are listed in Table 4.1 and in Table 2.6 respectively.

tip-sample force Fts which per definition is even. The coefficients for n ≥ 1 are given
by the Fourier series definition [131] and are expressed via the sampled tip-sample
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force on the tip path Fts(z̃ts(t), ̇̃zts(t)) as

F (n)
even = lim

T →∞

2
T

∫︂ T

0
F z

ts(z̃ts(t), ̇̃zts(t)) cos(2πnfexct + φ) dt (4.3.28)

and

F
(n)
odd = lim

T →∞

2
T

∫︂ T

0
F z

ts(z̃ts(t), ̇̃zts(t)) sin(2πnfexct + φ) dt (4.3.29)

Assuming the tip-sample interaction F z
ts(z̃ts(t), ̇̃zts(t)) as perfectly periodic in 1/fexc

both relations can be simplified to one cycle, yielding

F (n)
even = 2fexc

∫︂ 1/fexc

0
F z

ts(z̃ts(t), ̇̃zts(t)) cos(2πnfexct + φ) dt (4.3.30)

F
(n)
odd = 2fexc

∫︂ 1/fexc

0
F z

ts(z̃ts(t), ̇̃zts(t)) sin(2πnfexct + φ) dt (4.3.31)

Defining the time average for a periodic function f(t) with period T = 1/fexc as

⟨f(t)⟩t = fexc

∫︂ 1/fexc

0
f(t) dt (4.3.32)

allows the description of both Fourier coefficients (4.3.30) and (4.3.31) in a shorter
form:

F (n)
even = 2

⟨︂
F z

ts(z̃ts(t), ̇̃zts(t)) cos(2πnfexct + φ)
⟩︂

t
(4.3.33)

and

F
(n)
odd = 2

⟨︂
F z

ts(z̃ts(t), ̇̃zts(t)) sin(2πnfexct + φ)
⟩︂

t
(4.3.34)

Inserting relation (4.3.24) for the sampled tip-sample force into these relations shows
the validity of these definitions, as in (4.3.33) the product between tip-sample force
and the cosine function extracts exclusively the even force contributions over the
time-average as non-zero. This is also the case for relation (4.3.34) where the
product between all odd force contributions and the odd sine function is the only
non-zero term within the time-average. The corresponding calculations fully shown
in the Appendix A.5.

Note, the simplification of the Fourier coefficients (4.3.28) and (4.3.29) to one oscil-
lation cycle 1/fexc implies that the here derived solution ansatz (4.3.27) describes
the tip-sample force F z

ts(z̃ts(t), ̇̃zts(t)) exclusively in equilibrium states, where the tip
oscillates harmonically in interaction with fixed parameters qs, A, fexc and φ (as as-
sumed in the exemplification before). Hence, changes of the tip-sample interaction
during measurement are only described within the resulting theory by the differ-
ence between equilibrium states before and after the change. Consequently, when
measuring the tip sample force, the time at any mapped data point has to be suf-
ficiently large enough so that the force sensor oscillation can adjust to equilibrium
state in the currently given interaction.
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4. Quantitative AFM theory

4.4. Derivation of three fundamental AFM equations

The developed formalism is used to derive three fundamental AFM equations link-
ing physical properties of the sampled tip-sample force with measurable observables
qs, A, fexc and φ of the tip oscillation and the sensor properties k0, Q0, f0 [44]. The
first step is to calculate the time-averaged form of these equations by evaluating
the Fourier series (4.3.27). Assuming within the harmonic approximation that the
amplitudes are of all higher harmonics are negligible small, all terms higher than
the fundamental mode n = 1 are omitted thereby 1. Evaluating the remaining
Fourier coefficients F (0)

even, F (1)
even and F

(1)
odd using of the equation of motion (4.3.17),

the deflection (4.2.16) and excitation (4.3.18) given by the harmonic approximation
yields the time-averaged form of the three AFM equations (see in Appendix A.5
and A.6.1 for all derivation steps)

⟨︂
Feven(z̃ts, ̇̃zts)

⟩︂
t

= k0qs (4.4.35)⟨︂
Feven(z̃ts, ̇̃zts) · (q̃ − qs)

⟩︂
t

= k0A
2

2

[︄
1 − f 2

exc
f 2

0

]︄
− F0A

2 cos(φ) (4.4.36)

⟨︂
Fodd(z̃ts, ̇̃zts) · ̇̃q

⟩︂
t

= πk0A
2f 2

exc
Q0f0

+ πfexcAF0 sin(φ) (4.4.37)

Where (4.4.35) is the static part of the tip-sample interaction, (4.4.36) describes
influence of the tip-sample force on the sensor oscillation and (4.4.37) describes
the dissipation. All physical properties of the tip-sample interaction in their time-
averaged form are expressed via experimental accessible quantities (see Tab. 4.3).
While the sensor properties (as introduced in Sec. 3.1) are determined indepen-
dently before the experiment [110, 120, 112], the measurable observables of the
sensor oscillation controlled by the PLL and amplitude control are recorded during
experiment. However, due to the time-averages the tip-sample force in relations
(4.4.35)-(4.4.37) is a function of time. For determining the tip-sample force these
relations thus are of limited use in practice, as in experiment all parameters are
measured along the data recording path which is a function of the piezo position
zp. This can be addressed by transforming each time-average over the oscilla-
tion cycle into an spatial-average along the tip sampling path between the turning
points zc − A and zc + A of the tip oscillation. The resulting spatial-average of
the tip-sample force is then a function of the oscillation centre position zc which is
identical to the experimentally accessible piezo position zp except for the coordinate
zero point. The transformation of all time-averages yields the averaging functions
commonly used in AFM, wich will be presented in the next section.

1If higher harmonics of the tip oscillation in the sample force field are of interest, the Fourier
series has to be evaluated respectively further.
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4.5. Averaging functions in AFM and convolution

time-averaged physical measurable sensor
parameters observables properties⟨︂

Feven(z̃ts, ̇̃zts)
⟩︂

t
qs k0⟨︂

Feven(z̃ts, ̇̃zts) · (q̃ − qs)
⟩︂

t
A, fexc, φ, F0 k0, f0⟨︂

Fodd(z̃ts, ̇̃zts) · ̇̃q
⟩︂

t
A, fexc, φ, F0 k0, f0, Q0

of interest in controlled by PLL and determined before
spatial form amplitude control experiment

Table 4.3.: Assignment of the quantities linked by the three fundamental AFM
equations.

4.5. Averaging functions in AFM and convolution

For transforming the time-averages of all AFM equations (4.4.35)-(4.4.37) into
distant-dependent spatial-averages along the tip-sampling path parallel to zts a
projection of their time-dependency to zts has to be realised within the integration.
Due to the harmonic approximation, the time-dependent tip-movement z̃ts(t) and
velocity ̇̃zts(t) are well known as (4.3.20) and (4.3.21). Thus, at any point of time
t within one oscillation cycle T = 1/fexc the position [z̃ts(t), ̇̃zts(t), F z

ts(z̃ts(t), ̇̃zts(t))]
on the circular path of the tip in the force field of the sample is well known (see Fig-
ure 4.4). The general approach for the projection is, to parametrise this movement
directly by the tip-sample distance z̃ts instead of the time t. However, for any given
tip-sample distance z̃ts of the harmonic tip-movement in the sample force field there
are two possible tip-velocities ̇̃zts(zts) and − ̇̃zts(zts) (see Figure 4.4) which in respect
to the tip-sample force generally are not equal F z

ts(z̃ts, ̇̃zts(z̃ts)) ̸= F z
ts(z̃ts, − ̇̃zts(zts)).

This is due to the fact that the tip-sample force F z
ts in general contains even and odd

contributions in respect to the tip-velocity as shown in relation (4.3.24). Gladly,
the first two AFM equations (4.4.35) and (4.4.36) exclusively consider Feven. In
respect to Feven alone, the tip approach and retract path are equal meaning that
both tip-velocities ̇̃zts(z̃ts) and − ̇̃zts(z̃ts) provide the same force Feven(z̃ts, ̇̃zts(z̃ts)) =
Feven(z̃ts, − ̇̃zts(z̃ts)). Hence for an even force in respect to ̇̃zts can be defined

F ◦
even(z̃ts(t)) = Feven(z̃ts(t), ̇̃zts(z̃ts(t))) = Feven(z̃ts(t), ̇̃zts(t)) (4.5.38)

Where F ◦
even(z̃ts(t)) is the force along the ellipsoidal tip sampling path parametrised

exclusively by zts. Based on this definition, the time-averages of the first two AFM
equations (4.4.35) and (4.4.36) can be projected to the tip-sampling path parallel
to zts (see Appendix A.6.2).

Because the third AFM equation (4.4.37) considers the dissipation due to Fodd, the
direct parametrisation as for the even force (4.5.38) is not possible due to the odd
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4. Quantitative AFM theory

parity in ̇̃zts. However, the odd force can be expressed as

Fodd(z̃ts(t), ̇̃zts(t)) = −γts(z̃ts(t), ̇̃zts(t)) · ̇̃q(t) (4.5.39)

where the function γts(z̃ts(t), ̇̃zts(t)) is a damping coefficient defined along the tip
sampling path, which is an even function in respect to ̇̃zts. In analogy to (4.5.38),
the even function γts(z̃ts(t), ̇̃zts(t)) on the tip sampling path can be exclusively
parametrised by the tip-sampling path z̃ts(t) yielding

γ◦
ts(z̃ts(t)) = γ(z̃ts(t), ̇̃zts(z̃ts(t))) = γ(z̃ts(t), ̇̃zts(t)) (4.5.40)

Inserting the relations (4.5.38) and (4.5.39) with (4.5.40) into the time-average
integrals of the AFM equations (4.4.35)-(4.4.37) and transforming those into spa-
tial ones yields two weighted average functions [44] (see full derivations in Ap-
pendix A.6.2). These are the cup-average

⟨f ◦⟩∪ (zc) =
∫︂ +A

−A
f ◦(zc + z)w∪(z) dz (4.5.41)

with the cup-averaging function

w∪(z) = 1
π

√
A2 − z2

(4.5.42)

and the cap-average

⟨f ◦⟩∩ (zc) =
∫︂ +A

−A
f ◦(zc + z)w∩(z) dz (4.5.43)

with the cap-averaging function

w∩(z) = 2
πA2

√︂
(A2 − z2) (4.5.44)

The spatial weighted averages (4.5.41) and (4.5.43) are line integrals along the tip
sampling path projected to zts which is parametrised by z between the turning
points −A and +A of the tip oscillation with respect to zc. Thereby f ◦ describes
the projection of an arbitrary even function f along the tip sampling path to zts.
The coordinate z is the current position of the tip oscillation within the range
[zc − A, zc + A] considered in the integration. While here z is assumed parallel to
zts, in chapter 6 the case of a tip oscillation direction not parallel to zts is discussed.
The corresponding averaging functions w∪ and w∩ as function of the integration
parameter z are depicted in Fig. 4.5(a) and (b) respectively. The cup-averaging
function w∪(z) as depicted in Figure 4.5(a) has the shape of a cup in the interval
z ∈ [−A, A]. The averaging function w∪(z) is big at the turning points of the tip
at z = −A and z = A where the tip velocity is the lowest and becomes small
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4.5. Averaging functions in AFM and convolution

(a) (b)

Figure 4.5.: Averaging functions in NC-AFM as function of the integration parame-
ter z. (a) The cup-averaging function w∪(z) and (b) the cap-averaging
function w∩(z). Both functions are only defined in the range [−A, A]
and become complex for |z| > A.

for high tip-velocities around the oscillation centre z = 0. In contrast, the cap-
averaging function w∩(z) as depicted in Figure 4.5(b) has the shape of a cap. It is
zero at the turning points z = −A and z = A and becomes maximal at the centre
of oscillation z = 0. Both averaging functions w∪(z) and w∩(z) are only defined
within the interval z ∈ [−A, A] and become complex for |z| > A. The cup- and
cap averages in the definitions (4.5.41) and (4.5.43) describe a convolution of the
function f ◦ with either w∪ or w∩ as kernel.

The transformation of the time-averages in the equations (4.4.35)-(4.4.37) to the
spatial cup- and cap-average yields the final expression of the three AFM equations
(Appendix A.6.2)

⟨F ◦
even⟩∪ (zc) = k0qs

⟨k◦
ts⟩∩ (zc) = k0

[︄
1 − f 2

exc
f 2

0

]︄
− F0

A
cos(φ)

⟨γ◦
ts⟩∩ (zc) = − k0

2πf0Q0
− F0

2πfexcA
sin(φ)

(4.5.45)

(4.5.46)

(4.5.47)

where
k◦

ts(zc + z) = dF ◦
even(zc + z)

dz
= dF ◦

even(zts)
dzts

(4.5.48)

is the tip-sample force gradient along the tip-sampling path parametrised by z
parallel to zts. Inserting the AFM equations into the equation of motion (4.3.22)
enables a similar solution as presented for the free harmonic oscillator as shown
in section (4.2) providing an effective amplitude transfer function G′

ho(fexc) and
phase φ′

ho(fexc) (see Appendix A.7). The solution leads the tip oscillation in the
sample force field back to to a free oscillation of the tip with an effective stiffness
k′, damping γ′ and force constant F ′

s .
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4. Quantitative AFM theory

In the AFM equations, the physical quantities F ◦
even, k◦

ts and γ◦
ts are contained in

their convoluted forms ⟨F ◦
even⟩∪, ⟨k◦

ts⟩∩, ⟨γ◦
ts⟩∩. For extracting the physical quanti-

ties from the cup- and cap average, the inverse operation called deconvolution is
required.

4.6. Deconvolution procedure

Several different numerical recipes for deconvolving the cup- and cap-average are
proposed in literature [140, 141, 47, 142]. The basis for the deconvolution is to
obtain averages for several partly overlapping tip sampling paths in the force F z

ts
measured along the data recording path. Thereby it is assumed that the overlapping
tip-sampling paths are parallel to the data recording path.

Far away from the sample at z∞, the force on the entire path of the tip is zero.
Hence, all averages in the AFM equations are also zero. By gradually approaching
the sample with overlapping tip sampling paths, at some point the tip will sample
on a path where F z

ts is not entirely zero. That sampled non-zero Fts gives rise
to a change of the three averages in the AFM equations due to the part of the
path in Fts that has not been sampled before. The difference to the previously
sampled path yields the tip-sample force at the lower turning point zc − A. Based
on this consideration, Sader and Jarvis introduced a formalism [47] from which the
following general deconvolution relations [69]

f ◦(zc − A) = ⟨f ◦⟩∪ (zc)

−
∫︂ z∞

zc−A

⎡⎣√︄ 2A

z − (zc − A)

⎛⎝d ⟨f ◦⟩∪ (z)
dz

−
√︄

2
π

d ⟨f ◦⟩∪ (z + A)
dz

⎞⎠⎤⎦ dz

(4.6.49)

for the cup-average and

f ◦(zc − A) = − ∂

∂zc

∫︂ z∞

zc−A

[︄(︄
1 +

√︄
A

64π(z − (zc − A))

)︄
⟨f ◦⟩∩ (z)

−

⌜⃓⃓⎷ A3

2(z − (zc − A))
∂ ⟨f ◦⟩∩ (z)

∂z

⎤⎦ dz

(4.6.50)

for the cap-average are derived. Here f ◦ is the representative function which is
retrieved from distant-dependent cup-average data in equation (4.6.49) and from a
distant-dependent cap-average data in relation (4.6.50). For a deconvolution it is
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4.6. Deconvolution procedure

required from f ◦ to be a unique function of the tip-sample distance zts over the entire
interval probed by the tip. A criterion which is only fulfilled when f ◦ is exclusively
even in respect to the tip velocity żts [44]. The physical quantities F ◦

even, k◦
ts and

γ◦
ts meet this requirement and therefore can be retrieved from distant-dependent

⟨F ◦
even⟩∪ (zc), ⟨k◦

ts⟩∩ (zc) and ⟨γ◦
ts⟩∩ (zc) data obtained via the AFM equations.

Experimentally, this can be realized by variation of the z-piezo displacement zp
for changing the tip-sample distance while the excitation parameters (F0, fexc)
and observables (qs, A, φ) are measured. Typically therefore zp is reduced from a
given interaction point ∆f(zp) < 0 to the point of small or vanishing interaction
∆f(zp) ≈ 0. Based on the resulting data, the AFM equations (4.5.45)-(4.5.47)
are used for calculating ⟨F ◦

even⟩∪, ⟨k◦
ts⟩∩ and ⟨γ◦

ts⟩∩ as function of zp. Using the
deconvolution relations (4.6.49) and (4.6.50 the physical quantities F ◦

even, k◦
ts and

γ◦
ts as function of ztip can be obtained.

Note, formally the cup- and cap-averages in the AFM equations are denoted by the
dependence of zc = z0 + qs + zp. In experiment, however, the centre position zc
typically is not known, because of the inaccessibility of qs. Therefore here typically
the adjusted piezo position zp is directly used as coordinate having an unknown
offset. For indicating that unknown offset in deconvoluted experimental data, the
coordinate ztip is used.

Considering the AFM equations, in theory, it is possible to obtain the even contri-
bution to the tip-sample force F ◦

even in two different ways. Either by deconvolving
distant-dependent ⟨F ◦

even⟩∪ (zc) data obtained from the first AFM equation (4.5.45)
via relation (4.6.49) or by deconvolving ⟨k◦

ts⟩∩ (zc) from the second AFM equa-
tion (4.5.46) via relation (4.6.50) with subsequent integration along zts. As qs
typically lies below the detectability limits, the latter is the common approach in
FM NC-AFM for obtaining the tip-sample force curve F ◦

even(zmin
ts ) and therefore is

exemplified in the following.

Figure 4.6 shows the convolution of the tip-sample force gradient k◦
ts(zts) and its de-

convolution into the force curve F ◦
even(zmin

ts ). The tip-sample force gradient k◦
ts(zts)

as depicted in Figure 4.6(a) is calculated based on the model force F model1
ts (zts) (see

equation 2.4.33) and the parameters listed in Table 2.6. For calculating the convo-
luted cap-average ⟨k◦

ts⟩∩ (zc) based on relation (4.5.43) as depicted in Figure 4.6(b),
an oscillating tip with amplitude A = 5 nm is assumed.

An example for the convolution between k◦
ts(zc + z) and w∩(z) for zc = 6.5 nm is

shown in the insets of Figure 4.6(a). The tip oscillation position z ranges between
−A and A, wherewith the tip-sample force gradient data ranges from k◦

ts(zc −A) to
k◦

ts(zc+A) (black dashed line) around the current centre position zc and is multiplied
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(a) (b)

(c) (d)

Figure 4.6.: Example for the convolution and deconvolution in AFM. (a) Tip-
sample force gradient k◦

ts as function of zts calculated from model force
F model1

ts (zts) and parameters shown in Table 2.6. The inset shows an ex-
ample for the product of k◦

ts(zc + z) with w∩(z) for assumed oscillation
amplitude A = 5 nm and centre position zc = 6.5 nm. (b) Convolution
⟨k◦

ts⟩∩ as function of zc, the orange dot indicates the point resulting
from the convolution shown in the inset of (a). (c) Frequency shift
∆f as function of zc calculated from (b). (d) Tip-sample force F ◦

even
as function of zmin

ts resulting from the deconvolution procedure based
on the ∆f(zc) data shown in (c). For comparison the model force
F model1

ts (zmin
ts ) is shown as a black dashed line.

with w∩(z) (black line) resulting in the function k◦
ts(zc +z)w∩(z) (orange line). The

integration according to relation (4.5.43) then yields the value of convolution at
the current centre position zc as indicated by the orange point in Figure 4.6(b).
Repeating this procedure along k◦

ts(zts) for any possible centre position of oscillation
zc yields the convoluted cap-average ⟨k◦

ts⟩∩ (zc) as shown in Figure 4.6(b). Based
on the second AFM equation (4.5.46) the frequency shift ∆f(zc) = fexc(zc) − f0 is
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4.6. Deconvolution procedure

calculated from the ⟨k◦
ts⟩∩ (zc) data, assuming a FM NC-AFM measurement with

an eigenfrequency f0 = 300 kHz, a modal stiffness k0 = 45 N m−1 and the phase
φ = −π/2. The calculated ∆f(zc) curve is shown Figure 4.6(c), which would be
the result of a FM NC-AFM measurement for determining a tip-sample force curve.

This is the starting point of the deconvolution procedure for obtaining the tip-
sample force curve F ◦

even(zmin
ts ) with zmin

ts = zc − A. Previous to the deconvolution,
the cap-averaged tip-sample force gradient ⟨k◦

ts⟩∩ (zc) has to be calculated from the
measured ∆f(zc) data using the second AFM equation (4.5.46) with the param-
eters from experiment. Subsequently, the resulting ⟨k◦

ts⟩∩ (zc) data is deconvolved
using relation (4.6.50) yielding the tip-sample force gradient k◦

ts(zmin
ts ), which has

to be integrated along zmin
ts for obtaining the tip-sample force F ◦

even(zmin
ts ) as fi-

nal result. In Figure 4.6(d) the retrieved tip-sample force curve F ◦
even(zmin

ts ) (blue
line) is shown in comparison with the true force curve represented by F model1

ts (zmin
ts )

(black dashed line). The tip-sample force curve F ◦
even(zmin

ts ) deconvoluted from the
measured ∆f(zc)-data reproduces the true tip-sample force with high precision.

While the retrieval of the tip-sample force curve based on theoretical ∆f(zc) data
is straight forward, the accurate quantification of the tip-sample force based on ex-
perimental ∆f(zp) data provides more of a challenge. This is due to noise, thermal
drift and piezo creep imposed on any ∆f(zp) curve measured in an FM NC-AFM
experiment. Hence, the force retrieval from a single taken experimental ∆f(zp)
curve will not necessarily provide the true tip-sample force curve, as systematic er-
ror remain unnoticed. However, several ∆f(zp) curves measured at the same lateral
position on the sample surface have to follow the same tip-sample force law and thus
have to align after their deconvolution if measured correctly. A perfect alignment
inherently indicates that the correct tip-sample force curve is determined. Based
on this idea, the force curve alignment method (FCA) [53] was developed in the
scope of this work which will be presented in the following chapter.
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5. Alignment method for the
accurate and precise
quantification of tip-surface forces

The quantitative interpretation of nanoscale forces requires utmost precision in
measuring and analysing force-distance curves. However, the conceptual difficulties
in describing tip-surface forces have to be seen alongside experimental challenges
that severely limit accurate force measurements with dynamic force microscopy.
Here, a procedure to determine accurate and precise force-distance curves in force
measurements with NC-AFM is introduced [53]. While a single force curve can
be prone to systematic, often unnoticed errors, here the self-consistent retrieval of
interaction forces by an alignment procedure using repetitive measurements with
the force probe oscillating at varied amplitudes is demonstrated. First, evidence
for the correctness of this procedure from model data is given. The force curve, the
actual oscillation amplitude, and thermal drift are correctly determined. Second,
the precision in force measurements by the force curve alignment (FCA) method
is demonstrated by processing experimental data. While the acquisition of single
curves reveals inconsistent results precise force data are delivered with FCA.

The following work initially was published in [53].
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We introduce a procedure to determine accurate and precise force-distance curves in dynamic force mea-
surements utilizing a sharp tip. While single force curves are prone to systematic, often unnoticed errors, we
present their self-consistent retrieval by an alignment procedure using repetitive measurements with the force
probe oscillating at varied amplitude. By processing model data, we show that the procedure provides the valid
force curve, the actual oscillation amplitude, and fully compensates thermal drift. The benefit of the method is
demonstrated by application to experimental data.

DOI: 10.1103/PhysRevB.103.075409

I. INTRODUCTION

The understanding of binding in matter is a great success
of quantum mechanics and over a century, elaborate theories
describing the interaction between atoms and molecules by
electromagnetic forces have been developed [1]. While, for
systems up to a certain size, chemical bonds and physical
interactions can precisely be described by the interaction
between individual atoms, this is not practical and elucidat-
ing for the description of binding between mesoscopic and
macroscopic bodies. For such objects, binding is commonly
discussed in the framework of integral physical interactions
phenomenologically described as adhesion [2]. Most relevant
in nanoscale force measurements, there is no strict border
between these two types of descriptions.

The measurement of forces between atoms, molecules,
and nanoscale objects has been pushed to the physical lim-
its [3–5] and is of great interest in diverse fields of science
and technology including high-resolution analysis of inor-
ganic [6–8], organic [9–11], and biological surfaces [12–14],
three-dimensional (3D) force mapping [15–18], Casimir force
measurements [19], nanomechanical material characterization
[20–24], capillary force studies [25–29], hydration layer anal-
ysis [30–33], the study of atom-specific reactivity [34,35],
mechanochemistry [36–38], quantum dot microscopy [39],
and single-spin detection [40,41]. The technique of noncon-
tact atomic force microscopy (NC-AFM) allows dynamic
force measurements between an oscillating sharp tip and a
surface of any kind, with a resolution down to the atomic
scale [42–45]. Still, the interpretation of force measurements
at the nanoscale is most difficult as this is the crossover regime
where forces between individual atoms and molecules as well
as forces between mesoscopic bodies act together. In this
regime, the force-distance law is not a simple function of the

*These authors contributed equally to this work.
†prahe@uni-osnabrueck.de

Published by the American Physical Society under the terms of the
Creative Commons Attribution 4.0 International license. Further
distribution of this work must maintain attribution to the author(s)
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body separation, but is often described as a sum of contri-
butions based on different models [46]. Utmost precision in
measuring and analyzing a force-distance curve is required to
test models and to quantify the nanoscale interactions.

The conceptual difficulties in describing tip-surface forces
have to be seen alongside experimental peculiarities severely
limiting accurate dynamic force measurements. First, the
primary measurement signal in NC-AFM is not the force,
but the shift in the resonance frequency of a high-Q force
probe oscillating in the force field above the surface [44].
The force curve is derived from frequency shift data by
numerical deconvolution, commonly referred to as force in-
version [47,48]. The result of this inversion can be ill-posed
[49], can exhibit large errors in a range of relevant am-
plitudes [50], or can include severely amplified detection
system noise [51]. Second, the force inversion algorithms
yield valid results only if the oscillation amplitude is known
accurately [48,50]. Third, strong gradients in the force field
make the measurement susceptible to minute deviations of
the probe trajectory from the target curve as they result, for
example, from thermal drift even when applying active drift
compensation [52,53].

In the present paper, we introduce the force curve align-
ment (FCA) method facilitating the accurate and precise
measurement of force curves by circumventing experimen-
tal peculiarities and ultimately removing systematic errors
in widely accepted present practice. The central concept is
the repetitive measurement of the tip-surface interaction with
different probe oscillation amplitudes, delivering a data set,
which is robust against disturbing impacts. While the presence
of systematic errors can hardly be identified from a single
interaction curve, a match of the individual force curves by
an optimisation algorithm enables a self-consistent determina-
tion of the error-free tip-surface interaction force curve. A key
challenge for retrieving the force from frequency shift data
is accurately determining the probe oscillation amplitude A.
The physical oscillation amplitude A is derived from the mea-
sured voltage amplitude VA via the calibration factor S defined
as A = S · VA. The calibration is principally straightforward,
however, obtaining an accurate result is practically most
difficult. Among various methods suggested [54–61], those
involving the tip-surface interaction [55,56,58] ensure that the
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optimisation
nodes
model force

: voltage
amplitude

blue: ascending
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FIG. 1. Stages of model data processing with the FCA method. (a) Simulated frequency shift � f i[zp + �z(t i )] data for six ascending and
six descending voltage amplitudes V i

A (see inset) including thermal drift �z(t ) (see inset). zp denotes the piezo position. (b) Curves F i(ztip ) of
the normal force as a function of the tip position ztip derived from the � f i[zp + �z(t i )] data using the starting value Sγ = 480 nm/V, zero drift,
and the Sader-Jarvis force inversion algorithm [48]. ztip is defined as the minimum tip-surface distance attained in the lower turning point of
the oscillatory tip motion (see Fig. 4 in Appendix A). The dash-dotted line is the model force curve used for generating the artificial frequency
shift data. Black circles are optimization nodes used for the FCA correction. (c) Simplified FCA alignment (without considering thermal drift)
yielding Ssimple = 389 nm/V. (d) Accurate force curves resulting from applying the full FCA procedure yielding SFCA = 415 nm/V. The inset
demonstrates the excellent match between the �z(t i ) corrections resulting from FCA and the artificial �z(t ) input. (e) Residual error εRMS as
a function of S together with the positions of the approximations Sγ and Ssimple as well as the accurate value SFCA.

calibrated amplitude corresponds to the position of the tip.
This is a most important aspect which challenges calibration
methods based on interferometry: Although the latter methods
yield in principle very precise distance measurements as they
use the wavelength or speed of light as a reference of unprece-
dented accuracy [54,59], a slight misalignment of the laser
spot on the cantilever will introduce a systematic error with re-
spect to the tip amplitude relevant for the force measurement.
Conceptually advantageous is the γ -method [55], which is
based on an approximation by the normalized frequency shift
[62]. As demonstrated in Appendix B, this method may yield
reasonably good results under certain conditions, but may also
fail and is, therefore, not suitable when seeking for a highly
accurate calibration. The limitations of the presently available
amplitude calibration procedures have been a major driving
force for developing the FCA method that inherently yields
an accurate value for S. In the following, first the validity of
the FCA method is demonstrated by applying FCA to model
data that are based on measured force curves. Second, the
practicability of FCA is shown by application to experimental
data acquired on a CeO2(111) surface decorated with gold
nanoparticles.

II. FORCE CURVE ALIGNMENT METHOD

Intermediate and final results of a model force measure-
ment run are compiled in Fig. 1 for demonstration and

verification of the FCA method. FCA relies on the measure-
ment of a set of 2N (here: N = 6) tip retraction and approach
cycles, with ascending (blue shadings) and descending (green
shadings) amplitude voltage values V i

A. A set of the corre-
sponding artificial frequency shift � f i(zp) curves [Fig. 1(a)]
is calculated from a model force curve Fmod(ztip) resembling
an experimental measurement (see Appendix A) by applying
the appropriate transformation [44] for the set of voltage
amplitudes V i

A [see inset in Fig. 1(a)] with S = 415 nm/V.
Furthermore, artificial nonlinear thermal drift �z(t ) [see inset
in Fig. 1(a)] is added to the tip positions ztip with magnitudes
and velocities of the drift chosen to match values typically
found in experiments. As a result, the drift-influenced data of
a typical experiment is generated. While the resulting � f i(zp)
curves representing different V i

A as shown in Fig. 1(a) natu-
rally differ from each other due to the amplitude-dependency
of the absolute frequency-shift value [62], curves having the
same V i

A value differ due to the introduced thermal drift �z(t i ).
An estimate for the amplitude calibration factor and ther-

mal drift parameters is used to calculate the corresponding
set of force curves as the starting point for the FCA opti-
mization. We choose Sγ = 480 nm/V as the estimate from
the γ -method [55] (see Appendix B) and start with zero drift.
The set of resulting force curves F i(ztip) calculated with the
Sader-Jarvis algorithm [48] is shown in Fig. 1(b). It is immedi-
ately apparent that all F i(ztip) curves are shifted along the ztip
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axis relative to each other, differ in their slope and curvature,
and none of them coincides with the true force curve that is
known for this simulation and displayed as a dash-dotted line
in Figs. 1(b)–1(d). Similar results are obtained with the matrix
algorithm [47] (see Appendix H).

In a simple version of the FCA optimisation, force curves
F i(ztip) are corrected for the error in S but not for thermal
drift. To this end, six optimization nodes are defined on each
curve [black circles in Figs. 1(b)–1(d)], each belonging to a
set of six given force values along the curve. With one free
parameter, namely S, the optimization procedure recalculates
the curves with iteratively optimized S so that the value for
εRMS representing the RMS value of the deviation between
the optimization nodes of each curve from a chosen refer-
ence curve (the first curve in the data set) is minimized. The
improvement by the optimization is evident from Fig. 1(c)
showing force curves with a reduced spread close to the
true curve. This optimization yields a better estimate for the
amplitude calibration factor of Ssimple = 389 nm/V, however,
the residual spread of the force curves is evidence for their
distortion by thermal drift.

To retrieve the true force curve, we apply the full FCA op-
timization procedure including the adjustment of a third-order
drift polynomial for approximating the thermal drift �z(t )
to the F i(ztip) curves from Fig. 1(b) with results shown in
Fig. 1(d) (see Appendixes E and F for the measurement and
analysis protocol, respectively, and the Supplemental Mate-
rial [63] for the program code). The full optimization yields
12 F i

FCA(ztip) force curves not discernible from each other
and perfectly matching the true force curve. In addition to
fully recovering the artificially obscured force data, the FCA
method yields the correct amplitude calibration factor SFCA =
415 nm/V. The inset in Fig. 1(d) presents an excellent match
between the discrete drift corrections determined by the FCA
optimization and the artificially introduced drift polynomial.
The graph shown in Fig. 1(e) demonstrates the reliability of
the FCA method when applied to a perfect set of data: for
the full FCA optimisation, the function εRMS(S) describing
the residual error exhibits one sharp minimum allowing for a
precise determination of S and the true force curve. Note that
the value of εRMS corresponding to SFCA is nearly ten orders
of magnitudes smaller than it is drawn in Fig. 1(e) and solely
represents the numerical error.

