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Abstract

Artificial intelligence isbecomingubiquitous inoureveryday liveswith theemer-

gence of powerful machine learning methods and the ever-increasing amount

of available data. One can find "intelligent"machines in operating theaters, fac-

tories, in almost every pocket, and even space. The next milestone will be the

fully autonomous vehicle. With this technology, artificial intelligence is not only

an abstract term or bound to cyberspace; it is moving significantly closer to hu-

mans, functioning as a collaboration partner. Besides the remaining technical

issues, autonomous robots raise questions on social, ethical, and legal issues

that we have to evaluate to unleash the full potential of autonomous systems as

artificial agents.

These studies include new challenges of human-machine interaction, trust

andacceptanceof self-drivingcars, andethical issuesassociatedwithprogrammed

non-human behavior. In addition to the experiments themselves, this thesis

also includes theVR toolkit created todevelop theexperiments. The toolkit itself

provides a foundation for further research in virtual reality. By way of introduc-

tion, wewill first clarify the extent towhichAI impacts vehicles. Here, an insight

into the definition of the different automation levels ofmodern vehicles is given.

This thesis thenaddresses various researchquestions of the respective automa-

tion level in ascending chapter order. The start will be the investigation of take-

over requests in the context of highly automatedbut human-superviseddriving.

Next, the virtual reality studies investigate how human behavior in highly au-

tomated driving can be optimized using a human-centered design. Since data

analysis is ongoing, this section will give preliminary results but focus on the

resulting toolkit as a virtual environment with custom functionalities. In chap-

ter three, we will shi� focus to higher automated cars, where the driver cannot

take over control instantly. Here we developed a self-explanatory virtual agent

to increase trust and acceptance. In chapter, four we tested the different com-

munication strategies in a large-scale virtual reality experiment. We found that

demographic factors influence acceptance more than what the vehicle does or

communicates. In the final study of this thesis, we examine human attitudes

toward fully autonomous vehicles. Here we examine how people behave in a

potentially dangerous situation in a self-driving vehicle and whether users in a

moral dilemma decide according to deontological ethics or whether their deci-

sions can be grouped under utilitarian ethics. We then use the results of this

study to develop normative ethics for self-driving vehicles.

The results of the studies will be summarized to create a unified concept of

a human-centered interaction design. It is, though, to increase trust and accep-

tance and ultimately, through clever algorithms, allow for human performance
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to be increased in such away that legal and ethical problems can be solved. This

will enable the numerous promises of autonomousmobility, such as integrating

people with impairments or significantly reducing emissions in traffic.
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1

From Data to Driving

1.1 | Times of Automation and Artificial
Intelligence

Within the last decade, artificial intelligence (AI) has become part of our everyday
lives. Simply put, artificial intelligence is the ability of machines to learn from data
by analyzing it to make predictions for the real world (Ongsulee, 2017; Warwick,
2012). The requirements for this are surprisingly simple: It onlyneedsa largeamount
of data and a pattern in the data that cannot be solved purely mathematically. Due
to these simple requirements, the possible areas of application are almost unlim-
ited. Powerful machine learning (ML) methods for analyzing all kinds of data and
potentially learning from it surroundus: They are applied inmedicine, socialmedia,
banking and investments, customer services, robotics, logistics, and science. Since
a large part of society and industry are in an ongoing process of digitization, the
connection between humans, devices, and data will increase further. Algorithms
will likely be able to take over the task of driving. However, this task is complex and
deeply human, and therefore difficult for themachine to learn. The foundations and
open challenges of this field of research are the topic of this thesis since legal and
ethical issues stem from howmachines learn and perceive. Exactly that is the con-
tent of this introduction.

Machine learning is inherently fundamentally different from that of classical
computer programs as a human-defined set of rules. Instead, themachine extracts
features of the data by itself, guided only by simple instructions. Such a procedure
comes in handy in complex tasks which cannot be pinned down mathematically,
such as assigning a human face to a matching age and gender. With classical pro-

1



Chapter 1. From Data to Driving

gramming, a large and potentially impossible set of rules would have to be defined.
Instead, artificial systemsusually use anextensivedata set of already classifieddata
and learn by themselves over many iterations. Neural networks are o�en chosen
for this, a subset of machine learning called deep learning. The "depth" in this term
stems from thenetworks structure of node layers, weights, and thresholds. Just like
in a human brain, input is calculated, and if a specified threshold value is reached,
the node in the network is activated, passing information to the next layer of the
network (Figure 1.1). So the knowledge of that system lies within the structure of
the network. However, this means that the computer’s information is usually inac-
cessible and not explainable to humans. What happens between the input and the
output of such a system occurs within a "black box." This is due to the logic being
inferred automatically from large data sets, not explicit rules.

Thus, if the input data is not checked correctly, the system can learn human er-
rors or biases. Depending on the usage and scale of a possibly faulty network, this
could have far-reaching consequences. One example is the increasing use of pre-
dictive policing, where poor neighborhoods are specifically targeted because of a
problematic connection of spatial location and criminality (Shapiro, 2017). In order
to derive the most benefit for humankind from artificial intelligence, it is crucial to
create transparent or at least explainable systems whose decisions are discernible
and accepted by humans.

However, before this problem is addressed, the termartificial intelligence should
be defined. John McCarthy, one of the field founders, defines AI as "[...]the science
and engineering of making intelligent machines, brilliant computer programs. It
is related to the similar task of using computers to understand human intelligence,
but AI does not have to confine itself to biologically observablemethods" (McCarthy,
2007). Some definitions even include a system to act or decide in a humanlikeman-
ner (Ghahramani, 2015; Hirschberg & Manning, 2015; Rudin & Wagstaff, 2014). How-
ever, the definition of the termmachine intelligence is not simple, as machines are
still a fair way from encompassing humanlike behavior, reasoning, and decision-
making in their entirety (Monett et al., 2020). In most cases, machine learning
refers to particular areas or a single specific task, as general artificial intelligence
still represents a challenge, and it is even doubted that a "strong" and thus human-
like artificial intelligence will ever exist (Martinez, 2019).

Nevertheless, AI in its narrower and more specific versions affects our society
dramatically (Rudin & Wagstaff, 2014; Verma, 2019). Over the last decades, market-
ing changed drastically, as customers conveniently receive personalized advertise-
ments according to personal needs and interests based on previous choices (Adda-
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1.1. Times of Automation and Artificial Intelligence

garla & Amalanathan, 2020; Cohen et al., 2020). Artificial intelligence fundamen-
tally changed work with databases, optimizing and automatizing all processes in-
volved, since it is used to act faster to cope withmasses of data that a humanwould
not be able to even screen inmore than a lifetime (Bose &Mahapatra, 2001; Paschek
et al., 2017). It is also able to revolutionize health care with faster, more reliable di-
agnostics and improved prophylaxis and treatment evaluation (CheckHayden, 2014;
Davenport & Kalakota, 2019; Yu et al., 2018). However, behind these spectacular
achievements of artificial intelligence, a darker side should be addressed.

Put succinctly, the misapplication of mathematical models and algorithms can
pose a threat to democracy and freedom (Verma, 2019; Wirtz et al., 2020). Due to
the mass of available data and the potential lack of data protection (Hwang, 2015),
people’s behavior can be predicted quite accurately and manipulated accordingly,
e.g., by allowing only certain information to reach them or by providing extra fil-
tered information (Bovet &Makse, 2019; Cybenko & Cybenko, 2018). Likewise, people
are misclassified and o�en discriminated against on the basis of faulty or opaque
models with abstract parameters (Sloane & Moss, 2019; Tian et al., 2021). Error, and
therefore discrimination, does not necessarily have to lie within data or the algo-
rithm itself but can be introduced into predictions from outside. Sometimes by
mistake or an adversarial attack, where minor changes in the input data change
the output dramatically (Carlini & Wagner, 2017; F. Chen et al., 2020; Waldrop, 2019).

AI techniques are a vector of innovation, but they are also a challenge in cyber-
security, safety and explainability. In current applications, artificial intelligence is
o�en based on multilevel, multilayer, entwined algorithms and models, like artifi-
cial neural networks. Consequently, decisions made by the machine cannot be in-
spected and controlled, since the human does not know how themachine arrives at
a certain judgment (Carlini &Wagner, 2017; Georgevici & Terblanche, 2019). The lack
of explainabilitymay not be a problem in an application, e.g., automated reordering
for inventory or analyzing a football game. However, the more power an algorithm
has over humans, like in the case of criminal justice, the more disruptive the lack
of transparency and explainability becomes 1 (Ebers, 2021; EU commission, 2020; T.
Miller, 2019).

Here, it can be objected that biological neurons in the human brain are also not
transparent in decision-making. While this is true, humans, especially with profes-

1Explainability and transparency are o�en used as synonyms. However, the distinction between
them is important. While explainability only means explaining post hoc how a decision is made,
transparency implies a deep understanding of the system that can reveal every step, e.g., an assess-
ment. Accordingly, transparent systems are more challenging than explainable systems.

3



Chapter 1. From Data to Driving

sional training, learn from explicit rules rather than only provided data. To shed
more light on the problem of making automated decisions more comprehensible,
three subproblems are pointed out. The first concerns the implementation. This
means that it is clearwhich technical principles areused, i.e., whichoperatingmodel
is chosen with which coefficients, weights, and thresholds. These models are o�en
used in science and are called "white-box" models (Loyola-Gonzalez, 2019; Rudin,
2019). The second subproblem concerns the specification, i.e., the communication
of whichmethods are applied inwhich context and especially which training data is
used. This form of traceability enables replication and is also prevalent in science.
In industrial applications, however, this knowledge is o�en hidden as it is the in-
tellectual property of the company or too complex to be computed a�erward. An
example of this is Instagram’s algorithm (O’Meara, 2019), the Facebook news feed
(Horwitz, 2021), or the Spotify recommendation algorithm (Werner, 2020), each be-
ing the crucial success factor for the company. Finally, an example of a highly com-
plex network is the OpenAI GPT-3 network with over 150 billion parameters (Dale,
2021).

The third subproblem is transparency and is linked to the understanding of un-
derlying mechanisms. Transparency is defined by how well a human can under-
stand the decisions of a system (Doshi-Velez & Kim, 2017). The idea is to extract el-
ements of the network that allow the human to understand the outcome without
using a formal definition (T. Miller, 2019). It may also includes a possible demon-
stration of how the the algorithm follows certain specifications. Up to now, there is
no AI system that is able to achieve full transparency (Hamon et al., 2020).

In general, it is possible to disclose all parts of the algorithms. The disclosure
includes the features and the data the system used for training. The disclosure also
includes themodel and thresholds, if any. However, since, asmentioned before, the
algorithms that influence our lives are not accessible because they are intellectual
property or are high dimensional models, any attempt to do so is reverse engineer-
ing of these black-box models (Lipton, 2018). Another way is to make particularly
prominent features visible, that is, to highlight the data that have themost substan-
tial impact on the outcome. Similar to this is the possibility to give counterfactual
explanations to identify features that have a decisive impact on the outcome (Adadi
& Berrada, 2018). Since these methods are based on statistics, they are susceptible
to uncertainty and error. The result of both variants of reverse engineering, be it
global or one of the features, is neverthelessmostly an incomplete surrogatemodel,
which does not represent the performance of themodel it is replicating (Guidotti et
al., 2018; Lipton, 2018).
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Figure 1.1: An example of a artificial neural network with a single hidden layer, referred to as a black box. These networks can
grow to multiple hidden layers and millions of weights (J.-F. Chen et al., 2014)

The scientific community is aware of these dangers, and there is a call for a
more white-box models. These models are designed to provide reliable and easy-
to-understand explanations for prediction (Rudin, 2019). The problem, however, is
that it is not always clearwhether it is possible to developadesignated interpretable
model with the desired accuracy. Even within the scientific discourse, it is still con-
troversial to what extent these transparentmodels can be applied since o�en, then
the performance of black-box models, e.g., deep neural networks, is much better
than that of white-box models. However, this problem and the closely related issue
of reliability are part of an ongoing scientific debate as to whether there is a trade-
off between explainability and accuracy, depending on the context of use or limita-
tions. However, this discoursewill not be referred to further because the use case of
highly automated and fully autonomousdriving is, in any case, a highly complex and
human task that, however, in principle permits explainability (J. Kim& Canny, 2017).

Just as the scientific community, the European legislature has been addressing
the question of how to take advantage of this technology without incurring the far-
reaching consequences of faultymodels (Cohen et al., 2020; Dudley &Wegrich, 2016;
EU commission, 2020). This becomes particularly clear when looking at the goals of
transparent AI of the high-level expert group of the European Commission EU com-
mission, 2020. The groups states that the pillars that should lead to trust and ac-
ceptance are priority of humanaction, technical safety, privacy, transparency in ex-
plainability, fairness, social and environmental well-being, and accountability (EU
commission, 2020). However, it is unclear which standards should be used to eval-
uate a system concerning its transparency and comprehensibility (Kozuka, 2019;
Veale, 2020). On the one hand, this means a degree of uncertainty about potential
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use cases, e.g., inmedical applications. In these scenarios, treatments and diagnos-
tic methods require legal validation (Kozuka, 2019; Shaw et al., 2019); on the other
hand, it means significant freedom in research as a broad framework is available
for researching measures in the absence of legal requirements. These problems of
artificial intelligence in general, however, will not be explored further here. Instead,
they are only a first indication of how deep the complexity of acting machines ex-
tends. Later in this thesis, we will come back to this subject regarding trust and
acceptance of humans in autonomous systems.

The foundation needed to achieve self-driving systems is artificial intelligence
and machine learning (Grzywaczewski, 2017; Hussain & Zeadally, 2019). How vehi-
cles perceive their environment and react to it is so complex that the vehicle chas-
sis and mechanics almost recedes into the background. Thus self-driving vehicles
can be practically described as computers with wheels — where so�ware develop-
ment is as important as, if notmore so than, for traditional business units (Alt et al.,
2020). This is due to the fact that the code programmed into the vehicle and the ve-
hicle’s associated capabilities already significantly influence purchasing decisions
inmany cases - and this phenomenon is likely to intensify in the future (Dajsuren &
van den Brand, 2019).

In addition, to sensing traffic and controlling behavior, the self-driving vehicle
is an interaction partner with an occupant (Maurer, 2015; Puertas-Ramirez et al.,
2021). This interactionopensupanotherentirelydifferent lineof research, thehuman-
machine interaction (HMI). This independent field of study has its own set of open
questions in the context of individual automated traffic, where a framework for ac-
tive human-machine interaction in AVs is needed (Bengler et al., 2020). Here, the
relation of transparency in decision-making to self-driving vehicles becomes clear:
This is a significant factor for not only increased trust and acceptance among po-
tential users, but also legal determinations in the event of an accident (Cysneiros
et al., 2018; Gillmore & Tenhundfeld, 2020).

To summarize, this thesis provides an overview of the potentials and dangers
of self-driving vehicles with different levels of automation. In particular, it covers
the problems arising from human-machine interaction. Therefore, this work will
present an experiment on human-machine interaction is examined in partially au-
tomated cars with control takeover. In multi-modal conditions, it is investigated
whether amore controlled and safer takeover can be achieved with different warn-
ings. Following this, we will see how requirements change with the introduction
of fully automated vehicles. Here a way to increase trust and acceptance via dif-
ferent measures of communication between the car and the human driver will be
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proposed. Regardless of what a decision of a self-driving vehicle might be, the de-
cision should be at least partially explainable regarding how the machine reached
that conclusion or chose that action. That is the content of the third and fourth
chapters of this thesis. While chapter 3 details a virtual reality toolbox created as
anopen-scienceproject to enablehuman-machine interaction in thecontext of self-
driving cars, chapter 4 describes the study conducted using this virtual toolkit and
an additional survey a�er the experiment. Here, this thesis will show that different
communication strategies in a fully autonomous vehicle make a difference in trust
and usefulness. Nevertheless, we found that demographic factors, such as gender
and age, affect the attitude toward self-driving cars more significantly than in-car
communication.

Subsequently this thesis will deal with the decision-making of self-driving vehi-
cles. A�er all, should fatality or severe injury occur due to error, regardless of the
cause of the accident, the car will have to make a decision. What this might look
like and the problems with non-human programming decisions will be discussed in
chapter 5.

Beforewe look closely at the human-machine interaction in self-driving vehicles
and the associated issues, we will examine the technology of self-driving vehicles
in more detail in the following section. Here we will glance at the functionality and
the not so trivial definition of automation levels and the open legal questions of au-
tonomous vehicles. A�er this, the focus will shi� towards the social implications
of self-driving cars on our society. Additionally, we will discuss why acceptance of,
and trust in, this technology are of utmost importance for its realization. Finally,
the challenges this poses for human-machine interaction will be addressed.
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1.2 | MechanicalMachines as AutonomousAgents
For decades, automobile engineers have been trying to create a fully self-driving
vehicle (Takacs et al., 2018). Since the invention of the car in 1886, there has been a
constant progression of technology.2 However, the car has never really managed to
live up to its own definition. The term "automobile" is a combination of the Greek
word "autós" for "self" and the Latin "mobilis" for "moving" (Dietsche & Kuhlgatz,
2014). In the true sense, this definition only applies to the engine itself once it has
been started because a car alone would not drive or steer without a human operat-
ing it.

The idea of the self-driving car originated in the United States in the early 1920s
(Nguyen, 2019). In this decade, 365,000 US citizens were affected in motorized traf-
fic accidents annually (Norton, 2008). Just as today, human driver error was iden-
tified as the primary cause of these injuries and deaths (Norton, 2008; Stanton &
Salmon, 2009). In response, ideas of self-driving cars followed, ideas that, whether
for reasons of cost or lack of technical solutions, have been discarded. In the days
of mass motorization in the 1950s, there were many creative ideas and visions of
what automated transport could look like in the future, and there was heavy invest-
ment in technology for autonomous driving vehicles (ADVs) (Kröger, 2015). Due to
the oil crisis in the 1970s, automakers put aside plans for ADVs since costly invest-
ment seemed too uncertain. Thus, revolutionary ideas became evolutionary ones
and incremental development set in as assistance systems were introduced to the
market (Campbell et al., 2010; Kröger, 2015). The first technical driver-assist inno-
vation in the mid-1970s was the ABS (anti-lock braking system) (Demel & Hemming,
1989). This system marked a first milestone for the automation of modern cars as
it improved human driving behavior through controlled braking mechanisms to an
extent thathumandrivers arenot capableof. Since then,moreandmore functional-
ities invehicleshavebeenautomated: parallel parking (Pohl et al., 2006), automated
lane keeping for highways (Shinq-Jen Wu et al., 2005), and automatic distance con-
trol (Swaroop & Hedrick, 1999).

Now, a�ermore than 100 years of development, the fully autonomous car seems,
at least technically, within reach: a vehicle that can truly drive without a human ac-
tor or even attendant. This development appears to be reasonable as the benefits of
fully automated traffic are thought to have an immense impact on our society and

2Excitingly, the automobile has undergone many changes in its history from its design to its
safety features – and with the help of modern computer systems – communication and diagnosis
systems. Still, the fundamental drive technology of internal combustion has remained the same for
over 100 years (Dietsche & Kuhlgatz, 2014)
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the environment. These impacts include a drastic decrease in accidents and traffic-
related fatalities (Bergmann et al., 2018; Hevelke & Nida-Rümelin, 2015a, 2015b), a
significant reduction inemissionsofCO2 andothergreenhousegases (Chehri&Mouf-
tah, 2019), less congestion, and inclusion of people with limited access to personal
transport, such as the elderly or people with disabilities (Eby et al., 2016; J. Yang &
Coughlin, 2014).

One cannot deny the advantages of this technology. However, in addition to the
technical challenges, there are a large number of legal and ethical issues that need
to be addressed (Faulhaber et al., 2019; Kallioinen et al., 2019; Sütfeld et al., 2017).
For this reason, it is not realistic to say precisely when autonomous vehicles will be
able to drive completely autonomously onour roads (Gessner, 2020; Shalev-Shwartz
et al., 2018). Even beyond this, the shi� from a driver-centered culture, where the
driver is in complete control at all times, to a "being-driven" culture will undoubt-
edly be difficult (Bjørner, 2019). The reason is that car automation is not comparable
to other automated objects in the past: Unlike awashingmachine, a self-driving car
does not take on unpleasant, exhausting work, but rather takes on an exciting and
o�en joyful, albeit risky, activity (Hagman, 2010; Wedlin et al., 1992).

However, the fully autonomous car is possible only if a human driver is no longer
necessary to monitor the driving operation, nor can the human intervene in the
driving operation at all. Such a vehiclemust find its way around in traffic on its own
and communicate with other road users, both human and machine. Furthermore,
it must be able to weigh risks andmake legally protected decisions even under sub-
optimal conditions, which are then legally protected (Shadrin & Ivanova, 2019). Only
when this is guaranteed can a car be said to be a fully autonomous agent. Further-
more, the self-driving vehicle fulfills the definition of the automobile and the utopia
of environmentally friendly and low-risk individual transportation.