III. RESULTS AND DISCUSSION

The practicability of the method is demonstrated for the
real experimental data shown in Fig. 2. We performed mea-
surements on a well-prepared CeO2(111) surface exhibiting
large flat terraces separated by steps with the height of a
O-Ce-O triple layer [64–66]. Regularly shaped gold clus-
ters with lateral dimensions of typically 10 nm and measured
heights of typically 1 to 3 nm were introduced as nanoscale
irregularities. Two strongly different tips were used to acquire
interaction curves representative for two typical experimental
conditions in dynamic force measurements at room tempera-
ture under ultra-high vacuum conditions (see Appendix D for
details). The first tip was a silicon tip subjected to sputtering
and potential contamination after exposure to the residual gas
and sample contact. This bare silicon tip acts as a represen-
tative for “sharp” tips typically used for NC-AFM imaging.

The second tip was a Pt/Ir-coated silicon tip as typically used
for Kelvin probe force microscopy with a usually larger tip
radius due to the coating. An NC-AFM image of the surface
taken with a silicon tip is shown in the inset of Fig. 2(a). The
two red dots mark typical positions where force curves were
acquired: Central on a single gold cluster (“on-cluster”) and in
a region representing the flat surface (“off-cluster”). Care has
been taken in the latter case to measure forces far away from
clusters, step edges, or other disturbances.

In full analogy to the analysis steps applied to the simulated
data, the graphs in Fig. 2(a) show the original measurements
� f i(zp) taken with the bare silicon tip. At both positions, the
� f i(zp) curves were sampled in 12 approach/retract cycles
with ascending and descending voltage amplitudes V i

A ranging
from 13.3 to 40 mV. Note that data were deliberately not
acquired close to or beyond the minima of the force curves
to avoid any tip change that would severely compromise the
force measurement. The graphs in Fig. 2(b) show the F i(ztip)
data after force inversion but before the optimization. We used
a starting value of S = Sγ = 480 nm/V and assumed zero
drift for the start of on-cluster and off-cluster experiments.

Figure 2(c) represents the result using the full FCA pro-
cedure for this series of measurements. Individual data points
from the aligned force curves are shown as gray dots while
average curves determined for off-cluster and on-cluster mea-
surements are shown as green and orange lines, respectively.
It is immediately apparent that the off-cluster measurement
yields an excellent match of the aligned forces and unambigu-
ously provides the tip-sample force curve. The optimization
yields S = Soff

FCA = (414.6 ± 1.9) nm/V as the accurate result
for this measurement. The specified error reflects the accuracy
of determining the minimum in εRMS as estimated from the
width of the εRMS(S) curve (see Appendix G for details).

The spread across the individual force curves is larger in
the on-cluster data shown in Fig. 2(c), in agreement with
observing a larger spread in the �z(t i ) values (orange line in
the left inset) and an εRMS(Son

FCA) value larger by a factor of 4.4
than εRMS(Soff

FCA) (right inset). The amplitude calibration factor
of Son

FCA = (383 ± 8) nm/V is furthermore smaller than Soff
FCA.

We attribute these differences to a systematic error introduced
by the inclination of the direction of probe oscillation from
the surface normal (α = 12.5◦ for our instrument). The incli-
nation is not compatible with the force inversion algorithm
integrating the weighted frequency shift along the surface
normal (see Appendix C for a discussion). On a homogeneous
and isotropic surface, where the force is a function of ztip
only, the inclination can be compensated by a projection of
the oscillation coordinate to the surface normal. However,
when measuring above a cluster with dimensions comparable
to the tip radius, the tip experiences lateral force gradients
and measurements with different oscillation amplitude will be
differently influenced by them, ultimately resulting in incor-
rect force measurements. This is convincing evidence that the
FCA method is able to unravel so far unnoticed sources for
inaccurate force measurements.

Measurements with the Pt/Ir-coated tip were performed
and analyzed in exactly the same manner with final results
for one representative measurement compiled in Fig. 2(d). For
this probe we find values of Son

FCA = (165.5 ± 0.9) nm/V and
Soff

FCA = (169.3 ± 0.5) nm/V, both significantly smaller than
the value for the silicon tip due to the high optical reflectivity
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FIG. 2. Experimental force measurements on a CeO2(111) surface decorated with gold clusters. Results compiled in (a)–(c) represent
measurements taken with the bare silicon tip while panel (d) displays the final results of measurements performed with a Pt/Ir coated silicon
tip. The steps of force inversion and full FCA optimisation were carried out in exactly the same manner as for the model data analysis shown
in Fig. 1. Measurements were performed for positions at the center of gold clusters (on-cluster) as well as on atomically flat terraces far from
step edges and other disturbances (off-cluster) and are coded with blue/green and black/orange colors, respectively. On-cluster and off-cluster
positions are exemplary shown as red dots in the inset of (a), which is a NC-AFM topography image of the gold decorated CeO2(111) surface
taken with the bare silicon tip. The green and orange curves shown in (c) and (d) are averaged curves of the force curve data plotted as gray
points. The left insets in (c) and (d) display the drift polynomial �z(t ) yielded by the FCA optimisation (solid line) and the deviations from
the mean curve found for the six optimisation nodes (circles). The right insets in (c) and (d) display εRMS(S), similar to Fig. 1(e), for on- and
off-cluster measurements.

of the metal coated cantilever. Other basic observations are
the very same as for the silicon tip, yet, the more slowly
decaying forces highlight the larger tip radius resulting from
the Pt/Ir coating. The difference between Son

FCA und Soff
FCA is

tiny compared to the bare silicon tip measurement. This is
intelligible considering that a tip with a larger tip radius expe-
riences smaller lateral force gradients as the force is averaged
over a larger area.

IV. CONCLUSIONS

The measurements and their analysis in the framework of
FCA deliver a very consistent picture. For a set of high quality
data, the FCA method yields the true tip-surface interaction
force curve free from critical systematic errors as well as an
accurate and highly precise value for the amplitude calibration
factor. It is noteworthy that an accurate value for S is most
important for an accurate determination of the modal sensor
stiffness k0 [67], another key parameter for force measure-
ments. The FCA method can easily be adapted to the needs
of the experiment, specifically, the user can tailor the FCA
optimization function. If a measurement is compromised by
any kind of disturbance that cannot be compensated for by

the user implemented optimization function, force curves will
not coincide what clearly indicates a problem with the dataset
or the chosen correction function. FCA offers great flexibil-
ity in its application as it is compatible with a direct force
measurement as well as with any force inversion algorithm.
This especially concerns force mapping experiments, where
thermal drift that is usually the major problem for long-lasting
measurements, is fully compensated by FCA. Hence, FCA
can equally well be used for static AFM, intermitted contact
AFM, and NC-AFM. It facilitates the quantitative analysis of
force measurements with unprecedented accuracy and preci-
sion in any environment and at any temperature provided the
force curve is deterministic what implies sufficient stability
of tip and surface. It can be anticipated that FCA will have a
significant impact in a large number of fields in physics, chem-
istry, and biology as well as in cross-disciplinary sciences and
nanotechnology.
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FIG. 3. (a) Interaction force F used for the simulations. A combined Morse (green line) and van der Waals (blue line) interaction [69]
is adjusted to fit an experimentally measured force-distance curve (circles). (b) Frequency shift � f and (c) normalized frequency shift γ

calculated for different amplitudes from the force in (a). Experimental data included as circles.

APPENDIX A: MODEL FORCE CURVES

To create a model force curve for testing the FCA method,
we use a combination of Morse and van der Waals interaction
forces for all simulations

Fmodel(zts ) = FMorse(zts ) + FvdW(zts ), (A1)

similar to the separation of interactions in Refs. [46,68]. One
contribution is the force corresponding to the Morse potential

VMorse(zts ) = Eb[2e−κ (zts−σ0 ) − e−2κ (zts−σ0 )], (A2)

describing the short-range interaction by

FMorse(zts ) = 2Ebκ[−e−κ (zts−σ0 ) + e−2κ (zts−σ0 )]. (A3)

The van der Waals force derived by Argento and French [69]
as the force between a cone with half opening angle �, termi-
nated with a half sphere of radius R, and Hamaker constant H

FvdW(zts ) = −HR2(sin � − 1)[(R − ẑ) sin � − R − ẑ]

6ẑ2(R + ẑ − R sin �)2

− H tan �[(ẑ + R) sin � + R cos(2�)]

6 cos(�)(ẑ + R − R sin �)2

(A4)

is used to describe the interaction of the mesoscopic tip with
the surface. Here, ẑ = zts + zoffset, where zoffset describes the
height of the nanotip attached to the mesoscopic tip. Accord-
ingly, we find for the force gradients

kMorse(zts ) = 2Ebκ
2[e−κ (zts−σ0 ) − 2e−2κ (zts−σ0 )] (A5)

kvdW(zts ) = H

6ẑ3(R + ẑ − R sin �)2

× [R{2R2 + 3Rẑ + (2R − ẑ)

× (−2(R + ẑ) + R sin(�)) sin �} + ẑ3 tan2 �].
(A6)

These terms are used within the quantitative AFM framework
[44] to calculate the frequency shift curve � f (zp). The start-
ing point is an experimentally obtained force curve shown as
orange circles in Fig. 3(a). The parameters H , �, and zoffset of
the van der Waals interaction were fitted (with R = 5 nm kept
fixed) to these experimental data acquired on a CeO2(111)

surface with a bare silicon tip. For the Morse potential we
adapted a model for the interaction between Si atoms [50]
with the herein used parameters specified in Table I.

Fiure 3(a) presents the experimental force data (Fexp, cir-
cles) as well as the calculated Morse (FMorse, green), van
der Waals (FvdW, blue), and total (Fmodel, red) force curves.
The latter curves are calculated using the parameters listed in
Table I.

The model force data Fmodel(ztip) is used to calculate
frequency shift � f (zp) curves for representative oscillation
amplitude ranging from about 2 to 20 nm [Fig. 3(b)] with
the quantitative AFM framework [44]. Experimental � f data
are included in Fig. 3(b) and match the simulation result for
A = 8.5 nm as expected from the sensitivity factor and the
chosen voltage amplitude. In a further step, � f (zp) curves are
converted into γ (zp) curves using the definition of the nor-
malised frequency shift [62] [Fig. 3(c)]. This figure highlights
the limitations of the concept of the normalized frequency
shift: even for the two largest amplitudes of 8.29 and 16.6 nm,
the γ (zp) curves do not match.

In Fig. 4 we explain the use of the symbols to describe
the probe position along z. Once the coarse approach is com-
pleted, the tip is positioned by adjusting the piezoposition zp

to yield a certain tip-sample distance zts. While the relative
movement in zp is well known from a respective calibration,
the absolute position zts is a priori not known. As the force
curve F (zts ) does not have a well-defined endpoint, the origin
z = 0 cannot easily be defined and is practically chosen with
an arbitrary offset. In a dynamic measurement, zts is a function

TABLE I. Parameters for the Morse and van der Waals interac-
tions used within the simulations.

Morse interaction
Eb 4.638 zJ
σ0 850 pm
κ 2.50 nm−1

van der Waals interaction
H 357.619 zJ
� 29.7◦

R 5 nm
zoffset 583.04 pm
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FIG. 4. Axis system describing the vertical z positions. The no-
tation follows Ref. [44].

of time and zts(t ) is often assumed as a quasiharmonic oscilla-
tion around the center position zc with amplitude A [44]. The
Sader-Jarvis force inversion algorithm is implemented to yield
the force as a function of the tip-surface distance specified
by the lower turning point ztip of the oscillation. Therefore,
we plot measured frequency shift curves � f (zp) as a function
of the known coordinate zp with an arbitrarily chosen origin.
Likewise, the force curve F (ztip) determined by the force
inversion is plotted as a function of the coordinate ztip with
an arbitrarily chosen origin.

APPENDIX B: γ-METHOD

The γ -method is a well-established standard procedure to
determine the sensitivity factor S based on a sequence of
approach and retract cycles performed with a set of voltage
amplitudes V i

A. These voltage amplitudes represent a priori
unknown physical oscillation amplitudes Ai [55]. For each set
point representing a certain V i

A, the mean tip-sample distance
zc = zts is adjusted by changing the piezo position zi

p to a
value representing the same predefined tip-sample interaction.
Crucially, the tip-sample interaction cannot be measured but
is commonly estimated by the normalised frequency shift
γ = k0A3/2� f / f0 where k0 is the modal probe stiffness, � f
the observed frequency shift, and f0 the probe eigenfrequency
[62].

In the calibration experiment, VA is stepwise increased
and decreased (up and down), while the given normalized
frequency shift γset is kept constant by the choice of an ap-
propriate frequency-shift setpoint � f i

set. As a consequence,
the topography feedback loop adjusts zi

p accordingly. The
amplitude calibration factor Sγ ,z = �zp/�VA is the slope of
the graph in a plot of the piezopositions zi

p as a function of the
voltage amplitudes V i

A. An exemplary result of this procedure
for a silicon tip over the ceria surface is shown in Fig. 5. Note
that in this and all other measurements, the γ -method does
not directly yield Sγ , but Sγ ,z = Sγ cos(α) as the direction of
the oscillation is usually inclined by an angle of α (in the
present setup α ≈ 12.5◦) with respect to the surface normal
(see Appendix C for further details). The Sγ = Sγ ,z/ cos α

value derived from this calibration curve was used as the
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FIG. 5. Determination of the sensitivity factor S utilizing the
γ -method for a silicon probe over a ceria surface. Sγ ,z follows from
the slope of a linear regression and Sγ from a correction for the in-
clination α between the cantilever oscillation and the surface normal
(α ≈ 12.5◦ for the herein used system).

starting value for the force curve alignment in Fig. 1(b) of
the main paper.

The accuracy of the γ -method is analyzed by simulations,
yielding results shown in Fig. 6 together with corresponding
experimental measurements. The realistic model force curve
as described in Appendix A is used for calculating γ (z)
curves for different V 1

A; exemplary γ (z) curves are shown in
Fig. 3(c). Several Sγ measurements were performed exper-
imentally with the same tip for a series of γset values and
three different starting voltage oscillation amplitudes V 1

A (start
values are increased by 25% for the γ -method). Experimental
(circles) and simulated (lines) data for Sγ of these calibra-
tion cycles in Fig. 6 display the determined values for Sγ

as a function of γset and various starting voltage amplitudes
V 1

A . The horizontal line marks the true value of S = SFCA as
obtained by the FCA method. As evident from these data,
the γ -method is prone to errors as the result for Sγ clearly
depends on the chosen parameters. Valid results can only be

FIG. 6. Simulation and experimental results for determining S
using the γ -method. Experimental data are represented by circles
while solid lines are the result of simulations. The value Sγ =
480 nm/V marked by “Fig. 1” is used as the starting value Sγ for
the FCA simulations in Fig. 1.

075409-6

79



ALIGNMENT METHOD FOR THE ACCURATE AND PRECISE … PHYSICAL REVIEW B 103, 075409 (2021)

FIG. 7. Effect of the cantilever inclination towards the sample
surface. The lateral movement of the tip �xn from the measurement
position above an Au cluster is a function of the oscillation amplitude
An

z .

expected for very large start amplitudes A and in the limit
of strong tip-surface interaction γset. For start amplitudes A1

below 5 nm, as are commonly used in NC-AFM imaging, we
note that the Sγ curves do not approach SFCA but are always
offset. In this case, the set point γset cannot be further reduced
beyond about γset ∼ −1.5 fN m1/2 as the minimum of the γ (z)
curve is already located close to this value. Experimental data
in Fig. 6 were taken with a fairly sharp silicon tip interacting
with the CeO2(111) surface. We find that the Sγ offsets and
deviations from SFCA are even larger when using a tip with
a larger tip radius such as a Pt/Ir-coated coated tip (data not
shown). In summary, the γ -method yields an estimate of S
that may be close to the true value, however, it is not a reliable
procedure to determine an accurate value for S.

APPENDIX C: EFFECTS OF CANTILEVER INCLINATION

In many experimental setups, the direction of the probe
oscillation is inclined by a small angle α with respect to the
the surface normal (see Fig. 7). Hence the distinction between
two different amplitudes A and Az is important. The first
one, A, is the physical oscillation amplitude of the cantilever
beam end, while Az is the projection on the surface normal
vector with Az = A cos α. The oscillation voltage amplitude
VA is measured in the experiment. This voltage amplitude is
linked to the physical oscillation amplitude by the sensitivity
factor S = A/VA. Hence a sensitivity factor representing the
vertical component only can be defined as Sz = S · cos α =
Az/VA. Consequently, the cantilever inclination not only re-
quires the distinction between two physical amplitudes A and
Az but also the distinction between two sensitivity factors
S and Sz.

An inclination of the cantilever oscillation to the surface
normal is further relevant when measuring in the vicinity of
a small surface feature (see Fig. 7), as it results in a lateral
displacement �x between the lower and the upper turning
point during every oscillation cycle. Increasing the amplitude
Az results in a larger lateral movement �x of the tip, which can
be described by the relation �x ≈ 2Az tan(α) (for oscillation
amplitudes that are small compared to the cantilever beam
length, the circular trajectory can be well approximated by a

straight segment). While this lateral movement has no effect
on measurements on large, homogeneous, and isotropic areas
of the sample surface, it introduces a systematic error when
measurements of a small object such as a metal cluster are
performed. As Fig. 7 exemplifies, an increase of the amplitude
results in a lateral movement of the tip possibly beyond the
cluster surface area. Thus, the force gradient in the vicinity of
the cluster affect the force measurement, specifically for large
oscillation amplitudes. As the force inversion algorithm does
not take this into account, but rather considers an oscillation
along the surface normal, this results in an erroneous force
curve. As seen in Figs. 2(c) and 2(d) of the main paper, this is
a notable effect.

APPENDIX D: EXPERIMENTAL METHODS

Sample preparation and NC-AFM measurements were
performed in an ultra-high vacuum (UHV) system at a
base pressure in the 10−11 mbar regime. CeO2(111) sur-
faces were prepared on a single crystal (SurfaceNet GmbH,
Rheine, Germany) by cycles of argon ion sputtering (pAr =
10−5 mbar,U = 1.5 kV, I = 15 mA, 5 min) followed by an-
nealing at high temperature (1150 ± 25 K) for 15 minutes, see
Refs. [64,65] for further details. Gold was subsequently de-
posited onto the CeO2(111) sample held at room temperature
by using small gold pieces (Purity: 99.99 + %,Goodfellow)
in a crucible of an electron beam evaporator (type EFM 3i
from Focus GmbH, Huenstetten, Germany). Regularly shaped
gold nanoparticles (typical widths of 10 nm and heights of 1
to 3 nm) were formed in a postdeposition annealing step at a
temperature of about (520 ± 25) K.

NC-AFM measurements were conducted using a modified
[70] commercial ultra-high vacuum AFM/STM instrument
(ScientaOmicron, Taunusstein, Germany) connected to an
R9 (RHK Technology, Troy (MI), USA) SPM controller.
Additionally, an atom tracking system [53] enabled the mea-
surement and compensation of drift during the experiment.
Drift effects were further reduced by a dedicated temperature
control of the laboratory. Kelvin probe force microscopy [71]
with sideband detection was activated to minimize electro-
static background forces. A bias modulation at a frequency
of fel = 1567 Hz and with an amplitude of 1 Vp was used. On
the gold clusters, a local Kelvin signal up to VKPFM = 1.7 V
larger compared to the terraces was observed during the mea-
surements presented here.

Experiments were performed with standard silicon (type
PPP-NCH, Nanosensors, Switzerland, specified tip radius
<10 nm) and platinum iridium (Pt/Ir) coated silicon can-
tilevers (type NCHPt, Nanosensors, Switzerland, specified tip
radius <25 nm). To remove the oxide layer and contaminants,
cantilevers were subjected to argon ion sputtering with the
following parameters: Si cantilever: pAr = 10−5 mbar, U =
0.5 kV, I = 15 mA, 5 min; Pt/Ir-coated cantilever: pAr =
10−6 mbar,U = 0.5 kV, I = 15 mA, 2 min.

A bare silicon and a Pt/Ir-coated silicon cantilever with pa-
rameters f0 = 277523 Hz, k0 = 57.43 N/m, and Q = 22000
(bare silicon) as well as f0 = 277203 Hz, k0 = 18.58 N/m,
and Q = 18900 (Pt/Ir-coated silicon) were used during the
experiments. The cantilever-specific force constants were
measured using the thermal method [67] and the eigenfre-
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further
cycles

FIG. 8. Data acquisition protocol for FCA.

quencies determined with the tip retracted by about 60 nm
from the surface. Due to the system geometry, the direction
of the cantilever oscillation is tilted with respect to the surface
normal by α ≈ 12.5◦.

APPENDIX E: FCA MEASUREMENT PROTOCOL

A set of 2N distance-dependent � f (zp) curves is acquired
with ascending and descending voltage amplitude values
V i

A (V 1
A ,V 2

A , . . . ,V N
A ,V N

A ,V N−1
A , . . . ,V 1

A ).
Data acquisition is started when sufficient time has passed

after the initial approach to reduce piezo creep artefacts. At
this point, atom tracking is activated to measure the residual
drift and to compensate for the linear component by the feed-
forward technique [53]. It is helpful to acquire a “dummy”
curve before the first measurement curve to ensure that the
piezo scanner yields a similar response during the whole mea-
surement set.

An initial estimate for the sensitivity factor S is made using
the γ -method. Using this estimate, a series V 1

A , . . . ,V N
A of

N voltage amplitudes is chosen in the physical amplitude
range of interest. For the first voltage amplitude V 1

A and a
suitable frequency shift setpoint � f1, the unscaled normalised
frequency shift γ 	 = γ1 · f0/(k0S3/2) = (V 1

A )3/2
� f1 is calcu-

lated. The data acquisition procedure for each amplitude value
proceeds along the steps schematically depicted in Fig. 8.
These steps are repeated 2N times for N different amplitudes
using ascending and descending voltage amplitude values.

(1) Atom tracking is used to measure lateral and vertical
drift. Based on this measurement, the linear drift vector for
the feed-forward compensation is updated, feed-forward acti-
vated, and atom-tracking stopped.

(2) The voltage amplitude is set to the next value and the
frequency-shift set point is adjusted according to γ 	. To re-
duce the risk of tip instabilities, the frequency shift setpoint is
increased after increasing the amplitude value and decreased
before decreasing the amplitudes value.

(3) The topography feedback is switched off.
(4) The NC-AFM signals are sampled while ramping zp

through the given range. The zp ramp range has to be chosen
to be at least 2Amax for the largest amplitude Amax for a reliable

FIG. 9. Schematic construction of the struct EXAMPLE_DATA.MAT

in MATLAB.

force calculation. In the present case, we choose amplitudes
up to about 20 nm with a zp range of 60 nm in 25 pm steps.

(5) With the tip held at the largest separation to the sur-
face, the center frequency f0 is readjusted in the phase-locked
loop to compensate for thermal drift of the center frequency.

(6) The tip is then moved back to the surface and the
topography feedback is reactivated.

(7) The procedure is repeated by starting with step 1 until
all voltage amplitude values are processed.

We typically measure a total of 12 or 14 � f (z) curves
per position, thus using six or seven different amplitudes. To
determine nonlinear drift and creep artifacts in the dataset,
it is most helpful to acquire the curves in equidistant time
steps. Hence, the complete FCA measurement protocol is
implemented in a script form to ensure that the curves are
measured in equidistant time steps tcycle.

APPENDIX F: FCA DATA ANALYSIS PROCEDURE

The true force-distance curve is derived from the mea-
sured set of � f (zp) curves by a multiparameter optimization
algorithm. This algorithm is implemented in the MATLAB

method applyFCA explained here in detail. The applyFCA
function requires as input several arguments for the optimisa-
tion process. These are SGFILTPARAM, NODEPARAM, OPTIONS,
DATA_PATH, and SAVE_PATH. SGFILTPARAM is a MATLAB struct
containing information about the frame size and order of
the Savitzky-Golay filter [72] applied during the force in-
version for calculating the derivative [73]. All information
about the node placement on the reference force curve is
saved in the struct NODEPARAM. The OPTIONS struct contains
the options for the built-in MATLAB function FMINSEARCH

utilized by this implementation. Default values suitable for
FCA are included. The results of APPLYFCA are saved in
the directory set in SAVE_PATH and the data file is loaded
from the location given in DATA_PATH. By running the script
RUN_FCA.M, all parameters are set and inserted into the
function APPLYFCA. The complete optimization can directly
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FIG. 10. Schematic overview of the output data of FCA.

be run by using the example data provided in the file EX-
AMPLE_DATA.MAT (see Fig. 9). The corresponding results
(structure of the result struct shown in Fig. 10) are stored in the
file EXAMPLE_DATA_FCARESULT.MAT. This file resides in the
SAVE_PATH folder as the input data after running RUN_FCA.M.
The input data file (here EXAMPLE_DATA.MAT) is copied to
the output folder and thus stored with all generated output
data. The example data fulfill the minimum requirements of
one measured data set as outlined in Fig. 9. The minimum
requirements are matrices with the frequency shift data (field
df ), the voltage amplitudes (field Vamp), the piezopositions
(field zp), the basic cantilevers properties determined in the
experiment (force constant k0, cantilever eigenfrequency f0,
and quality factor Q), and an estimation of the sensitivity
factor Sz which is here stored in the field SzGuess.

The flowchart in Fig. 11 depicts the work flow of the FCA
method as implemented in the script RUN_FCA.M. This script
executes the optimization process in APPLYFCA as the central
routine. In a first step, initial parameters for Sz and for the
drift compensation are calculated. With an initial estimation

FIG. 11. Flowchart for FCA analysis procedure.

for Sz (e.g., by using Sγ ,z), the voltage amplitudes V i
A are

converted to the physical oscillation amplitudes Ai. The drift
is approximated by a third-order polynomial. The initial Sz

value and the polynomial coefficients p1, p2, p3 are saved in
INITPARAM. This four parameter tuple (Sz, p1, p2, p3) is opti-
mized to find a minimum deviation between nodes placed on
the set of force curves utilising the build-in MATLAB function
FMINSEARCH. The force conversion is executed by the script
FEVEN_DECONV.M using the inversion algorithm by Sader and
Jarvis [48]. In the set of force curves, six nodes with equiva-
lent forces are placed within the region of steep slope of every
force curve. To prohibit that the nodes are affected by data out-
liers, every node is averaged over five samples. As a measure
of the curve’s deviation, the RMS deviation (epsRMS) of all
nodes with respect to those of a reference curve is calculated.
Hence, the final EPSRMS value is a measure for the quality
of the optimisation. The reference curve is the first curve of
the measurement set, it is drift free and thus is not affected by
the drift correction but rather only shifted by Sz. The nodes
are placed with respect to the smallest shared absolute force
value of the complete force curve ensemble. This optimization
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FIG. 12. Error analysis for the FCA method. The width of the
εRMS(S) curves 25% above the minimum εRMS value is marked by
horizontal lines. Analysis for (a) silicon and (b) Pt/Ir-coated tip.

routine terminates when a specific threshold value for the
optimization or an iteration limit is reached. This termination
criteria can be set in the OPTIONS struct for FMINSEARCH. Note
that the code strictly uses Sz, the conversion to S has to be
performed with the resulting value.

APPENDIX G: ERROR ANALYSIS

To quantify the quality of the FCA optimization, we in-
troduce an analysis based on the εRMS(S) curves as shown
in Fig. 12. The curves are the result of keeping the opti-
mized drift polynomial constant and calculating εRMS for S
values around the minimal value SFCA. The width of the
curves around the minimum can be interpreted as the un-
certainty of the optimized result due to experimental errors
where a narrow dip in εRMS(S) reflects a small uncertainty
in the optimized force curves. As a conservative estimate
for the accuracy of SFCA, we determine the full width of
the εRMS(S) curve at an εRMS value 25% above the mini-
mum value. This is shown for the measurements with the

silicon [Fig. 12(a)] and Pt/Ir coated cantilever [Fig. 12(b)]
and yields Soff

FCA = (414.6 ± 1.9) nm/V and Son
FCA = (383 ±

8) nm/V for the bare silicon tip and Soff
FCA = (169.3 ±

0.5) nm/V and Son
FCA = (165.5 ± 0.9) nm/V for the Pt/Ir-

coated tip. For both off cluster measurements, S varies by
less than 0.5%, highlighting the robustness of the FCA
method.

APPENDIX H: FCA WITH MATRIX FORCE
INVERSION ALGORITHM

All results in the main paper are based on the FCA method
utilizing the force inversion algorithm introduced by Sader
and Jarvis [48]. In this Appendix we demonstrate that FCA
can be performed equally well with the MATRIX algorithm [47]
for force inversion with the comparison reproducing known
differences between the two algorithms [50].

Figure 13 presents results of FCA with the MATRIX algo-
rithm applied to the datasets from the simulation [Fig. 13(a)]
as well as from the experimental off-cluster measurements
with the silicon [Fig. 13(b)] and Pt/Ir-coated [Fig. 13(c)] tips.
The input data for FCA with the MATRIX algorithm used in
Fig. 13 are identical to the data used in the main paper for FCA
with the Sader-Jarvis algorithm (see Figs. 1 and 2 of the main
paper) besides applying a Savitzky-Golay smoothing filter
[72] with frame size 22 and of order 2 to the frequency shift
� f data. We chose to apply this prefilter as a strategy to yield
similar noise levels in the resulting force data as achieved with
FCA+Sader/Jarvis. In the latter case, a Savitzky-Golay filter
is used at the derivation step (see also Appendix F), however,
a similar strategy for calculating the derivative in the MATRIX

algorithm is not provided. Thus, we revert to filtering the input
� f data.

The results for the sensitivity factor S are virtually identical
to the ones yielded with the Sader-Jarvis algorithm. The force
curves resulting from the simulated data [Fig. 13(a)] show a
perfect overlap and the residual error εRMS represents again
solely the numerical error. An excellent overlap of the force

FIG. 13. Results of the FCA method utilising the MATRIX force inversion algorithm [47] for (a) a simulated data set (identical model force
as in the main paper, see also Fig. 1) and experimental measurements performed with (b) a silicon tip [off-cluster, see also Fig. 2(c)], and (c) a
Pt/Ir-coated tip [off-cluster, see also Fig. 2(d)].
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curves with slightly smaller εRMS values are also found for the
experimental data acquired with the silicon and Pt/Ir-coated
tips. The slight differences in the resulting values, in the
noise levels, and the number of single outliers apparent in
Figs. 13(b) and 13(c) are explained by the different filtering
strategies as outlined before. We found that the sensitivity

values S calculated with FCA+MATRIX slightly differ at dec-
imal places when modifying the filter parameters, yet, these
fluctuations are well within the accuracy of the FCA method.
A detailed discussion on the differences between the two force
inversion algorithms has been presented before by Welker
et al. [50].
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6. Quantitative dynamic force
microscopy with inclined tip
oscillation

With the possibility to precisely measure forces with dynamic AFM using FCA
[53], its revealed that the inclination of the cantilever, leading to an inclination of
the tip oscillation path of usually 10° to 20° with respect to the surface normal, is
not considered in the prevalent description for dynamic AFM. Yet, this inclination
can have a notable effect on force measurements by causing systematic errors in
experimental force data.

In the following manuscript, therefore the mathematical description of dynamic
AFM is extended by a free orientation of the oscillation path and the measurement
of nanoscale forces with an inclined sensor not along the vertical direction z as
is common practice, but rather along an inclined axis w is proposed. This axis
is defined to be parallel to the inclined oscillation path in order to generate the
necessary overlap for the force deconvolution procedures. Using numerical calcu-
lations, first the effects of an inclined tip oscillation for prevalent data acquisition
and analysis protocols are simulated and the resulting systematic deviation are re-
vealed. Second, data acquisition and force recovery along the inclined axis w is
simulated yielding excellent agreement between the raw and recovered data. For a
conservative force field, the resulting force principally contains the same physical
information as a vertical measurement, yet it represents the projection along the
axis w.

Summarising, the following manuscript extends the theory of dynamic AFM by
including the angle of an inclined tip oscillation, discusses the physical consequences
from simulated data on force measurements, and introduces a modified protocol for
AFM-based force measurements with an inclined sensor.

The following work initially was published in [58].
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Abstract
In the mathematical description of dynamic atomic force microscopy (AFM), the relation between the tip–surface normal interac-
tion force, the measurement observables, and the probe excitation parameters is defined by an average of the normal force along the
sampling path over the oscillation cycle. Usually, it is tacitly assumed that tip oscillation and force data recording follows the same
path perpendicular to the surface. Experimentally, however, the sampling path representing the tip oscillating trajectory is often
inclined with respect to the surface normal and the data recording path. Here, we extend the mathematical description of dynamic
AFM to include the case of an inclined sampling path. We find that the inclination of the tip movement can have critical conse-
quences for data interpretation, especially for measurements on nanostructured surfaces exhibiting significant lateral force compo-
nents. Inclination effects are illustrated by simulation results that resemble the representative experimental conditions of measuring
a heterogeneous atomic surface. We propose to measure the AFM observables along a path parallel to the oscillation direction in
order to reliably recover the force along this direction.
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Introduction
Atomic force microscopy (AFM) is a quantitative technique that
allows for probing the force field above a surface in one, two, or
three dimensions. While imaging in a plane parallel to the sur-
face provides nanoscale and atomic structural information [1],
force curves, usually acquired along a recording path
perpendicular to the surface, provide quantitative information
about the details of the tip–surface interaction when properly
analysed [2]. Recently, a universal description of quantitative

dynamic force microscopy based on the harmonic approxima-
tion has been developed [3], yielding three central equations
that link the physical interaction parameters force  and
damping  with the measurement observables static deflec-
tion qs, oscillation amplitude A, and phase φ as well as the exci-
tation parameters frequency fexc and force Fexc. This theory
specifically predicts the distant-dependent frequency shift of a
tip moved perpendicular to a surface for a given force curve.