Indeed, the problem of defining the driving task opens up one of the most chal-
lenging problems in research on human cognition: how tomodel such complex sys-
tems as human behavior behind the steering wheel (Karwowski, 2006). Without
going much further into the material, this should provide an insight into how com-
plex the intuitively simple task of driving a car is. Driving as task consists of a vari-
ety of traffic related actions and decisions, which can be divided into three different
sub-groups of tasks: strategic efforts, tactical efforts and operational efforts (Mi-
chon, 1985) (Figure 1.2, right side). Strategic tasks represents the highest level in
this model. This task generally include planning the journey ahead. This includes
planning the route, i.e. when and why exactly where to travel. These plannings are
made in the long term, since they concern the entirety of the route.
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The tactical efforts collect decisions to performmaneuvers in traffic that involve
other roadusers, suchaswhenandhowtoovertakeanother vehicle, when to change
lanes, or even how to adjust the speed to the current traffic situation. The tactical
efforts have to meet the objectives of the strategic level. Since these efforts involve
reactions to specific situations, they happen within seconds.

The last are the operational actions, which are very short term (in milliseconds)
and sometimes even performed unconsciously. These actions represent the exe-
cution of the higher level objectives, for example micro corrections at the steering
wheel to hold course, acceleration or braking during a simple controlled drive to
keep the road position, as well as all emergency interventions to compensate for
sudden events.

Rasmussen (1986) proposed a compatible model of driving activity at three lev-
els (Weller & Schlag, 2007). This is not concerned with the driving task as such, but
with the cognitivemechanisms involved. As depicted in Figure 1.2 thismodel distin-
guishes between knowledge-based activities, rule-based activities, and skill-based
activities. Knowledge-based activities, are those that involve deliberate reflection
and promote a transfer of knowledge. Thus, it is possible to solve problems that
have not been encountered before. Rule-based activities are actions where a deci-
sion rule already exists and corresponds to a defined situation. Here, a rule is se-
lected and acted upon. Skill-based activities do not require active deliberation. In
their case, a reaction to a known procedure follows automatically.

Figure 1.2: Combination of driving task models according to Michon (1985), Rasmussen (1986) and Weller and Schlag (2007)
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Here it becomes clear that a vehicle with the current state of the art can han-
dle the skill-based skills as well as the rule-based skills without major problems.
However, there are difficulties with the strategic levels of the driving task, since
these have a certain degree of uncertainty or complexity that a machine cannot
process. The diverse tasks are difficult to implement for an automated vehicle in
their entirety, since they involve not only the vehicle’s own movement, but also, as
described, the interaction with other road users and their intentions in traffic.

In contrast to this, onecould state that evenahorsecarriage is amoreautonomous
vehicle than traditional cars since horses can dodge obstacles on their own even if
the passengers are asleep or busy fending off attackers (Maurer, 2015). That the
modern car cannot guarantee this is confirmed by the 1.35 million deaths annually
on the road (Haghighi et al., 2020; World Health Organization, 2021).

How does the automated vehicle now become an autonomous agent? The defi-
nition of an autonomous agent is close to the definition of artificial intelligence in
general. An autonomous agent is any system that perceives its environment and
acts autonomously to achieve specific goals and adapt and learn. Compared to arti-
ficial intelligence, an autonomous agent has a certain physicality, i.e., the possibility
of physically locating itself and interacting with a place or objects (C. Lee & Cough-
lin, 2015).

A self-driving vehiclemeets this definition, as it has to perceive, plan, decide and
execute decisive actions. This means that the vehicle must collect all data relevant
to the surrounding traffic with the help of sensors or systems to form a represen-
tation of its surroundings. These representations include the road surface, all road
markings, road signs, traffic lights, and the identification of other road users and
their direction of movement. This information can not only be data collected by
sensors on the vehicle. It can also be external data such as signals from other road
users or GPS satellites. All this data is then collected and fused (Gruyer et al., 2017;
Ramos et al., 2017).

With the help of this environmental information, the vehicle has to control its
own movement and trajectory planning. However, since traffic is also an interac-
tive and social phenomenon, the car must predict other road users’ behavior and
plan its actions accordingly. This information about the planned turn-in angle, ac-
celeration, and target speed is then passed to the mechanical components of the
vehicle control system so that the vehicle follows the selected path and reaches the
desired destination.
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The complex interactions between all participants in traffic and the constantly
changing environmental conditions result in an infinite number of possible scenar-
ios. So how will enough data ever be collected in testing these vehicles under con-
trolled conditions? Virtual realities can help to cover as many scenarios as possible
(Waschl et al., 2019). However, it is essential to distinguish between different levels
of simulations: on the one hand, detailed simulations of the environment, and on
the other hand, simulations of driving with a cooperating occupant since soon the
driver will most likely have to monitor the systems or take control in critical traffic
situations. Such simulations in virtual reality are the content of this thesis and will
be presented in detail later on. Companies actively researching self-driving vehicles
such as Waymo are already using a multiagent simulation environment developed
to test algorithms for self-driving cars (Connors et al., 2018).
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So far, it is clear that there is an apparent structure within the vehicles that di-
vides the driving task into three separate areas, i.e., perception, planning, and exe-
cution. In the following chapter, the functionalities of automated and autonomous
vehicleswill be explained inmore detail to understand the perception and decision-
making processes better. However, it is unclear how the vehicle arrives at the con-
viction to avoid the dachshund on the road from unstructured data such as images
from the front camera. Therefore, the way how a self-driving vehicle perceives its
environment is discussed below to find a conceptual basis before the legal and eth-
ical issues.
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Perception and Decisions of Self-Driving Vehicles
Now that the history of self-driving vehicles in conjunction with self-learning ma-
chines has been explored and the driving task has been roughly outlined, this chap-
ter revisits inmoredetail howgoal-directedbehavior is generated fromthevehicle’s
sensor capabilities.

To approximate human perception, vehicles need a large number of sensors. A
combination of sensor technologies is o�en used, including cameras, radar, GPS,
ultrasound, and Light detecting and ranging (LiDAR) (Kutila et al., 2016; Varghese,
Boone, et al., 2015). As with vehicles driven by humans, GPS is primarily used to
navigate a map in the range of meters. On the other hand, radar technology refers
to the immediate area around the vehicle and allows a rough perception of an ob-
ject’s shape with low resolution, but it can be used to estimate the object’s size and
speed. However, identification of the object is not possible. Therefore, radar is of-
ten supplemented with camera systems. The multiple cameras are o�en the main
source of information for the car, since it usually offer high resolution and allow
segmentation, classification and localization of objects in the environment around
the car at low cost (Bechtel et al., 2018).

Additionally, the cameras dohave abroad viewing range. However, under certain
circumstances, cameras have problems fulfilling their tasks, for example, in bright
backlighting, insufficient illumination, or heavy fog (Rao et al., 2019) For this case,
self-driving vehicles have a LiDAR system.LiDar creates a 3D representation of the
environmentby emittingand reflecting laser light. LiDAR is similar to radar in terms
of perception, but since it is based on light rays, its resolution is so precise that it
can be used to classify other road users. Still the signal can be distorted by rain or
fog, that is why it is o�en only one part of the sensor system (Kutila et al., 2016; Yoo
et al., 2018). Ultrasound, the last technique in this canon, is used for close-range
obstacle detection or in combination with cameras or radar (Mwaffo et al., 2020).

All this sensor technology is, of course, a significant cost factor for such a vehi-
cle, and it is not clear whether LiDAR technologywill catch on in a consumer vehicle
(Yoo et al., 2018). Therefore, current vehicles on the consumer market do not use
LiDAR technology and rely on a more cost-effective combination of radar and cam-
eras (Kutila et al., 2016). Up to now, vision-based algorithms are the most basic and
fundamental methods for the detection of the roadside, traffic signs, traffic lights,
and other road users (Ouyang et al., 2020). A precise object detection is of utmost
importance.
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The picture-based perception of objects consists of two processes. One is image
classification, and the other is image localization. Objects in the field of view of the
vehicle get a semantic label and a position in space. This happens with the help of
deep neural networks, in many cases convolutional neural network (CNN). These
networks increase complexity in each layer, starting from color or edges and end-
ing at the identification of substantial elements as the intended objects (M. Yang
et al., 2019). Without going into detail, CNNs are a powerful tool for reliable image
recognition and ultimately enable AI to gain meaningful information out of image
data provided by the car’s cameras.

With a variety of data representations, the data from the sensors is then used to
make predictions about possible movements of other road users in the near envi-
ronment of the car (Bechtel et al., 2018; Ramos et al., 2017; Rao et al., 2019). Based on
these prediction and interpretations, the car then plans and execute actuate ma-
neuvers. It is important to note here, that the car needs to consider that not every
signal of the sensors is true and that human road users are only hard to predict.
Just like we saw in figure 1.2 the car has to plan its route, navigate itself along this
route while considering the movement of other road users and control its move-
ments during the transition.
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1.3 | Classifications of Autonomy Levels
To understand the difference between autonomous driving vehicles autonomous
driving vehicles (ADVs) and semiautonomous driving vehicles, it is necessary to un-
derstand thegeneral definitionof autonomousandsemiautonomousmachines since
the differentiation between a highly automated and a fully automated vehicle is not
so clear as it seems. The three competing categorizations are taxonomies of the
society of automobile engineers (SAE), the Bundesanstalt für Straßenwesen (BASt),
and thenationalhighway trafficsafetyadministration (NHTSA). In the further course
of this thesis, however, only the SAE taxonomy will be discussed in detail since this
categorization has become established in international research.

By definition, the fully autonomous systemdecideswithout human intervention
of any form (Shadrin & Ivanova, 2019). Accordingly, an autonomous systemwould be
able to act on its own in response to unknown and unexpected traffic events. How-
ever, before a fully autonomous vehicle is achieved, there are preliminary stages
where driving tasks are automated while still relying on the human driver as a su-
pervisor. This is the difference between highly automated driving, which onlyworks
under certain conditions, and the fully autonomous vehicle. Therefore, automated
systems are less autonomous than fully autonomous systems (Norris & Patterson,
2019).

SAE has created a classification of automated driving functions in six levels. This
classification is very technical, and especially the higher levels of automation are
indistinguishable for nonprofessionals (Shadrin & Ivanova, 2019). For the technical
description and, later in the thesis, the ethical and legal classification, the SAE tax-
onomy is the most appropriate. As shown in figure 1.3, automation ascends from
level 0, no driving assistance to level 5, the fully autonomous vehicle. To classify an
automated vehicle, the question must be asked to what extent the humans or the
machine is responsible for the dynamic driving task (DDT). This is defined as "the
set of real-time operational and tactical functions required to operate a vehicle on
the road, excluding strategic functions such as trip planning and destination and
waypoint selection." (Shadrin & Ivanova, 2019).

It is precisely this division of the DDT that then determines the classification of
the automation level, which will now be examined in more detail.
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Figure 1.3: Overview of SAE levels of automation

(Gaupp & Katzenbach, 2019)

Level 0: No Driving Automation
This level of automation accounts for a largenumber of used vehicles on the road to-
day andmeans that the DDT is handled exclusively by the human driver. Even if the
human driver is supported by active safety systems like a lane departure warning
system or an emergency brake assistant, these features do not count toward fulfill-
ing theDDTas theydonot technically control the vehicle but only support thedriver.

Level 1: Driver Assistance
At this level, the human still has tactical control of the vehicle in real time. However,
a single assistance system is used for the DDT sub-task of either the longitudinal
or lateral motion control. The assistance can be, for example, an adaptive cruise
control system that measures the distance to the vehicle in front and maintains a
predefined distance. Here the human decides when the driving automation feature
is appropriate and takes over the entire DDT when desired or required. Even with
an activated system, the remaining tasks have to be performed by the driver at all
times. Nearly all new cars are fittedwith at least one system that controls sub-tasks
of the DDT.

Level 2: Partial Driving Automation
Level 2 is defined by automated lateral and longitudinal vehiclemotion control that
disengages when the human driver engages in the DDT. With longitudinal and lat-
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eral motion control, the driving automation system controls a large amount of the
DDT. The system is o�en enabled by many sensors such as radar, cameras, and ul-
trasonic sensors. Level 2 includes active road user detection, lane-keeping systems
that actively direct steering, traffic sign recognition and speed control, and emer-
gency braking. However, while the vehicle controls the actions in traffic, the human
driver is still responsible for supervising the system as well as the object and event
detection and response (OEDR), that is a subtask of the DDT. Like in the first level,
the human driver engages and disengages the driving automation systems as de-
sired or required. A prominent example here is the Tesla Autopilot.

Level 3: Conditional Driving Automation
This category is defined by an entirely automated DDT and OEDR under certain con-
ditions. It means that the car can fully control itself in a specific operational design
domain (ODD), meaning the environment it can operate in. Nevertheless, this still
implies that the human driver should take over control when the car demands so in
a take-over request (TOR). This fallback to the human requires the car to estimate
when an ODD exceeds the car’s capabilities and disengage within an appropriate
takeover. A Fallback could happen when a failure in the sensor systems occurs or
the car faces uncertainties due to an unknown environment. When the Fallback
ready user does not respond, the vehicle has to use a failure mitigation strategy.
One example for this could be coming to a complete halt right in place. Also, the
human driver is still able to override the car’s decisions at any given point of the
route. Within the ODD, the driver does not have to engage in the DDT nor the OEDR.
One practical example of this is the Audi Traffic Jam Pilot (Audi AG, 2021; Blackman,
2018), where the car fully controls the vehicle motion only on highways at up to
60km/h.

Level 4: High Driving Automation
In technical terms, the progression from level 3 to level 4 is a big step since the hu-
man fallback is eliminated. Like in Level 3, the system is responsible for the DDT and
OEDR under certain driving conditions, but it does not expect the human driver to
intervene while the automated driving system is engaged. In this case, the driver
becomes a passenger. Ergo, the car must deal with system failures and unexpected
traffic events in the ODD but may ask for a takeover when faced with an ODD limit.
Since the human driver is not expected to take control within the ODD, the car falls
back into aminimal risk condition. Theseminimal risk conditions represents a halt
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of the vehicle. Still, the driver can request a disengagement of the automated sys-
temwhen desired. However, the use of such vehicles is currently limited by existing
infrastructure and legislation. Currently, it is not clear who bears responsibility in
the event of an accident as the human driver has no active part in decision-making
in highly automated driving conditions. This uncertainty results in these vehicles
being restricted to limited areas suitable for driving a predetermined route. One
example of level 4 automation is the Hub Chain collaborative project between the
Deutsches Zentrum für Lu�- und Raumfahrt (DLR) and Stadtwerke Osnabrück (van
Tongern, 2018). The project involved the development of the autonomously driving
bus shuttle "Hubi," which is qualified as an SAE level 4 vehicle and operates (within
the ODD) without a human driver on the ICO Campus Westerberg of the University
of Osnabrück.

Level 5: Full Driving Automation
In contrast to all previous levels, no human attention or supervision is required for
the DDT or DDT fallback in any driving conditions (not ODD-specific). The system
plans and executes all necessary functions without a possible fallback at any time
and under unlimited conditions. Thismeans that all humans in the vehicle are clas-
sified as passengers; consequently, the system does not need to take control and
therefore does not need a driver. Ergo, the human involvement in the DDT is com-
pletely eliminated since the car is able to handle fallback situations with minimal
risk when system failures occur. The system only disengages when the car reaches
aminimal risk condition or the human passenger requests to takeover. But it seems
unlikely that the human will be able to manipulate the car in real time since these
vehicles will most likely not be equipped with a steering wheel or pedals.

Asnoted, the SAE classification is an international standard that doesnot specify
certain methods or techniques but rather levels of automation. This taxonomy can
be assigned permanently and remains unambiguous and compatible with the sim-
plified model of user communication presented here. The simple terminology pro-
posed above describes driver roles and remains consistent with the previous work
of the BASt, fromwhich the described classification differs only in highly automated
and autonomous driving. In summary up to level 2, one can speak of assisted driv-
ing. Level 3 automates all functions of the driving task under certain conditions
so that the vehicle can temporarily drive itself. These functionsmake it possible for
the first time to perform a non-driving-related task (NDRT) safely while driving. The
use of this technical option is legally permitted in Germany, the law on automated
driving being passed in 2017. From level 4 onward, vehicles can drive autonomously
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under certain conditions without drivers having to take over -in other words, the
functions autonomously perform the driving task in pre-mapped and highly con-
trolled areas.

The SAE automation levels are critical in developing such systems and as a basis
for legal assessment since these levels assign responsibility and roles to the human
driver or passenger and the automation system. However, self-driving vehicles are a
complex legal issue. Since regulation of this technology can be a potential threat, or
enabler, for self-driving vehicles, legal problems will be described in the next chap-
ter. However the following chapter remains without presenting great detail or pos-
sible solutions as this would far exceed the scope of this thesis.
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Legislation of Highly Automated and
Autonomous Driving
As already indicated, there are substantial legal difficulties in applying artificial in-
telligence due to the problem of the inexplainability of decisions and the residual
uncertainty of such systems. Inexplainability and uncertainty will now be consid-
ered in the case of self-driving vehicles.

Autonomous driving raises complex questions regarding liability in the event of
an accident or error. It is of the utmost importance, however, to solve these prob-
lems in order to realize the technology (Lohmann, 2016). In principle, there is agree-
ment in the German government that the technology will most likely contribute to
improving the safetyof individual trafficandshould thereforebeactively supported.
Nevertheless, SAE levels 4 and 5 cannot be achieved in accordance with the current
legal regulations (Dix et al., 2021; Greger, 2018; Lutz, 2020). It is still not clear who
or what is responsible in the case of a system failure or a crash scenario when the
automation system is engaged and the human driver is disengaged (Gurney, 2013).

The technology raises the question of who is liable if, for example, a driver suf-
fers a stroke while driving and the vehicle controlled by assistance systems causes
damage. In a contrived extremecase, a driver suffers a strokewhile the autonomous
systems are engaged. The level 0 vehicle with the incapacitated driver would have
crashed in a field. In our case, the assistance system stays on track and runs over
a group of pedestrians. Is anyone responsible for this situation, or could this be la-
beled a risk of life?

This question is addressed because of the Vienna Convention on Road Traffic of
1968, according to which every vehicle needs a human driver who has full respon-
sibility for the vehicle (IT Commitee of the United Nations, 1968). However, the Vi-
enna Convention was amended by the United Nations in 2014. Now, not only hu-
mans are permitted as drivers, but also systems with which a passenger car drives
autonomously if the driver can stop themat any time in an emergency (Bundesmin-
isterium fürDigitales undVerkehr, 2017). Still, the driver remains liable for every ac-
tion of the vehicle even if it is driving autonomously. While vehicles in levels 1, 2, and
3 can be accommodated within this legal framework, this becomes complicated for
levels 4 and 5. Therefore, these vehicles are currently not legally compliant (Greger,
2018). This example shows that the fundamental change in technology makes ad-
justments to the legal framework imperative – throughout the EU.
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A revised law has now been in place in Germany for a few years. In June 2017, the
legislature enacted the new § 1a of the Road Traffic Act (StVO) (Bundesministeriums
der Justiz und für Verbraucherschutz, 2013) to allow the operation of a motor vehi-
cle with higher driving automation if the function is used as specified. However, the
original problemof responsibility is not directly addressed here because the vehicle
driver remains responsible even if this person does not drive the vehicle. According
to § 1b StVO, the person in the driver’s seat may turn their attention from road traf-
fic but must remain "perceptive" so that the control can be taken over at any time.
However, there is no case law on this subject yet (Greger, 2018). This means that
it has not yet been clarified how a person behind the wheel is liable to prosecution
if they are not driving. Since the German legal system is linked to an action or an
omission in terms of criminal liability, the so�ware, hardware, and the manufac-
turers of the vehicles are not considered because they are not actively involved in
road traffic (Greger, 2018; Lohmann, 2016).

When using vehicles of level 3 and higher, the driver will retain responsibility
even if he or she is not actively involved in controlling the vehicle. Potential cus-
tomersmust be confident that the systemwill operatewith complete reliability and
that the person in the driver’s seat will be allowed to devote his or her time to tasks
other than monitoring the system. This trend toward more and more automation
cannot be reversed, and it can be assumed thatmore andmore parts of the DDT and
OEDR will be transferred from the driver to the system in the coming years. How-
ever, this still means a lot of open questions for the justice system. As an acting
system, cars deciding over life and death will be breaking new ground (Coelingh &
Ekmark, 2019).