6. Quantitative dynamic force microscopy with inclined tip oscillation
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Figure 1: Coordinates describing the one-dimensional tip positioning and movement. See main text for description.

Inversion formulae are available that allow for the extraction of
the interaction force from measured frequency-shift data [4,5].

A tacit assumption of all prevalent algorithms for force inver-
sion is that the axis of data acquisition (herein denoted as the
recording path, usually the axis of the piezo scanner, zp) is
parallel to the axis of the oscillation (herein denoted as the sam-
pling path). However, in a typical experimental setup this is not
the case. Instead, angles of 10° to 20° between these two direc-
tions are often present for technical reasons. Consequences of
this inclined AFM cantilever mount have been identified before,
in particular for atomic force microscopy performed in static
(“contact”) mode where an effective spring constant [6-8] has
been introduced and a torque [9,10] as well as load [11]
correction has been applied. Additionally, a tilted cantilever has
been found to lead to a modification of the tip–sample convolu-
tion [12], to enhance the sensitivity of the measurement to the
probe side [13], and to influence results of multifrequency AFM
and Kelvin probe force microscopy [14]. In the presence of a
viscous damping layer, in-plane dissipation mechanisms have
been found to cause systematic changes of the phase shift in
amplitude-modulation AFM depending on the cantilever incli-
nation [15]. Furthermore, it has been proposed to use the pres-
ence of a lateral component in the tip oscillation path for the in-
vestigation of in-plane material properties, such as the in-plane
shear modulus [16]. Last, the influence of the inclination be-
tween oscillation direction and surface plane has been used in
lateral force microscopy to determine the probe oscillation
amplitude [17].

Here, we extend the established mathematical description for
dynamic atomic force microscopy [3] by including free orienta-
tions of the tip sampling and data recording paths. The result-
ing formulae are discussed and implications for precise force
measurements [2] are identified and quantified. Most important-
ly, the data acquisition with an inclined tip sampling path
requires modifications of the experimental procedures and data
analysis protocols for force measurements to avoid systematic
errors in the interpretation of force curve and imaging data.

Results and Discussion
Sensor positioning, sensor displacement, and
tip position
Prerequisite to quantitative force microscopy is a precise defini-
tion of the involved probe and sample coordinates as well as
probe dynamical parameters that are outlined in the following.

In dynamic AFM, the force  acting between a sharp tip and
the surface under investigation is measured as a function of the
tip position  that is usually described in Cartesian coordi-
nates with the origin placed in the sample surface and the z-axis
with unit vector  oriented perpendicular to the surface as
shown in Figure 1. Lateral movements of the tip as applied for
imaging are associated with the x and y axes, while the tip–sur-
face distance zts is measured along the z-axis. In most AFM
implementations, the force measurement is restricted to
nominally measuring the normal component of the tip–sample
force  often denoted by FN. The ideal force curve
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is a measurement of  while the measurement of
 is referred to as force mapping.

To measure the tip–surface force in a dynamic measurement,
the force probe acts as a high-Q oscillator and elastically
responds to  by static and dynamic displacement described
by  with  being the unit vector along the tip sam-
pling path. This path is usually straight and assumed to be
strictly parallel to  Furthermore, we assume an infinitely stiff
sensor in directions perpendicular to  as well as a linear
sensor response along  Then, the static probe response
follows Hooke’s law  with k being the
static sensor force constant [18]. In dynamic mode operation,
the sensor is excited to periodic displacement q(t) = q(t + 1/fexc)
along the q-axis at an excitation frequency fexc.

To bring the tip in the desired range of interaction with the sur-
face and to perform the movements required for imaging, force
mapping, and taking force curves, the sensor is moved by
coarse and fine positioning elements acting at least along the
z-axis. To accomplish this, the sensor is attached to a piezo ele-
ment allowing for fine positioning that, in turn, is attached to a
coarse positioning system. The respective sensor positioning
movements, the sensor oscillation, and its response to the mean
tip–surface force are illustrated in the sketches of Figure 1 for
the case of parallel tip sampling and data recording paths.

Initially, the sensor assembly is moved towards the surface by
the coarse positioning system so that the relaxed piezo rests at
position zcrs and the tip at its starting position z0 (Figure 1a). In
its relaxed state, the z piezo and the force sensor have a length
of  and  respectively. Applying a voltage to the z-piezo
results in an extension of the piezo length lp that is described as
a piezo position zp on the separate axis zp with unit vector 
and with the origin chosen to coincide with the zcrs position
(Figure 1b). As the unit vectors  and  are chosen to point
into the same direction, a piezo extension zp < 0 results in an
approach of the tip towards the surface while zp > 0 indicates a
tip retraction. Coarse and fine approach define the sensor posi-
tion zsen = z0 + zp, which is at this point identical to the tip posi-
tion (tip–sample distance) zts as the force Fts acting on the tip is
unmeasurably small for sufficiently large zts. Upon further ap-
proach of the sensor, however, the tip experiences a measure-
able force, yielding a static sensor displacement qs described on
the q-axis with the origin chosen at zsen, corresponding to the tip
centre position zc = zsen + qs (Figure 1c). As  and  point in
the same direction, a sensor displacement q < 0 corresponds to
a tip movement towards the surface. Note that the tip centre po-
sition zc cannot easily be set or determined as the static sensor
displacement is governed by the a priori unknown force curve.
Furthermore, qs is usually so small that it is at or beyond the

limit of detectability for most NC-AFM implementations. In
dynamic NC-AFM operation, the sensor oscillates with an
amplitude A symmetrical to the static displacement qs with
turning points qs + A and qs − A (Figure 1d). The momentary tip
position at time t can either be described as the displacement
q(t) or as the position zts(t), whereby the lower turning point

 is the point of strongest tip–surface interaction.

While the tip position and sensor dynamics can principally be
well described by the respective positions on the z-axis, this
axis is practically of limited use as its zero point cannot be
defined or determined in a reasonable way. This is due to the
fact that neither zcrs nor  can be determined with atomic-scale
precision, which would be needed for properly taking into
account the force curve  Furthermore, it is conceptu-
ally difficult to define the position of the surface at the atomic
scale. As every force curve acquired on a surface diverges for
zts → 0, the natural choice of the z-axis origin would be the z
value approached by the diverging force. This point is, howev-
er, experimentally not accessible. Instead, precise values for the
piezo position zp and the sensor displacement q(t) are experi-
mentally available. To derive a force–distance curve experimen-
tally, the usual procedure is therefore to apply dynamic AFM
and to measure the distance-dependent shift in frequency,
Δf(zp), of the sensor excitation frequency fexc that results when
phase resonance for the sensor oscillation is maintained
throughout the measurement [19]. The resulting curve Δf(zp) is
a convolution of the covered part of the force curve 
and a kernel depending on the stabilised sensor oscillation
amplitude A. A sophisticated analysis of the Δf(zp) curves
measured with different oscillation amplitudes A yields a
precise result [2] for the force curve, yet with an arbitrary origin
along the z-axis. In theoretical modelling and analysis of
tip–sample interactions, it has been established as a standard to
represent force curves as  [4,5]. As  is prac-
tically not accessible, for the representation of force curves we
introduce an axis ztip that is identical to the z-axis except for an
unknown offset δz0 for the tip starting position and describe a
force curve resulting from the analysis of measured data as

 where 

Geometry for the inclined sampling path
A tip sampling path inclined relative to the z-axis implies that
the direction of oscillation  is tilted with respect to  as illus-
trated in Figure 2. We introduce the inclined axis w parallel to
the tip sampling path with  pointing in the direction of 
Assuming an inclination angle of α (with 0 ≤ α ≤ π/2) between

 and  any position on the w-axis can be expressed by the
respective position on the ztip-axis by a simple geometrical
transformation. This implies that any sensor movement along zp
is not in line with the tip sampling path. Therefore, one has to

6. Quantitative dynamic force microscopy with inclined tip oscillation
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take into account that the inclined oscillatory motion of the
sensor can invoke significant lateral movement of the tip when
describing the Δf signal formation and force deconvolution. If
the force field  above the surface is
homogeneous and isotropic with respect to the lateral coordi-
nates xts and yts, the inclined axis of sensor oscillation can
be taken into account by using transformed position variables
zp → zp cosα or ztip → ztip cosα.

Figure 2: Coordinate system for considering an inclined oscillation by
introducing the vector  and the axis w.

If no such homogeneity is present, however, the w-axis has to
be taken explicitly into account. The definition of a zero posi-
tion of this w-axis goes along the same lines as the definition of
zero δz0 for the ztip-axis by introducing  and the uncer-
tainty δw0.

For the further discussion, we define the vectorial sensor dis-
placement  as

(1)

Within the harmonic approximation [3], q(t) is given as

(2)

with the static deflection qs, the oscillation amplitude A, the ex-
citation frequency fexc, and the phase φ [3]. In its vectorial

form, the momentary position of the tip  is given as

(3)

(4)

with the centre position  start position  and
piezo position  These quantities generalise the previously
introduced z coordinates zc, z0, and zp, respectively. We further
introduce the reduced amplitude Az as the projection of A on the
surface normal [2]

(5)

Equation of motion for the inclined sampling
path
Next, we derive the three AFM equations [3] linking the AFM
physical parameters with the experimental observables and ex-
citation parameters for a straight tip sampling path with arbi-
trary oscillation direction. The starting point is the differential
equation describing the displacement q(t) in presence of the
tip–sample force field  and excitation force  as
follows

(6)

with the sensor parameters fundamental eigenfrequency f0,
modal sensor stiffness k0 [18], and modal sensor quality factor
Q0. This equation of motion is a one-dimensional differential
equation depending on the tip–sample force component

 following the description in [3,15,16]. The
vectorial tip–sample force can generally be expressed by the
sum of an even,  and an odd,  component

(7)

The deflection q is periodic with Texc =  and the tip–sam-
ple force component  can, therefore, be expressed by the
Fourier sum

(8)
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with the coefficient for n = 0

(9)

and the coefficients for n ≥ 1

(10)

(11)

With the time average defined by [3]

(12)

for an arbitrary function  with projection  the
Fourier coefficients for n ≥ 1 can be expressed in terms of time
averages

(13)

(14)

(15)

AFM equations for the inclined sampling path
The three AFM equations follow from evaluating the Fourier
coefficients   and  The first step is to cal-
culate the time-averaged form of the three equations (see
Appendix section for the derivations)

(16)

(17)

(18)

In a next step, the time averages are transformed to spatial aver-
ages similar to the formerly introduced cup and cap average
functionals [3].

The harmonic approximation constrains the tip movement
within the  phase space to a closed trajectory. Conse-
quently, the parametrisation with a spatial coordinate along
this sampling path requires a parametrisation of the velocity
by this coordinate as well. To reflect this dependency, we
introduce the even force  formally defined by

 as the force along the tip sam-
pling path. Then, we further define the projection of an arbi-
trary function  along the tip sampling path on the oscillation
direction  as  and perform the integration along
the sampling path symmetrically to the centre position  of this
projected quantity  The cup and cap averaging functionals
are then written as

(19)

(20)

These averages have now the structure of line integrals along
the tip sampling path parallel to  spanning the range −A to A
as parameterised by q′.

We furthermore define the tip–sample force gradient along the
oscillation path,  by the derivation of the force along the
oscillation direction, namely

(21)

The three AFM equations follow now from Equation 16, Equa-
tion 17, and Equation 18 as

(22)

(23)

6. Quantitative dynamic force microscopy with inclined tip oscillation
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(24)

whereby the vectorial damping coefficient  and the damping
coefficient  along the oscillation path have been introduced
to write the odd force as

(25)

Force response for the inclined sampling
path
By reinterpreting the cup and cap averaging functionals as line
integrals along the inclined tip sampling path, three AFM equa-
tions were found that represent the general case for a probe
oscillating in an arbitrary direction. A probe orientation differ-
ent from the surface normal and its oscillation in the vector
force field above the surface has important consequences on the
measured force response and appropriate data analysis proce-
dures.

We demonstrate these consequences by simulating the frequen-
cy shift Δf = fexc − f0 in the frequency-modulated AFM mode
for different cases using a Morse potential

(26)

as a model that describes the interaction between two atoms at a
distance d by the parameters Eb = 0.371 aJ, σ0 = 0.235 nm, and
κ = 4.25 nm−1 (adapted from [20]). We use this model for the
pairwise interaction between a tip with a heterogeneous surface
section. The surface section is built by arranging Na = 5 atoms
at zts = 0 nm along the x-axis (with unit vector ) at an
atom–atom distance of da = 0.5 nm. To model a second atomic
species for the heterogeneous surface section, Eb of the central
atom is scaled by a factor of four. A sixth probe atom at posi-
tion  representing the tip is moved within the force field

 calculated from

(27)

Vector  defines the origin of the surface section. In the
following, the central atom is placed at  = (xts, yts, zts) = (0.35,
0, 0) nm. The potential VMorse and the force components

 as well as  are shown in Figure 3a, b,

and c, respectively. A vectorial representation of the force field
in the xts–zts plane is included in Figure 3a.

To illustrate the effects resulting from an inclined tip oscilla-
tion, four cases are discussed. Common to all cases is that the
data recording path, described by the oscillation centre posi-
tions  remains oriented parallel to the -axis, that is, perpen-
dicular to the surface as indicated by the dotted lines in
Figure 3b and Figure 3c. This represents the common experi-
mental protocol. In turn, the sampling path describing the tip
oscillation is inclined by different angles α within the xts–zts
plane with the normalised inclined oscillation vector  = [sinα,
0, cosα]. The tip trajectories during single oscillation cycles at
one fixed  are indicated for each case by dashed lines in
Figure 3b and Figure 3c.

The force component  along the tip path is a scalar quantity
and shown for α = 45° in Figure 3d. Compared to the vertical
component  (see Figure 3c), the shape at the atom positions
is asymmetric and the absolute contrast is diminished as a result
of projecting the vectorial force  onto 

The force gradient  along the tip path and projected to  is
calculated by numerical differentiation along  of the  force
field. The result is used to calculate frequency shift Δf data from
Equation 23 for φ = −π/2. As an example, we use parameters for
a sensor often used in low-temperature environments (tuning
fork sensor [21] with f0 = 30 kHz, k0 = 1800 N/m, and A =
0.45 nm). However, similar effects can be present when using
parameters for other sensors as well. Frequency shift Δf data are
calculated with the piezo axis located at xts = yts = 0 and moving
the tip along zp for data recording, while data are plotted as a
function of 

The solid blue curve in Figure 3e represents case (1) of a per-
pendicular oscillation with  = [0,0,1]. When positioning the
tip along the -axis for data acquisition, this case allows for a
reliable determination of the interaction force  by applying
known inversion strategies [2,4,5].

Next, the tip inclination is set to α = 12.5° within the xts–zts
plane as case (2) shown in yellow in Figure 3b and Figure 3c.
The corresponding Δf(2)( ) curve (dash-dotted yellow in
Figure 3e) is different from the blue Δf(1)( ) curve. This is
expected as the lower turning point moved sideways and the cap
averaging is performed along a different path than in case (1).
Note that in contrast to case (1), the tip sampling path has no
overlapping segments when moving the tip along zp. In case (3),
the lateral movement of the lower turning point is compensated
by subtracting the vector  = [Δx, 0, Δz] with Δx = −Asinα
and Δz = A(1 − cosα) from  The resulting Δf(3)( ) data
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Figure 3: (a) Potential, (b) lateral force component, and (c) vertical forces for a pairwise Morse interaction summed over five surface atoms (positions
of two atoms indicated by red points in (a), further atoms are located outside of the shown region to model a surface section). The sampling paths
along the oscillation (dashed lines) as well as data recording paths (dotted lines) are included for four cases in (b,c). (d) Projection of the interaction
force on the -axis. (e) Δf( ) curves calculated for four different inclination angles and starting points.

included as a dashed red curve in Figure 3e deviates from all
other curves.

When further increasing the inclination angle α as in case (4),
the deviation becomes larger as presented by the violet dotted
curve in Figure 3e for α = 45°. Last, we note that lateral compo-
nents are virtually absent for large tip–sample distances in this
model, leading to a convergence of the Δf( ) curves in the
regime  ≫ 1 nm.

Force deconvolution for the inclined sampling
path
The difference in the orientation of  and  violates a funda-
mental assumption of the commonly used inversion algorithms
[4,5]: The tip sampling path segments are not overlapping when
moving the tip along the data recording path for an inclined
oscillation. The resulting error in the force recovery is shown in
Figure 4c, where the red dashed curve presents the recovered

force for the case of an oscillation inclined by α = 12.5° and Δf
data recorded along  As is apparent, the force curve does not
match the model reference curve,  included as the
solid black line. In contrast, the force curve recovered for the
vertical oscillation and vertical data recording (  = [0,0,1],
blue curve) matches the reference curve.

As a solution to this issue, we propose to orient the recording
path for acquiring the AFM observables and parameters parallel
to the tip sampling path  describing the tip oscillation. This
modification leads to an overlap of the tip sampling path seg-
ments for nearby positions along the data recording path. There-
fore, the deconvolution using the known algorithms can be per-
formed in the usual manner. Naturally, the result will not repre-
sent the perpendicular force  but rather describes the force
component  along the w-axis, parameterised by the scalar
variable  For a conservative force field, the vertical inter-
action force could in principle be calculated from this result.

6. Quantitative dynamic force microscopy with inclined tip oscillation
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Figure 4: (a) Heterogeneous surface potential with the tip–sample force vector field indicated by arrows (same as Figure 3a). (b) Vertical force com-
ponent with the tip sampling path (dashed lines) and data recording path (dotted lines). (c) Tip–sample forces plotted with respect to the vertical coor-
dinate  (d) Tip–sample forces plotted with respect to the parameter  along the inclined oscillation direction. Remaining small deviations be-
tween the (c) black and blue curves and (d) black and green curves are explained by the approximations present in the Sader–Jarvis algorithm [20].

Additionally, if the full force field is of interest, this can be
extracted by systematic measurements of many Δf curves using
the appropriate experimental procedures [22].

Simulation results for moving the tip along the inclined path
during data acquisition and extracting the force along this path
are presented in Figure 4d by the green curve. The force along
this data recording path is correctly recovered as shown in
Figure 4d where the green dash-dotted curve closely matches
the model curve (in solid black) extracted along this path. Note
that the force along an inclined w-axis is different from the
vertical interaction force along 

Conclusion
Several conclusions can be drawn from extending the mathe-
matical description of dynamic force microscopy by arbitrary
tip sampling and data recording paths. For a typical inclination
of α = 12.5°, the minimum force was calculated to differ by

more than 5% when compared to a result not taking the inclina-
tion into account. The magnitude of this difference depends on
the model parameter choice and geometry: The difference can
be amplified or reduced depending on the oscillation amplitude,
on the interaction potential strength and decay, as well as on the
atomic geometry. For example, edges of finite atomic slabs or
larger atomic clusters generate significant effects. In practice, a
model calculation is required to determine the uncertainty in the
measured force due to the inclined tip oscillation.

Precise forces are measured if the data recording path, here
introduced as the axis w, is aligned parallel to the tip sampling
path, here described as the vector  The resulting measured
force represents the component  of the tip–sample force
along this direction. Despite the formal and quantitative differ-
ence from the commonly considered vertical component

 the component along w delivers identical physical
insights into the tip–sample interaction.
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Appendix: Mathematical Derivations
AFM Equation 1
The first AFM equation follows from evaluating the Fourier
coefficient  defined by

(28)

The tip–sample force can furthermore be written as a sum of an
even and an odd force

(29)

By definition of an odd force, the time average  eval-
uates to zero. We compare this equation by introducing the
equation of motion (Equation 6) for  and using the fact that
the time average is a linear functional

(30)

With the harmonic approximation (Equation 2) it can directly
be shown that  and qs = ⟨q⟩t. The first
AFM equation directly follows as

(31)

AFM Equation 2
The Fourier coefficient  is defined as

(32)

Within the harmonic approximation (Equation 2), this term can
be written as

(33)

and  be expressed by even and odd forces

(34)

whereby the average  evaluates to zero.
Using the equation of motion (Equation 6), the Fourier coeffi-
cient can be written as

(35)

In full analogy to [3], this equation evaluates to

(36)

whereby the identities 
are used.

AFM Equation 3
The Fourier coefficient  is defined as

(37)

which can be written as

(38)

by using the harmonic approximation, Equation 2. The force is
again expressed as a sum of even and odd contributions

(39)

whereby  evaluates to zero. Using the equation of
motion, Equation 6, this is equal to

(40)

With the identities  this term evaluates to

(41)
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7. Quantitative CFM theory

Charge force microscopy (CFM) is a method for the quantification of nanoscale
charges on, in or above a the sample substrate. It implementation is a major
achievement of the present thesis. In its technical realisation, CFM is similar to
FM-CL-KPFM. However, the quantitative signal evaluation in CFM is based on
the electrostatic model introduced in chapter 2.3.2 and therefore does account for
all charges located in the tip-sample capacitor. As the classical KPFM theory only
considers the contact potential difference voltage VCPD, it is the fringe case of CFM
theory if no charges are located in the considered tip-sample capacitor. In this
chapter, the full formal derivation of the quantitative CFM theory is presented [68,
69, 70].

For formally describing a CFM experiment, the AFM theory has to be expanded
to consider additional spectral components in the displacement spectrum F [q(t)]
which are due to the electrostatic interaction caused by modulation of the potential
difference V between tip and back electrode with frequency fel. To include that
electrostatic interaction in the equation of motion of the tip (4.3.17), the tip-sample
force F z

ts(zts(t), żts(t)) is expanded by the electrostatic force (2.3.29) derived from
the model introduced in section 2.3.2. Considering the resulting tip-sample force
F z

ts(zts(t), żts(t), V ) within the equation of motion of the tip (4.3.17) in case of a
modulation of V with frequency fel yields all additional spectral components in
the displacement q(t) occurring in a CFM experiment. Limiting the harmonic
approximation to the tip movement only and allowing the displacement q(t) to
remain an arbitrary function of time, allows to solve the resulting equation of
motion and to obtain a quantitative description of the full displacement spectrum
F [q(t)] of a CFM experiment containing different mixtures of both frequencies fexc
and fel.

For a shorter notation, in this chapter, Fel represents the force F body
el describing the

electrostatic body-body interaction between the conductive tip and the metallic
sample support as introduced in section 2.3.2.
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7. Quantitative CFM theory

7.1. Modulated electrostatic force contribution to
the tip-sample force

Consider the electrostatic tip-sample force (2.3.29) during an CFM experiment as
described in section 3.3 where a modulated external voltage (3.3.10) is applied
between the tip and the metallic back electrode of the sample. Based on the elec-
trostatic model introduced in section 2.3.2 the voltage V , between tip and sample
support generally is given by relation (2.3.16), where inserting the modulated ex-
ternal voltage (3.3.10) provides

V = −VCPD + Vbias + Vel cos(2πfelt) (7.1.1)

Inserting this into the electrostatic tip-sample force (2.3.29) and rewriting the re-
sulting relation by further using the theorem cos(x)2 = 1

2 (1 + cos(2x)) yields the
relation for the electrostatic force in the CFM experiment [70]

Fel(zts, V ) = Fel,a(zts) (7.1.2)
+ Fel,b(zts) cos(2πfelt)
+ Fel,c(zts) cos(2π(2fel)t)

where

Fel,a(zts) = 1
2

∂Cvoid

∂zts

[︃
(Vbias − VCPD)2 + 1

2V 2
el

]︃
(7.1.3)

− (Vbias − VCPD)
N∑︂

i=1
qi

∂Φ̂void(ri)
∂zts

− 1
2ϵ0

N∑︂
i=1

N∑︂
j=1

qiqj
∂ϕind(ri, rj)

∂zts

Fel,b(zts) = Vel

⎡⎣∂Cvoid

∂zts
(Vbias − VCPD) −

N∑︂
i=1

qi
∂Φ̂void(ri)

∂zts

⎤⎦ (7.1.4)

Fel,c(zts) = 1
4

∂Cvoid

∂zts
V 2

el (7.1.5)

Due to the externally applied modulated voltage (3.3.10) the electrostatic force ex-
hibits three spectral components related to the modulation frequency fel. The term
Fel,a describes the static part of Fel, the second term Fel,b is the first harmonic in
respect to fel and Fel,c is the second harmonic of the modulation at frequency 2fel.
However, these spectral components of Fel only apply for a static tip (fexc = 0)
at a fixed tip-sample distance zts. In a dynamic AFM experiment there will be
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7.1. Modulated electrostatic force contribution to the tip-sample force

more spectral components due to the additional oscillation of the tip zts(t). For
obtaining these spectral components, it is required to consider the modulated elec-
trostatic force (7.1.2) as an additional contribution to the general tip-sample force
F z

ts(zts(t), żts(t)) in the equation of motion (4.3.17) describing the tip oscillation
in the interaction field of the sample. Therefore the tip-sample force is written
analogous to (7.1.2) as [70]

F z
ts(zts(t), żts(t), V ) = F z

ts,a(zts(t), żts(t)) (7.1.6)
+ F z

ts,b(zts(t), żts(t)) cos(2πfelt)
+ F z

ts,c(zts(t), żts(t)) cos(2π(2fel)t)

Where F z
ts,a includes all voltage-independent contributions to the interaction force

and Fel,a. Hence this term is equal to the tip-sample force considered generally in
the previous chapter 4, but is now extended by the static electrostatic interaction
term Fel,a of equation (7.1.2). In return, this means, that Fel,a cannot a priori
be distinguished from all other tip-sample interaction forces by measuring fexc.
The other two terms are due to the modulation of the voltage V between tip and
sample support by fel and thus exclusively describe electrostatic interactions which
provides the identities F z

ts,b = Fel,b and F z
ts,c = Fel,c. Because the electrostatic

force (2.3.29) is conservative, it does not depend on the tip velocity żts in contrast
to some force contributions of F z

ts,a. Hence F z
ts,a is a function of both, tip-sample

distance and tip velocity F z
ts,a = F z

ts,a(zts(t), żts(t)), while Fel,b and Fel,c only depend
on the tip-sample distance zts(t). Consequently, the tip-sample force containing the
modulated electrostatic interaction (7.1.2) can be represented as

F z
ts(zts(t), żts(t), V ) = F z

ts,a(zts(t), żts(t)) (7.1.7)
+ Fel,b(zts(t)) cos(2πfelt)
+ Fel,c(zts(t)) cos(2π(2fel)t)

Inserting this result into the equation of motion (4.3.17), yields an relation de-
scribing movement of the tip in interacting with the sample force field and the
modulated electrostatic force applied for CFM detection as

k0

(2πf0)2 q̈(t) = − k0q(t) − k0

2πf0Q0
q̇(t) (7.1.8)

+ Fexc(t)
+ F z

ts,a(zts(t), żts(t))
+ Fel,b(zts(t)) cos(2πfelt)
+ Fel,c(zts(t)) cos(2π(2fel)t)

As explained in section 4.3.1 an analytical solution of equation (7.1.8) is generally
not possible, because the unknown tip-sample force F z

ts,a and the electrostatic con-
tributions Fel,b and Fel,c are dependent on the tip-sample distance zts(t), which in
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7. Quantitative CFM theory

return is a function of the sensor displacement q(t) (see section 4.1). In the chapter
(4) the harmonic approximation is employed by consequently replacing q(t) with
q̃(t) and zts(t) by z̃ts(t) for solving the equation of motion. However, for describing
a CFM experiment based on the equation of motion (7.1.8) this approach would
not be expedient, as it would eliminate all spectral components other than the
static deflection qs and the first harmonic at frequency fexc from the solution. To
prevent this, the application of the harmonic approximation has to be modified in
the following calculation.

7.2. Harmonic approximation in CFM

For enabling arbitrary spectral components in q(t), the harmonic approximation
is only employed on the tip movement in the force field, but not the sampled
interaction. By doing so, the tip is allowed to sample any spectral component
due to the interaction in q(t) while moving on the fixed path defined by z̃ts(t) and
̇̃zts(t). Formally, this means replacing F z

ts,a(zts(t), żts(t)), Fel,b(zts(t)) and Fel,c(zts(t))
by F z

ts,a(z̃ts(t), ̇̃zts(t)), Fel,b(z̃ts(t)) and Fel,c(z̃ts(t)) while keeping q(t) as an arbitrary
function of time. Employing the harmonic approximation in that way, the equation
of motion (7.1.8) is transformed to

k0

(2πf0)2 q̈(t) = − k0q(t) − k0

2πf0Q0
q̇(t) (7.2.9)

+ F̃exc(t)
+ F z

ts,a(z̃ts(t), ̇̃zts(t))
+ Fel,b(z̃ts(t)) cos(2πfelt)
+ Fel,c(z̃ts(t)) cos(2π(2fel)t)

Where the displacement q(t) can contain any spectral component additional to fexc
while the tip moves in the force field on the fixed path given by z̃ts(t) and ̇̃zts(t)
which are well defined by (4.3.20) and (4.3.21). Note, that zts(t) is a function of
q(t) (see Sec. 4.1), hence, it has to be assumed here that the deflection q(t) behaves
harmonically and its additional spectral components do not significantly affect the
sampling path of the tip [z̃ts(t), ̇̃zts(t)]. Based on this assumption, the equation
of motion (7.2.9) can be solved and all spectral components occurring in a CFM
experiment can be derived.
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7.3. Fourier series development of the periodically sampled force contributions

7.3. Fourier series development of the periodically
sampled force contributions

The tip-sample force (7.1.7) is sampled periodically due to its dependency on the
harmonically oscillating tip-sample distance z̃ts(t). Therefore, its contributions
F z

ts,a(z̃ts(t), ̇̃zts(t)), Fel,b(z̃ts(t)) and Fel,c(z̃ts(t)) are periodic functions as well, having
a cycle time T = 1/fexc and phase φ in respect to the excitation F̃exc(t). All the pe-
riodic functions (due to the dependency on z̃ts(t)) can be developed in Fourier series
for solving equation (7.2.9) in an ansatz similar to that presented in section 4.3.3.

Here, the tip-sample force F z
ts,a(z̃ts(t), ̇̃zts(t)) is equal to the tip-sample force con-

sidered in the AFM chapter 4 containing all voltage-independent tip-sample in-
teractions but also Fel,a(z̃ts(t)). Consequently F z

ts,a(z̃ts(t), ̇̃zts(t)) can be generally
decomposed into an even and odd part F z

ts,a(z̃ts(t), ̇̃zts(t)) = Feven,a(z̃ts(t), ̇̃zts(t)) +
Fodd,a(z̃ts(t), ̇̃zts(t)) in respect to the tip-velocity ̇̃zts (see section 4.3.2 for example).
The complete force contribution F z

ts,a(z̃ts(t), ̇̃zts(t)) can be developed in an Fourier
series equal to relation (4.2.5) yielding

F z
ts,a(z̃ts, ̇̃zts) =F (0)

even,a +
∞∑︂

n=1
F (n)

even,a cos(2πnfexct + φ) (7.3.10)

+
∞∑︂

n=1
F

(n)
odd,a sin(2πnfexct + φ)

where F (0)
even,a is the static force and the Fourier coefficients for n ≥ 1 can be ex-

pressed as

F (n)
even,a = 2

⟨︂
F z

ts,a(z̃ts(t), ̇̃zts(t)) cos(2πnfexct + φ)
⟩︂

t
(7.3.11)

F
(n)
odd,a = 2

⟨︂
F z

ts,a(z̃ts(t), ̇̃zts(t)) sin(2πnfexct + φ)
⟩︂

t
(7.3.12)

using the definition of the time average (4.3.32) for functions periodic in 1/fexc. In
the same manner, the periodic electrostatic contributions Fel,b(z̃ts(t)) and Fel,c(z̃ts(t))
can be developed. However, as the electrostatic model (see section 2.3.2) provides a
purely conservative force (2.3.29), also its components Fel,b(z̃ts(t)) and Fel,c(z̃ts(t))
are conservative and, hence, independent of the tip-velocity żts. For that reason,
both contributions Fel,b(z̃ts(t)) and Fel,c(z̃ts(t)) are even in respect to ̇̃zts and con-
sequently their Fourier series exclusively consider even contributions as

Fel,b(z̃ts) = F
(0)
el,b +

∞∑︂
n=1

F
(n)
el,b cos(2πnfexct + φ) (7.3.13)

Fel,c(z̃ts) = F
(0)
el,c +

∞∑︂
n=1

F
(n)
el,c cos(2πnfexct + φ) (7.3.14)
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7. Quantitative CFM theory

where the Fourier coefficients for n ≥ 1 are given by
F

(n)
el,b = 2 ⟨Fel,b(z̃ts) cos(2πnfexct + φ)⟩t (7.3.15)

F
(n)
el,c = 2 ⟨Fel,c(z̃ts) cos(2πnfexct + φ)⟩t (7.3.16)

As in the considerations of chapter 4, the time-averages over one oscillation cycle
1/fexc have to be transformed into spatial-averages along the tip-sampling path
[zc − A, zc + A]. This is the next step for deriving the CFM relevant spectral
components of the deflection q(t).

7.4. Application of the AFM averaging functions

Within the harmonic approximation, Fourier series (7.3.10), (7.3.13) and (7.3.14)
are truncated after n = 1. Further projecting the time-averages of the remaining
coefficients to the tip-sampling path parallel to zts and inserting these into the
respective Fourier series by also using identities

cos(2πfexct + φ) = 1
A

(z̃ts(t) − zc) (7.4.17)

and

sin(2πfexct + φ) = − 1
2πfexc

̇̃zts (7.4.18)

yields the relations
F z

ts,a(z̃ts, ̇̃zts) ≈
⟨︂
F ◦

even,a

⟩︂
∪

(zc) +
⟨︂
k◦

ts,a

⟩︂
∩

(zc) · (z̃ts(t) − zc) −
⟨︂
γ◦

ts,a

⟩︂
∩

(zc) · ̇̃zts

(7.4.19)
Fel,b(z̃ts) ≈

⟨︂
F ◦

el,b

⟩︂
∪

(zc) +
⟨︂
k◦

el,b

⟩︂
∩

(zc) · (z̃ts(t) − zc) (7.4.20)

Fel,c(z̃ts) ≈
⟨︂
F ◦

el,c

⟩︂
∪

(zc) +
⟨︂
k◦

el,c

⟩︂
∩

(zc) · (z̃ts(t) − zc) (7.4.21)

The respective calculations are similar to the derivations carried out in chapter 4
and appendix A.6. The tip-sample force F ◦

even,a(z̃ts(t)) and the electrostatic con-
tributions F ◦

el,b(z̃ts(t)) and F ◦
el,c(z̃ts(t)) along the tip-sampling path are introduced

analogous to equation (4.5.38). Further, the tip-sample force gradient k◦
ts,a and the

electrostatic force gradients k◦
el,b and k◦

el,c along the sampling path are introduced
analogously to equation (4.5.48) as

k◦
ts,a =

∂F ◦
even,a(zc + z)

∂z
=

∂F ◦
even,a(zts)
∂zts

(7.4.22)

k◦
el,b =

∂F ◦
el,b(zc + z)

∂z
=

∂F ◦
el,b(zts)
∂zts

(7.4.23)

k◦
el,c =

∂F ◦
el,c(zc + z)

∂z
=

∂F ◦
el,c(zts)
∂zts

(7.4.24)
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As the parameter z describes sampling along zts within the oscillation range zc − A
and zc+A, the derivation in respect to z is effectively an derivation in respect to zts.
Hence, the electrostatic force gradients k◦

el,b and k◦
el,c are directly given by derivation

of the modulated electrostatic force (7.1.2) in respect to zts. Furthermore, the odd
force is described by

Fodd,a(z̃ts(t), ̇̃zts(t)) = −γts,a(z̃ts(t), ̇̃zts(t)) · ̇̃zts(t) (7.4.25)

in analogy to relation (4.5.39), where γts,a(z̃ts(t), ̇̃zts(t)) is the tip-sample damping
which is even in respect to żts. Based on this, the tip-sample damping along the
tip-sampling path γ◦

ts,a(z̃ts(t)) can be introduced similar to relation (4.5.40). Note,
however, that the direct derivation of the AFM equations by evaluating F (0)

even,a,
F (1)

even,a, F
(1)
odd,a with the the equation of motion (7.2.9) is not possible here due to

the unknown deflection q(t) and the additional electrostatic interaction terms Fel,b

and Fel,c. Consequently the terms
⟨︂
F ◦

even,a

⟩︂
∪
,
⟨︂
k◦

ts,a

⟩︂
∩

and
⟨︂
γ◦

ts,a

⟩︂
∩

will generally
not be equal to the AFM equations (4.5.45), (4.5.46) and (4.5.47) as they contain
additional contributions of the modulated electrostatic force. These results are
valid under the assumption that the electrostatic modulation does not affect the
tip-sampling path but the spectral components of it appear in the harmonic dis-
placement q(t). In other words, the electrostatic modulation contributions to the
tip-sample interaction detected at fexc are miniscule so that the AFM equations
(4.5.45)-(4.5.47) describe the interaction in good approximation.
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7.5. Solution of the equation of motion

Inserting relations (7.4.19)-(7.4.21) and the harmonic excitation (4.3.18) into rela-
tion (7.2.9) and, further, using the identity cos(x) cos(y) = 1

2 (cos(x − y) + cos(x + y))
yields

k0

(2πf0)2 q̈(t) ≈ −
(︂
k0 −

⟨︂
k◦

ts,a

⟩︂
∩

(zc)
)︂

q(t) (7.5.26)

−
(︄

k0

2πf0Q0
+
⟨︂
γ◦

ts,a

⟩︂
∩

(zc)
)︄

q̇(t)

+ F0 cos(2πfexct)
+
⟨︂
F ◦

even,a

⟩︂
∪

(zc) −
⟨︂
k◦

ts,a

⟩︂
∩

qs

+
⟨︂
F ◦

el,b

⟩︂
∪

(zc) cos(2πfelt)

+
⟨︂
F ◦

el,c

⟩︂
∪

(zc) cos(2π(2fel)t)

+ A

2
⟨︂
k◦

el,b

⟩︂
∩

(zc) cos(2π(fexc + fel)t + φ)

+ A

2
⟨︂
k◦

el,b

⟩︂
∩

(zc) cos(2π(fexc − fel)t + φ)

+ A

2
⟨︂
k◦

el,c

⟩︂
∩

(zc) cos(2π(fexc + 2fel)t + φ)

+ A

2
⟨︂
k◦

el,c

⟩︂
∩

(zc) cos(2π(fexc − 2fel)t + φ)

Where the approximations z̃ts(t)−zc ≈ q(t)−qs and ̇̃zts(t) ≈ q̇(t) are used. These are
due to the way the harmonic approximation is employed here. As it is considered,
that the main sampling path z̃ts(t) of the tip is not affected by the modulated
electrostatic contribution, the deflection q(t) will mainly follow that path whereby
the modulation causes small additional spectral components. In analogy to the
equation of motion solution with the AFM equations as shown in section A.7, the
terms

k′
a = k0 −

⟨︂
k◦

ts,a

⟩︂
∩

(zc) (7.5.27)

γ′
a = k0

2πf0Q0
+
⟨︂
γ◦

ts,a

⟩︂
∩

(zc) (7.5.28)

F ′
s,a =

⟨︂
F ◦

even,a

⟩︂
∪

(zc) −
⟨︂
k◦

ts,a

⟩︂
∩

qs (7.5.29)

can be considered as effective spring constant k′
a, effective damping γ′

a and effec-
tive force offset F ′

s,a of the harmonic oscillator in the force field of the sample with
the additional electrostatic contribution. Inserting these into the equation of mo-
tion (7.5.26) directly shows, that the tip movement in the force field of the sample
with additional contributions of the modulated electrostatic force can be described

106



7.5. Solution of the equation of motion

within the harmonic approximation by a freely oscillating tip with effective param-
eters. Contributions due to the modulated electrostatic force (7.1.2) are considered
as additional parts of the excitation force. Thus, while the tip is mainly driven to
oscillate at fexc it experiences additional driving forces at distinct frequencies given
by the contributions in (7.5.26) which are due to the electrostatic force modulation.
As these contributions are now independent of z̃ts(t) but depend on zc due to the
cup and cap averages, the approximated equation of motion (7.5.26) can be solved
analytically for the resulting deflection q(t) in an analogous manner as presented in
section 4.2. Therefore, using the Fourier transformation (4.2.5) with the identities
(4.2.7) and (4.2.8) leads to

F [q(t)] = G′
ho,a(f)F

[︂
+F ′

s,a (7.5.30)
+F0 cos(2πfexct)
+
⟨︂
F ◦

el,b

⟩︂
∪

(zc) cos(2πfelt)

+
⟨︂
F ◦

el,c

⟩︂
∪

(zc) cos(2π(2fel)t)

+A

2
⟨︂
k◦

el,b

⟩︂
∩

(zc) cos(2π(fexc + fel)t + φ)

+A

2
⟨︂
k◦

el,b

⟩︂
∩

(zc) cos(2π(fexc − fel)t + φ)

+A

2
⟨︂
k◦

el,c

⟩︂
∩

(zc) cos(2π(fexc + 2fel)t + φ)

+A

2
⟨︂
k◦

el,c

⟩︂
∩

(zc) cos(2π(fexc − 2fel)t + φ)
]︃

where

G′
ho,a(f) = 1(︄

k′
a − k0

f 2

f 2
0

)︄
+ 2πfiγ′

a

=
⃓⃓⃓
G′

ho,a(f)
⃓⃓⃓
exp

(︂
iφ′

ho,a(f)
)︂

(7.5.31)

is the corresponding complex amplitude transfer function of the driven harmonic
oscillator in interaction with the sample force field and the modulated electrostatic
force. At the current excitation frequency f ,

⃓⃓⃓
G′

ho,a(f)
⃓⃓⃓

is the length of a vector
in the complex plane pointing in the direction of the corresponding phase angle
φ′

ho,a(f). Both quantities can be calculated analogously as shown in section 4.2
considering the real and imaginary part of G′

ho,a(f). The phase angle φ′
ho,a(f)

is analogue to (A.7.119) but here dependent on k′
a and γ′

a instead. Considering
equation (7.5.30), all spectral components of the sensor deflection F [q(t)] (f) are
directly linked via the transfer function G′

ho,a(f) to the spectral components of the
excitation force and thus are given by

• a static deflection due to the static force components in F ′
s,a,

• a first harmonic mode following the external excitation with fexc,
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7. Quantitative CFM theory

• a first and second harmonic of the electrostatic modulation at the frequencies
fel and 2fel,

• and the sidebands fexc ± fel and fexc ± 2fel

Each of these spectral components can be experimentally measured if a modulated
external voltage (3.3.10) is applied between tip and sample support. In CFM the
spectral components at both sideband frequencies are detected and evaluated.

7.6. CFM detection

A Lock-In amplifier detects a Fourier component F [Vs] (f) of its input signal Vs at
a fixed frequency f within a given bandwidth while filtering noise. For that the
Lock-In requires an additional, well-defined reference signal Vr, which determines
the evaluated frequency f . The Fourier component of the input signal is defined
on the complex plane as

F [Vs] (f) = |F [Vs] (f)| exp(i∆φ(f)) (7.6.32)
= A(f) exp(i∆φ(f)) (7.6.33)

where A(f) = |F [Vs] (f)| is the real amplitude and ∆φ(f) the real phase shift
of the input signal Vs in relation to the reference Vr at the frequency f which
are output by the Lock-In amplifier. Considering the sensor displacement q(t) as
the input signal for a Lock-in amplifier in baseband detection, any of its spectral
components F [q(t)] (f) given in equation (7.5.30) can be quantitatively measured
by setting the frequency f of the reference signal accordingly. Thereby the Lock-in
detected amplitude and phase of the Fourier component F [q(t)] (f) at frequency f
will be dependent on the transfer function G′

ho,a(f) and the spectral component of
excitation force at the same frequency. For CFM, the spectral components of the
displacement q(t) at frequencies fexc ± fel and fexc ± 2fel are detected using two
separate Lock-In amplifiers for side-band detection 1 . The signal within Lock-in
detection at frequency fexc ± fel is given by

F [q(t)] (fexc ± fel) = A(fexc ± fel) exp(i∆φ(fexc + fel)) (7.6.36)
1Note here, that in an experimental FM-CL-KPFM setup the spectral components F [q(t)] (fexc±

fel) and F [q(t)] (fexc ± 2fel) typically are not directly detected from the deflection signal
q(t). Instead the deflection signal q(t) is demodulated at the excitation frequency fexc by
multiplying it with a reference oscillation cos(2πfexct) from the PLL before it is given as input
signal to the Lock-In amplifiers. Effectively that demodulation resembles a shift of all spectral
components of the deflection by fexc. Hence the Lock-in detection of spectral components in
the demodulated signal q(t) cos(2πfexct) at reference frequencies fel and 2fel is equivalent to
detecting the spectral components of the deflection q(t) at frequencies fexc +fel and fexc +2fel
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7.6. CFM detection

where

A(fexc ± fel) =
⃓⃓⃓
G′

ho,a(fexc ± fel)
⃓⃓⃓
· A

2
⃓⃓⃓⟨︂

k◦
el,b

⟩︂
∩

⃓⃓⃓
(7.6.37)

and

∆φ(fexc ± fel) = φ′
ho,a(fexc ± fel) + πHstep(−

⟨︂
k◦

el,b

⟩︂
∩
) (7.6.38)

are the amplitude and phase shift output by the Lock-In amplifier. It is assumed,
that the frequencies of all other spectral components near fexc ± fel are outside of
the set bandwidth of the Lock-in amplifier and, therefore, are completely filtered
out. The amplitude A(fexc ± fel) of the spectral component of the deflection at
excitation frequency fexc ± fel detected by the Lock-in amplifier is given by the
product between the transfer function absolute

⃓⃓⃓
G′

ho,a(fexc ± fel)
⃓⃓⃓

as gain and the
magnitude of the first spectral component of electrostatic force gradient

⃓⃓⃓⟨︂
k◦

el,b

⟩︂
∩

⃓⃓⃓
times A/2. The evaluation of the phase shift ∆φ(fexc + fel) provides information
about the sign of the corresponding spectral component. It consists of the phase
shift of the harmonic oscillator in interaction φ′

ho,a(fexc ± fel) and an additional
phase shift which is π in case that tip-sample force gradient is negative

⟨︂
k◦

el,b

⟩︂
∩

< 0
and zero all other cases. In the equation this additional phase shift therefore is
considered as product with the Heaviside step function Hstep(−

⟨︂
k◦

el,b

⟩︂
∩
).

The second Lock-In detects the signal at frequency fexc ± 2fel which is given by

F [q(t)] (fexc ± 2fel) = A(fexc + 2fel) exp(i∆φ(fexc + 2fel)) (7.6.39)

with

A(fexc ± 2fel) =
⃓⃓⃓
G′

ho,a(fexc ± 2fel)
⃓⃓⃓
· A

2
⃓⃓⃓⟨︂

k◦
el,c

⟩︂
∩

⃓⃓⃓
(7.6.40)

∆φ(fexc ± 2fel) = φ′
ho,a(fexc ± 2fel) + πHstep(−

⟨︂
k◦

el,c

⟩︂
∩
) (7.6.41)

where the Lock-in detected amplitude A(fexc ±2fel) and phase shift ∆φ(fexc ±2fel)
contain information about

⟨︂
k◦

el,c

⟩︂
∩
. By this approach both spectral components of

the electrostatic force gradient
⟨︂
k◦

el,b

⟩︂
∩

and
⟨︂
k◦

el,c

⟩︂
∩

at frequencies fexc + fel and
fexc + 2fel are obtained in a CFM experiment.

which means

F [q(t) cos(2πfexct)] (fel) ⇔ F [q(t)] (fexc ± fel) (7.6.34)
F [q(t) cos(2πfexct)] (2fel) ⇔ F [q(t)] (fexc ± 2fel) (7.6.35)

As the outcome is equal independent of the exact detection approach [70], this rather technical
detail is left out here for a better readability.
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7. Quantitative CFM theory

7.7. Interpretation of CFM signals

In CFM, the bias voltage Vbias is adjusted in a feedback loop to equalize the Lock-In
detected amplitude (7.6.37) of the spectral component of the deflection signal at
frequency fexc ±fel. The adjusted bias voltage Vbias which minimizes the amplitude
A(fexc + fel) of that spectral component is the resulting CFM signal V min

bias . For an
active feedback loop ideally adjusting Vbias = V min

bias the spectral components (7.6.36)
vanish as shown in Figure 3.4(b), which yields

F [q(t) cos(2πfexct)] (fel) = 0 (7.7.42)
⇔ F [q(t)] (fexc ± fel) = 0 (7.7.43)

⇔ A(fexc ± fel) = 0 (7.7.44)
⇔
⟨︂
k◦

el,b

⟩︂
∩

= 0 for Vbias = V min
bias (7.7.45)

Considering the contributions in CFM detection, the spectral component (7.6.36)
only can be minimized if the electrostatic force gradient vanishes due to the adjusted
bias voltage Vbias = V min

bias . Thus, based on equation (7.1.4) and (7.4.23), a relation
for the CFM signal V min

bias can be derived as

V min
bias = VCPD +

N∑︂
i=1

qi

⟨︄
∂2Φ̂void(ri)

∂z2
ts

⟩︄
∩⟨︄

∂2Cvoid

∂z2
ts

⟩︄
∩

(7.7.46)

By introducing the weight function for charges Wq(ri) [69] evaluated at the charge
position ri, the relation (7.7.46) can be written in the compact form

V min
bias = VCPD +

N∑︂
i=1

qiWq(ri) (7.7.47)

The CFM signal V min
bias is the voltage which nullifies the cap-averaged electrostatic

force gradient
⟨︂
k◦

el,b

⟩︂
∩

detected at frequency fexc±fel. In terms of the cycle-averaged
force Fel,b, V min

bias represents the bias voltage where the repulsive charge-dependent
force best counteracts the capacitive force. Hence voltage V min

bias defines the point of
minimum attractive cycle-averaged electrostatic force ⟨Fel,b⟩∩.

The voltage V min
bias contains information on the charges qi located in the tip-sample

capacitor and the contact potential difference VCPD between the tip and the sample
support. Therefore, the voltage V min

bias measured in presence of any charge qi in the
tip-sample capacitor will not be equal to VCPD. The correct evaluation of V min

bias data
requires the precise calculation of the weight function Wq(ri) at each charge position
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7.7. Interpretation of CFM signals

ri. This, in return, requires precise characterisation of the tip-sample capacitor
geometry and its description by accurate tip-geometry models for calculating the
electrostatic capacitance Cvoid(zts) and potential Φ̂void(zts). In chapter 8, different
tip-geometry models are analysed and important model parameter influences on
the voltage V min

bias are identified. For a given electrostatic model, the charges qi and
the contact potential difference VCPD present in the tip-sample capacitor can be
quantitatively retrieved from distant-dependent V min

bias (zts) data (see chapter 8).

While in model calculations the parameters describing tip-sample properties are
well defined and known, in experiments, the parameters required for the consid-
ered model for representing the tip-sample capacitor have to be retrieved from
experimental data. This leads to the second important signal required for the in-
terpretation of experimental CFM data, which is the spectral component (7.6.39)
at frequency fexc ±2fel detected by a second Lock-In. Considering equation (7.6.40)
with relations (7.1.5) and (7.4.24) provides the relation

A(fexc ± 2fel) =
⃓⃓⃓
G′

ho,a(fexc ± 2fel)
⃓⃓⃓A
8 V 2

el

⟨︄
∂2Cvoid

∂z2
ts

⟩︄
∩

(7.7.48)

for the amplitude of each spectral component af frequencies fexc ± 2fel. As the sum
of both amplitudes is measured, the full amplitude at frequency fexc + 2fel is given
by

A2fel = A(fexc + 2fel) =
⃓⃓⃓
G′

ho,a(fexc ± 2fel)
⃓⃓⃓A
4 V 2

el

⟨︄
∂2Cvoid

∂z2
ts

⟩︄
∩

(7.7.49)

Hence, the signal A2fel yields information on the capacitance Cvoid of the tip-sample
system. Measuring A2fel and V min

bias as function of zts allows the quantification of
charges qi located in the tip-sample capacitor on the foundation of a sufficiently
precise electrostatic tip-geometry model in two consecutive evaluation steps (see
chapter 9).
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8. Modelling nanoscale charge
measurements

Here, a detailed investigation of numerous factors that contribute to the measure-
ment observable V min

bias are presented which, consequently, need to be considered
when aiming for quantitative charge measurements. In particular, a dependence on
the oscillation amplitude is unravelled and the influence of the tip geometry and
system parameters such as the dielectric constant are analysed. Furthermore, the
influence of charges depending on their lateral and vertical position is discussed. As
CFM is a non-local technique, it can be shown that charges far away from the tip
position still give a contribution. The conclusive findings are, that charge quantifi-
cation from regular imaging bears many ambiguities, while mapping the progress
of V min

bias with respect to the vertical tip position zmin
ts allows to untangle many of

these contributions on the path to charge quantification.

The following work initially was published in [143].

113



PHYSICAL REVIEW B 108, 085420 (2023)

Modeling nanoscale charge measurements

Daniel Heile , Reinhard Olbrich , Michael Reichling , and Philipp Rahe *

Fachbereich Mathematik/Informatik/Physik, Universität Osnabrück, Barbarastraße 7, 49076 Osnabrück, Germany

(Received 23 November 2022; revised 4 June 2023; accepted 5 June 2023; published 15 August 2023)

The quantitative measurement of charges at the nanoscale yields important insights into fundamental physical,
chemical, or biological processes. In principle, charges can be probed by the sharp tip of a dynamic atomic force
microscope, however, quantitative measurements are still a challenge as a large number of parameters and effects
contribute to the measured signal. Here, we introduce the fundamental framework for charge force microscopy
(CFM) and investigate charges located in, on, or above the surface of a dielectric substrate supported by a
metal electrode. We present a comprehensive analysis of CFM signal generation and, in particular, unravel the
dependency of the CFM signal on the probe oscillation amplitude, on system parameters such as the substrate
dielectric constant or the tip geometry, and on the vertical and lateral position of charges. Most importantly, we
untangle the influence from nearby charges when quantifying the magnitude of a central charge of interest in
presence of many surrounding charges. We find that charge quantification from regular imaging bears many
ambiguities, while mapping the CFM signal perpendicular to the sample surface allows to untangle many
signal contributions. Thus, by accounting for measurement parameters and nonlocal influences, quantitative
measurements are possible with CFM.

DOI: 10.1103/PhysRevB.108.085420

I. INTRODUCTION

Measuring and controlling the charge state of nanoscale
objects is paramount in a large number of research fields in-
cluding catalysis, organic and molecular electronics, quantum
sensors, or energy storage [1–3]. A change in the charge state
of a nano-object can well be detected by dynamic techniques
of measuring forces between a fine tip and the object of
interest with a sensitivity down to single electrons [4–8] and
atomic-scale resolution has been achieved [9,10]. In contrast,
the quantification of the static charge magnitude accumulated
in a nano-object is still most challenging [11]. In addition to
the long-range character of the electrostatic force, the elec-
tric potential distribution governing the tip-surface interaction
critically depends on the nanoscale size and shape of the tip
that can hardly be produced or characterized with the desired
precision.

Here, we address fundamental aspects for an experimental
quantification of charges below, on, or above the surface of
an electrically insulating substrate. Charge measurements are
implemented using the technology of frequency-modulated
(FM) closed-loop (CL) Kelvin probe force microscopy
(KPFM), a nanoscale imaging technique that is rooted in the
measurement of the work function difference between tip and
sample for metal and semiconductor surfaces [12–14]. The
KPFM measurement signal is generally referred to as the con-
tact potential difference (CPD) [15] and the spatial resolution
power is reflected by introducing the concept of both a local
work function [16] as well as a local contact potential differ-
ence [15]. The central measurement parameter in KPFM is the

*prahe@uos.de

bias voltage Vbias applied between the electrically conducting
tip and the conducting sample.

In this work, we investigate charges near a dielectric sup-
port and Vbias refers to the voltage applied between the tip
and a metallic counter electrode. The primary outcome of a
charge measurement experiment is the force-minimizing bias
voltage V min

bias that is the response in the FM-CL force mea-
surement. For our analysis, we build on previous work where
a formalism was outlined allowing a simple representation
of V min

bias in terms of the charges qi and the weighted average
of the second derivatives of the tip-surface electric potential
�void at the charge positions �ri as well as the weighted average
of the second derivative of the void capacitance Cvoid along
the tip-sampling path [17]. Together, these averages provide
a weight function Wq(�ri ) [18], which determines the contribu-
tion of the respective charge to the V min

bias voltage signal. For a
valid interpretation of measurement data, the contact potential
difference between tip and sample support VCPD that is part
of the measured signal V min

bias has to be taken into account.
Measuring V min

bias is further on referred to as the method of
charge force microscopy (CFM).

Here, we investigate by extensive modeling how a static
charge magnitude can be measured by monitoring the CFM
voltage V min

bias when approaching the tip to the surface in the
vicinity of the charge. In particular, we use three different
geometric models for the tip and investigate V min

bias for differ-
ent oscillation amplitudes, different dielectric properties of
the substrate, different charge positions, and different charge
distributions around a central charge of interest. We find that
the CFM voltage acquired as a function of the tip-sample
distance zts is key to charge quantification, while commonly
used imaging bears many ambiguities.

The paper is organized as follows: In Sec. II we review the
physical model, introduce three tip geometries that are used

2469-9950/2023/108(8)/085420(17) 085420-1 ©2023 American Physical Society
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metal electrode

dielectric support

FIG. 1. Geometry of a tip in proximity of a dielectric support
fixed on a metallic counter electrode. Point charges qi (red spheres)
are located between tip and metal electrode. The void (charge-free)
tip-sample capacitor is physically described by the electrostatic po-
tential �void(�r). An external voltage Vbias is applied between tip
and metal counter electrode, while a voltage −VCPD is generated
upon electrical contact between the two metals. The vector �rts =
[xts, yts, zts] describes the momentary tip position with zts being the
tip-sample distance.

for the simulations, and discuss the electrostatic quantities
relevant for Wq(�ri ). The influence of the probe oscillation
amplitude A, the impact of the dielectric constant εs of the
substrate, and effects of the tip geometry on the charge
measurement are analysed in Sec. III. In Sec. IV, we inves-
tigate the influence of the lateral and vertical positions of a
single point charge on the distance-dependent CFM signal.
Section V addresses charge quantification by introducing a
methodology to retrieve the charge of a central pointlike ob-
ject in the vicinity of secondary charges from V min

bias data. We
conclude in Sec. VI with a summary of major results and
propositions for a successful implementation of CFM mea-
surements.

II. ELECTROSTATIC MODEL AND CFM FUNDAMENTALS

A model representation of the tip-sample geometry is
shown in Figs. 1 and 2. The system is described in the
sample coordinate system �r = (x, y, z) where the tip is po-
sitioned at �rts = [xts, yts, zts]. Following previously outlined
definitions [19], the z axis is perpendicular to the substrate
surface, its origin z = 0 is at the surface, and zts is the closest

tip-sample distance during one tip oscillation cycle. The tip is
brought into close proximity to the surface of a thick dielectric
support with relative permittivity εs that is fixed on a metal
plate acting as the counter electrode with respect to the tip.
Charges qi placed at positions �ri in, on, or above the dielectric
support represent point charges or charged nanoscale objects
that are subject of investigation. The model works under the
assumption that the tip is an ideal metal free of excess charge.
The surface of the tip is assumed to be smooth as well as
bare of atomic structure and the tip can be described by a
macroscopic model [20]. A variable voltage Vbias is applied
between tip and counter electrode, while the voltage −VCPD

appears upon establishing electrical contact between tip and
counter electrode.

The electrostatic force Fel acting on the probing tip is
the central quantity for charge quantification as it is funda-
mental for determining the voltage V min

bias . This force can be
calculated from the electrostatic energy of the full physical
setup, whereby the tip-sample system, the point charges, as
well as the external bias supply have to be taken into ac-
count. For the tip-sample system, the electrostatic energy can
be calculated from solving the electrostatic problem for the
given tip and sample geometry including the point charges
and the dielectric support. Additionally, the work performed
by the external bias supply has to be taken into account in
the energy calculation. A solution of the more general elec-
trostatic problem, namely, a system containing an arbitrary
number of metal objects and point charges with an external
battery, has been given before [21]. For our purpose, this
analysis has been reduced to the case of two metals, one
representing the tip and the second the counter electrode, as
well as N point charges [17]. This allows to write the total
electrostatic energy Uel as a sum of four contributions [22],
namely,

Uel = UC + Uq-C + Uq-q + Uim. (1)

The first term UC describes the capacitive interaction between
tip and metal electrode with an interjacent dielectric medium.
This energy is independent of the point charges, but estab-
lishes the quadratical dependence of the interaction force on
Vbias. The quantity governing this contribution is the void
capacitance Cvoid(�rts ), where �rts is the momentary tip position.
By void we denote all quantities of the charge-free system.

S SCLSC

FIG. 2. Cross sections of the three model tips and system geometries: sphere (S), half-sphere and cone (SC), as well as half-sphere and
cone with lever (SCL). The sphere is parametrized by the radius rsphere, the cone by the cone height hcone and half opening angle �cone, and the
lever by the radius rlever and the thickness hlever. The tip-sample distance zts (marked by the dotted line) is defined as the distance between the
surface of the dielectric support with relative permittivity εs and the point of the tip closest to the surface.
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(a) (b)

(c) (d)

FIG. 3. (a) Capacitance Cvoid as well as (b) first, (c) second, and (d) cap-averaged second derivative of the capacitance for tip models S, SC,
and SCL. Data in (a)–(c) are plotted with respect to the tip-sample distance zts, while data in (d) are plotted with respect to the tip oscillation
center position zc [19] for oscillation amplitudes A in the range of 2 to 18 nm. Tip model parameters listed in Table I and εs = 24 are used in
the calculation. For geometry S, results calculated by the analytical [25] (S1) and numerical [24] (S2) codes are depicted by black dashed and
straight red lines, respectively. Results for the SC and SCL models are depicted in green and blue, respectively.

The system is modeled by two metals representing the tip and
the counter electrode with the potential difference V between
these two metals. Further analysis shows that the capacitive
term is an important experimental parameter but not directly
relevant for charge measurements. Instead, the second energy
contribution Uq-C is central for charge quantification as this
term describes the energy required to bring the point charges
qi into the capacitor at positions �ri. In particular, the energy
for each point charge i can be expressed by a product between
the point-charge magnitude qi and the electrostatic potential
of the point-charge free capacitor �void(�rts, �ri ) for a given
tip position �rts and at the position of the charge �ri. For the
ease of calculation, the electrostatic potential is normalized
by the potential difference V , resulting in the normalized elec-
trostatic potential �̂void = �void/V . The Coulomb interaction
between the point charges is described by the third term Uq-q.
Descriptively, this is the energy required to introduce each
point charge into the field of the other point charges. The
fourth term Uim describes the energy contribution of all image
charges at the metal surfaces that are generated by the point
charges.

Using Eq. (1), the electrostatic force Fel is calculated from
the negative derivative of the total energy Uel with respect
to the tip-sample distance zts. The restriction of the deriva-
tive to the coordinate zts is justified by the constraint of the
probe solely oscillating along zts without any other degree

of freedom. The electrostatic force consists of four terms,
namely [22],

Fel(zts,V ) = 1

2

∂Cvoid

∂zts
V 2 −

N∑
i=1

qi
∂�̂void(�ri )

∂zts
V − ∂Uq-q

∂zts

− 1

2

N∑
i=1

qi
∂�im(�ri )

∂zts
. (2)

The first term follows from the capacitive contribution to the
electrostatic force and is always attractive as ∂Cvoid

∂zts
< 0 as

shown in Fig. 3(b). This term enables the measurement of
the voltage VCPD in KPFM experiments [14]. The second term
is the key contribution to CFM measurements as it describes
the force acting between the charges and the metal objects.
The third term vanishes ( ∂Uq-q

∂zts
= 0) as electrostatic forces

and counterforces compensate each other in an ensemble of
charges held at fixed positions. The fourth term is caused
by charge redistribution on the metal surfaces, commonly
referred to as the image charge. The related potential �im is
independent of the potential difference V and, therefore, does
not contribute to V min

bias as the force minimizing bias voltage is
derived from the derivation with respect to V.