The question of liability in accident situations is closely linked to the question of
decision-making. Who or what is liable in the event of property damage or personal
injury? How should a self-driving vehicle should react in a critical traffic situation
in the first place? As we have seen, this is a minor issue for the self-driving vehi-
cles of levels 0 and 1 but already becomes substantial in level 2, as seen in various
accidents where drivers were inattentive during activated automation (Penmetsa
et al., 2021). Although there is no legal basis for the higher levels 4 and 5 (Lohmann,
2016), these incidents call for newways in thehuman-machine interaction to enable
collaborative decision-making for fast and reliable reactions (Roche et al., 2019).
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1.4 | New challenges in Human-Machine
Interaction

In the previous chapters, we looked closely at the basics of perception in self-driving
vehicles and how they are technically defined and divided into automation levels.
We have also seen that several open legal problems need to be solved. However, this
is not the endof the long list of openproblems. Another challenge for the realization
of highly automated andautonomous vehicles is, apart fromall remaining technical
and legal issues, the problem ofmissing consumer acceptance (C. Lee et al., 2019). If
this is nonexistent or found only among individual interest groups, the technology
is on the brink of failure. Only if there is broad acceptance among the population
and the technology is seen as safe and valuable by potential customers will it be
possible to scale features of self-driving vehicles in individual traffic (Nees, 2016).

Therefore this chapter covers the basic idea of general acceptance as a critical
factor for realizing highly automated and autonomous vehicles.This chapter also
covers the topic of social implications of this technology, or how our cities and lives
will possibly change due to the emergence of fully self-driving cars (Yaqoob et al.,
2019). Apart from the question of fundamental acceptance and the question if we,
as a society, want to use self-driving cars on our roads, there is also the question of
the human-machine interaction inside the car (Wachenfeld et al., 2015). Since this
is themain topic of this thesis, a substantial subsection concerns an experiment on
human supervision in highly automated vehicles and the problemof the out-of-the-
loop unfamiliarity (OOTLU)

Acceptance and Social Implications of Autonomous Cars
Asalreadycovered, the realizationofADVs isbound to theacceptanceof autonomous
machines. Different survey reports about customer attitudes toward ADVs state
that acceptance seems tobe critical for realizing this technology, but also thatmuch
doubt exists concerning safety and privacy (Bergmann et al., 2018; Gillmore & Ten-
hundfeld, 2020; Nastjuk et al., 2020; Raue et al., 2019). These concerns might be ir-
rational since the risk of a crash in an ADV is thought to be significantly lower than
in a human-controlled car (Yadav & Velaga, 2020).

The logical question here is why this technology is attractive at all and if the pos-
sible outcome is worth the current efforts. As already mentioned several times, in
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addition to the possibility of fewer accidents and traffic fatalities, there is the bet-
ter climate balance of self-driving vehicles (Chehri & Mou�ah, 2019). The emission
reduction is because automated and autonomous vehicles drive slower and more
consistently than theaveragehumandriver (H. Li et al., 2020) andbecause the intro-
duction of fully automated vehicles will likely change our entire mobility behavior
(S. Pan et al., 2021). Because of the status quo, an individual vehicle is an object that
takes upmostly public space for an average of 23 hours a day. With the introduction
of robot cabs, this could fundamentally change (Silva et al., 2021). It is conceivable
that there will be not, or only rarely be privately owned vehicles, while on-demand
service will be much more likely (Cusumano, 2020). The on-demand vehicles will
be used constantly, eliminating the need for large parking spaces. The space thus
freed up by reduced parking spaces, roadways, and other infrastructural buildings
such as gas stations can thus be accessible to the public again. Therefore, the self-
driving car can substantially contribute to a green vision of sustainable inner cities
(Campisi et al., 2021; Chehri & Mou�ah, 2019).

Additionally, there is hard evidence that this technologywill have a powerful and
positive impact on how we use roads (Fagnant & Kockelman, 2015; Krueger et al.,
2016; S. Pan et al., 2021; Ryan, 2020). As mentioned before, the roughly 1,200,000
peopledying in trafficglobally eachyear couldbedecimated (Hevelke&Nida-Rümelin,
2015a, 2015c; World Health Organization, 2021). Also the total emission of toxic ex-
haust gases would be significantly lowered through fuel-efficient driving and avoid-
ance of congestion even if future ADVs still run on combustion fuels (Chehri &Mouf-
tah, 2019). Also, pople with limited access to individual traffic would be included.
Physically impaired and even blind people could participate freely in individual traf-
fic (J. Yang & Coughlin, 2014).

The major premise for the self-driving car is that it should take away psycho-
logical stress while increasing road safety (Koo et al., 2015; Reimer, 2014). Various
authors point out the importance of perceived risks on trust (Gillath et al., 2021;
J. D. Lee & Kolodge, 2020; Raue et al., 2019). Perceived risk is a substantial factor
linked to trust, particularly concerning the decision to use an automated device or
not (Gillath et al., 2021; J.-H. Lee & Song, 2013). Their results confirm the influence
of trust on automation when trust is considered both as a direct determinant of be-
havioral intention and as an indirect influence through perceived usefulness and
perceived risk. In their publications, trust reduces the perceived risk depending
on the expected probability of a negative situation. When drivers trust ADVs, they
assume that the vehicles will behave as expected, reducing the perceived risk of a
negative situation. The term trust is therefore defined as the users’ attitude that the
vehicle will act according to the human objectives in any given situation (Stephan,
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2019). Acceptance in this context describes a broader term that refers to consenting
to the usage of a self-driving vehicle.

We will see later that the perceived risk and the intention to use such a vehi-
cle are closely connected to acceptance rather than trust. Additionally, it will be
shown that people with little technical knowledge have stronger reservations to-
ward self-driving cars. We suggest that people cannot form a mental model of the
car and how it is perceiving and evaluating its environment. Because these partic-
ipants cannot formulate models of how a system is working, it becomes generally
unknown in its core function - resulting in skepticism. Despite the doubt, automa-
tion’s crucial point is introducing abilities related to human-centered activities that
gobeyondhumancapabilities. However, this developmentalsoposesnewproblems,
which will be discussed in the following section.
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Human Supervisors and the Out-of-the-Loop Problem

This section deals with a completely different problem that comes from the human
user. Even if it were possible to increase acceptance within society immediately
without problems, user competence plays a crucial role in partially and highly auto-
mated vehicles. The problemhere is the role of the only partially intervening driver,
who is in principle dedicated to tasks other than driving but is faced with special
requirements precisely when they are inattentive: the takeover request.

With increasing automation, it will be possible that human drivers turn their at-
tention fromdriving-related tasks towardcar-unrelated tasks, like scrolling through
the smartphoneor attending video conferences. During this time, the car takes over
the DDT and the OEDR. But it is necessary to take back control as fast as possible
once the self-driving car requests a fallback (Shalev-Shwartz et al., 2018).

Here, it becomes essential that the human can monitor the current traffic en-
vironment without paying attention to it. Research could show, that mere system
awareness is not as effective as tailored visual and auditory cues about objects in
front of the car (Wintersberger et al., 2020). Therefore, a human-centered design
for a fast, precise, and focussing monitor system is needed (Roche et al., 2019). The
interaction between human users and responding machines has been the focus of
scientific studies for many decades, now starting in the late ’60s (Dietsche & Kuhl-
gatz, 2014). In the context of self-driving vehicles or care robots, this means that
the human-computer interaction becomes more of a human-machine cooperation
(Weyer et al., 2015).

In cases where the car takes over the traditional tasks of a human driver, it be-
comes an agent that needs to make decisions and interact with the human, as well
as other road users. This double role transforms the driving experience of a human
driver, using the car as a tool, to a collaborative activity, where agency is exchange-
able between the human driver and the machine (Norman, 2015; Weyer et al., 2015).
This exchange needs a form of direct interaction. A potential starting point could
be human-directed communication in a verbal interaction like the Siri system in-
troduced by Apple or the SYNC system by Ford since these systems are accepted
by customers already (Tulshan & Dhage, 2018). A study at Colorado State University
showed that the acceptance of a novel technology could be increased if said technol-
ogy possesses a name, a voice, and a gender and, most importantly, if it can report
about itself and its functions. The authors also suggest that anthropomorphic fea-
tures in a car could be a promising approach since car owners o�en treat their cars
as autonomous creatures already (Waytz et al., 2014). It might bring back a breeze
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of the fascination ofmassmotorization between the 1920s and 1950s (Kröger, 2015).
While a fundamental form of verbal communication is already feasible in modern
vehicles, the question of task division and cooperation is still to come since this re-
quires that the car be able to take over a substantial part of the DDT.

Driving a car requires a particular set of skills, like using the gearbox, controlling
the car with a steering wheel, or evaluating potentially risky situations and the be-
havior to control these situations. However, in the potential future, the human will
no longer beaphysically activepart of the vehicle in a fully automatedADV, resulting
in a possible loss of these competencies (Bainbridge, 1983; Kröger, 2015). Humans
will ultimately be rathermore like a supervisor, with new tasks and responsibilities
(Endsley & Kiris, 1995; Engström & Hollnagel, 2007). Of course, there is a need for
a new understanding of the technical aspect of ADVs. As a supervisor with the re-
sponsibility to keep a highly automated car in a safe condition, the passenger needs
to understand the essential functions of the car, at least, be able to identify possible
sources of failure, and acquire the knowledge and skill to keep the car in a safe con-
dition in case the ADV is not able to drive itself anymore. A risk here is that users
will slowly forget how to drive a car independently (Norman, 2015). This risk dra-
matically increases with more automation. Users slowly rely on the car systems to
work ideally — and in most cases, they will. However, there is still the possibility of
a system failure. What happens if the responsible driver that has not touched the
steering wheel in quite some time is forced to react immediately (Bainbridge, 1983;
Endsley & Kiris, 1995; Norman, 2015)? Thismeans that users unable to drive on their
own maybe find themselves in a situation where the car demands human control,
for example a�er a crucial systemor sensor failure, but the humandriver is not able
to assess and react to the situation anymore (Bainbridge, 1983; Norman, 2015).

One consequence could be that the further development of ADVs defines new
roles for the passengers. This means that the functions and actions of the car have
to meet the humans’ capability of information processing and their needs and ex-
pectations (Hallerbach et al., 2017; Weyer et al., 2015). Although cars are not on
the technical level to take over the DDT and OEDR yet, there are examples of mo-
bility where more advanced automation is already standard; for instance, modern
high-speed trains and airplanes (Chialastri, 2012; Spring et al., 2009). Of course,
this comparison is imperfect. A strict set of rules defines air and rail traffic, and
these systems divide tasks among a group of responsible entities. Also, pilots are
well-trained experts able to supervise their system in nearly every technical aspect
(Chialastri, 2012). Most importantly, however, a pilot is o�en faced with problems
in a large space: the airspace. Logically one can assume that, as long as no wing or
the hull of the airplane is critically damaged, the pilot has several minutes to as-
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sess a problem, while being assisted with professionals in the ground control tower
(Chialastri, 2012). In contrast, road traffic is a system without such strictly defined
rules. Sometimes driving over a sidewalk to avoid an obstacle or a possible collision
is an excellent thing to do that a self-driving car would not. For example, humans
might drive over the sidewalk to make room for an ambulance, whereas the air and
rail space has strictly defined protocols for comparable situations. This example
highlights the importance of a human supervisor. This, this supervisor has the un-
conditional task of quickly and precisely understanding the context of the current
driving situation and executing actions thatwould render the rules of an automated
vehicle absurd.

This comparison supports the argument that it is insufficient to optimize au-
tonomous systems independently but crucial to also focus on the human-machine
interaction when human operators function as system supervisors responsible for
correcting system failures or limits (Bengler et al., 2020).

Further development of self-driving cars could lead to three different scenar-
ios: overrated trust in faulty automation, the loss of cognitive or manual skills, and
the loss of the capability to evaluate potentially risky situations, resulting in inap-
propriate human behavior. These phenomena are described by the out-of-the-loop
unfamiliarity (Bainbridge, 1983; Endsley & Kiris, 1995). A proven way to handle this
issue is to keep people in the loop by passing ultimate responsibility into human
hands regardless of automation, just like in aviation.

However, as examples fromaviationshow, pure supervisionasa task isnot enough
since humans are unsuited for prolonged attention, and it is questionable whether
the cognitive load is reduced (Chialastri, 2012; Spring et al., 2009). Humans are not
well suited for longperiods of vigilance: Tests show that during prolongedperiods of
supervision, pilots tend to be out of the loop, resulting in them not being able to as-
sess information quickly enough in a possibly dangerous situation (Endsley & Kiris,
1995; Engström & Hollnagel, 2007). Therefore, it is necessary to find an alternative
that, despite higher automation, allows humans as supervisors to receive enough
information to make informed decisions even if they are not attentively following
traffic events.

If wenowassume future automationwill take care of certain events in traffic like
it is anticipated by the SAE, these events includes other drivers, or possibly tricky
road conditions and the current state of all of the car’s sub-functions. To hold a hu-
man in the control loop, one approach is to inform the inactive passenger about the
vehicles state to enable thepassenger to take over control in a short amount of time.
This information has to be represented in amanner that is natural and does not re-
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quire continuous attention (Norman, 2015). Too many signals are worse than not
enough since this possibly results in distraction; ergo, the human driver is out-of-
the-loop (Norman, 1990; Roche et al., 2019; Spring et al., 2009). Examples of systems,
giving information about the current driving state include almost all lane and dis-
tance assistance systems, which activate a pulse in the driver’s seat or even steer
actively to keep a car in a lane. However, these seem to be somewhat abstract repre-
sentations of the current driving status, and apparently, these representations are
a possible source of stress in passengers since they are hard to interpret (Naujoks
et al., 2016).

Quickly, the question arises: What is needed to avoid stress reactions and build
human trust in a way that potentially keeps human supervisors in the loop? In the
following, mental models will be introduced that appear to be an appropriate the-
ory for building trust in ADVs and emphasize a human-centered interaction. Jay
Wright Forrester introduced this theory in 1971 for educational psychology, and it
describes how humans process functionalities in the world (Forrester, 1971). These
mentalmodels are cognitive-emotional representations of objects, object relations,
and processes. As known in cognitive psychology, human beings develop simplified
models of the functions and processes of their environment (Johnson-Laird, 1986).
Thesemodels are used to gain orientation, as well as to understand and predict cer-
tain events. These are dynamic processes that three features can describe:

Mental models are processed in the workingmemory and enable the simulation
of possible actions. Thinkingaboutpossible otherplansor outcomesmeansaltering
mentalmodels. The second feature is thatmentalmodels can represent causes and
relations between events in an abstract form. Therefore, they generate a causal un-
derstanding of howa systemworks. Lastly, thesemodels are also externally change-
able through experiences; therefore they are linked to learning. If an outcome of a
repeated action differs, it will change the mental models (Johnson-Laird, 2006).

Hence, mental models are based on context-specific expectations and the user’s
knowledge of the system. This also applies in the context of highly autonomous
driving situations. Nevertheless, the decision regarding the human use and accep-
tance of technology is not based solely on rational understanding alone because
attitudes are not entirely changeable through information, as we will see in the fol-
lowing chapters. More likely, new information is processed selectively to harmonize
with already existing models (Johnson-Laird, 2006). Tests of one possibility to in-
crease human acceptance of technology will be described in this thesis: different
feedback and feedforward strategies used by an anthropomorphically acting ADV
for crucial safety-related situations in traffic.
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However, how should these systems be tested if the highly or fully automated
level 3, 4, and 5 vehicles needed for research do not yet exist? The proposed ap-
proach is immersive virtual reality virtual reality (VR). This offers the possibility to
create counterfactual environments and technologies and thus to generate natural
behavior under controlled conditions. How this works exactly is explained in more
detail in the next section.
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1.5 | Virtual Reality Simulations and Human
Behavior

The technologyof virtual realityhasbeensteadily growingover thepast years. It lets
users experience three-dimensional computer-generated environments via the use
of a head-mounted display (HMD). The HMD combined with the three-dimensional
computer environment enables the user to experience a dynamic control of the
viewpoint in a responsive virtualworld (Steuer, 1992). While thismight seem limited
at first, this enables a feeling of presence and immersionwithin these virtualworlds
that is inherently different from two-dimensional experiences of virtual worlds in
classical screen setups. The feeling of being physically present in a virtual world
distinguishes VR from all preceding technologies (Slater & Wilbur, 1997).

In general, VR allows the presentation of potentially dangerous situations in a
safe and controlled environment while the researcher records behavioral informa-
tionof the subject. This information includes the subject’shead, handandeyemove-
ments, as discussed later in this chapter. Additionally, the creation of virtual worlds
represents a high degree of design freedom. It is possible to represent self-driving
vehicles in realistic scenarios, although this technology does not exist yet. It is also
possible to give the participant a realistic impression of critical traffic situations,
which any ethics committee would reject in the real world. Here edge cases and ex-
tremes can be tested. Likewise, it is possible to experimentally represent the design
and functionality of vehicles since thevirtual environment isnotboundby road laws
or limitations in manufacturing.

This is where everything necessary for research into human-machine interac-
tion in thecontextof self-drivingvehicles comes together. Theproblemsofdecision-
making, cooperation with the human driver, and the OOTLU known from the previ-
ous sections can thus be addressed. Nevertheless, this is not limited to the driver’s
interaction with the vehicle because tests of highly automated vehicles in classic
test setups have only a minimal yield of possible test scenarios. In principle, there
is probably an infinite number of possible traffic situations. Of course, this cannot
be covered by test scenarios in controlled physical test environments. New meth-
ods are needed for a large number of complex situations under a wide variety of
conditions. Virtual reality can make a substantial contribution to the training of
self-driving features in modern cars.

For this purpose, too, we would like to provide two toolboxes that can be cus-
tomized as desired. For such an environment to offer real added value, it should
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represent a realistic representationof thephysical behavior of the environment and
other road users. Likewise, sensors’ potential properties and limitations, e.g., vir-
tual camera systems, should be included to enable adequate testing. In order to
implement a multitude of possible conditions and tests, which allow testing in dif-
ferent automation levels and with freely configurable virtual components, we have
developed the project Westdrive. We put much effort into making the world as re-
alistic as technically feasible, and we primarily focused on including traffic events
asmodular adaptive components, whichwill be part of the later chapters. However,
beforemoving on to the first studies, we take a closer look at how virtual reality de-
vices work.

Virtual Reality
Our biological eyes have two different angles on a sighted object in the real world.
This indicated by a slightly different projection of fixated objects on the retina. This,
in turn, means that both eyes perceive a different change in visual angles as shown
in figure 1.4. Our brain can detect these small differences and form an impression
of them by perceiving size and distance. However, much of the visual input from
our two eyes is the same. Thus, it is possible to combine both images (Haber, 1978;
Holmqvist et al., 2012). This convergence is also mathematically possible, which in
turn enables the development of stereoscopic displays. Splitting content into two
stereoscopic, two-dimensional images displayed separately for each eye is the basis
for allmodernvirtual realityheadsets to immerse theirusers ina three-dimensional
environment (Clay et al., 2019; Duchowski, 2017).

Figure 1.4: Depiction of the HMD display plane compared to stereoscopic vision (Anwar, 2019)
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However, the question arises about how the user’s natural movements can be
transferred from the real environment to the virtual environment. The transfer is
achieved by recording the movement of the devices guided by the user. There are
currently two general approaches to this. The first is the so-called inside-out track-
ing, where cameras on the outside of the HMD are used to orient the device in the
real-world space. In this case, the calculations of rotation and orientation depend
only on the device itself. Thismethod ismainly used by Oculus (Facebook Technolo-
gies LLC, 2021). This form of tracking does not require any external devices, and
the user can move freely. The second approach is called outside-in tracking, where
cameras detect a passive device. One subform of this is lighthouse tracking, which
needs additional hardware to locate the VR devices in space. This approach is used
by HTC and Valve, as well as by Sony for the Playstation VR (Sony Interactive Enter-
tainment LLC, 2021; Valve Corporation, 2021). In lighthouse tracking, the position
of the HMD is calculated based on device position and angular speed. Here infrared
light fromexternal emitters is used to create a grid invisible to the human eye to en-
able tracking 1.5. It has thebenefit of precisionbecause the tracking features arenot
dependent on environmental factors such as environmental illumination (Gourlay
& Held, 2017).

Figure 1.5: Overview of the lighthouse or base station tracking (Yuan, 2021)

With both approaches on tracking the user’s movements, however, the user’s
freedom of movement is limited. Be it limited, be it by the range of the lighthouses
or the possibility of the HMD to find its way in less suitable, for example, brightly
lit and reflective, environments. Another problem ismotion- or cybersickness. This
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form of sickness occurs when there are differences in motion perception and the
device’s representation of motion. While it causes a feeling of discomfort, it com-
pletely breaks the immersion of the virtual environment, which is especially im-
portant for scientific experiments. The causes of cybersickness include a lack of
appropriate tracking and a limitation in representing the sense of balance (LaViola,
2000). A ride in a virtual roller coaster does not feel the same as in real life since the
sensory input fromthe vestibular andproprioceptive systems ismissing. Thediffer-
ence between the visual sensory input and themissing proprioceptive and vestibu-
lar input can cause dizziness and nausea. Nonetheless, these issues are constantly
being improved, and new ways to deal with them are developing steadily (LaViola,
2000; Veličković & Milovanović, 2021).

In this thesis, studies in virtual reality are presented. In these experiments the
HTC Vive is chosen as the HMD since, in our view, it is the HMD with the best price-
performance ratio. The reason is an excellent tracking performance, a large field of
view, and an acceptable resolution. Also, this device can be combined with external
eye tracking devices and is deliveredwith a built-in eye tracker by themanufacturer
(Ahmad, 2020; Valve Corporation, 2021). The two handheld controllers and headset
of the Vive use 70 combined sensors to calibrate the positions of the controller and
headset, measuring the time difference in sending and receiving the emitted signal
(Ahmad, 2020). TheHTC Vive originates from the Valve Cooperation, an online game
distribution company that entered the VRmarket in 2016. An account at the online
gaming platformSteam is necessary to use theHTCVive and theHTC setup so�ware
(Valve Corporation, 2021).

With the help of these devices, in conjunctionwith a computer and 3D programs,
such as gameengines likeUnreal orUnity (EpicGames Inc, 2021; Unity Technologies,
2021), it is possible to create virtual and counterfactual worlds. VR already sees use
in a lot of different areas. Inmedicine, it is becomingmore common to use VR to get
experience in areas such as surgery, where it is usually hard to get hands-on experi-
ence asmistakes can endanger a patient’s life. Furthermore, it has been shown that
skill acquired this way does transfer over to real-life situations to some extent (Butt
et al., 2018). Another area is acquiring driving skills, not only for car drivers but also
for pilots. For psychotherapy, VR is being used in the context of exposure therapy
since it allows for confrontation with the object of fear inside a controlled and safe
environment compared tomore stressful real-life situations (Riva, 2003). Therefore
the virtual environment is a possibility to examine and understand phenomenons
that would be inaccessible through research in the real world (Anthes et al., 2016;
Butt et al., 2018; Z. Pan et al., 2006).
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Human Behaviour in Virtual Worlds

Especially in science, VR has several advantages. The possibilities are nearly end-
less; theonly requirementsare sufficient computational power for thehigh-resolution
output to twodisplays andsufficient technical know-howtocreate avirtual environ-
ment. It allows researchers to create precisely the controlled conditions of interest
while providing most of the advantages of a classical laboratory experiment. Espe-
cially for complex environments close to real-world scenarios, it is of benefit that
the virtual environment does not change between participants, and everything in-
side of VR can be controlled to a point where random occurrences and disturbance
factors can be nearly eliminated (Parsons, 2015). This way, it offers a standardized,
controllable research environment that provides almost unlimited possibilities for
experimental setups. Combined with the possibility to provide open access to ex-
perimental code, reproducing even the most complex studies will become possible
under stable conditions in VR (Wattanakriengkrai et al., 2020).

To additionally benefit of control and reproducibility, it is possible to combine
VRwith othermethods such as eye tracking (Clay et al., 2019; Holmqvist et al., 2012).
The eye tracking technique combines camera recordings of the eye with image pro-
cessing to calculate the position of the center of the pupil and the corneal reflection
(Duchowski, 2017) and therefore offers the so-called point of regard (POR) (Munn &
Pelz, 2008). It enables an analysis of where a subject is looking, whether the eye got
there through eye rotation or head motion. In terms of applications, eye tracking
is present from neuroscience and psychology to industrial engineering and from
human factors to marketing, advertising, and computer science (Burke, 2018; Riva,
2005; Wolfartsberger, 2019). Although VR eye tracking has not yet reached the same
level of performance as classical eye tracking devices (Ehinger et al., 2019), it is
nonetheless usable for scientific research and is a focus of this thesis.

The the idea of combining VR and eye tracking is not a recent approach. It had
already been thought of nearly two decades ago (Hua et al., 2006). However, as de-
scribed by Clay et al., 2019, this technology has recently been taking off due to the
rapid advancement in VR devices in the consumer market, combined with the con-
tinuous development of computer hardware, making it affordable and highly ac-
cessible even to the regular consumermarket (Anthes et al., 2016). Furthermore, as
has been shown, given the right circumstances, eye tracking data measured in VR
is good enough for fundamental research to be carried out (Holmqvist et al., 2012).

When designing a VR experiment in combination with eye tracking, it is impor-
tant to keep in mind that the experimental setup can have an enormous impact on
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the presentation and experimental data. First of all, displaying two high-resolution
screens in theHMD is linked toahighcomputational load that exceeds thatof screen-
based experiments. It affects the displayed frames per second in an experiment.
A frame rate that drops below 30 frames per second breaks the immersion since
movements are experienced as less natural. It can also lead to cybersickness in the
participants. Since eye tracking itself needs additional computational power, work-
ing with VR in combination with eye tracking must always be designed such that
motion sickness is diminished as far as possible, not only for the wellbeing of the
subject but also for the most unbiased data acquisition. It is worth critically check-
ing the flexibility of the environment, freedom of subject movement, and the num-
ber of possible interactions (Clay et al., 2019; LaViola, 2000; Parsons, 2015).
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Chapter Summary

In this chapter we have seen howmachines can learn from data andmake complex
predictions and decisions based on that knowledge acquired from data (McCarthy,
2007). Due to the ever-increasing amount of data in and the higher data processing
capacity of modern computers, the interaction of data, machines, and humans will
soon increase even more (Shaw et al., 2019; Veale, 2020). A substantial step toward
large-scale processing of vast and complexdataby amachinewill be the self-driving
vehicle, which is thought to transport its occupants autonomously even inunknown
and ambiguous situations thanks to amultitude of sensors and complex algorithms
(Bechtel et al., 2018; Bergmann et al., 2018).

Still, self-driving vehicles are facing technical and legal challenges (Greger, 2018;
Hevelke & Nida-Rümelin, 2015b). It is not yet possible to use self-driving vehicles
without a human supervisor (IT Commitee of the United Nations, 1968). On the one
hand, this is prohibited by the legal framework since it is unclear who should be
held accountable in the event of an accident (Greger, 2018). On the other hand, the
development of the ADVs’ underlying technology is not advanced enough to cope
with the uncertainty and complexity offered by the real world (F. Chen et al., 2020;
Ramos et al., 2017).

Nonetheless, self-driving vehicles are a desirable technology because they are
in principle able to transform our society and cities towardmore inclusive and sus-
tainable transport (Chehri & Mou�ah, 2019). The automation of the vehicle would
also offer a new opportunity for equal rights for vulnerable road users, who have
so far been le� behind or even le� out in road traffic (Cusumano, 2020)(Chehri &
Mou�ah, 2019). Despite all remaining issues, this technology is desirable and offers
added value for society (Faulhaber et al., 2019).

Another obstacle for the realization of this technology is a lack of acceptance
among potential customers (Howard & Dai, 2014). It is vital to increase knowledge
about the opportunities and risks to create a high level of acceptance (Benleulmi &
Blecker, 2017). This is due to the fact, that the acceptance and willingness to use
ADVs will shape the extend to which ADVs will be used in individual transportation
(Krueger et al., 2016). Only if a majority of society trusts ADVs to drive passengers
safely, this technology will be used in a large scale. How to increase acceptance
raises new problems, like how an ADV should communicate with other road users
(Gillath et al., 2021)? How should an ADV communicate adequately with its passen-
gers to enable trust building? Previous research could already show that trustwor-
thy communication is vital in the case of automated, but not fully autonomous traf-
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fic, since the irony of automation can occur (Bainbridge, 1983; Schreurs & Steuwer,
2015): Peoplewhoare supposed tomonitor a systemand intervene in unclear or life-
threatening situations can either not do so because the task of driving became too
complex or because the supervisor is so far out of the control loop that they are un-
able to react fast and adequately (Endsley & Kiris, 1995; Jarosch, Bellem, et al., 2019).

This is preciselywhere this thesis proposes anew formof human-machine inter-
action that can potentially resolve the named issues. Therefore, we will propose an
adaptive HMI that is thought to decrease reaction times, while increasing precision
in takeover situationswith tailored informationabout current trafficsituations. Ad-
ditionally, the provided information is thought to increase trust in the automated
system and therefore the willingness to use an ADV (Koo et al., 2015; Othman, 2021).
With newly developedmethodswewant to examine how the unaware driver can get
back into the control loop fast. The final goal of this thesis is to propose a design for
a human-machine cooperation that includes reciprocal representations of user and
machine (Altendorf et al., 2017). This not only improves interaction in termsof a safe
usage, but also improves trust and acceptance as the system adapts to the user and
provides explanations for the system’s decisions.

The following chapter presents a virtual world inwhich it is possible to test auto-
mated systems under to support people in critical traffic situations under realistic,
safe and controlled conditions.
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Abstract
With the further development of highly automated vehicles, drivers will engage in
non-related tasks while being driven. Still, drivers have to take over control when
requested by the car. Here, the question arises, how potentially distracted drivers
get back into the control-loop quickly and safely when the car requests a takeover.
To investigate effective human–machine interactions, amobile, versatile, and cost-
efficient setup is needed. Here, we describe a virtual reality toolkit for the Unity
3D game engine containing all the necessary code and assets to enable fast adapta-
tions to various human–machine interaction experiments, including closely mon-
itoring the subject. The presented project contains all the needed functionalities
for realistic traffic behavior, cars, pedestrians, and a large, open-source, scriptable,
and modular VR environment. It covers roughly 25 km², a package of 125 animated
pedestrians, and numerous vehicles, includingmotorbikes, trucks, and cars. It also
contains all the needed nature assets to make it both highly dynamic and realis-
tic. The presented repository contains a C++ library made for LoopAR that enables
force feedback for gaming steering wheels as a fully supported component. It also
includesall necessary scripts for eye-tracking in theuseddevices. All themain func-
tions are integrated into the graphical user interface of the Unity® editor or are
available as prefab variants to ease the use of the embedded functionalities. This
project’s primary purpose is to serve as an open-access, cost-efficient toolkit that
enables interested researchers to conduct realistic virtual reality research studies
without costly and immobile simulators. To ensure the accessibility and usability of
thementioned toolkit, we performed a user experience report, also included in this
paper.

2.1 | The Out-Of-The-Loop Unfamiliarity

Introduction
What defines the user-friendly design of automated systemshas been the subject of
scientific discussion for decades (Bengler et al., 2020; Norman, 1990). Especially in
the upcoming years, when automated vehicles of SAE (society of automotive engi-
neers) automation levels 3 and 4 will emerge, the demands on the driver’s cognitive
system will alter radically, as the role of humans as continuously active decision-
makers in vehicles is replaced by automated systems (S. Li et al., 2019; Lindgren et
al., 2020). Such techniques include theAudi traffic jampilot (AudiAG, 2021) or Tesla’s
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full self-driving beta (Tesla Motors, 2020). Airlines’ experiences, where automated
systems are already widely integrated, clearly state that such systems’ safety and
reliability cannot be achieved by optimizing technical components alone (Masalo-
nis et al., 1999). Instead, the reliability of highly automated systems is primarily
determined by the driver’s cognitive processes, meaning how fast a safe transition
to manual drive is possible (Zeeb et al., 2015) .

The need for a fast and safe transition applies particularly to situations where
humans have the task of taking over system control in the event of sensor failures
or malfunctions (Abe et al., 2011; Maurer, 2015). Thus, investigating the fluent in-
tegration of the takeover request (ToR) is crucial for the safety of any system with
evenpartially automateddriving features (Marberger et al., 2018). During a takeover
request, the human driver most likely has to take over control in under 10 s, even
when not engaged in driving-related activities (Dogan et al., 2019; Gold et al., 2013;
Melcher et al., 2015). Naturally, an orientation phase follows as the human driver
has to assess the traffic situation (Gold et al., 2013). Unfortunately, the driver’s re-
action is o�en too slow in critical situations, potentially resulting in an accident in
the small time frame (<4 s) before an impact occurs (Green, 2000; Summala, 2000).
Even in the case of fast reactions within a time frame under 10 s, studies with pro-
longed driving have shown hectic responses by human drivers, which of course nei-
ther improved the reaction time nor the situational outcome (Endsley & Kiris, 1995;
Jarosch, Bellem, et al., 2019).

Thismanuscriptpresentsanewtoolset forhuman–machine interaction research
apart from typical screen-based simulators. Existing simulators are o�en based on
actual car interior designs. Therefore, they offer only limited possibilities for hu-
man–machine interaction (HMI) research (Morra et al., 2019). A very similar prob-
lem isposedby researchonprototype cars in the realworld,where realistic accident
scenarios are costly and can only be generated to a minimal extent without endan-
gering the test person involved. The project, called LoopAR, provides not only all the
needed assets and an environment but also all the needed code to display the in-
formation of a takeover request as a freely programmable augmented reality (AR)
feature in the windshield. The developed HMI displays the takeover request and
highlights critical traffic objects to enable participants to take over more quickly
and precisely. Our research is aimed toward safe and effective communication be-
tween car and driver. This is not only beneficial in terms of safety for the passengers
but could also increase customer acceptance of highly automated vehicles, since up
until now, malfunctions have been vital concerns of possible customers (Howard &
Dai, 2014). Since LoopAR is based on the project Westdrive (Nezami et al., 2020), all
the code needed and designed scenes are available in a Github repository. Project
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Westdrive is an open science VR project that tries to enable many researchers to
conduct VR studies. It provides all the necessary code and assets in a public reposi-
tory to set up VR studies. LoopAR is an extension of the Westdrive toolkit, focusing
on the human–machine interaction. To fully use the project presented here, only a
powerful computer, VR glasses, a simulation steering wheel and pedals, as well as
Unity as a development program are required.
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2.2 | A VR Toolkit for the Human-Machine
Interaction

Methods and Main Features of LoopAR

The main focus of the presented project is versatility and modularity, which allows
the fast adjustment of the environmental and functional objects via prefab and the
provided code in the toolkit. Researchon the interactionsbetweenhumansandcars
ismostly done with stationary simulators. Here, a whole car chassis is used, or only
the interior is set inside a multi-screen setup. However, these classical setups are
o�en expensive, and adjustments or graphical improvements of the stimuli used in
an experiment are o�en not possible (Cruden, 2018). In the past few years, there has
been a significant shi� in research toward virtual environments. This is reflected by
applications like Cityengine and FUZOR (ArcGIS, 2013; Kalloc Studios, Inc, 2013) and
by the so�ware for driving environments (Dosovitskiy et al., 2017).

Still, experimental designs on human–machine interaction, in terms of specific
car interior adjustments, are not possible yet. Therefore, the presented project en-
ables the user to create experimental conditions and stimuli freely. All functionali-
ties that arementioned in the following are independent and can be adjusted atwill.
Additionally, the presented project does not need a specific hardware setup,making
it easily adaptable and future-proof. New components, e.g., new GPUs and new VR
devices, can be easily integrated into the setup displayed in Figure 2.1. The current
requirements only apply to the VR devices used and are not bound to the toolkit.
The following figure depicts an overview of the default experimental procedure, en-
vironmental structure, and data flow of the toolkit. Again, all of these defaults can
be adjusted at will. The configurations presented here are intended to allow for a
quick adaptation to other experiments.

Platform

Project LoopAR is made with the Unity editor 2019.3.0 f 3 (64bit). This so�ware is a
widely used game engine platform based on C# by Unity Technologies, supporting
2D, 3D, AR, and VR applications. The Unity editor and the Unity Hub run onWindows,
Mac, and Linux (Ubuntu and CentOS), and built applications can be run on nearly
all commercially usable platforms and devices. Unity also provides many available
application programming interfaces and is compatible with numerous VR and AR
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Figure 2.1: A simplified overview of the toolkit structure. It includes the default experimental procedure, a possible example
of how the environmental structure can be used, and the standard data flow of the toolkit.

devices (Juliani et al., 2020).

The backend code of the project LoopAR was developed entirely using C# within
Unity3D Monobehaviour scripting API. The backend comprises functionalities in-
cluding dynamic loading of the environment, AI car controls, pedestrian controls,
event controls, carwindshields augmented reality controller, data serialization, and
eye-tracking connection. Additionally, thepresentedproject contains aC++ library
enabling the force feedback forMicroso�DirectX devices that enables various force
feedback steering wheels to function as controllers altogether. LoopAR code has
been developedwithmodularity inmind to avoid complicated and convoluted code.
All functionalities can be enabled or disabled individually using the Unity editor’s
graphical interface based on need.

Virtual Environment
To test human–machine interactions, an interactive and realistic 3D environment
is needed. LoopAR aims at a fully immersive experience of a highly automated car
encountering critical traffic events. To be able to investigate different driving condi-
tions and scenarios, we created four independent scenes. In the following section,
the environment design decisions are presented together with a short description
of the experimental scenes.

The LoopAR environment is based on real geographical information of the city
of Baulmes in the Swiss Alps. We selected this region due to its variety of terrain,
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Figure 2.2: LoopARmap preview: mountain road (3.4 km), city (1.2 km), country road (2.4 km), and highway (3.6 km).

including a small village, a country road, a mountain pass, and a region suitable
for adding a highway section, totaling around 25 km² of environment and an 11 km
continuous drive through different roads. To reduce the computational demands,
we sliced the terrain into four areas. Due to the road network design, these sepa-
rate environments can be merged (Figure 2.2). These areas demand different driv-
ing skills from an automated driving vehicle and a human driver, reacting in dif-
ferent situations with different conditions according to the landscape and traffic
rules. To make the region accessible in Unity, we used the collaborative project
OpenStreetMap (OSM)(OpenStreetMap Foundation, 2004) and the open-source 3D
so�ware Blender (Blender Foundation, 1995).

OpenStreetMap is a project with the aim of creating a free map of the world. It
collects the data of all commonly used terrains on maps. The project itself collects
information, so the data are free of charge. The virtual environment contains a
mountain road scene (Figure 2.3), including curvy roads winding through a forest
and steep serpentines running down a mountain. These curvy roads require vari-
ous driving speeds (from 30 km/h or slower, up to 100 km/h on straight stretches).
The overall traffic density is low.

The second area of the environment is the village “Westbrück” (Figure 2.3). Here,
it is possible to test events in a more inhabited environment. This environment is

45



Chapter 2. LoopAR: Human-Machine interaction during take-over requests

Figure 2.3: (a) Pictures of the different scenes from the mountain road. (b) Pictures of the different scenes from the village
“Westbrück”. (c) Pictures of the different scenes from the country road.

characterized by narrow streets and dense traffic in low-speed environments.The
third scenario is the country road scene (Figure 2.3), designed for medium to high
speed ( 70 km/h),medium traffic density, and a long view distance. The last scenario
for the participants is the highway scene (Figure 2.4), enabling critical traffic events
with a higher speed and a low to medium traffic density.

Critical Traffic Events
To test the participant’s behavior in critical traffic events, we created limited event
zones, where the monitoring of a participant can be achieved in a well-controlled
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Figure 2.4: (d) Pictures of the different scenes from the highway.

environment. In Figure 2.5, one example of a traffic event is displayed. Each envi-
ronment (mountain road, city, country road, and autobahn) has three critical traf-
fic events. These zones are the core of the possible measurements in the presented
toolbox. Simply put, the event system is realized by a combination of several trigger
components. These independent triggers are activatedwhen the participant enters
the start trigger (Figure 2.5: green gate). The event zone is restrictedwithin “bound-
ary” triggers (Figure 2.5 : yellow boxes). These triggers get activated on contact,
which is considered a participant’s failure. Contact with the event triggers leads to
a black screen followed by a respawn of the car at a point a�er the event (Figure 2.5:
pink box) and giving back the car’s control. An event is labeled as “solved” when the
participant enters the end trigger (Figure 2.5: red gate) without crashing, i.e., mak-
ing contact with the “boundary” triggers. All critical events can be adjusted at will,
and a prefabricated file is stored in the repo to create new events. The triggers are
all visible in editor mode but invisible to the participant.

Cars and Traffic Behavior
Within the event zones, dynamic objects, such as other road users, are needed to
create realistic trafficscenarios. The repositorypresentedhere contains variousan-
imated pedestrians, animals, and cars to create a broad range of critical situations.
Additionally, there are some busses and trucks, and some construction site vehicles
that can be used. Furthermore, a user’s own�xmodels, as well as vehicles from the
Unity asset store, can be added. Formore details, please see the SupplementaryMa-
terials. All cars used are based on the Unity wheel collider systems of the Unity3D
physics engine. In the Car Core Module, user input is translated into themotor con-
trol of the participant’s car. The input consists of the motor torque, brake torque,
and steering, which are applied to thewheels. This functionality is called AI control.
It allows a seamless transition from automated to manual driving when activated.
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Figure 2.5: Traffic event prefab and its implementation.

To facilitate realistic traffic behavior, an additional AImodule enables cars to follow
predefined paths. Paths followed by AI Cars and walking pedestrians were defined
bymathematical Bézier curve paths (Prautzsch et al., 2002), which were realized by
the Path-creator tool (Lague, 2021). Speed limit triggers inside the scene manipu-
late the AI’s aimed speed, handling the input propagated to the Car Core Module.
Another module of the car AI allows the AI cars to keep a distance from each other.
The goal is to create an easily configurable and interchangeable traffic AI for mul-
tiple study designs. With these measures, we maximized the car physics and traffic
simulation realism while ensuring easy adjustments.