The basic principle of CFM is the variation of Vbias to
find the point of minimum attractive force at V min

bias where
the repulsive charge-dependent force best counteracts the
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TABLE I. Parameters for the tip models S, SC, and SCL utilized
for all calculations unless otherwise noted.

rsphere �cone hcone rlever hlever

Model ( nm) ( deg) ( µm) ( µm) ( µm)

S 30.0
SC 30.0 23.3 12.5
SCL 30.0 23.3 12.5 34.6 4.0

attractive capacitive force under conditions of a dynamic
measurement. For a measurement with frequency modulation
and closed-loop force minimization, the total potential differ-
ence V between tip and sample is represented as

V = Vbias − VCPD + Vel cos (2π felt ) (3)

with the contact potential difference VCPD, the bias voltage
Vbias, and a bias modulation with amplitude Vel and frequency
fel. The negative sign for VCPD is used to follow the common
convention in the KPFM literature [15]. As a result of the
bias modulation, the electrostatic force measured by the tip
is a modulated signal with spectral components at fel and 2 fel,
namely [22],

Fel = Fel,a + Fel,b cos(2π felt ) + Fel,c cos(2π2 felt ). (4)

Terms Fel,a and Fel,c are given in Ref. [22]. The term

Fel,b = Vel

(
∂Cvoid

∂zts
(Vbias − VCPD) −

N∑
i=1

qi
∂�̂void(�ri)

∂zts

)
(5)

is relevant for CFM as this component contains the full infor-
mation on the charge distribution. It can be shown [22] that
the dynamic measurement with FM detection yields a signal
proportional to the cycle-averaged force gradient〈

∂Fel,b

∂zts

〉
∩

= Vel

(〈
∂2Cvoid

∂z2
ts

〉
∩

(Vbias − VCPD)

−
N∑

i=1

qi

〈
∂2�̂void(�ri )

∂z2
ts

〉
∩

)
, (6)

whereby 〈. . . 〉∩ denotes the cap-weighted average func-
tion [23]

〈 f 〉∩(zc) = 2

πA2

∫ A

−A
f (zc + z)

√
A2 − z2 dz (7)

with the tip oscillation center position zc and the oscillation
amplitude A as introduced in Ref. [19]. The CFM signal
voltage V min

bias directly follows from setting Eq. (6) to be equal

(a) (b)

(d)(c)

FIG. 4. (a) Normalized electrostatic potential �̂void as well as (b) first, (c) second, and (d) cap-averaged second derivative of the normalized
electrostatic potential evaluated at position �r0 = [0, 0, 0] for tip models S, SC, and SCL. Data in (a)–(c) are plotted with respect to the tip-sample
distance zts, while data in (d) are plotted with respect to the tip oscillation center position zc [19] for oscillation amplitudes A in the range of 2 to
18 nm. Tip-model parameters listed in Table I and εs = 24 are used in the calculation. For geometry S, results calculated by the analytical [25]
(S1) and numerical [24] (S2) codes are depicted by black dashed and straight red lines, respectively. Results for the SC and SCL models are
depicted in green and blue, respectively.
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FIG. 5. Weight function Wq as a function of the tip oscillation
center position zc [19] calculated at the position �r0 = [0, 0, 0] for
models S, SC, and SCL as well as for amplitudes A in the range from
2 to 18 nm. Increasing amplitudes are represented by successively
tinted colors (colors with increased lightness) as indicated by the
color bars.

to zero. Technically, this is usually realized by a feedback
loop adjusting Vbias to the point of vanishing signal 〈 ∂Fel,b

∂zts
〉∩

with respect to Vbias; this signal can be measured from the
fel component in the frequency-shift signal � f . Narrow-band
and phase-sensitive detection of this component yields a high
signal-to-noise ratio for measuring V min

bias as the small voltage
modulation amplitude Vel effectively produces a differentia-

tion with respect to Vbias. The CFM signal then reads as [17]

V min
bias = VCPD +

N∑
i=0

qi

〈
∂2�̂void(�ri )

∂z2
ts

〉
∩〈

∂2Cvoid

∂z2
ts

〉
∩

. (8)

This equation can be written in a compact form by introducing
the weight function for charges Wq(�ri ) [18] evaluated at the
charge position �ri:

V min
bias = VCPD +

N∑
i=0

qiWq(�ri ) with Wq(�ri ) =

〈
∂2�̂void(�ri )

∂z2
ts

〉
∩〈

∂2Cvoid

∂z2
ts

〉
∩

.

(9)

Two electrostatic quantities contribute to the weight function
Wq, namely, the normalized electrostatic potential �̂void eval-
uated at charge positions �ri and the capacitance Cvoid, both for
the given tip position �rts. To evaluate these quantities, the tip-
sample system has to be defined in all details, namely, the tip
geometry (formally described by a set of parameters {ptip}),
the tip position �rts = [xts, yts, zts], the dielectric constant εs

of the dielectric support, and the tip oscillation amplitude A
via the cap-average 〈. . . 〉∩. The vertical tip position of the
averaged quantities is parametrized by either the tip oscilla-
tion center position zc or the position of the lower turning
point during the oscillation cycle zmin

ts = zc − A [19]. Taking

(a) (b)

(c)

(b)

(c)

FIG. 6. V min
bias voltage calculated for models S, SC, and SCL as a function of (a) zmin

ts for amplitudes A in the range from 2 to 18 nm as well as
(b), (c) as a function of the oscillation amplitude A at fixed minimum tip-sample distances of (b) 3 nm and (c) 30 nm. Equation (8) is evaluated
at �r0 = [0, 0, 0] for a single point charge q = −e (with the elementary charge e > 0) located at this position. Tip-model parameters listed in
Table I, εs = 24, and VCPD = 1 V are used in the calculation. Increasing amplitudes are represented by successively tinted colors [see color
bars in (a)]. For clarity, only the V min

bias curves for the smallest and largest amplitudes are depicted in (a).
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(a) (b)

(I)

(II)

(I)

(II)

FIG. 7. Dependency of V min
bias (zmin

ts ) on (a) the sample permittivity εs with rsphere = 30 nm and on (b) the sphere radius rsphere with εs = 24,
both for the SCL model. An oscillation amplitude A = 5 nm, parameters from Table I, εs = 24, and VCPD = 1 V are used. One negative charge
q = −e is placed at �r0 = [0, 0, 0]. The successive tint of the line colors represents (a) the different permittivity values (εs = 6.8, 24, and 100) or
(b) the different sphere radii (rsphere = 10, 30, and 50 nm). Insets show the corresponding cap-averaged second derivatives of (I) the capacitance
and (II) the normalized electrostatic potential.

account of all parameters, we find

〈Cvoid〉∩ = 〈Cvoid〉∩(xts, yts, zc, εs, {ptip}, A), (10)

〈�̂void〉∩ = 〈�̂void〉∩(�ri, xts, yts, zc, εs, {ptip}, A), (11)

Wq(�ri ) = Wq(�ri, xts, yts, zc, εs, {ptip}, A). (12)

For homogeneous, atomically flat surfaces, the vector �rts in
Eqs. (10)–(12) could be substituted by the scalar coordinate
zts. However, for the general case of a structured surface, the
lateral tip position has to be taken into account. Depending
on the context, different parameters for the electrostatic quan-
tities will be relevant in the following sections. To highlight
the respective relevant dependency for the different cases,
we refrain in the following from explicitly listing the full
parameter list for the quantities in Eqs. (10)–(12), but give
the relevant ones instead.

For the evaluation of the electrostatic model for the void
system, we consider three model tip geometries as sketched in
Fig. 2: a tip consisting of a sphere with radius rsphere (denoted
by S), a half-sphere with radius rsphere attached to a cone with
height hcone and half opening angle �cone (denoted by SC),
and a half-sphere and a cone, as in the SC model, attached to
a lever with area Alever and thickness hlever (denoted by SCL).
The model tips have different sets of parameters {ptip}, but
all bear rotational symmetry with respect to the z axis. To

maintain this symmetry, the lever in geometry SCL is modeled
by a disk of radius rlever with an area Alever = πr2

lever chosen to
be the same as the one of a typical rectangular cantilever. As
the sensitivity to the cantilever size is neglectable when using
FM detection [24], we do not consider the different oscilla-
tion amplitudes of the elements along the one-side clamped
cantilever beam [20], but assume that the beam oscillates as
one element. We apply two algorithms to numerically evaluate
�̂void and Cvoid, namely, an implementation of the analytical
model originally calculated by Smythe [25] for geometry S
as well as the CAPSOL code [24] for geometries S, SC, and
SCL. To check the consistency of our methods, we perform
calculations using both the Smythe (denoted by S1) [25] and
CAPSOL (denoted by S2) [24] methods for the sphere model
and find perfect agreement. Note that the Smythe method
assumes a dielectric half-space, while we choose 1 mm thick-
ness of the dielectric support for calculations based on the
CAPSOL code. Assuming a finite dimension for the dielectric
support has negligible effect on the results as the length scale
of the relevant interactions is orders of magnitudes smaller
than 1 mm.

Clearly, geometry SCL is expected to resemble the ex-
perimental situation closest and, therefore, is expected to
yield the best results. However, the comparative evaluation
of geometries S, SC, and SCL yields insights into the rele-
vance of the tip parameter set for the evaluation of V min

bias . We
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(II)(I)
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umdielectric
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FIG. 8. V min
bias as a function of the tip-sample distance zmin

ts for different vertical charge positions zq of a single point charge q = −e (with
the elementary charge e > 0) located at �r = [0, 0, zq] with the tip positioned at xts = yts = 0. Vertical charge positions zq are chosen in the
range from −45 to 2 nm. The SCL model, an oscillation amplitude of A = 5 nm, tip-model parameters listed in Table I, εs = 24, as well as
VCPD = 1 V are used in the simulation. Inset (I) represents V min

bias as a function of the vertical charge position zq at constant minimum tip height
zmin

ts = 3 nm, while inset (II) is a sketch of the tip geometry and the charge positions.

start the exploration by performing the intermediate steps of
calculating quantities 〈 ∂2Cvoid

∂z2
ts

〉∩(zc) and 〈 ∂2�̂void

∂z2
ts

〉∩(zc) for the
different models and by investigating contributions of the dif-
ferent tip elements to these quantities. The dimensions listed
in Table I are adapted from commercially available cantilevers
with metal coating that are commonly employed for KPFM
experiments and are, unless otherwise noted, used for the
following numerical evaluations. The results for the capaci-
tance and electrostatic potential including their gradients and
respective weighted averages along the tip oscillation path
are presented in Figs. 3 and 4, respectively, for εs = 24. The
averages are plotted as a function of the tip oscillation center
position zc [19]. The colors correspond to the tip geometries:
S in red, SC in green, and SCL in blue, while the different tint
of these colors indicate the respective amplitude as depicted
by the color bars in Figs. 3(d) and 4(d).

Naturally, the capacitance Cvoid(zts ) as a function of the
tip-sample distance zts is found to be a monotonically de-
creasing function and capacitance values of the sphere model
tip (S) are several orders of magnitude smaller than those of
the SC and SCL model tips [see Fig. 3(a)]. The focus here
is calculating the weight functions Wq(�ri ), where rather the
curvature than the absolute value of the capacitance is rele-
vant. With each step of differentiation with respect to zts, the
curves for the different models come closer to each other [see
Figs. 3(b) and 3(c)]. The differences are further reduced when
calculating 〈 ∂2Cvoid

∂z2
ts

〉∩(zc) as shown in Fig. 3(d) for a series of
oscillation amplitudes.

The normalized electrostatic potential �̂void(�ri ), evaluated
at �ri = �r0 = [0, 0, 0] for the tip at �rts = [0, 0, zts], shown
in Fig. 4 as a function of the tip-sample distance zts ex-
hibits a decaying behavior. Here, potential values are of the
same order of magnitude for the different tip models, yet,
we find qualitative differences. While �̂void(zts ) for model
S quickly decays towards zero over the shown range, the
decay of the other models is much slower. However, dif-
ferences between the models vanish upon differentiation.
Notably, the cap-averaged second derivatives 〈 ∂2�̂void

∂z2
ts

〉∩(zc)
shown in Fig. 4(d) are almost identical for the different tip
geometries.

To explore the situation relevant for a CFM measurement,
we now assume that a charge is placed at the position �ri =
�r0 and the tip oscillates along the z-axis symetrically to zc.
The weight function Wq at the position �r0 as a function of zc

is calculated for models S, SC, and SCL and for amplitudes
A varied in the range from 2 to 18 nm with results shown in
Fig. 5. A strong dependency of Wq on the oscillation amplitude
and on the tip model is apparent and further dependencies will
be investigated in the following sections. These dependencies
will directly translate into the CFM signal V min

bias via Eq. (9)
and it is, therefore, evident that V min

bias values determined with
different oscillation amplitudes or under otherwise different
conditions cannot be compared to each other.

In summary, when calculating properties along the surface
normal through the tip center, the cap-averaged capacitance
gradient exhibits a more critical dependence on the tip model
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than the cap-averaged electrostatic potential gradient. As
modeling a realistic tip at the nanoscale is a most difficult
endeavor, for the practical exploitation of the CFM method,
it would be most desirable to determine 〈 ∂2Cvoid

∂z2
ts

〉∩(zc) directly
from the experiment rather from a model. Furthermore, the
cap-averaged second derivatives of the electrostatic capaci-
tance [Fig. 3(d)] and the normalized potential [Fig. 4(d)] both
exhibit a strong dependency on the oscillation amplitude A,
translating into a strong amplitude dependency of the CFM
signal V min

bias .

III. PARAMETERS DETERMINING THE CFM VOLTAGE

Now, we investigate the dependency of V min
bias on experimen-

tal and material parameters for the case of a negative charge
q = −e (with e > 0) positioned at �r0 = [0, 0, 0]. In particular,
the CFM voltage V min

bias is calculated as a function of the tip
position along the z axis with �rts = [0, 0, zts] for εs = 24 and
VCPD = 1 V unless otherwise noted.

A. Oscillation amplitude

We start by investigating the dependency of V min
bias on the os-

cillation amplitude A that is varied in the range of 2 to 18 nm.
V min

bias is plotted in Fig. 6 as a function of (a) the minimum
tip-sample distance zmin

ts for different oscillation amplitudes
and (b), (c) as a function of the oscillation amplitude A at
fixed minimum tip-sample distances zmin

ts = 3 nm and zmin
ts =

30 nm, respectively. The position zmin
ts = zc − A represents the

minimum tip-sample distance during the oscillation cycle and
can be chosen to be zero as Wq always attains a finite value at
zmin

ts = 0.
The CFM voltage exhibits the largest deviation from VCPD

at very small tip-sample distances [see Fig. 6(b)], while
the deviation for the sphere S is largest at large tip-sample
distances [see Fig. 6(c)]. We attribute this behavior to the
simplicity of the sphere tip model creating an electric field that
is qualitatively different from the more realistic tip models SC
and SCL. As the central result, we find a scaling of V min

bias with
the oscillation amplitude A over a large range of zmin

ts . Con-
sequently, the oscillation amplitude A is a critical parameter
for CFM measurements and it is important to experimentally
determine this parameter for CFM measurements [26–28]. All
further analysis will be focused on the SCL tip model.

B. Substrate dielectric constant

Results in Fig. 7(a) highlight the influence of the substrate
dielectric constant εs on V min

bias . While keeping all other param-
eters constant, we vary the relative permittivity to εs = 6.8,
24, and 100 to cover the range from insulating to almost
metallic samples. As expected, V min

bias values are close to VCPD

for large εs. This corresponds to the situation of a Kelvin
probe measurement on an electrical conductor, where a single
charge present at the surface has only a minute effect on the
work function measurement. The deviation of V min

bias from VCPD

is increasing with decreasing εs and we yield the plausible
result that most sensitive charge measurements are possible on
a strongly insulating substrate. This behavior is qualitatively
the same for the other tip geometries as shown in Appendix A

tip sphere charge position

(a)

(b)

FIG. 9. Effect of the lateral charge position on V min
bias .

(a) Model geometry including charges at radial positions Ri
q =√

(xq,i )2 + (yq,i )2 for zq = 0 and the tip at position �rts = [0, 0, zmin
ts ].

(b) V min
bias data as a function of the tip-sample distance zmin

ts for single
point charges q = −e at selected radial positions Ri

q. The SCL
tip model, an oscillation amplitude of A = 5 nm, parameters from
Table I, εs = 24, and VCPD = 1 V are used for the simulation. The
inset in (b) represents V min

bias as a function of the radial displacement
Rq at zmin

ts = 0.

[Fig. 13(a)] and can be traced to an increased sensitivity of
the cap-averaged second capacitance gradient to εs [see inset
(I) in Fig. 7(a)]. As the actual εs of the substrate is often
not well known, this finding points to the importance of an
experimental determination of 〈 ∂2Cvoid

∂z2
ts

〉∩(zts ).

C. Sphere radius

The impact of the sphere radius rsphere on V min
bias is shown

in Fig. 7(b). When exploring V min
bias within realistic ranges

of {ptip}, we find that the sphere radius is the most critical
parameter of the tip geometry, while a change of cone and
lever dimensions within the same order of magnitude has a
significantly smaller effect (data not shown). Larger devia-
tions of V min

bias from VCPD are found for smaller sphere radii.
Furthermore, a rapid decay of V min

bias with increasing zmin
ts is

found for large tip radii rsphere, yet the absolute signal is
smaller. This behavior is attributed to strong lateral averaging
of a large tip [29] and the differences highlight that the tip
radius is a critical parameter for charge quantification.

IV. CFM VOLTAGE AS A FUNCTION
OF THE CHARGE POSITION

Aside from the system parameters, the magnitude of V min
bias

has a clear dependency on the charge position relative to the
lateral position (xts, yts ) and the lower turning point zmin

ts of the
tip oscillation. In particular, the following analysis will high-
light the nonlocal character of the CFM detection principle.
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(a) (b) (c) (d)

(a)

(b)

(a) (b) (c) (d)

(a)

(b)

(c)

(d)

PCPM

surrounding 
charges

FIG. 10. Results of the optimization routine for a charge distribution with three point charges q1, q2, and q3 at different distances to the
central charge of interest q0. (a) Point-charge position map (PCPM) illustrating the charge positions. (b) Artificially generated measurement
data V min

bias,meas as a function of the tip-sample distance zmin
ts . The curves are generated for oscillation amplitudes A = 5 nm (dark blue), 10 nm

(lighter blue), 15 nm (dark green), and 20 nm (light green) using εs = 24, VCPD = 1 V, and parameters from Table I. The V min
bias curves fitted to

these data by the optimization algorithm are depicted by gray dashed lines. (c) Model and resulting values for the fit parameters q0 and VCPD

as a function of the amplitude A. (d) Model and resulting values for the surrounding charges qi (i = 1, 2, 3) and their sum for the different
amplitudes A indicated by the same colors of the points as in (b).

A. Vertical charge position

First, the CFM signal V min
bias is investigated with respect to

the tip-sample distance zmin
ts for a single point charge located

at different central vertical positions with results presented in
Fig. 8. Vertical charge positions zq in the range from −45 to
2 nm for the SCL model (see inset II in Fig. 8 for a sketch
of the geometry) and an oscillation amplitude of A = 5 nm
are chosen. The vertical position range includes the dielectric
boundary and extends along the negative direction up to a
vertical distance of more than the tip radius. In all cases, the
V min

bias (zmin
ts ) curves exhibit the largest deviation from VCPD at

small tip-sample distances and approach VCPD for large zmin
ts .

The CFM voltage as a function of the charge position zq but
at a fixed tip height of zmin

ts = 3 nm is presented in inset (I)
of Fig. 8. The slope with respect to zq differs on either side
of the dielectric boundary: Due to the high electric field at
the tip apex, a large slope of V min

bias (zmin
ts ) is present in the gap

between tip and dielectric. The polarization of the dielectric
medium surrounding the point charge at zq < 0 leads to a

slow decay towards VCPD for large zq. A similar behavior is
found for the S and SC tip models (see Appendix A, Fig. 14).
This example particularly shows that charges buried inside the
dielectric substrate, such as charged defects or vacancy sites,
contribute to the V min

bias voltage and, therefore, can compromise
the CFM measurement of charges of interest.

B. Lateral charge position

Second, the CFM signal V min
bias (zmin

ts ) is evaluated for dif-
ferent lateral point charge positions at the substrate surface
(zq = 0) with results shown in Fig. 9. Since the SCL tip
model bears rotational symmetry along the z axis, any lateral
charge position (xq, yq) can be mapped to one radial coordi-

nate Rq =
√

x2
q + y2

q measured from the lateral tip position.
Consequently, with a rotational symmetric tip, it is not possi-
ble to distinguish between charges present at different lateral
positions of identical radial distance Rq. Instead, the V min

bias volt-
age of several charges located at the same radial distance Rq
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(a)

(b)

(c)

(d)
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(a) (b) (c) (d)

FIG. 11. Results of the optimization routine for a complex charge distribution with 13 point charges qi surrounding a central charge of
interest q0. (a) Point-charge position map (PCPM) illustrating the charge positions. (b) V min

bias,meas data as a function of the tip-sample distance
zmin

ts . The curves are generated for oscillation amplitudes A = 5 nm (dark blue), 10 nm (lighter blue), 15 nm (dark green), and 20 nm (light
green) using εs = 24, VCPD = 1 V, and parameters from Table I. V min

bias curves fitted to these data by the optimization algorithm are depicted by
gray dashed lines. (c) Model and resulting values for the fit parameters q0 and VCPD as a function of the amplitude A. (d) Model and resulting
values for the surrounding charges qi (i = 1, . . . , 13) for the different amplitudes A indicated by the same colors of the points as in (b).

are equal to the V min
bias voltage corresponding to the sum of their

charge magnitudes. We expect that the rotational symmetry
is a reasonable approximation for experiments as AFM tips
are usually fabricated with the aim to being rather symmetric.
Figure 9(a) visualizes the tip geometry and the model charge
positions on the radial axis with charges positioned within
(i = 1 . . . 6) and beyond (i = 7 . . . 10) the xy-projected tip
sphere. V min

bias (zmin
ts ) curves calculated for exemplary individual

charges are shown in Fig. 9(b) whereby the charges are named
by their radial positions Ri

q.
All curves exhibit their maximum deviation from VCPD at

or close to zmin
ts = 0. The CFM voltage at zmin

ts = 0 is closer
to VCPD for large radial charge positions. This is in agreement
with a reduced sensitivity to a point charge located far away
from the lateral tip position as is further highlighted by the
inset in Fig. 9(b), where V min

bias (zmin
ts = 0) is plotted as a function

of the radial charge position Rq.
At larger tip-sample distances, V min

bias voltages approach
VCPD, however, V min

bias (zmin
ts ) does not converge against VCPD

within the investigated tip-sample distance regime. Instead,
the V min

bias voltages differ, depending on the lateral charge

position, by several mV from VCPD even at zmin
ts = 80 nm.

Moreover, not all V min
bias (zmin

ts ) curves are strictly monotonic
with respect to zmin

ts , but may exhibit an intermediate ex-
tremum [see, for example, V min

bias (zmin
ts ) data for R5

q in Fig. 9(b)].
The positions of these extrema shift towards larger zmin

ts with
larger radial charge position Rq what can be explained by
the form of the weight function for charges Wq, specifically
by the transition in the electrostatic quantities between the
sphere-dominated and the cone-influenced regimes. An inter-
mediate extremum, and a qualitative agreement with all other
observations discussed in this section, is also observed for
the other tip geometries S and SC as shown in Appendix A,
Fig. 15.

As expected, the strongest contribution of a point charge
to V min

bias is found for positions close to the tip apex, while
the influence diminishes for positions further away. How-
ever, even charges located at radial distances of Rq � 100 nm
contribute to the V min

bias signal. As is apparent for R7
q or R9

q
in Fig. 9(b), the contribution is rather constant with respect
to the tip-sample distance zmin

ts and effectively appears as an
offset to V min

bias . Consequently, if multiple charges are present
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FIG. 12. Introduction of effective charges qeff
i for the charge distribution in Fig. 11. (a) Point-charge position map (PCPM) showing the

full charge distribution with point charges qi (black points, identical positions, and magnitudes as in Fig. 11) used for V min
bias,meas(z

min
ts ) data

generation as well as the effective charges qeff
i (red circles) used as parameters for the fitting routine. The blue segments represent the different

ranges in which the effective charges qeff
i are placed. (b) V min

bias,meas data as a function of the minimum tip-sample distance zmin
ts . The simulation

is performed for oscillation amplitudes A = 5 nm (dark blue), 10 nm (lighter blue), 15 nm (dark green), and 20 nm (light green) as well as for
εs = 24, VCPD = 1 V, and parameters from Table I. The corresponding V min

bias curves resulting from the optimization algorithm are depicted by
gray dashed lines. (c) Model and resulting values for the fit parameters q0 and VCPD as a function of the amplitude A. (d) Model and resulting
values for the surrounding effective charges qeff

i (i = 1, 2, 3, 4) and their sum for the different amplitudes A indicated by the same colors of the
points as in (b).

in the system, it is likely that these have to be considered
when determining the magnitude of a point charge centered
underneath the tip and that their contribution can hardly be
distinguished from VCPD. These observations underline the
necessity of performing charge quantification by distance-
dependent measurements on a central charge while taking the
surrounding charges into account.

V. CHARGE QUANTIFICATION

Based on the previous understanding of the CFM voltage,
we introduce in this section an approach to determine the
charge state of a central charge q0 positioned at �r0 = [0, 0, 0].
In particular, we demonstrate that the central charge q0 can be
retrieved with high accuracy even if a number of surrounding
point charges qi are present, a situation frequently given in
experiments.

A. Optimization algorithm

The central approach for charge determination lies in the
fitting of V min

bias (zmin
ts ) data with the charge magnitudes and the

contact potential difference as free fit parameters. Here, we
demonstrate the robustness of this approach by numerical
simulations. Along these lines, we implement an optimization
algorithm for fitting Eq. (8) to V min

bias,meas(z
min
ts ) data of a simu-

lated measurement of a charge distribution with N + 1 point
charges qi at positions �ri. The MATLAB® function fminsearch
is used to iteratively reduce the root-mean-square (rms)
difference between the measured V min

bias,meas(z
min
ts ) and calcu-

lated V min
bias (zmin

ts ) data with qi (i = 0 . . . N ) and VCPD as fit
parameters. We consider charge distributions of different com-
plexity and generate corresponding artificial V min

bias,meas(z
min
ts )

data. These data shall represent experimental situations where
a nano-object like a metal cluster is charged by some or some
10 elementary charges. For testing the optimization routine,
we utilize tip model S evaluated by the Smythe formulas [25].
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Tip model S is chosen here to reduce computational time, yet
other reasonable tip models are expected to work as well.

First, we introduce a charge distribution consisting of
a central charge q0 at �r0 = [0, 0, 0] and three surrounding
charges q1, q2, and q3 placed at radial positions R1

q = 20 nm,
R2

q = 80 nm, and R3
q = 160 nm, all at zq = 0. The geometry of

this distribution including the tip sphere is shown in top view
in Fig. 10(a) what we further on denote as the point-charge
position map (PCPM). Charge magnitudes qi are randomly
chosen in the interval between −30e and −60e (with the
elementary charge e > 0). We do not see any fundamental
limitation of the charge magnitude in further simulations with
different charge magnitudes (see Appendix B, Fig. 16 for
one example with smaller charge magnitudes). The distance-
dependent data are calculated for the given charge distribution
using amplitude values A = 5, 10, 15, and 20 nm parame-
ters listed in Table I, εs = 24, and VCPD = 1 V. The resulting
V min

bias,meas(z
min
ts ) curves are depicted in Fig. 10(b). Note that for a

simulation with all qi having the same sign, the nonmonotonic
behavior in the CFM data is characteristic to the S model tip
and does not represent a physical property of the distribution
of charges under investigation.

Second, we test the optimization routine by recovering the
“unknown” charge magnitudes q0, q1, q2, and q3 as well as
VCPD by fitting V min

bias (zmin
ts ) to the data generated in the first

step. Starting values are chosen for VCPD as zero and for
qi as one negative elementary charge. The optimization is
performed until one of the two following termination criteria
is reached: (1) The optimization exceeds 5000 iterations, (2)
the difference (TolX) in qi/e and VCPD/ V between two sub-
sequent optimization steps is less than 10−6 and the change
(TolFun) in the rms difference between V min

bias,meas(z
min
ts ) and

V min
bias (zmin

ts ) is less than 1 pV for two subsequent iteration steps.
For a reliable charge quantification it is necessary to reach
criterion (2). The resulting V min

bias (zmin
ts ) curves are included

in Fig. 10(b) as dashed gray lines and perfectly match the
original V min

bias,meas(z
min
ts ) data. Correspondingly, the values for

quantities q0, q1, q2, and q3 as well as VCPD are retrieved
with high accuracy for all amplitudes as shown in Figs. 10(c)
and 10(d). Thus, for a central charge and a small number of
surrounding charges, the optimization routine perfectly recov-
ers the charge magnitudes.

B. Concept of effective charges

Much less favorable results are obtained when increasing
the number of surrounding charges; in this case the opti-
mization problem is overdetermined. We first illustrate this
challenge by a model calculation for an extended charge
distribution and in a second step introduce the concept of
effective surrounding charges as a solution.

First, 13 point charges qi are randomly placed in the sim-
ulation at radial distances Ri

q ranging from 25 nm to more
than 230 nm, in addition to the central charge q0. Charge
magnitudes are randomly chosen between −30e and −60e
and the corresponding PCPM is presented in Fig. 11(a). The
generated V min

bias,meas(z
min
ts ) curve data including the V min

bias (zmin
ts )

fits for different amplitudes are shown in Fig. 11(b). The
fits are in excellent agreement with the simulated V min

bias (zmin
ts )

data and the central charge q0 is accurately determined for

all oscillation amplitudes as shown in Fig. 11(c). In contrast,
the quantity VCPD [see Fig. 11(c)] as well as most of the
surrounding charges qi [see Fig. 11(d)] strongly deviate from
the original values and the sum of surrounding charges is not
reproduced correctly [see Fig. 11(d)]. These observations can
be traced to the properties of the weight function for charges
Wq averaging over charges in near proximity to each other
and the subsequent overdetermination of the optimization
problem.

A particularly illustrative example for the insensitivity of
Wq to neighboring charges can be identified from charges q5

and q6. As both charges are placed in close proximity to each
other at large Rq, their specific contribution to V min

bias (zmin
ts ) via

their respective Wq(�ri ) function is virtually indistinguishable.
Consequently, the large negative charge of q5 is counterbal-
anced by the large positive charge q6 and the fit routine aborts
after reaching the maximum number of allowed iterations.
Furthermore, we find that the zmin

ts dependence of Wq is not
significant for charges positioned at Ri

q > 100 nm. In the cur-
rent example, the fit routine finds a solution with charges at
Ri

q > 200 nm having very large magnitudes while VCPD is set
to a value close to zero.

Note, however, that the magnitude of the central charge
of interest is nonetheless well reproduced. This result sug-
gests that q0 yields the key contribution to V min

bias with a
zmin

ts dependence that is characteristic enough to provide the
correct result for the central charge. Based on this find-
ing, we seek for a stable solution yielding more realistic
results for the surrounding charges. To remove surplus fit
variables, we reduce the number of surrounding charges
by replacing them with effective point charges. In particu-
lar, all point charges at Ri

q > 200 nm are excluded as their
contribution is small and indistinguishable from VCPD. The
remaining point charges are subsumed into segments along
the Rq axis and reduced to effective charges. Positions of
these effective charges are determined as follows: The range
�Rq = Rmax

q − Rmin
q is calculated from the two point charges

positioned at the minimum radial distance Rmin
q and at the

maximum radial distance Rmax
q � 200 nm. Next, this range is

segmented into four intervals of increasing width, namely,
of 0.1�Rq, 0.2�Rq, 0.3�Rq, and 0.4�Rq. Finally, one
effective point charge is placed in each of these segments
at the average radial distance of point charges within the
respective segment. The use of an averaged position is most
reliable if the charges are of the same order of magnitude.

For the example in Fig. 11, the reduced PCPM is shown
in Fig. 12(a), consisting of the central charge and four ef-
fective surrounding charges (in red). This PCPM is used to
fit the V min

bias,meas(z
min
ts ) data calculated for the complete charge

distribution. As depicted in Fig. 12(b), fit results based on
the effective PCPM perfectly match the V min

bias,meas(z
min
ts ) curves

calculated for the full PCPM. Most importantly, the central
charge q0 is determined as −54.98 e [see Fig. 12(c)], in ex-
cellent agreement with the actual value of −55.00 e, while
VCPD is found to be 0.96 V, with a deviation of less than
5 % to the actual value of 1 V [see also Fig. 12(c)]. Due to
neglecting the charges at Rq > 200 nm, the latter deviation is
expected. Values for the charge magnitudes qeff

i are presented
in Fig. 12(d), together with the values of qeff

i,model that were
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calculated from the sum of all charges qi in the corresponding
interval. Both quantities are in good agreement for the inner
segments, while they deviate stronger for the outer segments.
This results in a slight overestimation of the sum of effective
charges

∑
qeff

i compared to the sum
∑

qeff
i,model. We explain

these observations in particular by the effective charge qeff
4 and

the VCPD value both compensating for the omitted charges at
Rq > 200 nm. By testing different tip models and by perform-
ing cross-check calculations covering a large set of charge
numbers and positions, we find that four effective charges
positioned as described yield the most reliable results.

In conclusion, the introduction of effective charges to re-
duce the number of dependent parameters to avoid unphysical
results is a robust approach for the quantification of the central
charge. For the herein presented model data, the reduction of
the 13 surrounding charges qi to four effective charges qeff

i
as shown in Fig. 12 is found to give the best result. While
less effective charges reduce the fit quality, more charges
lead to the described effects of dependent fit parameters. The
determination of the central charge magnitude q0 proved to
be robust in all trials, even if a single charge is located nearby
the central charge for a small number of surrounding charges
(see Appendix C, Fig. 17). Be aware that finding a stable
solution for difficult cases can necessitate a modification
of the starting parameters for the optimization routine.
However, the selection does not lead to a bias in the resulting
values. Instead, unphysical solutions are easily identified
from comparing the results for different probe oscillation

amplitudes: if the optimization algorithm is stuck in a local
minimum, single outliers are present for specific amplitudes.