Experiment Management
Data sampling, dynamic objects, and driving functionalities within the event zones
are controlled by a system of experiment managers that handle scene-relevant in-
formation and settings shortly before and during the real experiment phase. It han-
dles different camera settings, the information given by triggers inside the scene,
and the participants’ respawn in case of failure. Before an experiment starts, ini-
tial adjustments start the experiment. These adjustments configure the experi-
ment to the participant and include the eye calibration, eye validation, seat cali-
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bration, and a test scene. The eye-tracking component in this setup comprises an
eye-tracking calibration, validation, and online gaze ray-casting, which can record
necessary gaze data during the experiment. The component was built for the Tobii
HTC Vive Pro Eye device but is intended to keep the VR component interchangeable.
It was designed as a simple connector to tap into SRanipal and the Tobii XR so�ware
development kit (SDK) (Figure 2.6). The eye calibration is performed with the built-
in Tobii eye calibration tool. The validation is set in the corresponding validation
scene, which provides a simple scenario with a fixation cross. Validation fails if the
validation error angles exceed an error angle of 1.5° or the head is moved by 2” from
the fixation cross. During the experiment, the eye orientation, position, and collider
hits are stored with a calculated gaze ray of both eyes. Currently, it is set to receive
information about any object inside these rays to prevent the loss of viable infor-
mation by objects covering each other.

Inaddition to theeye-trackingdata, inputdataof theparticipantaswell as scene-
relevant information, such as the number of failed critical traffic events, are saved
using generic data structures and Microso� Linq, serialized into JavaScript object
notation (JSON), and saved with a unique ID at the end of each scene. The generic
data structure used in the project ensures flexibility, as different data types can be
added or removed from the serialization component. This approach guarantees the
highest compatibility with varying analysis platforms such as R or Python for the
data gathered with LoopAR.

By conducting data saving, and given the nature of the experimental setup, we
aim for a stable and high frame rate to provide a less sickness-inducing experience.
A stable visual experience can be seen as a prerequisite to avoid potential sickness
(LaViola, 2000). The desired optimum for the experiments is a stable frame rate
matching the fixed rate of 90 Hz used by the manufacturers HTC and Oculus. Our
current frame rate in the different scenes yields an average of 88 samples per sec-
ond in our test setup, matching the maximum sampling rate of the HTC Vive with
90 fps.
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Figure 2.6: Scheme of the LoopAR functionalities and components illustrating the interaction of the different services and
manager scripts within the Unity environment.

Hardware Requirements
The setup used and presented here is thought to be a cost-efficient and verymobile
replacement formaintenance-intensive, rigid, and expensive driving simulators for
studies on human behavior in the context of self-driving cars. A key advantage is
freedom regarding the selected components. The only requirement for operation is
granting the computing power for the entire system, which consists of a core setup
only of a computer, a head-mounted display, and a steering wheel (see Table 1).

As a virtual reality device, we used the HTC Vive Pro Eye with an integrated Tobii
Eye Tracker. It is a cable-bound head-mounted display that enables the participant
to transfermovements into virtual reality. Althoughweare using theVive Pro exclu-
sively at our department, the LoopAR experiment is not dependent on this specific
VR device. We used the components of the setup with 90 fps sampling and display.
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2.3 | Westdrive X LoopAR Usability

Discussion

In the presented paper, we describe LoopARas amodular toolkit to test a takeover of
control in critical traffic situations from automated cars to human drivers by com-
bining VR and eye-tracking in an interactive and immersive scenario. Its current
state and design provide a promising, new, low-cost, and mobile setup to conduct
studies thatwere traditionally only done in stationary simulators. The current code,
as well as the 3D environments, can be adjusted at will. With newly implemented
code, it is not only possible to simulate a large and highly realistic VR environment,
but it is also possible to create a broad range of applications in VR research that is
not only bound toHMI investigations. A largepart of the assets usedare fromUnity’s
asset store and the 3D platforms Sketchfab and Turbosquid. Therefore, it is possible
to change the number, size, and shape of all objects in each scene.

All of the functionalities above, and assets presented here, are under constant
improvement. By writing, five new projects, ranging from ethical decision-making
over EEG implementation to human spatial navigation, arise from the presented
toolkit, whichwill alsodevelopnewassets and features implemented into the toolkit
later on. The authors want to emphasize the modularity and adaptability of this VR
toolkit.

User Reports

To check for the user friendliness of the presented toolkit, a system usability score
(SUS) -based report was performed (Lewis, 2018). Here, we asked 11 of the current
users between the age of 23 and 34 (5 female) to evaluate the usage of the main
features in the toolbox starting from cloning the repository, adjusting the environ-
ment, and manipulating dynamic objects in an example scene.
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Figure 2.7: Visualization of the usability report items as a radar plot of the system usability scale data

While doing so, we asked the participants to evaluate the feasibility of the tasks.
User experience in Unity and C# programming varied from no experience to expert
levels with more than 3 years of experience. Our top findings, depicted in indicate
that the toolbox is perceivedaswell documented, andadvancedUnityusers facedno
major problems building and altering their project createdwith this toolbox (Figure
2.7, Figure 2.8, Figure 2.9). While some steps in the proceduresmight be challenging
to new users, the Westdrive X LoopAR toolbox seems to be a useful foundation for
all users.

Figure 2.8: Visualization of the usability report items as a word cloud showing most frequently used words in the comments
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Figure 2.9: Visualization of the usability report items with a severity of issue bar plot, related to the tasks in the usability re-
port. Low equals no delay in time or perceived obstacles, medium refers to a completed task with added effort. High indicates
noticeable delay or frustration and that the participant may not be able to complete the task.

Conclusion
This article describes a new virtual reality toolkit for Unity applications investigat-
ing human–machine interaction in highly automated driving developed by us. The
presented setup is thought to be amobile, cost-efficient, and highly adaptable alter-
native to chassis simulators that closely monitor the participants. It is particularly
noteworthy that there is not only a drastic reduction in costs but also an improve-
ment to the adaptability of the so�ware as well as the used hardware. All compo-
nents are fully upgradable, in case there are better products in terms of image qual-
ity or computing power. LoopAR allows interested researchers to conduct various
virtual reality experimentswithout creating the needed environment or functional-
ities themselves. For this, we have provided an area of almost 25 km² based on OSM
data. The toolkit presented here also includes all the necessary assets and basic
prefabs to quickly and precisely create a wide variety of virtual environments. Ad-
ditionally, the LoopAR toolkit contains components of the experimental procedure
and data storage.

Supplementary Materials

The following are available online at https://www.mdpi.com/1424-8220/21/5/1879/s1,
Unity®3D:www.Unity3d.com; OnlineCharacter animation: www.mixamo.com; Adobe
Fuse CC: www.adobe.com/products/fuse.html; Blender 2.81: www.blender.org.
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Chapter Summary

This chapter introduced LoopAR as a virtual environment for testing multimodal
human-machine interaction. It is thought to support participants in critical traf-
fic situations under realistic, safe and controlled conditions by providing warning
sounds and guiding the users’s attention toward relevant objects in the surround-
ing environment. It was shown that realism, size, modularity and conformity with
traffic regulations are factors that should be considered when designing such a vir-
tual environment. Since LoopAR is a Unity toolbox, emphasis was on easy handling
and open access under Creative Commons.

As seen in the first chapter of this thesis, increasing automation poses questions
about how the unaware driver can get back into the control loop fast in case the car
demands a takeover in a critical situation (Bainbridge, 1983; Endsley & Kiris, 1995).
Existing studies could show that especially during fast takeover maneuvers, where
control has to behanded form the vehicle to thehumanuserwithin seconds, the ini-
tial warning displayed to the human should be presented very clearly and unequiv-
ocally across multiple modalities (Jarosch, Bellem, et al., 2019; Merat et al., 2014;
Norman, 1990; Roche et al., 2019) to prevent any potential time loss in the transi-
tion. This is necessary, since the driver can be engaged in non-driving related tasks
and therefore could be distracted by music, reading or even both.

A warning in a single modality would not be sufficient to initiate a successful
takeover request (Jarosch, Bellem, et al., 2019; Marberger et al., 2018). The request
also has to be precise, since the transition is o�en time critical transition from a
non-driving related task back to driving takes longer when the non-driving related
task is one that includes amotor component, such as holding a cell phone or a tablet
(Jarosch, Bellem, et al., 2019). Research in takeover scenarios are mostly done with
simulator setups. However, simulator setups o�en imply high technical and finan-
cial expenditures (Zhang et al., 2019). Additionally, simulator setups are usually
based on actual existing vehicles and thus, do not allow an independent design of
the HMI. We therefore wanted to show that proper research can be achieved in a
versatile and cost-efficient simulator replacement using customer-grade VR equip-
ment. Additionally, we presented the code needed and the assets used in this envi-
ronment that enable interested users and researchers to easily and quickly adapt
the toolkit to their needs, including the possibility of close monitoring of the sub-
ject via the integrated eye-tracker in the HMD. Therefore, LoopAR is a toolbox that
allows research on a wide range of human-machine interaction scenarios, investi-
gating the OOTLU and possible counter measures.
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A�er the publication of LoopAR as toolbox, the next step of the project, was data
acquisition. During autumn and winter 2020, wemeasuredmore than 200 subjects
from a broad distribution of society in 2020 in order to concludewhether visual and
auditory stimuli enhance precision of a human action during takeover. The data of
our subjects are stored within the university. A cursory review showed that data
seems to be are consistent with the existing literature. We suggest, that the mul-
timodal HMI decreases reaction times while increasing the probability of navigat-
ing successfully through the critical traffic situation. The ultimate analysis will be
much more profound since the recorded data will look at the outcome of the dif-
ferent events, the angular position of the pedals and the steering wheel, and the
head and eye movements. The plan of the pending data analysis is to gain insight
into which factors play a role in the takeover request and which experimental con-
ditions can lead to a faster and more precise takeover situation of level 3 advanced
driver assistance systems.

Level 3 automation is currently a point of interest in research and development,
since ADVs of higher levels 4 and 5 are facing substantial obstacles (Greger, 2018).
The legislationon thesafevehicle operationstipulates that electronic, traffic-relevant
operations must be redundant and injury-free (Bundesministerium für Digitales
undVerkehr, 2017). These requirementshavemassive implications for the construc-
tion of future vehicles. For example, in automatic mode, the steering wheel must
be decoupled from the steering angle of the wheels to prevent injury to the driver
if the vehicle makes a rapid steering movement. However, if the steering wheel is
decoupled, the driver cannot directly start the vehicle takeover. Large-scale imple-
mentation of this technology seems complicated under these circumstances, as the
human-machine interaction is faced with many similar unsolved issues (Waschl et
al., 2019). At this point it should already be considered whether the partial automa-
tionmight be a suboptimal step towards full automation. It is conceivable thatmod-
els that pose fewer legal issues, such as level 2 or 3 as partial automation, will be-
come a standard in future automobiles. Therefore, a new form of cooperation be-
tween a human and highly automated vehicle is needed to ensure safe operation of
partially automated vehicles.
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But even if it is not yet clear whether self-driving vehicles of levels 4 will be ap-
proved for public use at all, it makes sense to start thinking about how such tech-
nology can be designed to guarantee a proper interaction between humans andma-
chines. Therefore virtual designs and tests can not only be used to avoid potential
weaknesses before the technology is realized, but also possibly improve the user ex-
perience in levels 2 and 3 (Waschl et al., 2019).

In level 4, the vehicle needs to be able to transfer itself to a safe state and is not
dependent on the human as a supervisor, who must be ready for a takeover in the
event of a hazard reaction (SAE Internation, 2014). However, this also means that
the driver has less control over the vehicle in general. This raises the question of
the extent to which potential customers trust such technology since they no longer
directly influence lateral and longitudinal acceleration.

Since the driver is not able to take direct control in automation level 4, the rela-
tionship between the human andmachine changes substantially (Bainbridge, 1983;
Bengler et al., 2020). The driver becomes more of a passenger, since he has to trust
that the vehicle is acting in best interest during the trips in which the automation
features are engaged (SAE Internation, 2014). Therefore, it is vital to increase accep-
tance through features in the interior.

The following chapter will examine human acceptance and trust of self-driving
vehicles in the context of level 4 and 5 vehicles. More specifically, we will concen-
trate on verbal feedforward and feedback to see if the communication strategy does
haveaneffecton theacceptanceof self-drivingcars, assessedviaapost-experimental
questionnaire as well a behavioral data of the head movements. The experimen-
tal setup that will be discussed also includes a VR toolbox in the context of a large
city. Before we discuss possible communication strategies of self-driving vehicles
in chapter 4, we will first discuss the virtual environment used for this purpose in
the next chapter.
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Abstract
Virtual environments will deeply alter the way we conduct scientific studies on hu-
man behavior. Possible applications range from spatial navigation over addressing
moral dilemmas in amore natural manner to therapeutic applications for affective
disorders. The decisive factor for this broad range of applications is that virtual re-
ality (VR) is able to combine a well-controlled experimental environment together
with the ecological validity of the immersion of test subjects. Until now, however,
programming such an environment in Unity® requires profound knowledge of C#
programming, 3D design, and computer graphics. In order to give interested re-
search groups access to a realistic VR environment which can easily adapt to the
varying needs of experiments, we developed a large, open source, scriptable, and
modular VR city. It covers an urban area of nearly 2,5km², up to 150 self-driving vehi-
cles and 655 active and passive pedestrians and thousands of nature assets tomake
it both highly dynamic and realistic. Furthermore, the repository presented here
contains a stand-alone City AI toolkit for creating avatars and customizing cars. Fi-
nally, the package contains code to easily set up VR studies. All main functions are
integrated into the graphical user interface of the Unity® Editor to ease the use of
the embedded functionalities. In summary, the project named Westdrive is devel-
oped to enable research groups to access a state-of-the-art VR environment that is
easily adapted to specific needs and allows focus on the respective research ques-
tion.

60



3.1. A Toolkit for Virtual Reality Experiments

3.1 | A Toolkit for Virtual Reality Experiments

Introduction

With the opening of the consumermarket in recent years, VR has penetratedmany
areas of everyday life: there are e.g., applications for marketing, the games indus-
try and for educational purposes (Anthes et al., 2016; Burke, 2018; A. Miller, 2018).
Research on human behavior is also beginning to take an interest in experiments
in virtual reality (de la Rosa & Breidt, 2018; Rus-Calafell et al., 2018; Wienrich et al.,
2018). For instance, it is possible to embed ethical decision making in a seemingly
real context in order to achieve a higher validity of experiments (Faulhaber et al.,
2019; Sütfeld et al., 2017). Further, studies based on VR techniques address ques-
tions regarding spatial navigation, such as neurological correlations of human nav-
igation (Epstein et al., 2017), as well as gender differences in navigation tasks in a
well-controlled environment (Castelli et al., 2008). Although there are already avail-
able tools for creating virtual cities, these applications have not yet been designed
for experiments on human behavior, but rather for planning and simulating urban
development (ArcGIS, 2013; Botica et al., 2015; Kalloc Studios, Inc, 2013). Further-
more, it is possible to use VR in a variety of psychotherapeutic and clinical scenar-
ios (A. Li et al., 2011; Riva, 2005). Not only is this cost-efficient and more interactive
than classical psychotherapy (Bashiri et al., 2017), it also offers the possibility to use
this treatment at home, as VR becomes more widespread in the future. This means
that VR has the potential to increase access to insights of human behavior aswell as
to psychological interventions (Freeman et al., 2018; Slater & Wilbur, 1997). Finally,
VR can be combined with further technologies, such as EEG (Bischof & Boulanger,
2003)and fMRI, facilitating research of clinical disorders (Reggente et al., 2018). In
summary, VR techniques have the potential to heavily advance research in the hu-
man sciences.

Still, compared to classical screen experiments, VR-based experiments are com-
plex and require extensive programming, which is an intricate task by itself (Free-
man et al., 2018). This causes VR experiments in behavioral research to lag behind
their actual potential (Faisal, 2017). Even if already existing experiments are trans-
ferred to VR, knowledge of so�ware and hardware must be acquired, meaning a
larger expenditure of time and content (X. Pan & Hamilton, 2018). Westdrive is de-
veloped to eliminate these obstacles in the context of studies on spatial navigation
and ethical aspects. It shortens the time required for the setup of or the transfer to
VR experiments by a considerable magnitude either by enabling researchers to use
the project scene directly, or indirectly by letting them use only the provided assets
and code.
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3.2 | Relevant Features for Virtual Environments

Results

Key Features
Probably themost crucial features of Westdrive are size, modularity and the simple
handling of complex environments, since all components of the City AI toolkit can
be used independently even without any programming knowledge.

Size is o�en a critical factor for virtual environments. This is the case with e.g.,
navigation tasks within VR (S. U. König et al., 2019). A distinction is made here be-
tween room-sized vista space and large environmental space. Small rooms are eas-
ier to grasp and therefore it is only possible in large environments to distinguish
between test subjects who navigate using snapshots of landmarks only and those
who have learned a true map of their environment (Ekstrom & Isham, 2017).

The modularity of a virtual environment is of equal importance. Not only does
building realistic cities require the consideration ofmany different aspects, but dif-
ferent research projects also depend upon distinctive dynamic objects. For exam-
ple, an experiment on the trolley dilemma requires driving vehicles and pedestrians
(Faulhaber et al., 2019). A therapeutic application for fear of heights requires high
buildings and animated characters tomake the environment appear real (Freeman
et al., 2018). Project Westdrive offers a wide variety of applications due to its modu-
larity, both of the static environment which comprises trees, pavements, buildings,
etc. and the dynamic objects like pedestrians or self-driving cars.

Additionally, the aforementioned managers of the City AI toolkit enable a sim-
ple handling of the project. The City AI toolkit, which facilitates implementation of
paths, pedestrians and cars, which are all usable within the Unity® GUI without any
experience in coding. All of the components are accessible within the Unity® Editor.
All managers can be edited separately according to the respective requirements of
an experiment. In this sense, these separately adjustable components also support
modularity as only adjustments for the necessary components have to be made.

To use the project, only a powerful computer, VR glasses and the free Unity®
program are needed.1 If the aforementioned requirements are met, the scene pre-

1GPU: NVidia GeForce GTX 1080 ti, equivalent or better, CPU: Intel(R) Xenon ® E5-1607 v4, equiva-
lent or better, RAM: 32 GB, Video Output: HDMI 1.4, DisplayPort 1.2 or newer, USB Port: 1x USB 2.0 or
better port, Operating System: Windows 8.1 or later, Windows 10.
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sented here can be changed or manipulated at will. It is also possible to make al-
terations exclusively in the GUI of the Unity® editor without writing any code. This
project offers not only the templates for static models, but also the functions inte-
grated into the GUI for paths, character creation, and the creation of moving cars.

Westdrive and the City AI have been createdwith having simplicity inmind to re-
lieve users fromasmuch time-consuming preparations and programming as possi-
ble. Yet, as an open source project under constant development, we also encourage
future researchers to further improve theproject or change the codesbasedon their
specific needs. Westdrive gives the user the possibility to carry out a multitude of
investigations on human behavior through the key features. For example, the sim-
ple routing of pedestrians and cars makes it possible to carry out studies on trolley
dilemmasor thehuman-machine interaction. Also, due to the realismof the avatars
(Figure 3.1) it is possible to build therapeutic applications for the treatment of fear
of heights or social phobias. However, this is only a very small part of the possible
applications.

Figure 3.1: Overview of all used Fuse CC Avatars in the virtual city
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3.3 | Technical Aspects of Motor City

Methods

Project Structure
The Westdrive virtual environment is built in Unity® 2018.3.0f2 (64 bit), a game en-
gine platform by Unity® Technologies. This engine is used together with a graphi-
cal user interface (GUI) called the Unity® editor, which supports 2D and 3D graphics
as well as scripting in JavaScript and C# to create dynamic objects inside a simu-
lation. Unity® runs on Windows and Mac and a Unity®-built project can be run on
almost all commonplatforms includingmobile devices like tablets or smartphones.
We have chosen this so�ware due to many available application programming in-
terfaces (APIs) and good compatibility with a variety of VR headsets (Juliani et al.,
2020). Moreover, the use of Unity® grants access to an asset store, which offers the
option to purchase prefabricated 3D objects or scripts which only need to be im-
ported into an already existing scene. Thus, Westdrive is amodular virtual environ-
ment, making it easy to integrate other so�ware now and in the future.

The Westdrive repository contains a city as one completed game scene. All as-
sociated assets including driving cars, walking characters, buildings, trees, plants,
and a multitude of smaller 3D objects such as lanterns, traffic lights, benches etc.
are included and offer a high level of detail (Figure 3.2). It also contains the relevant
code that executes interactions and animations of the mentioned objects. Thus,
users have all desirable components for an experiment in one consistent package.
Westdrive can be divided into two sub-areas. On the one hand there is the static
environment and on the other hand there is the code for interactions between dy-
namic objects. Both will be explained in the following.

Static Environment

The static environment models a large urban area. It includes 93 houses, several
kilometersof roadsand footpaths, about 10,000small objects andabout 16,000 trees,
bushes and plants. A large part of the 3D objects used for this purpose are taken
from the Unity® asset store for free. A list of used assets and their licenses can be
found in the specified repository. However, the design of the city presented here can
be varied at will in the editor and an includedmesh separating tool. It is possible to
change the size, shape and amount of individual buildings, streets, cars, and pedes-
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Figure 3.2: Overview of the level of detail in the simulated city of the project Westdrive in a completed scene.

trians in the graphical user interface (GUI) of the Unity® Editor. The same applies
to all other assets presented here. The static environment alone can thus be used
indirectly for the development of further VR simulations as the project provides a
large number of prefabricated assets (prefabs) that do not have to be created again.
Consequently, it is possible to easily develop a broad range of scenarios for realistic
VR experiments by simplymanipulating the static environment tomatch respective
needs.

Scripting Dynamic Objects

To use Westdrive to its full extent, the code described here is of essential impor-
tance. The code is written entirely in C# based on Microso�’s Net 4.0 API level and
envelopes all functions for the stand-alone City AI toolkit (Figure 3.5). This includes
six components developed byus: a PathManager to create andmanipulate paths for
pedestrians and cars, a Car Engine script that allows cars to move independently,
and a Car Profile Manager to create different profiles for different cars (e.g., the dis-
tancemaintained to other vehicles, engine sound and car color). Additionally, there
is the PedestrianManager and the Character Manager, that control animations and
spawn points for moving characters along their defined route and an Experiment
Profile Manager, which defines the experimental context, like routes, audio files,
and scripted events along the path. The City AI works as a stand-alone toolkit in
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the GUI of the Unity editor. In short, it is possible to define fixed routes with spawn
points for pedestrians and cars alongwhich the non-player characters (NPCs)), such
as pedestrians and cars, will move. Only if visual change of characters is desired an
external tool is necessary.2

Figure 3.3: Impressions of cars in the highly realistic city scene.

To enable well-controlled movements of cars and pedestrians, we developed a
path creation toolkit inside the City AI which incorporates mathematical compo-
nents of Bezier Splines (Prautzsch et al., 2002). This results in a deterministic and
accurate path following system which is only dependent on units of time in a non-
physics-based simulation. The users can themselves change the control points of
the path inside the editor (see Figure 3.4). It is also possible to define the duration
of the route or the circuit in the Unity® editor. Furthermore, the kinematic path
creation facilitates the creation of spawn points for different asset types (cars and
pedestrians at the moment, see Figure 3.3, Figure3.1) for each path. All these func-
tions work without programming knowledge. The following components of the City
AI are also depicted in Figure 3.4 to give a better overview of interactions and possi-
bilities within Westdrive:

2Character Creation: To create new characters for the city it needs two external tools. One is Fuse
CC from Adobe and the other is the Mixamo website. In Fuse CC, a free 3D design program by adobe,
it is possible to create figures according to your own imagination. This created model can then be
uploaded to the program atMixamo, which can automatically create animations (Aguiar et al., 2014).
From this website, finishedmodels with animations can be downloaded, which then only need to be
implemented into the project. All characters created with Fuse CC in combination with animations
fromMixamo can be used without licensing or royalty fees.
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Figure 3.4: Overview in the Editor of the Car ProfileManager, the Car Engine and the according parameter bar. These functions
allow users to use different types of vehicles in the city. The Car Profile changes the appearance of the vehicles, such as color,
engine noise and sensor length. Car Engine allows the vehicles to move independently on the defined routes through the city
and to accelerate, brake and steer independently. For each of these functions defaults are provided. An adjustment of these
parameters is therefore only necessary for new vehicles.

Path Manager: This is the basis for all moving objects in Westdrive. With just a
few clicks in the editor, the user can create new routes for pedestrians and cars or
change existing routes. Todo so, the control points of the alreadymentionedSplines
can bemoved using themouse only. A�erwards it is possible to set the speed for ob-
jects on this route.

Car Engine: This component enables vehicles to steer, brake andaccelerate inde-
pendently both at traffic lights and in the event of an imminent collision with other
road users.

Car Profile Manager: This component allows users to create and manage multi-
ple independent profiles for cars. It enables creation of various types of cars with
different characteristics such as engine sound, color, or a different spacer for pre-
ceding vehicles.

PedestrianandCarManagerSystem: These systems takecareof automatic spawn,
restart, and re-spawn of all pedestrians and cars in the scene. They have the ability
to load resources in an either synchronous or asynchronous manner, to ensure a
smooth-running experiment.

Experiment Profiles and Procedure Controller: These scripts enable users to cre-
ate different experimentswithin the environment. These profiles set upparameters
for e.g., the routes that cars will follow. They also trigger the beginning and the end
of the experiment; the end of the experiment blocks and they disable dynamic ob-
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jects not necessary in the scene if needed. The Procedure Controller uses the Ex-
periment Profile to automatize the experimental procedure e.g., by ending blocks,
altering the appearance of or completely excluding dynamic objects.
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Figure 3.5: Scheme of the City AI features inWestdrive. This illustrates the interaction of the differentmanagers of the toolkit
to enable spawned cars and pedestrians as well as different experimental setups saved in one scene. These experimental
profiles trigger the procedure controller, which takes care of the onset and ending of the experiment and creates the subject’s
car or avatar. This also triggers the car and pedestrian manager, which are responsible for the spawning of passive cars
and pedestrians. In combination with the Car Profiles and the Asset List, the various cars and pedestrians required for the
experiment are created in the experiment.
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All of these managers assign the correct scripts to objects and move them to a
resources folder in order for them to be spawned in runtime when the experiment
starts. These toolkits ensure that cars and pedestrians have all the necessary com-
ponents attached to them.

Implementation
As head-mounted display (HMD), the HTC Vive Pro is used at our department. At the
time ofwriting, this virtual reality device is themost advanced technology available
(Ogdon, 2019). In order to transfer theplayer’s headmovements into thevirtual real-
ity, HTC utilizes two passive laser-emitting “lighthouses” that have to be attached to
the ceiling in two opposing corners of the room. The two handheld controllers and
the headset use no <70 combined sensors to calibrate the positions of controllers
and headset, measuring the time difference in sending and receiving the emitted
signal (Ahmad, 2020). To use the HTC Vive Pro and the HTC Setup So�ware, an ac-
count at the online gaming platform Steam is necessary. This requires a stable in-
ternet connection, as both Steam and the HTC Setup so�ware are free to use. Since
this device is one of the most expensive ones on the market, it is used mainly for
academic or industrial research rather than private gaming.

It is also worth mentioning, that althoughWestdrive has been developed for the
HTC Vive Pro, it can easily be transferred to other virtual reality HMDs. The last
component for the implementation is the Unity® so�ware. Unity® can also be used
free of charge as long as a project is not used commercially. Licenses are free for
students and researchers. The Unity® editor can be downloaded from the Unity®
website. Now it is possible to create a project order and convert the files from the
repository presented here into Unity®.

A more detailed description of how to set up Westdrive as well as an example
of the functionalities can be found as tutorial videos in the repository and in the
Supplementary Materials.
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3.4 | Limitations and Outlook

Current Limitations

Due to the complexity of the project and the differences between a deterministic
simulation and a computer game, there are still many possible improvements to be
implemented. With current enhancements like occlusion cullingwhere, objects are
not rendered when they are not seen by the player, simplified shadows, and mesh
combining, an acceptable frame rate of at least 30 fps can be achieved using an
NVidia GeForce RTX 2080 ti in combination with an Intel(R) Xenon® E5-1607 v4. The
desired goal in the course of further research will be to reach the stable 90 Hz sug-
gested by virtual reality technology providers such as HTC and Oculus.

It is important to note that the code does not calculate the mentioned objects
physically, but kinematically, so no physically simulated forces are applied to any
moving objects. There are several reasons for this: on the one hand, the compu-
tational requirements of the computer on which Westdrive is used on are kept as
low as possible. On the other hand, an exact control bar of the visual stimuli can be
guaranteed, because each object is spatially located exactly at the same place at the
same time. Furthermore, it makes potential directed changes easy, as no physical
interactions have to be reverse engineered. Another point is that there is currently
no structured so�ware architecture. So far, the priority has been on the simple han-
dling of all functionalities within the editor to facilitate the creation of own experi-
ments. A structured architecture is still under development.

Outlook

Concluding, we again want to emphasize the impact Westdrive can have on future
VR research. Already over a decade ago, the potential of combining VR with physi-
ological measurements has been discussed (Bischof & Boulanger, 2003), but only in
the past years, when so�ware became affordable, there was a renewed interest in
VR in science (Interrante et al., 2018). The main advantage of the project is a simple
implementation of a versatile project which, despite its complexity, can be altered
quickly and easily without programming knowledge. Likewise, the experiment in
its basic form doubles as an eye-tracking study. The code for the implementation is
not included in this version, mainly because it was not written by the two authors,
but by the Seahaven research group, investigating spatial navigation in a virtual en-
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vironment (S. U. König et al., 2019). However, the repository will be constantly up-
dated, thus it will also contain the required eye tracking code for Pupil Labs in the
future. Westdrive as a city environment offers many areas of application. Never-
theless, the project is constantly in development and extension. At least two more
scenes are currently planned in order to allow for an even wider application, for ex-
ample the investigation of trolley dilemmas (Thomson, 1985)using a railway track
or possible applications of the acceptance of new mobility concepts. All improve-
ments and added scenes will be released via GitLab. Additionally, we are going to
further clear up old parts of code and unused assets as code janitor, as well as fix-
ing any possible typo or mistake in the code. At the same time, we will expand the
comments and wiki section to have a user guide on how to use the project.

Sincewe are constantly improving the code and add functionalities, this cleanup
is an ongoing process. In this work, particular importance was attributed to a com-
prehensible formulation in order to ensure an understandable documentation of
the work performed. There is an almost unlimited number of application possibili-
ties for the extension of this project. The authors are looking forward to the many
great ideas for the continuation of Westdrive.
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Supplementary Material
The Supplementary Material for this article can be found online at:
https://www.frontiersin.org/articles/10.3389/fict.2020.00001/full#supplementary-material
Unity® 3D learning: www.unity.com/learn.
Online Character animation: www.mixamo.com.
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Chapter Summary

As seen in the previous chapter, virtual environments offer a safe way to conduct
scientific studies on human behavior in the context of self-driving vehicles. Impor-
tantly, virtual reality can combine awell-controlled experimental environmentwith
a higher ecological validity than classical screen experiments due to the immersion
of the subjects. Thus it is possible to create simulations of both level 3 and level
4 automation scenarios. Unlike the LoopAR project in Chapter 2, dealing with the
transition of the DDT in level 3 automation, the current chapter is set in the con-
text of level 4 automated vehicles, where the human passenger cannot intervene
directly Shadrin and Ivanova, 2019. The vehicle still has a steering wheel, indicating
that it is still possible to take control but the driver is not in the driver’s seat, which
prevents spontaneous intervention. Therefore, the presented toolkit focuses on the
communication between car and passenger. The content of this toolkit comprises
a large, scripted, and modular VR city build in Unity 3D. It covers an area of roughly
2,5 km², up to 150 self-driving vehicles, and 655 active and passive pedestrians, as
well as thousands of environmental assets, to make it both highly dynamic and re-
alistic. It is also possible to easily customize all avatars and vehicles even without
dedicated programming experience. Although the creation of such a toolkit was not
the first priority of the project, it was a useful side activity from our point of view.
The reason for this is that although we saw the need for such a toolbox, as of 2019
there was still no free access to similarly complex toolboxes. In short, the projects
described in this thesis and the resulting toolboxes should enable a broad range of
interested researchers to test human-machine interaction in virtual environments.

Returning to the main objective of the thesis, the question arises how a virtual
reality toolkit can be used to improve human-machine interaction in the context
of self-driving vehicles, when humans are no longer actively involved in the driving
process. In the depicted automation scenario, the occupant can no longer take im-
mediate control. The distinctive difference between the LoopAR environment and
MotorCity is that in the latter, there is no need for driving task support of the driver.
Asmentioned, this is due to the fact that the driver in level 4 automation is no longer
part of the active DDT. Therefore, we disclosed the possibility of intervention for our
study design and placed the participant onto the passenger’s seat. As a passive oc-
cupant, the human can neither interfere with nor supervise the system. In these
driving scenarios, trust in the decisions made by the vehicle plays a vital role. The
reason for this is that the passenger must rely solely on the decisions of the vehi-
cle. In order to build trust, the humanbeing cannot gradually relinquish parts of the
driving task in order to hand over control in small steps. Instead, the driverwho has
become a passengermust trust that themachine will act in his or her best interest.
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So how exactly should a vehicle be able to generate trust if it can’t make decisions
overtly in the interaction directly and the driver doesn’t at least have the ability to
override the decision.

As already mentioned in chapter two, it is still questionable whether an exten-
sive scaling of level 3 and 4 vehicles is even possible under the current legal and
technical circumstances (Ebers, 2021; Greger, 2018; Othman, 2021). Complication
matter even further, there is only little reciprocal understanding between the hu-
man and machines (Koo et al., 2016; Krueger et al., 2016; Waschl et al., 2019). This
in turn makes it difficult to develop trust and acceptance, since it is not apparent
to the passenger on what basis the vehicle makes its decisions (Howard & Dai, 2014;
Rudin, 2019). Thus, it is only possible for the passenger to develop trust in the func-
tion of the vehicle through experience rather than knowledge (Hoff & Bashir, 2015;
J.-H. Lee & Song, 2013). Likewise, the vehicle does not perceive the passenger as a
cooperation partner. Possible risks arise from different intentions of the human
and machine, which complicate the automation function considerably (M. König &
Neumayr, 2017). Therefore, our interest is to connect humans with the machine via
communication of the machine to build trust though knowledge. Thus, we adapted
the experimental design to investigate whether it is possible to generate trust in a
talking self-driving vehicle, even if it is not possible for the potential customers to
intervene in the driving action themselves. Therefore, we used the toolkit described
here to tests the possible communication strategies of the car in three conditions
to examine modulating factors of acceptance.

The experiment described in this section was part of a floating science center of
the German Federal Ministry of Education and Research in 2019. Likewise, at the in-
vitation of the Minister of Education, we were able to become part of the Ministry’s
foyer exhibition, where we installed a copy of the MS Wissenscha� simulator over
the summer of 2019. As a result, we could test more than 26,000 test subjects in the
virtual world at a low cost andwith amobile data collection setup. We used tracking
of headmovements and a post-experiment questionnaire to conclude trust and ac-
ceptance across the full age range of society. The following chapterwill focus on the
results of these studies. With these results, we hope to be able to make statements
about how a self-driving vehicle should communicate to increase trust and accep-
tance through specific verbal communication. The results of the study also allow us
to get closer to the goal of the thesis, a proposal for a new kind of HMI. The reason
for this is that we are able to validate data from the questionnaire with the head
movement data of the test subjects. Additionally, we show that it is also possible to
draw conclusions about the cognitive state of the passengers. This holds a crucial
step for the development of human-machine cooperation.
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Abstract
ADVs are a significant development in our society, and their acceptance will largely
depend on trust. This study investigates strategies to increase trust and accep-
tance by making the cars’ decisions transparent. We created a virtual reality ex-
periment with a self-explaining autonomous car, providing participants with ver-
bal cues about crucial traffic decisions. First, we investigated attitudes toward self-
driving cars in 7850 participants by a simplified version of the Technology Accep-
tance Model questionnaire. Results revealed that female participants show less ac-
ceptance thanmale participants, and there is a general decrease in acceptancewith
increasing age. A self-explaining car impacts trust and perceived usefulness posi-
tively. Surprisingly, it negatively influences the intention to use and perceived ease
of use. This implies that trust is dissociated from the other items of the question-
naire. Secondly, we analyzed behavioral data of 26750 participants to investigate
the effect of self-explaining systems on head movements during the virtual reality
drive. We observed significant differences in head movements during the critical
events and the baseline periods of the drive between the three driving conditions.
Further, we demonstrated positive correlations between head movement param-
eters and the TAM scores, where trust showed lowest correlation. This is further
evidence for the dissociation of trust from the other TAM factors. These results
demonstrate the benefits of combining subjective data obtained by questionnaires
with objective behavioral data. Overall, the outcome indicated a partial dissociation
of self-stated trust from the intention to use and objective behavioral data.
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4.1 | Acceptancemodel of autonomous vehicles

Introduction
Autonomous driving vehicles are the primary goal ofmost carmanufacturers (Hars,
2016). The development seems to be cumulative since more and more function-
alities are automated in new cars (Dajsuren & van den Brand, 2019). One primary
reason why ADVs are of value is the possibility of eliminating human driving error,
which is responsible for 93% of road accidents (Allahyari et al., 2008; Johnson, 2013).
Further, ADVs are safer as they are faster and more precise in the dynamic driving
task aswell as in object and event detection (Carranza-García et al., 2021; Papadoulis
et al., 2019; SAE Internation, 2014; Schoettle, 2017). As technical developments in the
field are fast and continuously improving, there is little doubt that self-driving cars
will have a significant impacts on our society (Chehri & Mou�ah, 2019). These can
ranges from drastically decreasing greenhouse gas emissions to reducing the num-
ber of traffic-related injuries. Which consequentlymight lead to possible reshaping
the infrastructure of our current cities (Benleulmi & Blecker, 2017; Chehri & Mouf-
tah, 2019; Othman, 2021; Ryan, 2020). Thus, introducing ADVs into our daily lives
appears as a highly desirable goal.

Trust and acceptance of potential customers define the extent towhich ADVs are
used for individual transportation (Howard&Dai, 2014; Krueger et al., 2016). Accord-
ing to current research, there is a limitedwillingness among potential customers to
useADVs (Kyriakidis et al., 2015; C. Lee et al., 2019; C. Lee et al., 2017; Ryan, 2020;Ward
et al., 2017). Various surveys have shown that most potential buyers are unwilling
to use an ADV at all or to use it to its full extent (Othman, 2021; Rezaei & Caulfield,
2020). Primary reasons for the lack of trust and acceptance are the fear of system
malfunctions and the hesitation of giving complete control to the car (C. Lee et al.,
2019; Szikora & Madarász, 2017). The further reluctance of potential customers may
stem from low technology self-efficacy (Czaja et al., 2001), meaning that people do
not feel confident enough to operate anADVproficiently (M. König &Neumayr, 2017).
Since trust and acceptance are shaped by knowledge and experience, the cause of
this reluctancemight be rooted in the lack of transparency in and knowledge of the
ADVs’ decision-making. It might not be clear on what basis an ADV is deciding on.
Not knowing what the artificial agent perceives or reasons, directly influences the
concerns of safety (Forster et al., 2017; Koo et al., 2016). Therefore it is crucial to find
measures that are able to increase the trust and acceptance of ADVs.

According to the technology acceptance model (TAM), perceived usefulness and
ease of use are cognitive responses to new technology and predict the intention of
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using it (Davis & Venkatesh, 1996). Consequently, a low intention to use makes the
future application of ADVs questionable (Bergmann et al., 2018; Howard & Dai, 2014;
Rezaei & Caulfield, 2020). Belanche and colleagues developed a researchmodel (Be-
lanche et al., 2012) expanding the TAM by adding trust as a component. They found
a causal relationship between trust and all three elements of the original TAM (Be-
lanche et al., 2012). Therefore, trust can be seen as a critical factor for the accep-
tance of a new technology (J.-G. Lee et al., 2015; Lüders & Brandtzæg, 2017; Winters-
berger & Riener, 2016). Earlier studies investigated trust modulating factors, such
as the human-machine communication style, feedback, and anthropomorphic fea-
tures in automation (Hoff & Bashir, 2015; Seppelt & Lee, 2019; Wintersberger et al.,
2019; Wintersberger et al., 2020). Hoff and Bashir suggested that trust in an ADV is
an accumulation of personal tendencies, environment, and user’s perception of the
autonomous system (Hoff & Bashir, 2015). Lee and See (C. Lee et al., 2019) argue that
the perceived homogeneity of communication style, feedback, and anthropomor-
phic features shape trust levels. The shared statement in all these findings is that
the user should perceive the system as reliable and trustworthy. Moreover, previ-
ous research showed that excess information about the driving state of a car is per-
ceived as distracting or unpleasant (Howard & Dai, 2014; Koo et al., 2015; Krueger et
al., 2016; Othman, 2021; Rezaei & Caulfield, 2020; Ryan, 2020). The desired amount
of information by the ADVmay be the key to understanding trust and, consequently,
acceptance of self-driving cars (Du et al., 2019).