VI. SUMMARY AND CONCLUSIONS

The analysis in this work identifies a number of param-
eters that influence the absolute value of the V min

bias voltage
in a charge force microscopy (CFM) experiment. It is found
that the CFM voltage signal is dependent on the oscillation
amplitude and the CFM technique yields best results for tips
with a small radius as well as substrates with a small dielec-
tric constant. Furthermore, the analysis confirms a substantial
contribution of charges in close vicinity of the tip apex to the
V min

bias signal, while the effect of charges far away from the tip
apex (including charges buried inside the dielectric sample)
are likely to appear as an offset to the contact potential differ-
ence in the V min

bias signal.
First and foremost, it becomes clear from this analysis that

taking a lateral map of V min
bias is insufficient for charge quantifi-

cation. Instead, the acquisition of vertical V min
bias (zmin

ts ) data is
necessary for obtaining reliable CFM results. For the general
case of a complex charge distribution at the surface or within
a sample, charge quantification can be realized by the follow-
ing four steps: First, the electrostatic model is determined,
for example, by a measurement of the cap-averaged second
capacitance gradient, to yield the weight function for charges.
Second, the point-charge positions are identified from
image data and the effective charge distribution is determined

(a) (b)

(I)

(II)

(I)

(II)

FIG. 13. Extended version of Fig. 7 highlighting the dependence of V min
bias on (a) the relative dielectric permittivity εs and (b) the tip radius

rsphere. Data for models S (SC) are presented in red (green) while data for model SCL are depicted in blue. Tinted colors are used to express the
respective parameter modification. Parameters are otherwise identical to those of Fig. 7.
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FIG. 14. Extended version of Fig. 8 highlighting the effect of the vertical charge position on V min
bias . Data for models S (SC) are presented in

red (green) while data for model SCL are depicted in blue. Tinted colors are used to express the different vertical position values. Parameters
are otherwise identical to those of Fig. 8.

from these data. Third, V min
bias (zmin

ts ) data are systematically
acquired at the position of the charge of interest for different
amplitudes of the cantilever oscillation. This approach enables
an inherent consistency check. Fourth, an optimization routine
is used to fit V min

bias curve data to the measurement results with
the charge magnitudes qi as well as VCPD as fit parameters.

In conclusion, the CFM method holds the strong promise
to offer charge quantification in numerous systems of funda-
mental and applied research, and by further refinement of this
method, it can be expected to obtain accurate results for all
relevant experimental situations.
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APPENDIX A: PARAMETER ANALYSIS FOR FURTHER
TIP GEOMETRIES

Simulation results for the S and SC model in addition to
the SCL geometry are presented in Figs. 13–15. In particular,
Fig. 13 presentes the dependency of V min

bias on the dielectric
constant of the substrace εs and on the tip sphere radius rsphere.
Data for only the SCL model are shown in Fig. 7 in the main
text. In Fig. 14, the V min

bias signal is evaluated for different verti-
cal charge positions and for the S, SC, and SCL models. This

figure is a generalisation of Fig. 8 in the main text. Figure 15
shows V min

bias for different vertical charge positions, also for the
S, SC, and SCL models as an extension of Fig. 9 in the main
text.

tip sphere

(a)

(b)

charge position

FIG. 15. Extended version of Fig. 9 highlighting the effect of the
lateral charge position on V min

bias . Data for models S (SC) are presented
in red (green) while data for model SCL are depicted in blue. Tinted
colors are used to express the lateral position values. Parameters are
otherwise identical to those of Fig. 9.
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PCPM

FIG. 16. Exemplary CFM experiment simulation with point charges in the range of −1e to −5e. (a) Point-charge position map (PCPM),
(b) V min

bias,meas data as a function of the minimum tip-sample distance zmin
ts , (c) model and resulting values for the fit parameters q0 and VCPD as a

function of the amplitude A and (d) model and resulting values for the surrounding charges qi (i = 1, 2, 3) and their sum as a function of the
amplitude A.

APPENDIX B: SIMULATION WITH SMALL CHARGE
MAGNITUDES

Figure 16 presents one example of a simulated CFM ex-
periment with point-charge magnitudes randomly chosen in
the range of −1e to −5e. Excellent fit results are obtained.

APPENDIX C: SENSITIVITY TO NEARBY CHARGES

As shown in Fig. 17, CFM delivers excellent fit results for
few charges located nearby the tip even if these charges are
separated by only 2 nm.
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FIG. 17. Sensitivity to nearby charges. (a) Point-charge position map (PCPM), (b) V min
bias,meas data as a function of the minimum tip-sample

distance zmin
ts , (c) model and resulting values for the fit parameters q0 and VCPD as a function of the amplitude A, (d) model and resulting values

for the surrounding charges qi (i = 1, 2, 3) and their sum as a function of the amplitude A.
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9. Nanoscale charge quantification
using CFM

The capability of CFM for charge quantification using a two-step procedure is
demonstrated by measuring the static charge state of a gold nano-particle supported
by a CeO2(111) substrate. Therefore distant-dependent A2fel(zts) and V min

bias (zts) data
are systematically measured above the particle position (onP) and an empty terrace
(offP) for a set of oscillation amplitudes using the FCA method and post-processed
by the two-step procedure. In the first step, the A2fel(zts) data is evaluated giving
the parameters for the electrostatic model. In the second step, the electrostatic
model is used for evaluating the V min

bias (zts) data yielding the charge contained within
the investigated gold nano-particle.

The results discussed in the following are currently in preparation for submission,
the shown manuscript is a preliminary version from 22.06.2023.
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Nanoscale charge quanti�cation with charge force microscopy
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The static charge of a ceria supported Au nano-particle is determined using charge force mi-
croscopy (CFM) performed with the tip of a non-contact atomic force microscope as the force
probe. The charge is retrieved from systematically acquired measurements of the CFM signal as a
function of tip-surface distance. Being a dynamic method involving the oscillation of the force probe
as well as an oscillating bias voltage, CFM allows charge quanti�cation in a two-step procedure by
side-band detection at the bias voltage oscillation frequency and its �rst harmonic. In the �rst step,
distance-dependent data of the tip-surface capacitance signal are retrieved from analysing the signal
at the �rst harmonic of the bias modulation frequency. These data yield parameters for the electro-
static model. In the second step, the weight function for charges is calculated from the electrostatic
model and the charge of the nano-particle of interest is retrieved from a �t of the weight function to
the CFM signal measured at the bias modulation frequency. The technique is demonstrated for the
measurement of the charge of a gold cluster on the surface of a heavily reduced ceria substrate that
is surrounded by further similar gold clusters. While the procedure yields a negative charge for the
central and surrounding nano-particles, the surface nearby the particles is found to accumulate a
positive charge. This directly demonstrates charge transfer from the substrate to the nano-particles.

As a key enabler of catalytic activity, metal nano-
particles on reducible oxides are of critical importance
in catalytic research and application [1, 2]. Particularly
with regard to the catalytic capabilities, the material,
size and shape [3] as well as the charge state [4] of the
metal nano-particles have a strong in�uence. Among the
particle-supporting materials, cerium oxide (ceria, CeO2)
is central in heterogeneous catalysis with the well known
redox properties [5] following from the Ce3+�Ce4+ switch
of the cations [6]. In particular, gold/ceria catalysts are
exploited for many reactions, including low-temperature
CO oxidation [7], water�gas shift reactions [8], or hy-
drogenation of CO2 to methanol [9]. For this system,
the excess charges of oxygen vacancies that are always
present in reduced ceria at (sub-)surface positions [10�
12] strongly in�uence the nano-particle charge state and,
thus, the reactivity of gold nano-particles [13]. Conse-
quently, a local measurement of the charge state is key
for understanding the catalytic activity of these metal
nano-particles [14�19].
First approaches to experimentally quantify the to-

tal charge in metal nano-particles have been pursued
by means of electron holography with transmission elec-
tron microscopy [20] as well as by photoelectron spec-
troscopy [4]. Additionally, it is common practice to im-
age oxide surfaces covered with metal nano-particles by
both scanning probe microscopy (SPM) to investigate
structural characteristics [21] and Kelvin Probe Force Mi-
croscopy (KPFM) to map electric properties [22]. How-
ever, the surprisingly little consistency in KPFM data
for metal nano-particles on surfaces [18, 23] can directly
be explained by the large number of contributing fac-
tors, including the cantilever dynamics [24, 25], the tip-

∗ These two authors contributed equally
† prahe@uos.de

sample geometry [26], and the measurement parame-
ters [27]. An approach to describe the KPFM detec-
tion in terms of a point spread function has recently
been proposed [28, 29], but it became clear that an ex-
tensive model is required when aiming for quantitative
measurements [30, 31]. Very recently, charge force mi-
croscopy (CFM) has been proposed to challenge these
di�culties [27].

Here, we experimentally apply CFM to a metal nano-
particle/oxide system and develop a two-step proce-
dure for charge quanti�cation. Fundamental to CFM is
the measurement of distance- and amplitude-dependent
data. In the �rst step, system parameters are determined
from these data that describe the tip geometry and enable
the evaluation of the electrostatic quantities. These pa-
rameters serve for the determination of the charge mag-
nitude of a single gold nano-particle in presence of the
support and further surrounding nano-particles in the
second step. We �nd that the introduction of a posi-
tive charge in the vicinity of the nano-particle of interest
is required to match the experimental data by the model.

The target quantity in CFM is the bias voltage V min
bias

measured upon minimising the electrostatic interaction
in non-contact atomic force microscopy (NC-AFM) [27,
30, 31]. While the experimental detection scheme of CFM
is adapted from KPFM [32], the signal interpretation in
CFM relies on a description of the sample system in terms
of metal electrodes and point charges [27, 30, 31, 33].
This is di�erent to measuring work function di�erences
with the Kelvin Probe technique [34]. A general equation
for V min

bias of a system containing N �xed point charges qi
at positions r⃗i at the surface of a dielectric substrate and
a contact potential di�erence VCPD between the substrate
back contact and the metallic tip is given by using the

9. Nanoscale charge quantification using CFM
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FIG. 1. Images of the ceria CeO2(111) surface with gold nano-particles after the post-annealing step. (a) Topographic (zp)
NC-AFM image and (b) corresponding V min

bias data. (c) Line pro�les extracted across 13 exemplary nano-particles from panel (a).
A typical height of the gold nano-particles of (2.0± 0.5) nm is found.

weight function for charges Wq [30, 31]

V min
bias = VCPD +

N∑

i=1

qiWq(r⃗i). (1)

with

Wq(r⃗i) =

〈
∂2Φ̂void(r⃗i)

∂z2ts

〉

∩〈
∂2Cvoid

∂z2ts

〉

∩

(2)

depending on the normalised electrostatic potential Φ̂void

and the capacitance Cvoid of the void (charge free) tip-
sample system as well as the tip-surface distance that is
the probe oscillation centre position zc for the dynamic
measurement. Note that the weight function for charges
Wq(r⃗i) is evaluated at the position of each point charge
position r⃗i, but depends on the electrostatic model of the
point-charge free (void) system.
The central challenge for quantitative charge measure-

ments with CFM is an accurate characterization of the
experimental tip-sample system to evaluate the weight
function for charges Wq. Here, we exploit the signal A2fel

measured at twice the bias modulation frequency, 2fel,
for the determination of the electrostatic model. As
shown in the appendix Sec. A, this signal is given by

A2fel = |G′
ho(fexc + 2fel)|

A

4
V 2
el

〈
∂2Cvoid

∂z2ts

〉

∩
(3)

with the transfer function of the harmonic oscillator when
interacting with the sample G′

ho [35], the sensor excita-
tion frequency fexc, the bias modulation voltage Vel and
the oscillation amplitude A. Within the harmonic ap-
proximation, the transfer function G′

ho can be approx-
imated by the undisturbed version Gho that is directly
given from the sensor properties [35]. Central to Eqs. 2

and 3 is the cap averaging function ⟨.⟩∩ de�ned by [35]

⟨f⟩∩ (zc) =
2

πA2

∫ A

−A

f(zc + z)
√
A2 − z2dz, (4)

which describes the averaging of the physical quantities
due to the movement of the oscillating tip. Furthermore,
Eqs. 1 and 2 highlight that the CFM voltage V min

bias has a
complex dependency on electrostatic and sensor param-
eters. A detailed analysis of these dependencies can be
found in [27].
The fundamental approach in this work is to determine

the electrostatic model parameters from �tting the elec-
trostatic model to experimental data A2fel(zp) (The ex-
perimental adjustment parameter zp describes the piezo
position, which is identical to the tip oscillation centre
position zc except for the zero point of the coordinate
axis and the static sensor de�ection [36]) We use an elec-

trostatic model [25] for calculating Cvoid and Φ̂void that
describes the tip as a combination of a half-sphere, a cone,
and a disk as well as the sample as a dielectric slab of
1mm thickness with dielectric constant ϵs. The robust-
ness of our approach and the reliability of the resulting
parameters is con�rmed by analysing data for di�erent
oscillation amplitudes [37] and at two di�erent lateral
surface positions, namely at the position of the particle
of interest (�onP�) and on a particle-free terrace (�o�P�).
Surface preparation and CFM measurements are per-

formed under ultra-high vacuum conditions (base pres-
sure < 1 × 10−10 mbar). First, clean CeO2(111) sur-
faces are prepared by sputter/anneal cycles. Second, gold
material is deposited from an electron beam evaporator
(type EFM 3i from Focus GmbH) on the sample held at
room temperature. Third, small Au nano-particles are
formed in a post-deposition annealing step. NC-AFM
imaging and CFM charge quanti�cation measurements
are conducted with Ar-sputtered Si and PtIr-coated Si
tips, respectively. CFM measurements are performed in
the frequency-modulated closed-loop (FM-CL) mode [38]
and the data acquisition of distance-dependent ∆f(zp),
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(I) (II)

(III) (IV)

50 nm

(I)

onP

offP

FIG. 2. Determination of the electrostatic model parameters with distance-dependent A2fel data acquired on a single gold nano-
particle (position onP marked in inset (I)). A total of 14 A2fel(ztip) curves are acquired using 7 di�erent oscillation amplitudes
(data for three oscillation amplitudes shown, see appendix Sec. B for experimental details). Data are �tted (dashed black lines)
using Eq. 3 with ϵs = 24 and three �t parameters Rtip (see inset II), zo�set (see inset III), and Ao�set

2fel (see inset IV).

V min
bias (zp), and A2fel(zp) data using di�erent sensor oscil-

lation amplitudes A is executed at the two sample posi-
tions onP and o�P. Seven increasing and decreasing os-
cillation amplitudes are used for pre-processing by the
force curve alignment (FCA) [37] method. With this
method, the oscillation amplitude A is precisely deter-
mined and thermal drift is corrected, ensuring a precise
relative alignment of all curve data along the zp axis and
allowing to plot data against the coordinate of the lower
tip oscillation turning point ztip [36]. Further experimen-
tal details are given in appendix section B.

The topographic overview image in Fig. 1(a) shows
the ceria surface after completing the sample prepara-
tion. The image reveals the surface step edges and many
small terraces having a width between 5 nm and 60 nm.
Single gold nano-particles are identi�ed as bright pro-
trusions and are distributed homogeneously over the sur-
face although a tendency for nucleation at or nearby step
edges is observed. The line pro�les of selected nano-
particles are shown in Fig. 1(c). In the corresponding
V min
bias data (tip bias, see Fig. 1(b)), dark spots are visi-

ble at the particle positions. The V min
bias voltage is simi-

lar for all particles, highlighting that they have similar
properties. In addition, the CeO2(111) step edges ap-
pear as dark lines in the V min

bias data. We note in passing
that the di�erence in V min

bias at step edges on the related
CaF2(111) surface has been explained by the di�erent

step orientation [39]. While the more negative voltage
suggest negatively-charged nano-particles and step edges,
we need to highlight that the absolute values are strongly
dependent on the imaging and system parameters [27].
Thus, an interpretation �rst requires a determination of
the electrostatic model parameters.

In the �rst step of the charge quanti�cation procedure,
the measured and FCA-corrected A2fel(zp) data acquired
at the position of one single gold nano-particle are �tted
with Eq. 3 using three �t parameters: the tip radius Rtip,
the o�set zo�set along the z axis relating the experimen-
tal piezo position zp to the model coordinate system, and
the amplitude-dependent o�set Ao�set

2fel which is an e�ect
of the lock-in detection of the modulated A2fel-signal in
presence of measurement noise (see appendix Sec. C).
While FCA ensures a correct relative alignment within a
set of force-distance curves, the parameter zo�set deter-
mines the absolute alignment relative to ztip = 0 repre-
senting the dielectric-vacuum boundary. Consequently,
after �tting it is possible to plot A2fel data in Fig. 2 with
respect to the position of the lower turning point of the
tip oscillation, ztip [36].

Fig. 2 presents exemplary A2fel(ztip) data for three
representative amplitudes for one data set acquired at
an exemplary gold nano-particle position (see inset (I)
in Fig. 2, together with the corresponding A2fel(ztip) �t
functions (see appendix Fig. D.2 for the full data set).
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(a)

(b)

(I) (II)

FIG. 3. Charge quanti�cation from V min
bias (ztip) data. (a) Model geometry including the positions of the central charge (qc) and

the e�ective surrounding charge (qs). While the central charge is �xed at (ρc, zc) = (0, 1 nm), the analysis is performed for
di�erent positions of the surrounding charge qs along the six axes r1 to r6 (see appendix Tab. D.1 for all results). (b) Distance-
dependent ∆V min

bias (ztip) data calculated by subtracting V min
bias (ztip) measurement data at the o�P position from data acquired

at the onP position (see inset (I) in Fig. 2). A total of 14 A2fel(zp) curves are acquired using 7 di�erent oscillation amplitudes
at each position; data for three exemplary amplitudes are reproduced. Model and �t results (black dashed line) are given for
a position of (ρs, zs) = (44 nm, 1 nm) (marked in (a) by an orange circle) for the surrounding charge. Resulting �t parameters
for all amplitudes are shown in inset (I) and the statistical variation of the central charge magnitude qc across a total of three
measurement sets (42 V min

bias (ztip) curves in total) is shown in inset (II). As the main result, the central charge magnitude is
determined to qc = (−7.4± 0.4) e.

Data were acquired at the onP position of a gold nano-
particle, measurements at the o�P position are repro-
duced in the appendix Fig. D.3. The monotonically de-
creasing A2fel(ztip) curves di�er depending on the oscil-
lation amplitude. These di�erences are expected as they
are a result of the cap averaging function (Eq. 4). For the
electrostatic model [25] used to calculate the �t function,
we keep the tip cone opening half-angle �xed at 23.3◦,
the cone height at 12.5µm, the cantilever disk radius at
34.6 µm, the cantilever disk thickness at 4 µm, and the
substrate dielectric constant at ϵs = 24. These tip and
cantilever parameters are adapted from the values given
by the manufacturer, while the dielectric constant for re-
duced ceria has been determined before [40�42]. In pre-
vious simulations [27], we found only a minor e�ect in
V min
bias when varying the tip geometry parameters except

for Rtip.

The insets (II)-(IV) in Fig. 2 present results for the
�t parameters as a function of the oscillation amplitude
for one data set; values for the curves presented in the
main �gure are marked by large spheres. The tip ra-
dius Rtip expresses a slight dependency on the oscillation
amplitude with a systematic increase from about 38 nm

to 44 nm (see inset (II) in Fig. 2). Due to the excellent
agreement between the experimental data and the model
curves, we assume that this scaling corrects for short-
comings of the oversimpli�ed geometry of the tip model
by in�uencing the cap-averaging in the calculation. The
progress of the �t parameter zo�set (see inset (III) in
Fig. 2) has no physical meaning as it is subject to the
experimental strategy of keeping the lower turning point
at roughly the same tip-sample distance [43] during the
data acquisition. However, as the lowest measurement
point of each curve will be at larger z than the nano-
particle top facet, a particle height of less than 2.6 nm
can be concluded, in agreement with the typical height
of 2 nm retrieved from Fig. 1(c). The �t parameter Ao�set

2fel

(inset (IV) in Fig. 2) is rootet in the detection principle
and does not deliver insight into the electrostatic model
as explained in appendix Sec. C.

With the electrostatic model parameters determined,
the weight function for charges Wq (see Eq. 2) can be
evaluated at the charge positions r⃗i. The central provi-
sion within the second step of the charge quanti�cation
procedure is the identi�cation of feasible charge positions
for surface species contributing to the V min

bias (ztip) signal.
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Initial �ts are performed with a central charge q0 rep-
resenting the investigated gold nano-particle, four e�ec-
tive surrounding charges qe�i describing its surroundings,
and the contact potential di�erence VCPD between tip
and sample as �t parameters [27]. The charges are po-
sitioned at zq = 1nm above the surface, in centre of the
gold nano-particles considering the typical height of 2 nm
(see Fig. 1(c)). Charge redistribution at the step edges
and other electrostatic inhomogeneities are also covered
by the e�ective charge approach.

The model with �ve charges yields an excellent match
between the experimental V min

bias (ztip) data and the model
curves (see appendix Fig. D.5(b)) and a magnitude of
q0 = (−6.7± 1.8) e (with e representing the positive ele-
mentary charge) is found for the charge of the centre gold
metal nano-particle under investigation by evaluation of
three data sets (see inset of Fig. D.5(b)). Still, the com-
parably large error for the charge magnitude goes along
with a large spread of the e�ective charges representing
the surrounding nano-particles. We �nd that a decreased
signal-to-noise ratio in V min

bias (ztip) at tip-sample distances
ztip > 30 nm that is the result of a greatly reduced signal
strength causes a large uncertainty of the surrounding
charges and, ultimately, leads to instable �ts.

Therefore, we reduce the number of �t parameters by
taking advantage of the homogeneous distribution and
identical character of the gold nano-particles on the sur-
face that allows to adapt the �on-minus-o�� approach
that is commonly used in site-speci�c force measurements
with NC-AFM [44]. This approach is justi�ed as the
V min
bias (ztip) signal at large tip-sample distances is domi-

nated by charges located at large radial distances from
the lateral tip position as well as by the contact po-
tential di�erence. The �rst in�uence is expected to be
on average identical irrespective of the lateral tip posi-
tion for a homogeneous particle distribution, while the
second parameter is fundamentally independent of the
lateral tip position. Calculating the di�erence between
V min
bias (ztip) data taken onP and o�P yields ∆V min

bias (ztip),
which, therefore, is free from the in�uence of remote
species as well as the contact potential di�erence.

Experimental ∆V min
bias (ztip) data in Fig. 3(b) (green and

blue curves) present the di�erence for three amplitudes
between a V min

bias (ztip) measurement acquired at the onP
and the o�P position. A prerequisite for calculating this
di�erence is the correct alignment of the data along the
z axis. Here, this alignment is precisely ensured via the
FCA method and the determination of the zo�set param-

eter by �tting the A2fel data. We �nd that placing a
single point charge qc at the centre position below the
tip (i.e. at ρqc = 0) does not reproduce the curvature
of the experimental V min

bias (ztip) curve at intermediate dis-
tances around ztip ∼ 25 nm correctly (see Fig. D.7). Al-
though the presence of only one single �t parameter qc
renders the �tting routine very robust, this model does
not correctly represent the physical system. It appears
that charge in the vicinity of the investigated gold nano-
particle needs to be included in the model.
Therefore, we introduce an additional charge qs and

test the �t by systematically placing this charge at po-
sitions (ρqs , zqs) along �ve axes r1 to r5 as shown in
Fig. 3(a). The results can be classi�ed into two groups
(see appendix Tab. D.1 for a full overview). In group A,
the central charge magnitude qc is found to be between
−7 e and −8 e, while the surrounding charge is positive
with magnitudes between 10 e and 20 e and is located
at lateral positions of ρqs ∼ 40 nm (positions marked by
green dots in Fig. 3(a)). For these cases, the agreement
between the experimental data and the model curves is
excellent with one example presented in Fig. 3(b). For
the second group B, the agreement between the exper-
imental and model data is reduced. In particular, the
curvature at intermediate tip-sample distances around
ztip = 15nm does not match and the V min

bias values at
small tip-sample distances deviate. Therefore, we under-
stand the models behind these results to not correctly
represent the physical system.
It is clear that V min

bias data at small ztip have a critical
in�uence on the charge magnitude value qc of the central
gold nano-particle. Thus, to arrive at a reliable measure-
ment for qc, the charge measurement is repeated with
di�erent values for the lowest position adjusted by the
frequency-shift set-point during the experimental data
acquisition. The A2fel(ztip) and V min

bias (ztip) curves are �t-
ted for all data sets as shown in Figures D.2, D.3 and
D.8 with the resulting �t parameters presented in the
appendix Fig. D.9. The statistical distribution for qc
across all amplitudes and all measurement sets (total of
42 measurements) is included as inset (II) in Fig. 3 and
yields a �nal value of (−7.4 ± 0.4) e for the charge mag-
nitude of the central gold nano-particle. In particular,
as there is no apparent bias with respect to amplitude
and lowest sampling position, we deem this measure-
ment to be robust. In addition, a positive surrounding
charge is found and excellent �ts are achieved when po-
sitioning a charge of magnitude (11.3± 1.0) e at position
(ρqs , zqs) = (44 nm, 1 nm).
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Appendix A: The signal amplitude at 2fel: A2fel

The probe displacement q can generally be described
by solving the equation of motion for an externally
driven, damped harmonic oscillator with an external
force [35]. Commonly, the solution is based on the
harmonic approximation, namely on the ansatz q(t) =
q0 +A cos(2πfexct+ ϕ). For the case of CFM, additional
components are present in q(t) due to the bias modu-
lation with V = Vbias − VCPD + Vel cos(2πfelt). While
the frequencies of these components are identical to the
method of KPFM, the interpretation of the magnitude
di�er signi�cantly. The Fourier analysis of q(t) yields:

F [q](f) = G′
ho(f)×

F [F0 cos(2πfexct)

+ ⟨Feven,a⟩∪
+ ⟨Fel,b⟩∪ cos(2πfelt)

+ ⟨Fel,c⟩∪ cos(2π2felt)

+A/2 ⟨kel,b⟩∩ cos(2π(fexc + fel)t+ φ)

+A/2 ⟨kel,b⟩∩ cos(2π(fexc − fel)t+ φ)

+A/2 ⟨kel,c⟩∩ cos(2π(fexc + 2fel)t+ φ)

+ A/2 ⟨kel,c⟩∩ cos(2π(fexc − 2fel)t+ φ)
]
(A1)

The signal contains one static as well as four harmonic
components, the latter at frequencies fel, fexc, fexc± fel,
and fexc ± 2fel. The amplitudes of these components
are de�ned by force contributions given by the excita-
tion force F0, the even tip-sample interaction Feven,a, as
well as components of the electrostatic force (Fel,b, Fel,c)
and the electrostatic force gradient (kel,b, kel,c). The full
derivation has been given before [38].
The V min

bias signal evaluated in closed-loop frequency-
modulation CFM follows from the condition [38]

0 = F [q cos(2πfexct)] (fel). (A2)

From eq. A1, this reduces to the equation

0 = ⟨kel,b⟩∩ (A3)

which is a function of V min
bias . The quantity kel,b depends

on both, the electrostatic system parameters as well as
the point charge positions and magnitudes. It can ex-
plicitly be written as [38]

kel,b = Vel

(
∂2Cvoid

∂z2ts
(Vbias − VCPD)−

N∑

i=1

qi
∂2Φ̂void(r⃗i)

∂2zts

)
.

(A4)

The signal at fexc ± 2fel can be measured by lock-in
or sideband detection techniques. This signal is of rel-
evance as only the averaged capacitance gradient con-
tributes; this signal is independent of the point charges
in the system. In particular, kel,c is given by [38]:

kel,c =
1

4

∂2Cvoid

∂z2ts
V 2
el . (A5)

We de�ne A2fel as the amplitude of this component at
frequency f0 ± 2fel in the spectrum of q

A2fel = |G′
ho(f0 + 2fel)| ·

∣∣A · ⟨kel,c⟩∩
∣∣ . (A6)

In this equation, we only consider the positive frequency
axis and include a factor of 2 to account for the signal
power at fexc − 2fel. This is justi�ed as the input signal
is a real signal. The transfer function of the harmonic
oscillator, G′

ho, is de�ned by [35]

G′
ho(f) =

1

k′ − (2πf)2m+ 2πifγ′ (A7)

and describes the oscillator slightly disturbed by the tip-
sample interaction using the e�ective force gradient and
damping coe�cients

k′ = k0 − ⟨kts,a⟩∩ (A8)

γ′ = γ0 − ⟨γts,a⟩∩ (A9)

The averaged tip-sample force gradient is, in the case of
CFM and KPFM, usually very small as only long-range
forces contribute to the measurement. Therefore, the
approximation

G′
ho(f0 + 2fel) ≈ Gho(f0 + 2fel) (A10)

can be used. For ⟨kts,a⟩∩ = 0.02Nm, the di�erence be-
tween G′

ho(f0+2fel) and Gho(f0+2fel) is of the order of
0.1%.

Appendix B: Experimental Methods

Sample preparation and NC-AFM measurements are
performed under ultra-high vacuum (UHV) conditions in
the same system at a base pressure in the low 10−11 mbar
range.
A ceria single crystal (SurfaceNet GmbH, Rheine, Ger-

many) is used as substrate for gold nano-particle deposi-
tion and growth. The crystals are prepared with several
cycles of Argon ion sputtering (U = 1.5 kV, I = 15mA,
pAr=5 × 10−5 mbar) followed by annealing at high tem-
peratures (1100K to 1200K) for 20min to 30min. A
detailed description of the annealing procedure can be
found in refs. [10, 45]. This procedure results in a clean
surface rich of small terraces separated predominantly
by one triple layer (TL, O-Ce-O) high step edges as also
observed for ceria single crystals from a di�erent source
[46].
The deposition of gold (purity: 99.95%, Goodfellow,

UK) on the ceria sample is carried out with an electron
beam sublimator (EFM 3i, Focus GmbH, Hünstetten,
Germany) which was carefully degassed prior to the ex-
periments and operated with the settings: U = 600V,
IEmission = 20mA, IFil = 2A. After a constant �ux of

139



9

approx. 320 nA is achieved for several minutes, gold is de-
posited for 60 s on the sample held at room temperature.
The deposition time of 60 s results in a surface nearly
completely covered by very small Au particles. Larger
nano-particles are formed in a post-deposition anneal-
ing step at temperatures between 520K to 620K and for
times between 20min to 30min.
NC-AFM and CFM experiments are performed at

room temperature using a modi�ed [47] commercial
ultra-high vacuum AFM/STM system (Omicron Nano-
Technology, Taunusstein, Germany) controlled by a RHK
R9 controller (RHK Technology, Inc., Troy, USA) and an
atom-tracking system [48] for drift compensation. Stan-
dard silicon cantilevers (PPP-NCH from Nanosensors,
Switzerland) as well as PtIr-coated silicon cantilevers
(NCHPt from Nanosensors, Switzerland) are used for
the experiments. Both cantilevers have a resonance fre-
quency in the range of f0 = 230 kHz − 350 kHz and a
typical force constant of 42Nm−1. The standard Si can-
tilevers have a lower conductivity but a sharper tip, re-
sulting in higher resolution during imaging.
CFM measurements are performed in the frequency-

modulated (FM) closed-loop (CL) mode with fel =
1567Hz and Vel = 1V using PtIr-coated Si probes. V min

bias

refers to the voltage at the tip with respect to the sample
back contact. The sideband detection of the R9 system is
used for detection of the components at fel and 2fel and
the CFM voltage V min

bias is adjusted by a feedback loop
such that the spectral component at fel is minimised.
CFM data are acquired as both, images in parallel to

regular topography mode imaging as well as distance-
dependent measurements at well-controlled sample posi-
tions. Distance-dependent measurements are performed
using the same measurement protocol as introduced as
force curve alignment [37]. With this protocol, a total
of 2N curves (here: N = 7) with ascending and de-
scending amplitude values are acquired. Here, ampli-
tude values of A0 = 5.0, 7.14, 9.29, 13.57, 17.86, 20.0 nm
are used. An optimisation algorithm matches the force
curves calculated from the frequency-shift ∆f(z) data
with the sensitivity factor S and drift parameters as free
variables. A reliable force measurement, parameter de-
termination, as well as precise relative alignment of the
data are achieved when all curves are identical within the
measurement noise.

Appendix C: Contributions to the A2fel signal

measurement

The A2fel signal is measured at fexc ± 2fel in the de-
�ection signal q using the side-band detection method of
the R9 control system. This detection method yields the
same result as a lock-in based measurement of the 2fel
component in the frequency-shift (∆f) channel.
The A2fel signal in q is very small compared to the

de�ection signal q of the cantilever at fexc as well as to
the Vbias signal at fexc+fel. Hence, care has to be taken

that the A2fel signal measurement is free from artefacts.
In our experiments, we �nd a decreasing o�set Ao�set

2fel

with increasing tip oscillation amplitude A.
When using lock-in based detection, the absence of fur-

ther components within the lock-in output signal has to
be ensured. In particular, for this speci�c case, the band-
width has to be chosen small enough such that the com-
ponents at fexc and fexc+fel are not leading to additional
contributions. The frequency fel is set to fel = 1576Hz
in the experiments. With time constants smaller than
2.7 ms we found an increase of the A2fel signal with the
tip oscillation amplitude A. Note that this e�ect is op-
posite to our experimental observations. Instead, when
setting the time constant of the lock-in ampli�er to 3.2 ms
with a �lter slope of 18 dB/Oct, we veri�ed that there is
neglectable in�uence by the main signal at fexc; A2fel is
found to be independent of the tip oscillation amplitude
A with these settings. Still, the detection bandwidth
with these settings is still large enough to measure A2fel

within the experimental sampling times. These settings
were used for the experiments.
From a noise analysis it has been found [49] that the

total noise amplitude spectral density d∆f
tot in the ∆f

channel scales with the inverse oscillation amplitude, i.e.
with 1/A. Due to the �nite bandwidth of the lock-in
ampli�er low pass �lter, the integration over this spec-
tral density within the �lter bandwidth contributes to
the lock-in output signal and will lead to a scaling of
the noise contribution with 1/A. At large tip-sample dis-
tances where the A2fel signal is predominantly de�ned by
the contributing noise, this contribution appears as an
o�set. However, this o�set is present at all tip-sample
distances and, thus, compensated for in the �t procedure
of the electrostatic model by introducing a �t parameter
Ao�set
2fel that is additive to the model result for A2fel.