Research on trust as a high-level cognitive phenomenon relies heavily on self-
reported data. A review of Raats and colleagues of 258 experiments on trust in ADVs
revealed that 84% used questionnaires as the assessment method. Only 4.7% of the
studies used observations as a data-gathering tool (Raats et al., 2020). An objec-
tive form of data is needed since the participant’s self-assessment is o�en biased
by self-perception or socially desired behavior (B. C. Choi & Pak, 2005). For this, we
propose head movement data, since humans represent their cognitive states im-
plicitly based on body language, facial expression, gaze direction, andmovement of
the head (Newen et al., 2018; Zhao et al., 2013). Even though previous research has
established the link between gaze shi� and cognition (Yarbus, 1967), several studies
showed that head rotation corresponds to the visual gaze (Fang et al., 2015; Yarbus,
1967) and both coordinate cognitive processes (Land, 2004; Proudlock et al., 2003).
This coordination exists in orientation, which means that the head and eyes move
in the same direction. Thereupon, the head orientation provides information about
the center of attention (Fang et al., 2015). Behavioral data such as head movements
areunconscious, fine-grained, andprovidecontinuous information that canbeused
to access cognitive processes like trust (Grafsgaard et al., 2012; Lu & Sarter, 2019).
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To gain insight into modulating factors of acceptance towards ADVs and their
representation in users’ head movements, we used a previously developed large-
scale virtual reality experiment calledWestdrive (Nezami et al., 2020). We expected
to find significant differences in the participants’ attitudes and significant differ-
ences between different age groups and genders. Additionally, we predicted differ-
ences in head movements between different conditions. We expected to find sig-
nificant variance in head movement patterns and head angular velocity as an ef-
fect of transparent communication of an ADV. We assumed that the self-reported
acceptance in conjunction with head movements enables more objective insights
into modulating factor of acceptance.
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Materials andMethods
Wegathereddata fromvisitors in theGermanMinistryofEducationover sixmonths,
and in a traveling exhibition (MS-Wissenscha�) over the course of a full summer.
Participants experienced a 90-second drive in a virtual environment called West-
drive, covering roughly 2,5 km² with more than 100 cars and 150 pedestrians. Par-
ticipants experienced a single trial in one of three driving conditions. The first con-
dition was a fully autonomous car with an anthropomorphic voice assistant sys-
tem (AVAS) giving information about critical traffic events and the corresponding
decisions of the car. The second condition was an ADV with a radio broadcast play-
ing through the whole trial. In the third condition, a female Taxi-Driver drove the
participant through the city. Here, the TaxiDriver responded verbally to the sur-
rounding traffic. We gathered objective and subjective data in the form of head ori-
entation and head angular velocity, as well as by an adaptation of the TAMquestion-
naire (Davis & Venkatesh, 1996).

During each trial, participants were confronted with three critical traffic events
without the possibility to intervene (Figure 4.1). The duration of the events was the
time between entering and exiting the event objects to the participants’ view. In
the first event, a jogger crossed the road directly in front of the car. In the second
event, a high-speed car took the right of way at an intersection and the third event
included a slowpedestrian crossing the street. The onset and end of the eventswere
the same for all the participants in all conditions. At none of the events, the partici-
pants’ cars hit any event objects. In the AVAS condition, the ADV gave short informa-
tion about the critical event situation. This happened at the spawning of the critical
traffic objects to warn at the earliest possible point. The design of these events was
based on previous research that showed feedback should include the reasonwhy an
ADV decides in a specific way (Koo et al., 2015). Also, additional information should
be provided while interacting with vulnerable road users when their intentions are
not clear but can influence the car’s behavior (Wintersberger et al., 2020). These
events were implemented to test the participants reactions as a passive passenger
in critical situations. They were designed to test whether the in-vehicle communi-
cation can alter behavioral reactions and acceptance.
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Figure 4.1: Three scripted critical events occurred during the ride from top to bottom: Pedestrians running on the street from
le� to right, fast cars cutting in the self-driving car path, and pedestrians walking in the middle of the road.

The simplifiedquestionnaire consists of threequestions fromtheoriginal TAM in
perceived usefulness, ease of use, the intention of use, and one additional question
onperceived trust. It also included questions on age, gender, aviophobia, driving ex-
perience, amount of gaming hours per week and the number of exposures to virtual
reality before the experiment. The questionnaire has been answered in the Likert
scale, with numbers from 0 (strongly disagree / dislike) to 100 (strongly agree / like)
indicated by thumb icons of like and dislike.

The used experimental setup consists of twoHTC Vive proHMDs and lighthouses
version 1 for tracking head position and rotation while seated in the car. The VR
computers were equipped with Nvidia Geforce RTX 2080Ti GPUs, 16Gb of RAM, and
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Intel XeonW-2133 CPU@3.60Ghz core, resulting in an average frame rate of 25,2 fps.
Additionally, the setup used two raspberry pies and touch monitors for web-based
questionnaires. For analyses, Python 3.6, pandas 0.24.2, NumPy 1.16.4, Scipy 1.7.2,
statsmodels 0.10.0, as well as SPSS 29 were used. All plots were created using Mat-
plotlib 3.1.0 combined with seaborn 0.9.0. Data-driven prepossessing on question-
naire datawasperformedwith theOPTBINalgorithm(Knuth, 2013) usinghistogram-
based age binning.

Analysis of the data
Headmovement data were obtained from 26750 participants and the questionnaire
was answered by a fraction of them. Elimination of incomplete answers resulted in
7850 data sets.

First, we focused on the analysis of the questionnaire data. Of the complete data
set, 4464 participants identified as male, 3386 as female. By using optimal binning
(Knuth, 2013), wedividedparticipants intofive age groups. The cleaneddata set con-
sisted of 2812, 1513, 1883, 582, and 86 in the age groups <20 years, 21-40 years, 41-60
years, 61y-80 years, and more than 81 years, respectively. In the AVAS, TaxiDriver
and RadioTalk condition we recorded 2691, 2636, and 2509 data sets, respectively.
The large number of participants in each bin allowed the use of regression-like in-
ferential tests (i. e. MANOVA) due to their robustness against non-normalities in
large data-sets (Pek et al., 2018).

To investigate the effect of gender, age, and driving condition on the four aspects
of the questionnaire, a one-way multivariate analysis of variance (MANOVA) has
been performed. MANOVA tests the optimal linear combination of dependent vari-
ables to find significant effects. We performed a one-way MANOVA for the four TAM
aspects modeled with respect to gender, age, and driving condition. Pillai’s Trace
test statistic uses estimated F-Values to test significance, which is robust against
non-normalities. Therefore, Pillai’s Trace adds an extra layer of protection against
false positives (Finch & French, 2013) and is a good choice for interpreting the re-
sults. To understand how different categories within each factor, e.g., male or fe-
male ingender, affect the fourTAMaspects,wecalculatedaseparateone-wayanalysis
of variance (ANOVA). Following, we calculated the different effect sizes (Cohen’s D
and Hedge’s G) for each of the factors using estimated means and standard devi-
ations reported for the category within that factor. Although both of these effect
sizes are based on Cohen’s suggestions, Hedge’s G considers the sample sizes of the
compared groups. Therefore, both effect sizes have been used to interpret the re-
sults. Further, each participant’s four TAM aspects were combined into one single
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value. Togetherwith theMANOVA,wewere able tomake statements about how gen-
der, age, and the condition affect the questionnaire scores.

However, ANOVA can only be calculated on a single independent variable. The
best way to combine the four TAM aspects into one value is by multiplying each as-
pect’s score for a given participant by a corresponding weight and adding them all
together to get a single value. This acceptance score was calculated by performing
a linear discriminant function for each factor that will yielded in a different raw co-
efficient for each TAM aspect concerning the given factor. The linear discriminant
analysis (LDA) intends to find a linear combination of features that characterizes or
separates two ormore classes. It expresses the dependent variable as a linear com-
bination of the independent variables that maximizes the group differences within
the dependent variable (McLachlan, 2005). The raw discriminant function coeffi-
cients can be used as weights to calculate the four TAM aspects into one indepen-
dent number, which we can call acceptance score.

Next, we turn to the analysis of the objective behavior. A head-mounted HMD
measured the orientation and position of the participant’s head in the virtual envi-
ronment. We determine the head orientation in a reference frame fixed to the car.
Since most interesting visual detail was placed near the ground level and all the
dynamic objects of the virtual city moved along the horizontal axis, we focused on
the orientation along the horizontal plane. Further, we compared the head angu-
lar velocity, meaning the change in head orientation degree over time. To examine
the differences between conditions, we used one-way ANOVA followed by the Tukey
honest significant difference (HSD) post-hoc test. The Tukey HSD compares pairs
of means to detect which of the group means are different from the others (Mean-
diff). With this test, we could define the separate condition that causes differences
in orientation and angular velocity in specific point of time (Abdi & Williams, 2010).
Additionally, we calculated the Pearson Correlation between the head angular ve-
locity and the TAM scores for each questionnaire item to check for consistencies in
both subjective and objective measures.
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4.2 | Acceptancemodulating factors

4.2.1 | Questionnaire Results

The questionnaire data of the simplified TAM from 7850 participants showed a pos-
itive correlation of r>0.4 between the questionnaire items. Therefore, these items
have to be analyzed together asmultivariate dependent variables. To check validity
of the assumptions, a Levene’s test was performed. If the test was significant we
would assume a violation of variance homogeneity in the groups. Levenes’s test re-
sulted in F-values of 1.369 for perceived Usefulness (p = 0.089), 2.333 for Ease of use
(p < 0.001), 1.459 for Intention of use (p = 0.053) and 1.443 for Trust (p = 0.058). Con-
sidering the large sample size, known to reduce p-values in Levene’s test, a further
check of the covariance matrices for the dependent variables of the TAM concern-
ing the main factors of gender, age group, and condition has been done. We found
homogeneity of covariances, as assessed by Box’s test (p > .001). Together, Levene’s
test and the covariance matrices provide essential evidence for the validity of the
assumptions ofMANOVA. Out of the four different null hypothesis tests of themulti-
variate analysis, Pillai’s Trace was chosen due to its known robustness toward non-
normalities in the data (Ateş et al., 2019). Therefore, the multivariate analysis of
variance is the prime analysis method (Warne, 2014).

To gain deeper insights into how gender, age, and condition affect the TAM fac-
tors, LDA was used to extract each independent variable’s weighted influence. Lin-
ear discriminant analysis tries to find a set of coefficients that will maximize the
separability within the given independent variable. These coefficients were used to
interpret the influence of each independent variable on each of the modulator fac-
tors of the TAM.

The effect of gender

First analysis checked fordifferencesbetweenmale and femaleparticipants regard-
ing the acceptance scores. In order to find out the influence of gender on accep-
tance, we performed an MANOVA with a follow-up LDA for gender. The Pillai’s Trace
resulted in 0.00293 (F(4,7835) = 4.761, p < 0.001) showing that there is a significant
effect of gender on overall acceptance (Figure 4.2).
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Figure 4.2: The descriptive categorical plot of the mean questionnaire answers for gender.

The follow-up LDA showed that females have a lower score based on the observed
discriminant coefficients. The resulting coefficients were -0.33 for the intention of
use, -0.06 forperceivedusefulness, -0.60 forperceivedeaseofuse, and -0.18 for trust
(Figure 4.4 a), all with a medium effect size (Cohen’s D = 0.45). Additionally, the LDA
showed that perceived usefulness and trust were less affected by gender than the
intention of use and the perceived ease of use (Figure 4.3 a). These findings indicate
that females and males have an almost equivalent attitude towards the perceived
usefulness but differ in the perception of ease of use and, consequently, the inten-
tion of using self-driving cars. Thus, we interpreted that females anticipate difficul-
ties in handling and therefore score lower in the intention to use.
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Figure 4.3: The descriptive categorical plot of the mean questionnaire answers for age group.

Figure 4.4: The descriptive categorical plot of the mean questionnaire answers for condition.

The Interaction effect of gender and age group

While investigating the effects of gender, age and condition, it became clear that
these factors separately did not explain all variance observed in the data. There
was a significant interaction effect of gender and age group with Pillai’s Trace of
0.00498 (F(16,31352) = 2.441, p = 0.001). According to the follow-up LDA, there was a
negative effect for the intention of use and perceived ease of use (both -0.73) and
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a positive effect on the perceived usefulness (0.22) and trust (0.55) in the question-
naire items. Here, the effect sizes were most notably between the age groups 21-
60 years compared to under 20 years and above 60 for each gender. These results
support findings of the previous analyses on gender and age. In addition, it could
be shown that the interaction of gender and age had a significant influence on the
acceptance of ADVs. In addition, the largest effect sizes ( 0.5 < Cohens’ D <= 0.9) re-
sulted by comparing female participants in the age between 21-60 years against the
male participants in the same range. Participants below 20 years had the highest
TAM scores, and females between the ages of 21-60 years showed the lowest TAM
scores. Although there is was a decrease in all TAM factors in both genders for
ages between 21-60 years old compared to the below 20 years, female participants
showed stronger decreases in TAM scores (Figure 4.5). This accounts especially for
the intention of use and perceived ease of use. Once again, as age increases for peo-
ple between ages 21-80 years, we can also observe TAMscores. In conclusion, gender
and age group interaction significantly affect all TAM factors, specifically negative
influences on the intention of use and perceived ease of use for ADVs, but a positive
effect on perceived usefulness and trust. This means that although the ADV was
seen as useful and trustworthy, there were still other hidden factors that decreased
the ease of use and the intention to use it. Consequently, the demographic factors of
age, gender and the interaction of these two, have much more impact on the items
of the TAM questionnaire. The positive effects of a self-explanatory ADV were not
sufficient to compensate for the negative influence of demographics on ease of use
and, accordingly, intention to use.
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Figure 4.5: Mean of answers for questions regarding the usefulness, intention, trust, and ease for age group and gender com-
bined
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4.2.2 | Behavioral Results

Identification of critical events

As a first step of the head movement analyses, we investigated whether partici-
pants’ behavior differs during the critical events fromthebaselineparts of thedrive.
The initial analysis was performed regardless of the driving condition. We consid-
ered the mean orientation and variance of head orientation over all participants
as the relevant dependent variables. Collapsing the data over conditions, we tested
whether themeanofheadorientation in each framewas significantly different from
the distribution resulting from a permutation over time (permutation test). Head
orientation differed significantly from baseline at the end on the first and second
and at the very end of the third event. (Figure 4.6). Further, we observed differences
early in the trial, when participantswhere intensively looking around inside the car.
Additionally, three other significant intervals were observed. During these times
pedestrians were visible on the sidewalk in crowded places of the city. We assume
that this is related to a need of information to assess the situation. A final period of
deviant head orientation is observed at the very end of the drive, when participants
prepared to exit the car in a crowded area. By applying thismethodwe are confident
that an additionalmeasurement of headmovements is a valid approach to enhance
subjective data. Overall, compared to the baseline head orientation, the three crit-
ical events showed significant differences in participant behavior regardless of the
effect of conditions. These differences were not limited to the critical event inter-
vals but identified in additional areas of the trial.

The effect of condition

As a next step, we consider how much of the observed variance was related to the
effect of condition. We investigated whether participants’ behavior objectively dif-
fers between conditions. Differences in head orientation were seen as indicators
of participants’ reaction to the environment in different conditions. By visualizing
the head movement data, we observed differences in the mean head orientation,
over large parts of the drive and during the critical traffic events. (Figure 4.7). To
see, whether these differences were significant, we calculated a one-way ANOVA
based on head orientation for each frame as the dependent variable and applied
a post-hoc comparison of Tukey HSD in the significant Intervals. The result of the
ANOVA showed significant differences in head orientation between the three con-
ditions during most of the drive time (F>10, p < 0.05) (Figure 4.8). Specifically, the
TaxiDriver conditionwas significantly different fromthe twoothers over a largepart
of the drive. The post-hoc comparison revealed larger mean difference (Meandiff)
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Figure 4.6: Time intervals of significant differences in head orientation a�er the permutation test (n=1000). Shaded areas
represent the critical traffic event intervals. a) Mean of head orientation over all subjects. Each point indicates an average of
the head orientation across the participant within each frame. b)Variance of head orientation over all subject. The red areas
indicate the intervals where there was a difference in head orientation between all participants. Please note that the data is
collapsed over condition.
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for TaxiDriver compared to AVAS (i.e. Meandiff = 2.07, p = 0.001 for frame = 1300) and
RadioTalk (i.e. Meandiff = 1.77, p = 0.001 for frame = 1300) condition. This result was
mostly constant during the experimental trial, including the three critical events.
At the start of the first and the second event, no significant differences between the
RadioTalk and AVAS condition were found. In the third event we found differences
between all three conditions. Here, participants elicited the smallest degrees of the
head orientation in the AVAS condition, and the highest degree in the TaxiDriver
condition. We mainly observed a higher mean head orientation in the TaxiDriver
condition in the beginning of the critical traffic events. Thismeans, the distribution
of the head orientations in angular space were wider in the TaxiDriver condition
compared to the two autonomous conditions in most of the trial times (Figure 4.7)
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Figure 4.7: Mean head orientation in each frame divided in three conditions. The positive and negative values of the mean
orientation relate respectively to the right and le� directions. Shaded areas represent the critical traffic event intervals.

Head angular velocity

To gain deeper insights into the participants’ head movement behavior, we calcu-
lated the magnitude of change in head orientation throughout time as the angu-
lar velocity. We quantify the absolute value of the angular velocity for each critical
traffic event separately, based on the experiment’s overall average frame rate. The
analysis of the angular velocity showed that in the AVAS condition, participants ro-
tated their heads significantly faster only in the first critical traffic event (F(2,24447)
= 71.35, p < 0.01). In the second critical traffic event, no significant differences be-
tween conditions were found (F(2,24447) = 2.8, p= 0.06). In the third critical traffic
event, the angular velocity in AVAS was significantly lower than the two other con-
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Figure 4.8: Time intervals of significantly different behavior between the three conditions. Thegraphdepicts thePandFvalues
of one-way ANOVA overall the experimental trial. Each dot shows the original F value of each frame. The red dash indicates
the significance threshold (p < 0.05). Shaded areas represent the critical traffic event intervals. The result of Tukey’s post hoc
comparison is represented by different colors. Each color shows the significant variable mean(s) in cross-check.

ditions (F(2,24447) = 29.06, p < 0.01) (Figure 4.9). Overall, the data revealed that the
angular velocity of head movements decreased during the experimental trial in all
three conditions. However, the AVAS condition reduced the head’s angular velocity
to a larger degree than the other autonomous condition. With the analysis of the
angular velocity, wewere able to show that participants’ behavior changed as an ef-
fect of self-explaining ADV over time.
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Figure 4.9: Head angular velocity for the critical event intervals. The y axis refers the rotation change divided by the number
of event frames.

Questionnaire comparison
The head angular velocity was an illustration of the participant’s head movements
behavior during the trial. Calculating the relationship between the angular veloc-
ity and the TAM items allowed us to determine if the participants self-assessed ac-
ceptance had been expressed in their previous behavior during the experimental
trial. We used Pearsons’ correlation for the participant’s absolute head angular ve-
locity over the entire trial and participants’ respective TAM item scores. The analy-
sis showed positive correlation between the head angular velocity and all TAM item
scores in all three conditions (Figure 4.10). Comparing the TAM items, there was a
lower correlationbetween theangular velocity and trust compared to its correlation
with other TAM items. Along with the previous finding in the analysis of the ques-
tionnaire, themismatch between trust and the other questionnaire items has been
demonstrated in the correlation of the items and the angular velocity. The disso-
ciation between trust and the other questionnaire items lead us to the assumption
that trust is not an ideal item in self assessments via a questionnaire. This claim is
supported by the mismatch in the self-assessment, as well object behavioral data.
Therefore, we argue that the objective behavioral data was able to reflect the find-
ings in the TAM questionnaire.

95



Chapter 4. Talking cars, doubtful users: a population study in virtual reality

Figure 4.10: Summary of the Pearson correlation between the head angular velocity and the TAM questionnaire items. The
correlation p value for Intention, usefulness, ease of use and trust are as follows for each condition: a) AVAS (Intention: p
<0.001, Usefulness: p <0.0010, Ease of use: p <0.001, Trust: p <0.01) b) RadioTalk (Intention: p <0.001, Usefulness: p <0.001, Ease
of use: p <0.001, Trust: p <0.001) c) TaxiDriver (Intention: p <0.001, Usefulness: p <0.001, Ease of use: p <0.001, Trust: p <0.001)

4.3 | Implications for future in-vehicle
communication

The present study revealed that self-reported acceptance in conjunction with ob-
jective observation enhances the understanding of modulating acceptance factors.
According to the results, subjective data from a post-experimental questionnaire
and objective data fromheadmovements during the experimental trial were largely
congruent. Outcomes of investigating gender, age, and condition effect on the over-
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all acceptance showed a lower acceptance of female participants toward ADV than
males. However, this effect is even more pronounced in the intention to use ADVs.
The results also indicated that people below 20 years of age have the highest ac-
ceptance toward ADV, gradually decreasing with age while increasing again above
80 years.Regarding the effect of a self-explaining ADV, we found a small positive ef-
fect in the ease of use and a small negative effect regarding the intention of use.
However, age, gender, and the interaction of these two have a substantially higher
impact on the questionnaire scores.