Appendix D: Results

The point charge position map derived from several
NC-AFM images acquired in the vicinity of the gold
nano-particle of interest is shown in Fig. D.1. Fits of the
A2fel model (Eq. 3) to all data sets acquired at the gold
nano-particle position (onP) are shown in Fig. D.2. Fits
to the corresponding data sets taken on an empty terrace
(o�P position) are shown in Fig. D.3. On overview of the
resulting electrostatic model �t parameters for three dif-
ferent data sets are shown in Fig. D.4.
The evaluation of the charge magnitude at onP

(Fig. D.5) and o�P (Fig. D.6) positions with a model
containing one central (q0) and four e�ective surround-
ing charges (qe�i ) yields instable values for the surround-
ing charges and a large error for the magnitude of the
central charge.
Fits when using the di�erence approach with a single

central point charge are shown in Fig. D.7. Results when
using one surrounding charge in addition to the central
charge for three data sets are shown in Fig. D.8 and an
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overview of the resulting values are compiled in Fig. D.9.
These results are calculated for the surrounding charge
located at (ρqs , zqs) = (44 nm, 1 nm). Results for further
positions are listed in Tab. D.1.

axis
ρqs zqs µqc σqc µqs σqs µϵRMS group(nm) (nm) (e) (e) (e) (e) (mV)

r1

10 1 −22.4 5.0 20.9 5.6 15.8 B
20 1 −10.8 1.2 10.5 1.8 14.0 B
30 1 −8.5 0.6 9.7 1.0 12.6 B
40 1 −7.6 0.4 10.7 1.0 11.9 A
44 1 −7.4 0.4 11.3 1.0 11.8 A
50 1 −7.2 0.4 12.5 1.1 11.8 A
70 1 −6.9 0.4 17.8 1.9 12.0 B
140 1 −7.1 0.5 43.2 4.9 12.1 B

r2

0 −1 −14.0 1.3 20.5 2.4 12.6 B
10 −1 −12.2 1.1 17.9 2.2 12.7 B
20 −1 −9.9 0.8 15.3 1.7 12.6 B
30 −1 −8.7 0.6 14.8 1.4 12.1 B
40 −1 −8.0 0.5 15.5 1.4 11.9 A
44 −1 −7.8 0.5 16.1 1.4 11.8 A
50 −1 −7.6 0.4 17.1 1.5 11.8 A
70 −1 −7.3 0.4 21.7 2.1 11.9 A
140 −1 −7.2 0.5 44.6 4.8 12.0 B

r3

0 0.5 −35.8 3.9 42.3 5.0 12.6 B
0 0.2 −20.1 2.0 26.5 3.1 12.6 B
0 0 −14.8 1.4 21.3 2.5 12.6 B
0 −0.2 −14.6 1.4 21.1 2.5 12.6 B
0 −0.5 −14.4 1.3 20.9 2.4 12.6 B
0 −1 −14.0 1.3 20.5 2.4 12.6 B

r4

40 1 −7.6 0.4 10.7 0.9 11.9 A
40 0.5 −7.8 0.5 12.6 1.1 11.9 A
40 0.2 −7.9 0.5 14.1 1.2 11.9 A
40 0 −8.0 0.5 15.3 1.3 11.9 A
40 −0.2 −8.0 0.5 15.3 1.3 11.9 A
40 −0.5 −8.0 0.5 15.4 1.3 11.9 A
40 −1 −8.0 0.5 15.5 1.4 11.9 A

r5

44 1 −7.4 0.4 11.3 1.0 11.8 A
44 0.5 −7.6 0.4 13.2 1.1 11.8 A
44 0.2 −7.7 0.4 14.7 1.3 11.8 A
44 0 −7.8 0.5 15.8 1.4 11.8 A
44 −0.2 −7.8 0.5 15.9 1.4 11.8 A
44 −0.5 −7.8 0.5 16.0 1.4 11.8 A
44 −1 −7.8 0.5 16.1 1.4 11.8 A

r6

50 1 −7.2 0.4 12.5 1.1 11.8 A
50 0.5 −7.4 0.4 14.4 1.3 11.8 A
50 0.2 −7.5 0.4 15.8 1.4 11.8 A
50 0 −7.6 0.4 16.9 1.5 11.8 A
50 −0.2 −7.6 0.4 16.9 1.5 11.8 A
50 −0.5 −7.6 0.4 17.0 1.5 11.8 A
50 −1 −7.6 0.4 17.1 1.5 11.8 A

TABLE D.1. Results for di�erent positions of the e�ective
surrounding charge qs varied along six di�erent axes ri (see
Fig. 3(a)). The central charge qc is located at (ρqc , zqc) =
(0 nm, 1 nm) for all cases. The �t quality is given by µϵRMS ,
the mean value over all ϵRMS values from the three evaluated
maps.
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FIG. D.1. Point charge position map (PCPM) describing the position of the central particle (red circle) and position of
surrounding particles (black squared) found from evaluating three separate overview images. For �nding e�ective charge
positions (blue triangles), four circular segments of increasing width around the investigated central particle are considered
(tinted grey circular segments). All particle positions within one segment are averaged giving the position of the e�ective charge
in that segment. The investigated o�P position is indicated by a orange star.
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FIG. D.2. Results from �tting the model (Eq. 3) to A2fel data for all amplitudes and for (a)-(c) maps 1-3 aquired at the onP
position. The resulting �t parameters are shown as a function of the tip oscillation amplitude in the insets for each data set:
(I) o�set zo�set between acquisition and model z axes; (II) tip radius Rtip; (III) Ao�set

2fel o�set value.
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FIG. D.3. Results from �tting the model (Eq. 3) to A2fel data for all amplitudes and for (a)-(c) maps 1-3 aquired at the o�P
position. The resulting �t parameters are shown as a function of the tip oscillation amplitude in the insets for each data set:
(I) o�set zo�set between acquisition and model z axes; (II) tip radius Rtip; (III) Ao�set

2fel o�set value.
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on Particle

off Particle

(a) (b) (c)

(d) (e) (f)

FIG. D.4. Overview for all parameters resulting from �tting A2fel to the model (Eq. 3) at the onP and o�P position. (a) Rtip,
(b) zo�set, and (c) Ao�set

2fel as function of the amplitude A at the onP position. (d) Rtip, (e) zo�set, and (f) Ao�set
2fel as function of

the amplitude A at the o�P position. Data are acquired with three values for the lower turning point, explaining the systematic
shifts in zo�set for the di�erent data sets.
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(a)

(b)

(c)

(d)

(e)

(I)

FIG. D.5. Fit to V min
bias data taken at the onP position using the model (Eq. 1) with a central charge q0, four e�ective

surrounding charges qe�i , and VCPD as �t parameters (see also [27]). (a) PCPM with all charge positions projected to the radial
axis. (b) Experimental V min

bias (ztip) data (blue-green curves) and �t results (black dashed curves) measured at the onP position.
Inset (I) shows the result for q0 when evaluating maps 1-3 with this model. Resulting values for (c) q0 and VCPD as function of
amplitude and (d) corresponding results for the e�ective charges qe�i . (e) Residual error ϵRMS of each �t. Exit�ag=1 denotes
a well-converged optimisation.
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(a)

(b)

(c)

(d)

(e)

FIG. D.6. Fit to V min
bias data taken at the o�P position using the model (Eq. 1) with four e�ective surrounding charges q0 and

qe�i , as well as VCPD as �t parameters (see also [27]). (a) PCPM with all charge positions projected to the radial axis. (b)
Experimental V min

bias (ztip) data (blue-green curves) and �t results (black dashed curves) measured at the o�P position. Resulting
values for (c) the �rst e�ective charge q0 and VCPD as function of amplitude and (d) corresponding results for the e�ective
charges qe�i . (e) Residual error ϵRMS of each �t. Exit�ag=1 denotes a well-converged optimisation.

FIG. D.7. Di�erence approach �ts of ∆V min
bias data for all amplitudes of data set 3 including only one central charge qc as �t

parameter in the model. For the calculations, the charge qc is placed at (ρq, zq) = (0 nm, 1 nm). The resulting charge value for
qc for each amplitude is shown in inset (I). A single charge appears to not being su�cient for describing the ∆V min

bias data as no
good match between the experimental data and the model could be achieved.
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FIG. D.8. Di�erence approach �ts of ∆V min
bias data for all amplitudes and (a)-(c) data sets 1-3 including a central charge qc and a

surrounding charge qs as �t parameters in the model. For the calculations, the charge qc is placed at (ρq, zq) = (0 nm, 1 nm) and
the surrounding charge qs is placed at (ρq, zq) = (44 nm, 1 nm). The resulting charge magnitudes qc and qs for each amplitude
are shown in the inset (I).
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(a) (b)

(c) (d)

FIG. D.9. Results overview for the centre charge qc and surrounding charge qs from the di�erence �t for maps 1-3. (a) The
centre charge qc as function of amplitude and (b) the normal distribution of resulting values of qc over all maps. (c) The centre
charge qc as function of amplitude and (d) the normal distribution of resulting values of qc over all maps. The charge qc is
placed at (ρqc , zqc) = (0 nm, 1 nm) and the surrounding charge qs is placed at (ρqs , zqs) = (44 nm, 1 nm) for the calculations.
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10. Summary

In this thesis, four major results novel to the field of NC-AFM, are introduced.
The first development is the FCA method, a procedure facilitating the accurate
and precise measurement of force curves, free from experimental artefacts and sys-
tematic error. The concept of FCA is the repetitive measurement of the tip-sample
interaction with different probe oscillation amplitudes, delivering a data-set, which
is robust against disturbing impacts. While a single force curve can be prone
to unnoticed systematic error, a match of several individual force curves by an
optimisation algorithm enables the self-consistent determination of the error-free
tip-sample interaction force. Furthermore, the successful application of the FCA
method inherently yields the correct value of the probe oscillation amplitude solving
the key challenge of force retrieval from frequency shift data.

Second, the probe tilt with respect to the surface normal, typically given in any NC-
AFM setup for technical reasons, is identified as a source of systematic error in the
precise measurement of force curves, especially when measuring above nano-objects.
Addressing this, the established AFM theory exclusively considering a tip sampling
path parallel to the data recording path, is expanded to describe an arbitrary tip
oscillation direction with respect to the data recording path. As force inversion
algorithms usually assume that tip-sampling path and the data recording path are
parallel, it is proposed, to adjust the data recording path to the tip sampling path
direction given in experiment for enabling the correct retrieval of the tip-sample
interaction.

Third, the formal foundation for CFM is developed based on simulations with
different electrostatic models for three tip geometries, namely the S, SC and SCL
model. The SCL model evaluated by the CapSol software is found to be best suited
for the characterisation of an experimental tip-sample system. Extensive analysis
of CFM signal generation for different lateral and vertical charge positions yields
distant-dependent CFM data as best suited for charge quantification and show that
charges at far distances from the tip contribute to the CFM signal. The radius of
the tip sphere, the dielectric permittivity, and the offset of the tip with respect to
the surface of the dielectric support are identified as the most crucial parameters
for the SCL model. A fit routine based on the CFM theory and SCL model is
implemented enabling the precise quantification of the charge centred below the tip
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10. Summary

and effective surrounding charges as well as the contact potential difference based
on distant-dependent CFM data.

Fourth, the FCA method and CFM in combination are employed experimentally on
CeO2 supported Au nano-particles for quantifying their static charge state. Several
data sets of distant-dependent V min

bias (ztip) data and A2fel(ztip) are taken above an
Au nano-particle (on particle) and on an empty CeO2 terrace (off particle). The
resulting data sets are evaluated in a two-step procedure for charge quantification.
In the first step, the SCL model is fitted to the capacitance signal A2fel(ztip) mea-
sured at twice the bias modulation frequency 2fel to experimentally retrieve the
actual model parameters characterizing the tip-sample capacitor. In the second
step, the CFM fit routine is used to fit the formal description of the CFM signal to
the measured V min

bias (zts) data set yielding the charge in the investigated Au-cluster.
Noise in the CFM data at large tip-sample distances ztip is identified as a source of
the significant error in that approach. For an improvement of the precision of the
second step, CFM data taken at the off particle position are used to eliminate the
contact potential difference and the influence of surrounding charges in the evalua-
tion of the charge of the investigated Au nano-particle. Using the modified CFM fit
routine having only two remaining fit parameters, namely the charge in the particle
and a effective charge in the near surrounding, yields more precise results.
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A. Appendix

A.1. Potential energy within the electric field

In this chapter the derivation steps required to obtain relation (2.3.17) used in [67].
Starting from the fundamental equation [93, 70]

Uel,f = 1
2

∫︂
V

E · D dr (A.1.1)

describing the accumulated total energy in the electrostatic field E generated by the
point charges and metals in the Volume V in presence of a dielectric medium. For
linear and isotropic dielectric media surrounding the conductors, the displacement
field is given by D = ϵ0ϵs(r)E. For simplification it is assumed that the dielectric
medium can be described by the macroscopic relative permittivity ϵs. Hence relation
A.1.1 becomes [67]

Uel,f = ϵ0ϵs

2

∫︂
V

E · E dr (A.1.2)

Required for the further derivation is the definition [93]

E = −∇Φ (A.1.3)
where Φ is the scalar potential in-between the conductors. By inserting this identity
into relation (A.1.2) as follows

Uel,f = −ϵ0ϵs

2

∫︂
V

E · (∇Φ) dr (A.1.4)

enables the utilisation of the identity [131]

∇ · (ΦE) = Φ∇ · E + E · ∇Φ. (A.1.5)

By inserting this into (A.1.4) one gains two separate contributions to the electro-
static energy of the field [92]

Uel,f = U1
el,f + U2

el,f (A.1.6)

= ϵ0ϵs

2

∫︂
V

Φ∇ · E dr − ϵ0ϵs

2

∫︂
V

∇ · (ΦE) dr (A.1.7)
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A. Appendix

Where the first term is the energy contribution of the point charges U1
el,f and the

second term is the energy contribution of the conductors U2
el,f. This will become

more obvious by further derivations. First, the energy contribution of the point
charges U1

el,f is brought into a form explicitly containing the charge magnitudes qi.
In the current equation of the point charge contributions

U1
el,f = ϵ0ϵs

2

∫︂
V

Φ∇ · E dr (A.1.8)

the charge magnitudes are only intrinsically given, as the divergence of the electric
field is related to the charge distribution ρ(r) in the volume V by the differential
equation of Gauss’s law (first of the Maxwell’s equations)

∇ · E = −∇2Φ = ρ(r)
ϵ0ϵs

(A.1.9)

This relation is also well known as the Possion equation [93]. Inserting this relation
yields

U1
el,f = 1

2

∫︂
V

Φρ(r) dr (A.1.10)

According to the considered system, the charge distribution consists of N point
charges qi at fixed positions ri in the volume V in-between the conductors. This
discrete distribution can be described by

ρ(r) =
N∑︂
i

qiδ(r − ri) (A.1.11)

using the Dirac delta function δ. Due to this discrete charge distribution the integral
over the volume between the conductors V containing all N charges in the system
is reduced to

U1
el,f = 1

2

N∑︂
i

qiΦ(ri) (A.1.12)

After these transformations the contribution of the point charges to the electrostatic
energy of the field (first term in equation 2.3.17) explicitly contains the charges qi.
Now, the second term U2

el,f in (A.1.6) describing the contribution of all conductors
to the electrostatic energy of the field, given by

U2
el,f = −ϵ0ϵs

2

∫︂
V

∇ · (ΦE) dr (A.1.13)

is discussed. In the following, this relation will be brought into a form explicitly
containing the potential Φm and surface charge Qm of each conductor. Starting
this transformation, Gauss’s theorem [131] is applied to the volume integral taken
over the divergence of ΦE. As the field inside each conductor is zero, the volume
integral can be transformed into a sum of integrals over each conductor surface Sm
[92]

U2
el,f = ϵ0ϵs

2
∑︂
m

∮︂
Sm

ΦE · n ds (A.1.14)
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where n represents the local surface normal vector of the m-th metal surface. De-
noting the potential Φ as the constant potential Φm of the the m-th conductor and
inserting the Poisson equation (A.1.3) for the electrostatic field provides

U2
el,f = −ϵ0ϵs

2
∑︂
m

Φm

∮︂
Sm

∇Φ · n ds . (A.1.15)

The remaining term in the integral can be identified as the normal derivative [94]

∇Φ · n = ∂Φ
∂n

(A.1.16)

leading to

U2
el,f = −ϵ0ϵs

2
∑︂
m

Φm

∮︂
Sm

∂Φ
∂n

ds (A.1.17)

The integral taken over the surface of each respective conductor will provide its
corresponding surface charge

Qm = −ϵ0ϵs

∮︂
Sm

∂Φ
∂n

ds (A.1.18)

This finally leads to relation

U2
el,f = 1

2
∑︂
m

QmΦm (A.1.19)

for the energy contribution of the conductors to the electrostatic field energy ex-
plicitly containing the conductor potential Φm and the conductor surface charge
Qm. Inserting the transformed terms (A.1.12) and A.1.19 into (A.1.6) provides
the relation (2.3.17) for the electrostatic energy of the field used for the further
considerations in section 2.3.2.

A.2. Energy due to the external battery

In order to derive a relation describing the electrostatic force Fel acting on the tip
in the considered system of conductors and point charges with the energy (2.3.17),
a movement δzts of that tip is considered [92, 67, 70]. For moving the tip in that
system the work

δW = −Felδzts (A.2.20)
is required. Due to that movement of the tip, the potential Φ(r) in the system
(2.3.17) will change by δΦ(r). Accordingly, the potential of each conductor m
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would deviate from its fixed value Φm, which has to be compensated for by a
charge flow δQm via the external battery. The complete work δW done in the
system as consequence of the tip movement consists of the according change of the
potential energy of the field (2.3.17)

δUel,f = 1
2
∑︂

i
qiδϕ(ri) + 1

2 (Φ1δQ1 + Φ2δQ2) (A.2.21)

and the work Wb which is done by the battery for the surface charge redistribution
(δQ1+δQ2 = 0) between both metals in order to maintain their respective potentials
Φ1 and Φ2. That work of the battery is given by

Wb = Φ1δQ1 + Φ2δQ2 (A.2.22)

By understanding the battery as a part of the system, the work carried out by it
has to reduce the total potential energy of the system and hence should be taken
with a minus sign [67]

δW = −Felδzts = −Wb + δUel,f (A.2.23)

= − (Φ1δQ1 + Φ2δQ2) + 1
2
∑︂

i
qiδϕ(ri) + 1

2 (Φ1δQ1 + Φ2δQ2)

(A.2.24)

= 1
2
∑︂

i
qiδϕ(ri) − 1

2 (Φ1δQ1 + Φ2δQ2) (A.2.25)

= δU eff
el (A.2.26)

Thus the electrostatic force Fel, imposed on the tip upon movement, is directly
related to the change of the effective energy U eff

el as function of the tip position

Fel = −∂U eff
el

∂zts
(A.2.27)

Where the effective energy or respectively total potential energy of the system
including the batteries is thus given by [67]

U eff
el = 1

2
∑︂

i
qiϕ(ri) − 1

2 (Φ1Q1 + Φ2Q2) (A.2.28)

In comparison with the potential energy of the field alone (2.3.17), the main dif-
ference resulting from the incorporation of the batteries as part of the system, is
the minus sign. Kantorovich et al. [67] proofs the importance of that difference
by showing that relation (2.3.17) does not provide the correct potential energy for
a probe point charge far away from the metals, whereas the relation (2.3.19) for
the effective energy does. For deriving a valid relation for the electrostatic force
imposed on the tip in a system like Figure 2.5 upon movement it thus is crucial to
consider the change of the total potential energy including the battery work.
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A.3. S model: Metallic sphere at fixed potential
against a dielectric or metallic sample

The electrostatic force (2.3.29) introduced in section (2.3.2) and further used in
chapter (7) for deriving the relations describing signals present in CFM requires
calculation of the electrostatic potential Φ̂void and capacitance Cvoid for the re-
spectively considered tip-sample system. For considering realistic geometries of a
metallic tip against a dielectric or conductive sample finite element and finite dif-
ference solvers are required [144]. In chapter 8 such realistic tip geometries are
considered within the framework of CFM theory using the dedicated CapSol solver
[71], where the results are compared to calculations of a metallic sphere at a fixed
potential against a dielectric or conductive sample (S model) [145, 96, 70]. Clearly,
approximating the tip with a metallic sphere does not hold for accurately calculat-
ing the electrostatic forces acting in a realistic tip-sample system. For that solvers
as CapSol [71] allowing calculations for more complex tip geometries are much
better suited (see chapter 8). However, for exemplifying electrostatic interactions
in a tip-sample system the sphere model does hold an practical advantage over
the more sophisticated solvers. It is notably less computationally expensive, while
still providing exact results and even including dependence on the probe position
a comparably simple model considering a parallel-plate capacitor would not hold
[70]. For that reason the sphere-sample model, as depicted in Figure A.1, is used
in this work for all exemplifications presented in sections 2.3.2. The tip is approx-
imated by an metallic sphere with radius rsphere, which surrounded by a medium
described by the relative permittivity ϵm and located at distance zts above a half-
space sample characterized by permittivity ϵs. A single point charge is positioned
at r = [0, 0, 0] which is located directly below the tip centre on the sample surface
zts = 0. Generally, the calculation of Φ̂void(zts) and Cvoid(zts) is independent of the
respectively assumed charge distribution qi as they describe the charge-free (void)
tip-sample system. Hence, the solution for a metallic sphere against a dielectric
or metallic sample suffices to describe the electrostatic force (2.3.29) on the tip for
any charge distribution qi in the system. For that, the potential Φ̂void(ri) from that
solution is evaluated at the corresponding charge positions ri as function of zts.
The solution for the sphere-dielectric system (or sphere-plate conductor) is based
on the infinite charge series model, which will be revisited firmly in the next section
following previous works [145, 96, 70].
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Figure A.1.: Tip-sample capacitor model considering a metallic sphere against a di-
electric or metallic half-space sample (sphere-sample system) including
a point charge q at position r = [0, 0, 0] located below the spherical
tip centre on the sample surface.

.

A.3.1. Infinite charge series model

The infinite image charge series method for solving the conductive sphere in front
of a metallic or dielectric half-space is based on two well-known textbook concepts,
where image charges are used for solving the electrostatic problem: (a) the point
charge in front of a dielectric (or metallic) half-space and (b) the point charge in
front of a conductive sphere at constant potential. Both concepts are visualised in
Figure A.2 and will be introduced first before the full solution is presented.

(a) (b)

Figure A.2.: Basic concepts for the infinite charge series method. (a) Point charge
in front of a dielectric (or metallic) half-space and (b) point charge in
front of a conductive sphere at a constant potential V .

.
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A.3.1.1. Point charge in front of a dielectric (or metallic) half-space

A point charge q surrounded by a medium with relative permittivity ϵm is located at
a distance b above the surface of a half-space medium characterized by the relative
permittivity ϵs as depicted in Figure A.2(a). The interface between both media ϵm
and ϵs is considered as the zero point z = 0. For meeting the boundary conditions
at the interface, an image charge with magnitude ζ ′ = βq is placed at distance
b′ = −b from the interface [93, 70]. Thereby the factor β is defined by the dielectric
permittivities of both media as

β = ϵs − ϵm

ϵs + ϵm
(A.3.29)

Which is β = 1 if the point charge is in front of a metal half-space [96]. The
potentials of both, point charge q and its image charge ζ ′, define the potential in
the upper half-space (z ≥ 0) as

Φ(r) = 1
4πϵ0ϵm

⎛⎝ q√︂
x2 + y2 + (b − z)2

+ −βq√︂
x2 + y2 + (b + z)2

⎞⎠ (A.3.30)

To calculate the electrostatic potential in the lower half-space (z < 0), it is required
to place a different image charge ζ ′′ = q − ζ ′ = q(1 + β) in the upper half-space
at the position of charge q for accounting for screening due to the induced surface
charges at the interface. The potential in the lower half-space (z < 0) then reads
as

Φ(r) = q(1 + β)√︂
x2 + y2 + (b − z)2

(A.3.31)

A.3.1.2. Point charge in front of a conductive sphere at constant potential

In Figure A.2(b) a point charge q is placed in front of a conductive sphere at a
distance y from its centre, where both are surrounded by a medium with relative
permittivity ϵm. The sphere of radius rsphere is assumed to be at a constant potential
V , which is accounted for by a point charge ζV = 4πϵ0ϵmrsphereV positioned in the
sphere centre. To meet the given boundary conditions at the sphere surface, an
image charge ζ ′ of magnitude ζ ′ = − rsphere

y
q has to be placed at distance d = r2

sphere
y

from the sphere centre in direction of the charge q [93]. The total electrostatic
potential in that system for |r| ≥ rsphere then is given by the sum of potentials from
each of these three point charges and reads as [70]

Φ(r) = 1
4πϵ0ϵm

⎛⎜⎜⎝ q

|r − y|
+

− rsphere
y

q⃓⃓⃓⃓
r − r2

sphere
y2 y

⃓⃓⃓⃓ + 4πϵ0ϵmrsphereV

|r|

⎞⎟⎟⎠ (A.3.32)
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Where the first two terms account for the boundary conditions on the sphere surface
due to the there induced charges and the latter term describes the potential V of
the sphere itself. In the case of q = 0 and |r| = rsphere the potential Φ(r) thus would
be equal to V as assumed above.

A.3.1.3. Full solution

Both previously presented concepts apply in the method of infinite image charge
series for solving the electrostatic problem of a metallic sphere at fixed potential in
front of a dielectric or metallic half-space sample as depicted in Figure A.3. The
sphere of radius rsphere is considered to be at a fixed potential V and is placed in
the upper half-space (z ≥ 0) where it is surrounded by the medium of relative
permittivity ϵm. Thereby the sphere centre is located at z0 = zts + rsphere above
the interface z = 0 to the lower half-space (z < 0) representing the sample with
relative permittivity ϵs. Hence the metallic back-electrode resides at z → −∞. As
the typical sample thickness is usually much lager compared to the sphere radius
rsphere and the tip-sample distance, this approximation is in practice usually fulfilled
and without loss of generality the potential can be set to ground at that back
electrode [70]. For accounting the sphere surface potential V , a point charge ζ0 =

Figure A.3.: Metallic sphere at constant potential in front of a dielectric or conduc-
tive sample including positions of the infinite charges series.

.

4πϵ0ϵmrsphereV is positioned in the sphere centre z0 = zts + rsphere. While therewith
the boundary conditions at the sphere surface are fulfilled, the boundaries at the
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dielectric interface are not met. This can be corrected by placing an image charge

ζ ′
0 = −βζ0 at z′

0 = −z0 (A.3.33)

and the given lateral position [x, y] of the sphere centre. Thereby, however, the
boundary conditions of the sphere are violated by the image charge ζ ′

0 which in
return can be corrected by placing another image charge ζ1 in the sphere causing
the need for another image charge ζ ′

1 in the dielectric half space and so forth. The
alternating correction of the two boundary conditions is the general concept of the
infinite charge series which fulfils all boundary conditions if proceeded to infinite.
The magnitudes ζi and positions zi of the image charges placed inside the sphere
are given by the following recursive equations (for i > 0)

zi = z0 +
r2

sphere

z0 + zi−1
with z0 = R + zts (A.3.34)

ζi = rsphere

z0 + zi−1
βζi−1 with ζ0 = 4πϵ0ϵmrsphereV (A.3.35)

Which is accompanied by the image charge series {ζ ′
i} in the lower-half space given

by

z′
i = −zi (A.3.36)

ζ ′
i = −βζi (A.3.37)

These two image charge series {ζi} and {ζ ′
i} define the electrostatic potential of

the upper half-space (above the sample at z ≥ 0). For describing the electrostatic
potential of the lower half-space (z < 0) another image charge series {ζ ′′

i } is required
for correctly considering the screening due to the induced charges at the interface
between both half-spaces (z = 0) (analogous to consideration in section A.3.1.1).
This series is given by

z′′
i = zi (A.3.38)

ζ ′′
i = (1 + β)ζi (A.3.39)

where z′′
i are the z-positions at witch the corresponding image charge ζ ′′

i is placed.
Using the three image charge series {ζi},{ζ ′

i} and {ζ ′′
i } the electrostatic potential

Φvoid(r) for both half-spaces can be calculated from the superposition of the respec-
tive point charge potentials. The potential in the upper half-space (z ≥ 0) then is
given by

Φvoid(r) = 1
4πϵ0ϵm

∞∑︂
i=0

⎡⎣ ζi√︂
x2 + y2 + (zi − z)2

+ ζ ′
i√︂

x2 + y2 + (z′
i + z)2

⎤⎦ for z ≥ 0

(A.3.40)
and the potential of the lower half-space (z < 0) writes as

Φvoid(r) = 1
4πϵ0ϵs

∞∑︂
i=0

ζ ′′
i√︂

x2 + y2 + (z′′
i − z)2

for z < 0 (A.3.41)
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The corresponding capacitance Cvoid of the system is given by the sum over all
charges ζi divided by the tip voltage V yielding

Cvoid = 1
V

∞∑︂
i=0

ζi (A.3.42)

The image charge magnitudes in each series converge quickly to zero, which means
that in practice a finite number of terms is sufficient for a precise calculation of
the electrostatic potential Φvoid and capacitance Cvoid in the sphere-sample system.
Due to the quick convergence of the charge positions it is thus possible, to represent
high-index elements by a single charge holding the sum of the remaining image
charge series [96, 67, 70].

(a) (b)

(c) (d)

(e) (f)

Figure A.4.: Infinite image charge series calculation of the (a) electrostatic poten-
tial Φ̂void and (b) Cvoid, the first derivatives (c) ∂Φ̂void/∂zts and (d)
∂Cvoid/∂zts as well as the second derivates (e) ∂2Φ̂void/∂z2

ts and (f)
∂2Cvoid/∂z2

ts as function of zts for the S model as shown in Figure A.1.
Parameters used for the calculation are a sphere radius rsphere = 5 nm,
the dielectric permittivities ϵm = 1 (for vacuum) and ϵs = 24 as well as
the sphere potential V = 1 V. The potential Φvoid is evaluated at the
charge position r = [0, 0, 0] and the infinite charge series is developed
for 300 iterations.

.
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In this work, all infinite charge series calculations of Φvoid and Cvoid for the sphere-
sample system as depicted in Figure A.1 are truncated after 300 image charges and
one additional point charge considers the remaining charges of the series. By fur-
ther forming the normalized potential Φ̂void from Φvoid and numerically calculating
first and second derivatives of both Φ̂void and Cvoid allows the description of the
electrostatic force (2.3.29) and its modulated form (7.1.2) for the sphere-sample
capacitor. In Figure A.4 the calculated normalized electrostatic potential Φ̂void,
the capacitance Cvoid and their first as well as second derivates in respect to zts for
a sphere-sample system as shown in FigureA.1 are depicted. Therefore the sphere
radius rsphere = 5 nm, the relative permittivities ϵm = 1 and ϵs = 24 and a sphere
potential V = 1 V are assumed. The potential Φ̂void is evaluated at the position
r = [0, 0, 0] of the point charge q as depicted in Figure A.1. All exemplifications
regarding the electrostatic force (2.3.29) are based on these calculations.

A.4. Properties of the Fourier transformation

Here the validity of identities (4.2.7) and (4.2.8) are briefly shown. Starting with
the derivation of identity (4.2.7) by forming the time dependent derivative of the
Fourier transformation (4.2.5) which provides

d
dt

F [q(t)] (f) = 0 = 1√
2π

∫︂ ∞

−∞

d
dt

(︂
q(t)e−2πift

)︂
dt (A.4.43)

= 1√
2π

∫︂ ∞

−∞

(︂
q̇(t)e−2πift − (2πif)q(t)e−2πift

)︂
dt (A.4.44)

= 1√
2π

∫︂ ∞

−∞
q̇(t)e−2πift dt − (2πif)√

2π

∫︂ ∞

−∞
q(t)e−2πift dt (A.4.45)

= F [q̇(t)] (f) − (2πif)F [q(t)] (f) (A.4.46)

As the time derivative of the frequency-dependent Fourier transformation of q(t) is
zero, the identity

F [q̇(t)] (f) = (2πif)F [q(t)] (f) (A.4.47)
as shown in 4.2.7 results. In an analogous manner the second identity (4.2.8) can
be derived as follows

d
dt

F [q̇(t)] (f) = 0 = 1√
2π

∫︂ ∞

−∞

d
dt

(︂
q̇(t)e−2πift

)︂
dt (A.4.48)

= 1√
2π

∫︂ ∞

−∞

(︂
q̈(t)e−2πift − (2πif)q̇(t)e−2πift

)︂
dt (A.4.49)

= 1√
2π

∫︂ ∞

−∞
q̈(t)e−2πift dt − (2πif)√

2π

∫︂ ∞

−∞
q̇(t)e−2πift dt (A.4.50)

= F [q̈(t)] (f) − (2πif)F [q̇(t)] (f) (A.4.51)
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This provides the identity

F [q̈(t)] (f) = (2πif)F [q̇(t)] (f) (A.4.52)

Via previously derived identity (4.2.7) the Fourier transformation of the second
time derivative thus can be linked to the Fourier transformation of q(t) providing
the second identity

F [q̈(t)] (f) = (2πif)2F [q(t)] (f) (A.4.53)
as shown in 4.2.8).

A.5. Decomposition of the tip-sample force in even
and odd Fourier coefficients

For the derivation of three fundamental AFM equations (see next section), the
properties of Feven and Fodd in the Fourier coefficients (4.3.33) and (4.3.34) are
utilised. The following identities apply⟨︂

Feven(z̃ts(t), ̇̃zts(t)) · cos(2πnfexct + φ)
⟩︂

t
̸= 0 (A.5.54)⟨︂

Feven(z̃ts(t), ̇̃zts(t)) · sin(2πnfexct + φ)
⟩︂

t
= 0 (A.5.55)⟨︂

Fodd(z̃ts(t), ̇̃zts(t)) · cos(2πnfexct + φ)
⟩︂

t
= 0 (A.5.56)⟨︂

Feven(z̃ts(t), ̇̃zts(t)) · sin(2πnfexct + φ)
⟩︂

t
̸= 0 (A.5.57)

In the scope of the harmonic approximation, the relations for z̃ts(t) and ̇̃zts(t) are
given by (4.3.20) and (4.3.21). Thus z̃ts(t) is an even function with respect to t, while
̇̃zts(t) is an odd function instead. In contrast, as explained in the main script, the
even and odd decomposition of the tip-sample force (4.3.24) into Feven(z̃ts(t), ̇̃zts(t))
and Fodd(z̃ts(t), ̇̃zts(t)) is with respect to the tip velocity ̇̃zts(t). Both relations have
to be considered to show the validity of these identities. As Feven(z̃ts(t), ̇̃zts(t)) and
Fodd(z̃ts(t), ̇̃zts(t)) share the same phase with the cosine and sine function, it will be
sufficient, to show the validity of these relations for a single case. To simplify the
calculation, the phase is chosen to be zero (φ = 0). The general approach in this
proof of validity is splitting of time-dependent average over one cycle into two and
calculate via the parities, of those two integrals cancel each other out.

A.5.1. Feven(z̃ts(t), ̇̃zts(t)) and cosine function

Starting with the first relation (A.5.54), the time-average (4.3.32) in integral form
is
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⟨︂
Feven(z̃ts(t), ̇̃zts(t)) · cos(2πnfexct)

⟩︂
t

=
∫︂ 1/fexc

0
Feven(żts(t)) · cos(2πnfexct) dt

(A.5.58)
where the zts(t) dependency is omitted here for a shorter notation. That integral
can be split into two as follows∫︂ 1/fexc

0
Feven( ̇̃zts(t)) · cos(2πnfexct) dt = I1 + I2 (A.5.59)

where

I1 =
∫︂ 1/(2fexc)

0
Feven( ̇̃zts(t)) · cos(2πnfexct) dt (A.5.60)

I2 =
∫︂ 0

−1/(2fexc)
Feven( ̇̃zts(t)) · cos(2πnfexct) dt (A.5.61)

As Feven(z̃ts(t), ̇̃zts(t)) and the cosine function both are periodic with the cycle dura-
tion T = 1/fexc the limit shift does not change the result, if the difference between
upper and lower limit remains equal to the cycle duration. Changing the integration
direction of the second integral I2 by inserting −t as well as − dt and accordingly
changing the limits yields

I2 = −
∫︂ 0

1/(2fexc)
Feven( ̇̃zts(−t)) · cos(−2πnfexct)) dt

= −
∫︂ 0

1/(2fexc)
Feven(− ̇̃zts(t)) · cos(−2πnfexct)) dt

= −
∫︂ 0

1/(2fexc)
Feven( ̇̃zts(t)) · cos(2πnfexct)) dt

=
∫︂ 1/(2fexc)

0
Feven( ̇̃zts(t)) · cos(2πnfexct)) dt (A.5.62)

Hence I2 does not cancel out I1 meaning that the time-average (4.3.32) of the
product between Feven(z̃ts(t), ̇̃zts(t)) and cos(2πnfexct) is unequal to zero.

A.5.2. Feven(z̃ts(t), ̇̃zts(t)) and sine function

The time-average (A.5.55) can be split into two integrals∫︂ 1/fexc

0
Feven( ̇̃zts(t)) · sin(2πnfexct) dt = I1 + I2 (A.5.63)

with

I1 =
∫︂ 1/(2fexc)

0
Feven( ̇̃zts(t)) · sin(2πnfexct) dt (A.5.64)

I2 =
∫︂ 0

−1/(2fexc)
Feven( ̇̃zts(t)) · sin(2πnfexct) dt (A.5.65)
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As before, changing the integration direction of the second integral I2 by inserting
−t as well as − dt and accordingly changing the limits yields

I2 = −
∫︂ 0

1/(2fexc)
Feven( ̇̃zts(−t)) · sin(−2πnfexct)) dt

= −
∫︂ 0

1/(2fexc)
Feven(− ̇̃zts(t)) · sin(−2πnfexct)) dt

=
∫︂ 0

1/(2fexc)
Feven( ̇̃zts(t)) · sin(2πnfexct)) dt

= −
∫︂ 1/(2fexc)

0
Feven( ̇̃zts(t)) · sin(2πnfexct)) dt (A.5.66)

Both integrals I1 and I2 will equal out, hence the second identity is proven.

A.5.3. Fodd(z̃ts(t), ̇̃zts(t)) and cosine function

Splitting the time-average (A.5.56) into two integrals yields

∫︂ 1/fexc

0
Fodd( ̇̃zts(t)) · cos(2πnfexct) dt = I1 + I2 (A.5.67)

with

I1 =
∫︂ 1/(2fexc)

0
Fodd( ̇̃zts(t)) · cos(2πnfexct) dt (A.5.68)

I2 =
∫︂ 0

−1/(2fexc)
Fodd( ̇̃zts(t)) · cos(2πnfexct) dt (A.5.69)

By changing the integrations direction of the second integral − dt, inserting −t with
changed limits and using the parities of Fodd(z̃ts(t), ̇̃zts(t)) and cos(2πnfexct) yields

I2 = −
∫︂ 0

1/(2fexc)
Fodd( ̇̃zts(−t)) · cos(−2πnfexct)) dt

= −
∫︂ 0

1/(2fexc)
Fodd(− ̇̃zts(t)) · cos(−2πnfexct)) dt

=
∫︂ 0

1/(2fexc)
Fodd( ̇̃zts(t)) · cos(2πnfexct)) dt

= −
∫︂ 1/(2fexc)

0
Fodd( ̇̃zts(t)) · cos(2πnfexct)) dt (A.5.70)

The integrals I1 and I2 equal out each other, hence the relation (A.5.56) is valid.
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A.5.4. Fodd(z̃ts(t), ̇̃zts(t)) and sine function

The time-average (A.5.57) split into two integrals is
∫︂ 1/fexc

0
Fodd( ̇̃zts(t)) · sin(2πnfexct) dt = I1 + I2 (A.5.71)

with

I1 =
∫︂ 1/(2fexc)

0
Fodd( ̇̃zts(t)) · sin(2πnfexct) dt (A.5.72)

I2 =
∫︂ 0

−1/(2fexc)
Fodd( ̇̃zts(t)) · sin(2πnfexct) dt (A.5.73)

Taking I2 into consideration as before yields

I2 = −
∫︂ 0

1/(2fexc)
Fodd( ̇̃zts(−t)) · sin(−2πnfexct)) dt

= −
∫︂ 0

1/(2fexc)
Fodd(− ̇̃zts(t)) · sin(−2πnfexct)) dt

= −
∫︂ 0

1/(2fexc)
Fodd( ̇̃zts(t)) · sin(2πnfexct)) dt

=
∫︂ 1/(2fexc)

0
Fodd( ̇̃zts(t)) · sin(2πnfexct)) dt (A.5.74)

Consequently the integrals I1 and I2 do not cancel each other out in this case
proving relation (A.5.57).

A.6. Derivation of the three AFM equations

Here the calculations steps for deriving the three AFM equations [44] will be shown
and explained step by step.

A.6.1. Time-averaged form

The three AFM equations in their time-averaged form are derived within the har-
monic approximation (see Sec. 4.3.1), where the tip displacement (4.3.19) and ex-
citation (4.3.18) are well known. In the defined time-average (4.3.32) the following
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identities apply

⟨q̃⟩t = qs (A.6.75)⟨︂
̇̃q
⟩︂

t
=
⟨︂

¨̃q
⟩︂

t
=
⟨︂

̇̃q · q̃
⟩︂

t
=
⟨︂

¨̃q · ̇̃q
⟩︂

t
=
⟨︂
F̃exc

⟩︂
t

= 0 (A.6.76)

⟨q̃ · q̃⟩t = q2
s + 1

2A2 (A.6.77)⟨︂
q̃ · F̃exc

⟩︂
t

= 1
2AF0 cos(φ) (A.6.78)⟨︂

̇̃q · F̃exc
⟩︂

t
= −πfexcAF0 sin(φ) (A.6.79)⟨︂

̇̃q · ̇̃q
⟩︂

t
= 1

2 (2πfexcA)2 (A.6.80)⟨︂
¨̃q · q̃

⟩︂
t

= −1
2 (2πfexcA)2 (A.6.81)

where all time-dependencies are omitted for a shorter notation what will be car-
ried on with for the further process of this section. The relations (A.6.75)-(A.6.81)
will be used in the now following derivation of the AFM equations in the time-
averaged form. Note that these derivations are only valid considering the inter-
action F z

ts(z̃ts(t), ̇̃zts(t)) on the tip path defined by z̃ts(t) and ̇̃zts(t). For a shorter
notation here will be written F z

ts = F z
ts(z̃ts(t), ̇̃zts(t)), Feven = Feven(z̃ts(t), ̇̃zts(t)) and

Fodd = Fodd(z̃ts(t), ̇̃zts(t)) still considering the time-dependent periodic tip-sample
interaction on the tip path.

A.6.1.1. AFM equation 1

The first AFM equation results from the evaluation of F (0)
even which equals a time-

independent constant force offset of the tip-sample interaction F z
ts. In the time-

average (4.3.32) the tip-sample force is equal to that constant. Note for a clearer
notation

F (0)
even = ⟨Feven⟩t = ⟨F z

ts⟩t (A.6.82)

As a constant function is defined as even, the time-average of the interaction force
on the tip path will be equal to the time-average of its even contribution. Inserting
the equation of motion (4.3.22) for F z

ts yields

F (0)
even = k0

(2πf0)2

⟨︂
¨̃q
⟩︂

t⏞ ⏟⏟ ⏞
=0

+k0 ⟨q̃⟩t⏞⏟⏟⏞
=qs

+ k0

2πf0Q0

⟨︂
̇̃q
⟩︂

t⏞ ⏟⏟ ⏞
=0

−
⟨︂
F̃exc

⟩︂
t⏞ ⏟⏟ ⏞

=0

(A.6.83)
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Due to the harmonic approximation, the displacement q̃ is equal to relation (4.3.19)
and the excitation force is considered as 4.3.18. Consequently, the terms ̇̃q, ¨̃q and
F̃exc become zero in the time-average, as they are simple cosine and sine functions
in respect to the time t. The remaining non-zero term can be found in the time
average of q̃, because it contains the time-independent static deflection qs. Thus
relation (A.6.83) simplifies to

F (0)
even = k0qs (A.6.84)

Considering relations (A.6.82) and (A.6.84) the first AFM equation can be sum-
marized to

F (0)
even = ⟨Feven⟩t = ⟨F z

ts⟩t = k0qs (A.6.85)
Where the static deflection of the sensor qs is the experimental observable of the
time-averaged even force ⟨Feven⟩t acting upon the tip during movement related via
the sensor stiffness k0.

A.6.1.2. AFM equation 2

The second AFM equation is derived by evaluating relation (4.3.33) for F (1)
even yield-

ing
F (1)

even = 2 ⟨F z
ts cos(2πnfexct + φ)⟩t (A.6.86)

The cosine function can also expressed as 1/A(q̃ − qs) providing the relation

F (1)
even = 2

A
⟨F z

ts · (q̃ − qs)⟩t (A.6.87)

Inserting the tip-sample force 4.3.24 leads to

F (1)
even = 2

A
⟨Feven · (q̃ − qs)⟩t + 2

A
⟨Fodd · (q̃ − qs)⟩t⏞ ⏟⏟ ⏞

=0

(A.6.88)

As the second term is a product of an uneven and even function, its time-average
becomes zero. Hence, the Feven contribution to the tip-sample interaction Fts on
the tip path remains in the time-average. Inserting the equation of motion 4.3.22
in Fts of relation (A.6.87) yields

2
A

⟨F z
ts · (q̃ − qs)⟩t = 2k0

A(2πf0)2

⎡⎢⎢⎢⎣⟨︂¨̃q · q̃
⟩︂

t⏞ ⏟⏟ ⏞
(A.6.81)

−qs
⟨︂

¨̃q
⟩︂

t⏞ ⏟⏟ ⏞
=0

⎤⎥⎥⎥⎦+ 2k0

A

⎡⎢⎢⎣⟨q̃ · q̃⟩t⏞ ⏟⏟ ⏞
(A.6.77)

−qs ⟨q̃⟩t⏞⏟⏟⏞
=qs

⎤⎥⎥⎦

+ 2k0

A2πf0Q0

⎡⎢⎢⎣⟨︂ ̇̃q · q̃
⟩︂

t⏞ ⏟⏟ ⏞
=0

−qs
⟨︂

̇̃q
⟩︂

t⏞ ⏟⏟ ⏞
=0

⎤⎥⎥⎦− 2
A

⎡⎢⎢⎢⎣⟨︂F̃exc · q̃
⟩︂

t⏞ ⏟⏟ ⏞
(A.6.78)

−qs
⟨︂
F̃exc

⟩︂
t⏞ ⏟⏟ ⏞

=0

⎤⎥⎥⎥⎦
(A.6.89)
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where the remaining terms can be collated to the second AFM equation

F (1)
even = 2

A
⟨Feven · (q̃ − qs)⟩t = 2

A
⟨F z

ts · (q̃ − qs)⟩t = k0A

[︄
1 − f 2

exc
f 2

0

]︄
− F0 cos(φ)

(A.6.90)

A.6.1.3. AFM equation 3

The third AFM equation is derived from relation (4.3.34) for F
(1)
odd. Based on the

(4.2.16) the Fourier coefficient also can be expressed as

F
(1)
odd = − 1

πfexcA

⟨︂
F z

ts · ̇̃q
⟩︂

t
(A.6.91)

inserting the separation (4.3.24) provides

F
(1)
odd = − 1

πfexcA

⎡⎢⎢⎣⟨︂Feven · ̇̃q
⟩︂

t⏞ ⏟⏟ ⏞
=0

+
⟨︂
Fodd · ̇̃q

⟩︂
t

⎤⎥⎥⎦ (A.6.92)

(A.6.93)

Where the Feven contribution vanishes in the time-average due to the product with
the odd function ̇̃q. Further, inserting the equation of motion (4.3.22) into (A.6.91)
leads to

− 1
πfexcA

⟨︂
Fodd · ̇̃q

⟩︂
t

= − 1
πfexcA

⎡⎢⎢⎣ k0

(2πf0)2

⟨︂
¨̃q · ̇̃q

⟩︂
t⏞ ⏟⏟ ⏞

=0

+k0
⟨︂
q̃ · ̇̃q

⟩︂
t⏞ ⏟⏟ ⏞

=0

+ k0

2πf0Q0

⟨︂
̇̃q · ̇̃q

⟩︂
t⏞ ⏟⏟ ⏞

(A.6.80)

−
⟨︂
F̃exc · ̇̃q

⟩︂
t⏞ ⏟⏟ ⏞

(A.6.79)

⎤⎥⎥⎥⎦ (A.6.94)

The non-zero time-averages combined with relations (A.6.91) and (A.6.92) provide
the third AFM equation as

F
(1)
odd = − 1

πfexcA

⟨︂
Fodd · ̇̃q

⟩︂
t

= − 1
πfexcA

⟨︂
F z

ts · ̇̃q
⟩︂

t
= −k0A

Q0

fexc

f0
− F0 sin(φ)

(A.6.95)
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A.6.2. Spatial form and derivation of the averaging functions

The projection of the time-averaged form of the three AFM equations to the zts-axis
yields the cup- and cap-averaging functions as defined in the main script. Here the
calculation steps will be carried out for obtaining these averaging functions and
with that the final AFM equations.

A.6.2.1. AFM equation 1

The time-average of the first AFM equation (4.4.35) can be re-parametrised using
F ◦

even as defined in relation (4.5.38), for this the time-average has to be written out
again ⟨︂

Feven(z̃ts(t), ̇̃zts(t))
⟩︂

t
= fexc

∫︂ 1/fexc

0
Feven(z̃ts(t), ̇̃zts(t)) dt = k0qs (A.6.96)

Considering relation (4.5.38) the function F ◦
even(z̃ts(t)) can be inserted without

changing the result, providing

⟨F ◦
even(z̃ts(t))⟩t = fexc

∫︂ 1/fexc

0
F ◦

even(z̃ts(t)) dt = k0qs (A.6.97)

Now the surrounding integral has to be re-parametrised to an integral regarding
the z-direction. Therefore z̃ts(t), which is given within the harmonic approximation
by relation (4.3.20), is inserted as the first step into the integral leading to

fexc

∫︂ 1/fexc

0
F ◦

even(z̃ts(t)) dt = fexc

∫︂ 1/fexc

0
F ◦

even(zc + A cos(2πfexct + φ)) dt

Substitution with Θ = 2πfexct + φ and dΘ
dt

= 2πfexc yields

= 1
2π

∫︂ 2π+φ

φ
F ◦

even(zc + A cos(Θ)) dΘ

As the cosine function cos(Θ) is even and periodic from 0 to 2π, the integration
limits can be shifted by −φ. Further, the cosine function around Θ = π is sym-
metrical, allowing to integrate two times over half the period without changing the
result

= 1
π

∫︂ π

0
F ◦

even(zc + A cos(Θ)) dΘ

Substitution with z = A cos(Θ) and dΘ
dz

= − 1√
A2 − z2

yields

= − 1
π

∫︂ −A

+A
F ◦

even(zc + z) 1√
A2 − z2

dz
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Exchanging the integration limits and shifting 1/π finally yields

=
∫︂ +A

−A
F ◦

even(zc + z) 1
π

√
A2 − z2⏞ ⏟⏟ ⏞

=w∪(z)

dz

Using the definition of the cup average (4.5.41) allows thus to write

= ⟨F ◦
even⟩∪ (zc) (A.6.98)

Hence from the projection of the time-average from the first AFM equation (4.4.35)
to an average along the tip-sampling path parallel to zts , the cup-average definition
(4.5.41) intrinsically results. Considering relations (A.6.97) and (A.6.98) the first
AFM equation thus becomes

⟨F ◦
even⟩∪ (zc) = k0qs . (A.6.99)

as it is shown in the main manuscript at (4.5.45). Due to the dependency of zc
on zp which directly can be controlled in experiment now the cup-average of the
tip-sample force ⟨F ◦

even⟩∪ directly can be adjusted.

A.6.2.2. AFM equation 2

The second AFM equation (4.4.36) with written out time-average reads as

fexc

∫︂ 1/fexc

0
Feven(z̃ts(t), ̇̃zts(t)) · (q̃(t) − qs) dt = k0A

2

2

[︄
1 − f 2

exc
f 2

0

]︄
− F0A

2 cos(φ)

(A.6.100)
Inserting the even force along the tip-sampling path (4.5.38) this relation becomes

fexc

∫︂ 1/fexc

0
F ◦

even(z̃ts(t)) · (q̃(t) − qs) dt = k0A
2

2

[︄
1 − f 2

exc
f 2

0

]︄
− F0A

2 cos(φ) (A.6.101)

In the harmonic approximation, z̃ts(t) and q̃(t) are given by relations (4.3.20) and
(4.3.19). Inserting these into the integral and substituting with Θ = 2πfexct + φ

and dΘ
dt

= 2πfexc yields

fexc

∫︂ 1/fexc

0
F ◦

even(z̃ts(t)) · (q̃(t) − qs) dt = 1
2π

∫︂ 2π+φ

φ
F ◦

even(zc + A cos(Θ))A cos(Θ) dΘ

As in the derivation of the first AFM equation, the integration limits can be shifted
by −φ. By using the symmetry of the cosine function around Θ = π, the integration
can be carried out two times from [0, π] without changing the result

= 1
π

∫︂ π

0
F ◦

even(zc + A cos(Θ))A cos(Θ) dΘ
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Substitution with z = A cos(Θ) and dΘ
dz

= − 1√
A2 − z2

leads to

= 1
π

∫︂ −A

+A
F ◦

even(zc + z) −z√
A2 − z2

dz

Further exchanging the integration limits provides

= − 1
π

∫︂ +A

−A
F ◦

even(zc + z)⏞ ⏟⏟ ⏞
f

−z√
A2 − z2⏞ ⏟⏟ ⏞

g′

dz

Using the partial integration
∫︁ b

a f ·g′ = [f ·g]ba−
∫︁ b

a f ′·g considering f ′ = dF ◦
even(zc + z)

dz
and g =

√
A2 − z2 it can be derived

= 1
π

∫︂ +A

−A

dF ◦
even(zc + z)

dz

√
A2 − z2 dz

By defining the force gradient along the tip sampling path as the derivation of
the even force along the sampling direction k◦

ts(zc + z) = dF ◦
even(zc + z)

dz
it can be

written

= 1
π

∫︂ +A

−A
k◦

ts(zc + z)
√︂

(A2 − z2) dz

The final step is moving 1
π

and expanding the equation by 2A2

2A2 for norming the
weighting function to 1, which yields

= A2

2

∫︂ +A

−A
k◦

ts(zc + z) 2
πA2

√︂
(A2 − z2)⏞ ⏟⏟ ⏞

=w∩(z)

} dz

Here, the definition of the cap average (4.5.43) can be applied providing

= A2

2 ⟨k◦
ts⟩∩ (zc) (A.6.102)

The projection of the time-averaged AFM equation (4.4.36) to the tip sampling path
along parallel to zts yields intrinsically the definition of the cap-average (4.5.43).
Considering (A.6.101) and (A.6.101) the second AFM equation in spatial form can
finally be written as

⟨k◦
ts⟩∩ (zc) = k0

[︄
1 − f 2

exc
f 2

0

]︄
− F0

A
cos(φ) (A.6.103)
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A.6.2.3. AFM equation 3

The third AFM equation (4.4.37) with written out time-average reads as

fexc

∫︂ 1/fexc

0
Fodd(z̃ts(t), ̇̃zts(t)) · ̇̃q(t) dt = πk0A

2f 2
exc

Q0f0
+ πfexcAF0 sin(φ) (A.6.104)

Here the odd parity of Fodd in respect to ̇̃zts provides a challenge, since the direct
parametrisation as in relation (4.5.38) is here not possible. This challenge can
be addressed by the definitions (4.5.39) containing the even damping function γ◦

ts
further defined as (4.5.40) along the tip sampling path parallel to zts. Inserting
relation (4.5.39) with (4.5.40) allows the expression of the third time-averaged AFM
equation (A.6.104) as

− fexc

∫︂ 1/fexc

0
γ◦

ts(z̃ts(t)) · ̇̃q(t)2 dt = πk0A
2f 2

exc
Q0f0

+ πfexcAF0 sin(φ) (A.6.105)

Within the harmonic approximation z̃ts(t) and ̇̃q(t) are well known by relations
(4.3.20) and (4.3.19). Inserting both into the integral of the previous equation
yields

= −fexc

∫︂ 1/fexc

0
γ◦

ts(zc + A cos(2πfexct + φ)) · (−2πfexcA sin(2πfexct + φ))2 dt

Substitution with Θ = 2πfexct + φ and dΘ
dt

= 2πfexc yields

= −2πf 2
exc

∫︂ 2π+φ

φ
γ◦

ts(zc + A cos(Θ)) · (A sin(Θ))2 dΘ

As all contained functions are periodic in the interval [0, 2π] and have the same
phase φ, the integration limit can be shifted by −φ.

= −2πf 2
exc

∫︂ 2π

0
γ◦

ts(zc + A cos(Θ)) · (A sin(Θ))2 dΘ

Both functions cos(Θ) and sin(Θ)2 are even and symmetric around Θ = π. Hence
twice the integral over half the period [0, π] is equal to the integral over the full
period [0, 2π]. Thus, it can be written

= −4πf 2
exc

∫︂ π

0
γ◦

ts(zc + A cos(Θ)) · (A sin(Θ))2 dΘ

Substitution with z = A cos(Θ) and dΘ
dz

= − 1√
A2 − z2

and using the identity

sin(Θ)2 = 1 − cos(Θ)2 leads to

= 4πf 2
exc

∫︂ −A

+A
γ◦

ts(zc + z) · A2 − z2
√

A2 − z2
dz
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Exchanging the integration limits and transformation of the fraction further yields

= −4πf 2
exc

∫︂ +A

−A
γ◦

ts(zc + z) ·
√

A2 − z2 dz

By expanding with πA2

πA2 the cap averaging function w∩ is obtained

= −2π2f 2
excA

2
∫︂ +A

−A
γ◦

ts(zc + z) · 2
πA2

√
A2 − z2⏞ ⏟⏟ ⏞

=w∩

dz

Applying the definition of the cap average (4.5.43) finally yields the relation

= −1
2(2πfexcA)2 ⟨γ◦

ts⟩∩ (zc) (A.6.106)

The equality of relations (A.6.105) and (A.6.106) leads to the third AFM equation
as

⟨γ◦
ts⟩∩ (zc) = − k0

2πf0Q0
− F0

2πfexcA
sin(φ) (A.6.107)

A.7. AFM equations as solution for the equation of
motion

In this section the validity of the AFM equations as solution for the equation
of motion (4.3.22) describing the tip oscillation in interaction with the sample is
demonstrated. Based on the AFM equations (4.5.45)-(4.5.47) the Fourier series de-
scribing the tip-sample force (4.3.27) approximated up to n = 1. The corresponding
Fourier coefficients then are given by (consider derivations and boxed relations in
Appendix A.6)

F (0)
even = ⟨F ◦

even⟩∪ (zc) (A.7.108)
F (1)

even = A ⟨k◦
ts⟩∩ (zc) (A.7.109)

F
(1)
odd = 2πfexcA ⟨γ◦

ts⟩∩ (zc) (A.7.110)
By further expressing the cosine and sine functions via q̃(t) given by (4.3.19) the
tip-sample force (4.3.27) in first order can be written as

F z
ts(zc) ≈ ⟨F ◦

even⟩∪ (zc) + ⟨k◦
ts⟩∩ (zc) · (q̃(t) − qs) − ⟨γ◦

ts⟩∩ (zc) ̇̃q(t) (A.7.111)
Inserting that approximate relation into the equation of motion (4.3.22) and redis-
tribution of the terms yields

k0

(2πf0)2
¨̃q(t) + [k0 − ⟨k◦

ts⟩∩ (zc)] q̃(t) +
[︄

k0

2πf0Q0
+ ⟨γ◦

ts⟩∩ (zc)
]︄

̇̃q(t)

= [⟨F ◦
even⟩∪ (zc) − ⟨k◦

ts⟩∩ (zc)qs] + F̃exc(t)
(A.7.112)

177



A. Appendix

Considering the terms

k′ = k0 − ⟨k◦
ts⟩∩ (zc) (A.7.113)

γ′ = k0

2πf0Q0
+ ⟨γ◦

ts⟩∩ (zc) (A.7.114)

F ′
s = ⟨F ◦

even⟩∪ (zc) − ⟨k◦
ts⟩∩ (zc)qs (A.7.115)

as effective spring constant k′, effective damping γ′ and effective constant force F ′
s

the relation (A.7.112) thus can be abbreviated to

k0

(2πf0)2
¨̃q(t) + k′q̃(t) + γ′ ̇̃q(t) = F ′

s + F̃exc(t) (A.7.116)

Hence it has an analogous form as the relation of a driven, damped harmonic
oscillator as equation (4.2.4) treated in Sec 4.2. Accordingly, it is possible to apply
the Fourier transformation ansatz (4.2.5) with the identities (4.2.7) and (4.2.8)
yielding

F [q̃(t)] = G′
ho(fexc)F

[︂
F ′

s + F̃exc(t)
]︂

(A.7.117)

with

G′
ho(fexc) = 1(︄

k′ − k0
f 2

exc
f 2

0

)︄
+ 2πifexcγ′

(A.7.118)

Here the G′
ho is the amplitude transfer function of the harmonic oscillator in inter-

action where the prime indicates its dependency k′, and γ′ which are given at the
current distance zc between tip and sample during interaction. Correspondingly
the phase of the driven tip oscillation in the sample force field is described by

φ′
ho(fexc) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

arctan

⎛⎜⎜⎜⎜⎜⎝
−2πfexcγ

′

k′ − k0

(︄
fexc

f0

)︄2

⎞⎟⎟⎟⎟⎟⎠ for k0

(︄
fexc

f0

)︄2

< k′

−π

2 for k0

(︄
fexc

f0

)︄2

= k′

arctan

⎛⎜⎜⎜⎜⎜⎝
−2πfexcγ

′

k′ − k0

(︄
fexc

f0

)︄2

⎞⎟⎟⎟⎟⎟⎠− π for k0

(︄
fexc

f0

)︄2

> k′

(A.7.119)

which is in analogy to the arctan2 definition (4.2.12) provided in section (4.2) for
the unperturbed harmonic oscillator but now dependent on the effective parameters
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k′ and γ′ due to the interaction with the sample force field. In conclusion, the
AFM equations (4.5.45)-(4.5.47) solve the equation of motion (4.3.22). Within the
harmonic approximations the tip oscillation in the sample force field is lead back
by the AFM equations to a free oscillation of the tip with an effective stiffness k′,
damping γ′ and force constant F ′

s . This exactly equals the assumption, that the
tip-sample force is a small perturbation on the free harmonic tip motion, which was
made at the start of all shown derivations (see Sec. 4.3.1).

A.8. Common assumptions for the AFM equations in
FM NC-AFM

Commonly used assumptions and approximations in FM NC-AFM data evaluation
are a stiff force sensor qs = 0, an ideal PLL with φ = −π

2 and small frequency shifts
in respect to the sensor eigenfrequency ∆f = fexc − f0 << f0.

The first approximation addresses the fact, that the static deflection of the sensor
qs generally lies below the detectability limits and thus is difficult to obtain ex-
perimentally. Hence, the first AFM equation (4.5.45) rarely can be evaluated for
obtaining the tip-sample force F ◦

even.

The second assumption is an ideal PLL optimally maintaining the phase resonance
at φ = −π

2 for any zc. This allows to to simplify the second (4.5.46) and third AFM
equation (4.5.47) to

⟨k◦
ts⟩∩ (zc) = k0

[︄
1 − f 2

exc
f 2

0

]︄
(A.8.120)

⟨γ◦
ts⟩∩ (zc) = k0

2πf0Q0

[︄
F0f0Q0

k0fexcA
− 1

]︄
(A.8.121)

When evaluating experimental data, the simplified equations can be used, if there
is no significant changes in phase signal φ output by the PLL are given in the data.
If changes care observed, the full AFM equations (4.5.46) and (4.5.47) have to be
used instead for a correct evaluation.

By further assuming small frequency shifts in respect to the eigenfrequency ∆f =
fexc − f0 << f0 additional to an ideal PLL, the right side of the simplified sec-
ond AFM equation (A.8.120) ia developed in a first order Taylor series around f0
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yielding

f ′(x) ≈ f ′(f0) + f ′(x0)(fexc − f0) + O(2)

= 1 − f 2
0

f 2
0

− 2f0

f 2
0

(fexc − f0) + O(2)

= − 2
f0

(fexc − f0)⏞ ⏟⏟ ⏞
=∆f

+O(2) (A.8.122)

Considering the Taylor series as the new right side of the simplified AFM equation
(A.8.120) provides the common approximation [80]

⟨k◦
ts⟩∩ (zc) ≈ −2k0

f0
∆f + O(2) (A.8.123)

Within this approximation, the frequency shift ∆f is a direct measure for the
averaged tip-sample force gradient ⟨k◦

ts⟩∩ (zc) at the current distance zc. However,
for obtaining the tip-sample force curve from ∆f(zc) data the inversion algorithms
still have to be applied on ⟨k◦

ts⟩∩ (zc) (see section 4.6).
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