Therefore, thepositive effects of a self-explanatoryADVarenot sufficient to com-
pensate for the negative influence of demographics on ease of use and the inten-
tion to use. We could show that participants’ head orientation differed between
the conditions by analyzing the head movement data. Especially in the TaxiDriver
condition, we did see significant differences over the whole drive with further dif-
ferentiation between conditions during the critical events. Further, we observed
a decrease in the head’s angular velocity over time for all conditions. This effect
was most substantial in the AVAS condition. Finally, correlating the magnitude of
the participant’s head angular velocity with the TAM scores showed a significant
relationship between acceptance as a combination of the TAM factors, which was
weaker for the factor trust.

Previous studiesmainly depended on answers gathered from the potential users
(Howard & Dai, 2014; Raats et al., 2020; Wintersberger et al., 2020). However, behav-
ioral data is not as susceptible as questionnaire answers and can be used to vali-
datepossible self-assessments (Davis&Venkatesh, 1996). Thepresentedstudycould
show a dissociation of the self-assessed trust and the other TAM items, especially
with the intention to use. This observation contrasts previous research such as the
work of Belanche (Belanche et al., 2012). In fact in the present study it is shown
that self-assessments are heavily modulated by the demographic factors such as
age and gender, as well as the interaction of these two factors. Behavioral data con-
firmed the dissociation of trust and intention, by showing a connection between
head movements and scores in intention, ease of use and perceived usefulness.

Therefore we are arguing that including behavioral data is a valid approach to
betterunderstandunderlying factorsof acceptanceandcorrectingpotentially faulty
subjective data. This is due to the fact that head movements can be considered as
part of nonverbal communication in humans (Mehrabian, 2017). It contains infor-
mation of the participant’s emotions and intentions (Gunes & Pantic, 2010). For in-
stance, head angular velocity and acceleration were higher during negative affects
(Hammal et al., 2015). Combining sources of subjective and objective data, make it
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is possible to validate the questionnaire data. In conclusion, it could be stated that
the behavioral data is an important resource that can be used to validate investiga-
tions of the technology acceptance model and its underlying factors.

Due to the nature of the experiment within a public exhibition and a significant
number of visitors, the technology acceptance questionnaire used in this studywas
a simplified version. Thus it might not grasp the entire aspect and spectrum of fac-
tors that modulate acceptance, such as technology self-efficacy, which might play
an essential role in perceived ease of use. Furthermore, the questionnaire was also
translated into German, and we could not validate the questionnaire before using
it in the experiment. Although part of the variance in the data might be due to the
translation, such effect is thought to be minuscule and negligible since our main
findings align with that of the previous works (K. Chen & Chan, 2011; Koo et al., 2016;
Othman, 2021; Venkatesh, 2000). Due to the simplified nature of the study, we can
not directly address and analyze the underlying information processing that influ-
ences attitude. Still, we are confident tomake informed statements due to the large
effects in a vast data set. Additionally, there is a possibility that cybersickness in-
fluenced the TAM scores and head movement data.

Nevertheless, we tried to control as much as possible for motion or cybersick-
ness in this trial. The first step was to include a bigger static frame for the partici-
pants as the car interior, reducing the probability of cybersickness during the trial.
Also, we only used a low-speed environment, without sharp turns to reduce cyber-
sickness as much as possible (van Emmerik et al., 2011). Further, We acknowledge
that a more precise measurement instrument such as eye trackers would have en-
hanced the analysis and the findings. However, once more, the nature of the exper-
iment and the absence of experimenters on-site (not counting the numerous visits
for maintenance) rendered the use of such methods impossible. Another criticism
could be that the experimental timewas limited to 90 seconds, and each participant
observed only one of the experimental conditions. However, this experience can al-
ready investigate participants’ acceptance toward various in-car communications
in ADVs. Additionally, the vast amount of data gathered by the experiment allowed
for entirely data-driven analyses both for questionnaire andbehavioral data. There-
fore, the results of this study are valuable for understanding the population’s accep-
tance of ADVs and the importance of objective measurements.

Despite these limitations, we are confident to show an effect of a self-explaining
ADVbased on subjective andobjective data. Asmentioned earlier, previous research
explained trust as a combination of the communication style, feedback, and the an-
thropomorphic features of the ADV (Belanche et al., 2012; Koo et al., 2015). In con-
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trast, Hoff and Bashir state that trust is largely shaped by the personal traits of the
users (Hoff & Bashir, 2015). This is supported by newer findings in real driving sce-
narios, wherepersonality traitswere identifiedas relevant factors of trust (Stephan,
2019), and were only out weighted by the actual driving performance. These factors
are summarized under "dispositional trust," which consists of age and gender, and
personality traits. In line with previous research our study could show that the de-
mographic factors have a higher impact on acceptance compared to the ADVs’ fea-
tures.
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Nevertheless, our findings are not generalizable over all demographic groups,
since their communication needs are different: While we see a positive influence
of the talking car in one group, the second group may view the in-vehicle informa-
tion as excess and distracting. Following, the user-specific communication could
increase trust in doubtful users - making themmore confident to properly operate
such a system since it might be able to increase system knowledge. However, there
is a need for a further investigations usingmore extensive questionnaires to exam-
ine further modulators of acceptance, specifically trust in combination with more
objectivemeasurement instruments such as eye tracking. In the end, we argue that
user specific in-vehicle communication can be useful to create guidelines for the
further development of a safer and inclusive future of mobility.
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Chapter Summary

In this chapter, we have seen that in-vehicle communication influences attitudes
towards an automated vehicle. We were able to show that a vehicle of automation
level 4 generates more trust if it has anthropomorphic features and informs the
occupant about what is currently happening in traffic. Thus, we were able to repli-
cate the results of previously conducted research stating that information given by
the car increases trust among the passengers (Koo et al., 2015; Wintersberger et al.,
2020).

However, we were also able to show that trust does not seem to be the crucial
factor for acceptance. Although the vehicle with a verbal feedforward and feedback
positively affected perceived usefulness and trust, we saw a negative effects for the
intention to use such a vehicle and the perceived ease of use in the data. Compar-
ing the results of this study with our considerations from the introduction, we see
that the basic idea of the experimentmay have been too naive. In the beginning, the
idea was to increase acceptance by providing more information. In the experiment
we see that existing doubts cannot be resolved only by verbal communication pro-
vided by the vehicle. Although we were able to show an enormous influence of age
and gender on the items of the TAM questionnaire, we currently lack actual insight
about the questionnaire items that modulate trust. Being currently bound to the
gathered data and taking into account that the difference between subjective trust
and intention may be due to the simplified form of the TAM, it is also possible that
the self-assessment questionnaire is not the most appropriate way to measure ac-
ceptance of self-driving vehicles, as expectations and social norms may distort it.

With respect to the question this thesis aims to answer, i.e., how trust and ac-
ceptance in artificial agents can be established, a first hint arises here. Based on
the study results, a positive effect of verbal communication in critical traffic events
does increase the perceived usefulness and trust. Nevertheless, we also found a
mismatch between trust and the intention to use such a vehicle. Looking into the
possible user groups, there is no generalizable solution to this problem since demo-
graphic factors play amore important role in acceptance than the verbal communi-
cation strategies of the vehicle with its occupants. Thus, it is the vehicle that should
adapt to the respective passenger and their needs.

As briefly described in the discussion of the current paper, we could define three
different groups of potential users. The first group contains the "skeptics", predom-
inantly consisting of women between the age of 40 and 60. This group sees the ve-
hicles as practical but not very usable. The second group is characterized by uncer-
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tainty. On the one hand, its members clearly see the benefits of the technology and
trust it but on the other hand this group responds negatively to the provided infor-
mation by the car. This is supported by current literature, according to which neg-
ative effects on acceptances increase with additional information (Koo et al., 2015;
Othman, 2021). This group also includes the group of the oldest participants. Here,
we hypothesize that the group of uncertain users perceives the technology as use-
fulness, since members of this group have an increased need for mobility and a de-
creased ability to drive by themselves. Nevertheless, they would prefer a traditional
form of mobility. The last group can be described as the overestimators. These are
the particularly technology-savvy people aswell as very young people under the age
of 18. According to supporting literature, this group has a distorted perception of
benefits and risks of self-driving vehicles. An overestimation of benefits might lead
to a misuse of self-driving cars, the disappointment of initial users, and could have
fatal consequences (Gillmore&Tenhundfeld, 2020;M. König&Neumayr, 2017). Since
these three subgroupshave contradictory requirements concerning the in-car com-
munication of self-driving vehicles, it should be possible to satisfy eachuser groups’
individual needs. How exactly an adaptive HMI could be realized and at which au-
tomation level which interaction between man and machine will have the greatest
benefit still needs to be evaluated by further studies.

Additionally, we were able to show that the different forms of communication in
a vehicle influence the explicitly reflected acceptance as well as the behavior of the
test subjects. Correlating both data measures we were able to show that subjects
exhibited larger but slower movements when they were more accepting and faster
movements when they were less accepting. We concluded that we can distinguish
between exploration and orientation behavior. Thus, we see that head movement
can be a valid instrument for examining implicit attitudes toward self-driving vehi-
cles. Based on the data of the questionnaire as well as the data from the headmove-
ments, it is possible to create a representation of the current driver state that, in
combination with other data sources, can lead to a tailored in-vehicle communica-
tion in the form of an adaptive HMI. This technique could use date from the current
environment as well as data from the passenger to adjust it’s behavior on the road
as well as the communication toward the passenger to increase trust.

More specific, an adaptive HMI allows for a change in communication strategies
based on different user groups as well as specific data sources from the passenger.
For example, it would be possible for the vehicle to provide less information to pas-
sengers during slow and large headmovements since this behavior represents trust
and exploration of the environment. Hence the negative effects of obsolete infor-
mation can be avoided. In contrast, tailored information would be provided during
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faster movements in the direction of travel, since this is thought to correlate with
focus on other road users and the assessment of the current traffic situation and
therefore with distrust and stress. Here, more information about the current traf-
fic situation could be apossibility to increase the explainability of decisionsmadeby
the vehicle, and accordingly, also the acceptance of the human passenger. In such
cases, the car would detect when and about which objects the driver needs addi-
tional information in order to understand the vehicles actions and to build trust.

Additionally, such a feature in the car would not only increase trust and accep-
tance, it could be facilitated to help in the OOTLU in a takeover request. Once the car
is requesting for a takeover, the car could detect the state of the driver and provide
the human with specific information to foster as fast and precise takeover maneu-
ver. One example on how to pair a driver-state specific request could be a combina-
tion of the driver-state detection and a audio-visual HUD that was tested in LoopAR.
Here the car could detect the informational needs of the passenger via the head
movements and guide the head orientation in a takeover scenario through visual
input in the windshield to enable a safe and fast take over.

However, there will a small but undeniable probability of scenarios in which hu-
mans will not react in a timely and appropriate manner to a takeover request. In
such cases, the vehicle must switch into a minimal risk state, that was described
further up in the introduction as a vital part of the level 4 and 5 features (SAE Inter-
nation, 2014). Ergo, it has to remain in control and be able to come to a safe position
even in a state of high uncertainty. Still the question remains, what would this state
look like in borderline cases e.g. a total sensor failure, where the car turns blind,
or in an unforeseen emergency situation with short braking distances, e.g. an on-
coming vehicle on collision course, where a collision will definitively occur. Should
we avoid a possibly deadly collision under all circumstances, even if this poses a
threat to the vehicle’s passengers? Or should the vehicle protect the occupants at
all costs? Is a vehicle allowed to swerve and risks injuries to vulnerable road users
such as pedestrians or people on bicycles? Should the car stay on the road or is a
turn onto pavements a legitimate action in these cases? This raises the question
of how people judge such situations as potential consumers and thus enablers of
this technology. Is it possible to collect preferences under certain ethic theories or
is there no unifying preference? This will now be considered in detail in the next
chapter. In this context, test subjects are confrontedwith a variety of forced-choice
dilemma scenarios in which they have to decide which life should be protected and
which should be sacrificed. So far, it is clear that there must be support human su-
pervisors in order to automate personal transportation, as they can also perform
tasks that are not relevant to driving (Bengler et al., 2020; Endsley et al., 2003; Pohl
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et al., 2006; Wintersberger et al., 2020). Sooner or later, this will lead to drivers be-
ing asked by the vehicle to take over, in which case they will have to react fast and
precisely. Since they may be distracted, it can be assumed that these drivers will
not react adequately and quickly (Jarosch, Bellem, et al., 2019).

Similarly, we have seen that when supporting humans in highly automated driv-
ing scenarios, there isnosingle communicationstrategy that generates trust among
all possible passengers (Koo et al., 2016; Othman, 2021; Wintersberger et al., 2020).
Rather, it is possible to classify users into groups according to their different needs
(Belanche et al., 2012; Hoff & Bashir, 2015). In addition, we were able to show that
the behavior of the test subjects allows for conclusions about their acceptance in
the self-assessment. This knowledge will now be transferred to the next chapter.
The goal is to link the previous knowledge with the decisions of the subjects of the
moral dilemma scenarios. This would enable us to create a design for a human-
centered HMI that can solve design related issues of how a car should interact with
its passengers while also solving ethical and legal concerns of automation.
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Abstract
Ethical thought experiments such as the trolley dilemmahave been investigated ex-
tensively in the past, showing that humans act in utilitarian ways, trying to cause
as little overall damage as possible. These trolley dilemmas have gained renewed
attention over the past few years, especially due to the necessity of implementing
moral decisions in autonomous driving vehicles (ADVs). We conducted a set of ex-
periments in which participants experienced modified trolley dilemmas as drivers
in virtual reality environments. Participants had tomake decisions betweendriving
in one of two lanes where different obstacles came into view. Eventually, the partic-
ipants had to decide which of the objects they would crash into. Obstacles included
a variety of human-like avatars of different ages and group sizes. Furthermore, the
influence of sidewalks as potential safe harbors and a condition implicating self-
sacrifice were tested. Results showed that participants, in general, decided in a
utilitarian manner, sparing the highest number of avatars possible with a limited
influence by the other variables. Derived from these findings, which are in line with
the utilitarian approach inmoral decisionmaking, itwill be argued for an obligatory
ethics setting implemented in ADVs.
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5.1 | Ethical Implications of Autonomous
Vehicles

Introduction

Since their invention in the nineteenth century, cars have considerably influenced
townscapes and societies all over the world. Due to the continuous development
and increasing sophistication of vehicles, this impact is still ongoing. It even seems
that carmanufacturers are getting closer to reaching anothermilestone: a car that
is capable of driving without a human driver.

In the last few years, there have been substantial advancements in the develop-
ment of such Autonomous Driving Vehicles (ADVs). Many features of automation,
such as cruise control, camera-based blind spot assistance, and parallel parking
have already become standard in modern cars. The majority of car manufacturers
and service providers, such as Uber, are currently working on ADVs and planning to
commercially market them by 2025 at the latest (Hars, 2016). The fast introduction
of ADVs is due to the expected advantages. These might include higher mobility for
people unable to drive a car (e.g. elderly, tired, disabled people), better organized
traffic and fewer traffic jams due to communication between vehicles. Most impor-
tantly, based on improved driving behavior and shorter reaction times the number
of traffic accidents and casualties is expected to decrease significantly.

However, with the development of disruptive technologies, new problems arise.
Because introducingADVsmighthavea large impactonsociety, critical issues spread
over a wide range of areas including psychological, ethical, socioeconomic, and le-
gal aspects.The most pressing issues that need to be addressed include liability in
the case of casualties as well as the ADV’s behavior in moral dilemma situations.
Moral decision-making seems to have little implication for traffic so far because
most accidents happen in a split second without the time and the information to
think thoroughly about one’s reaction. Therefore, humans base their decisions in
such situations mostly on reflexes and instincts rather than deep thoughts.

Thiswill changewith the introduction of ADVs given that the car’s decisions in all
kinds of possible traffic scenarios will be programmed beforehand including guide-
lines for unforeseen events and even highly unlikely scenarios (Lin, 2013, 2015). But
there is no consensus yet on who decides what should be programmed. One possi-
bility would be that usersmay choose an individual ethics setting themselves. How-
ever, Gogoll and Müller, 2017 criticized and rejected this option as this would most
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likely lead to a prisoner’s dilemma 1 in traffic (see also “Discussion” section). In their
thought experiment, people would choose a sub-optimal and thus a negative out-
come for the entire society, just to prevent a possible exploitation by other road
users. In consequence, Gogoll and Müller call for an ethics setting that is manda-
tory for all ADVs. For the implementation of such a setting, an ethical framework
is needed which remains widely debated (Hevelke & Nida-Rümelin, 2015a, 2015b,
2015c).

One problem is that people are in favor of ADVs programmed in a utilitarian way
but state theywould themselves notwant to buy such anADV (Bonnefon et al., 2016).
Moral decisions by autonomous systems are o�en discussed on the basis of trolley
dilemmas. The classical trolley dilemma was introduced in 1967 as a philosophical
thought experiment (Foot, 1967). The key element is a trolley heading straight to-
ward a group of people, who are on the rails and unable to escape. There is, however,
a side track on which a single person stands, unaware of the trolley. Participants
in this thought experiment are standing next to a lever that enables the trolley to
switch to the side track, resulting in a moral dilemma. Without intervention, the
trolley will kill the group of people on the main track. Upon pulling the lever, the
trolley will continue on the side track, killing only one person. How do people make
decisions in such situations and what moral principles govern their decision pro-
cess? This question has been investigated and debated extensively (Mikhail, 2007;
Thomson, 1976, 1985; Unger, 1996) .So far, research on modified trolley dilemmas
in the context of ADVs focuses on whether there is a moral argument for ADVs to
act in a deontological or utilitarian way. The distinction between the ethical theory
concepts of deontological motivations and utilitarian motivations is hard to draw,
especially with a broad notion of deontology. We define utilitarian actions, opposed
to randombehavior or refusal of behavior, as thosemaximizing utility by seeking to
cause as little overall damage as possible, based on some probabilistic view of the
future. This might even include willingness to risk harm for oneself.

Recent studies showed that people in general act in utilitarianways and are rela-
tively comfortable with utilitarian ADVs, programmed tominimize harm (Bonnefon
et al., 2016; Skulmowski et al., 2014). Besides the deontological approach and utili-

1The prisoner’s dilemma is amathematical theory based on game theory. Imagine two prisoners
accused of committing a crime together. The two prisoners are interrogated and can not communi-
cate with each other. If both deny the crime, both receive a low punishment. If both are confessing
both receive a heavy sentence. However, if only one of the two prisoners confesses, he or she leaves
the court without a sentence, while the other gets the maximum sentence. The dilemma in this sit-
uation is, that every prisonermust choose to either deny or confess without knowing the other pris-
oner’s decision. The sentence depends on how the two prisoners testify together, and thus depends
not only on their own decision but also on the decision of the other prisoner.
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tarianism, there are many more ethical standpoints concerning how to tackle the
problem of decision-making in self-driving cars. These range from virtue ethics,
meaning that specialists and ethicists influence the decision-making in machines
as a governmental committee, to amachine thatmimics the entire spectrum of hu-
manbehavior (Goodall, 2014). Within thesediscussions, there ismuchdisagreement
in the literature about which ethical setting is the right one to choose and no clear
statement could be made yet (Lin, 2015). For the present study, the behavior of the
participants served as a starting point.

The intention is to deduce rules from human behavior that would be applicable
to all ADVs. This is because people have to agree to an ethical setting that is imple-
mented in their car to actually use it. Moreover, people usually do not judge a case
based on deontic or utilitarian grounds but are rather guided by normative stan-
dards from their culture and society. This study consequently aims to establish an
ethical decision-making framework for moral dilemmas in driving situations that
can then serve as a foundation for an obligatory ethical setting to be implemented
in ADVs. Such a framework should prevent a system, able to save thousands of lives,
not being used because of moral disagreements with the general population.
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Studies including trolley dilemmas were traditionally carried out in the form of
philosophical essays. Thismeans that thematerial was presented to participants in
the form of written scenario descriptions, sometimes with additional pictorial rep-
resentations. Thiswayof presenting thedilemma introduces issues, suchas thedis-
regardof important contextual and situational influences inmoral decision-making
(Skulmowski et al., 2014). New immersive technologies, such as Virtual Reality (VR),
could help to remedy these insufficiencies. In this context, trolley dilemmas have
recently experienced a revival in science (Navarrete et al., 2012; X. Pan et al., 2011;
Patil et al., 2014; Skulmowski et al., 2014).

The immersion that VR environments provide serves to improve ecological va-
lidity while maintaining control over experimental variables (Madary & Metzinger,
2016). In the context of ADVs, VR can present scenarios that are more similar to
real life decision-making in traffic and hence shed light on the moral actions of the
participants rather than their conscious beliefs. Furthermore, many possible mod-
ifications of the trolley dilemma elicit open questions. For example, different char-
acteristics of potential victims might influence the human decision process. Pre-
vious studies have shown that children were saved more o�en than adults, so the
ages of potential victims might play a role in decision-making (Sütfeld et al., 2017).
In the context of ADVs, there are also certain traffic-specific aspects worth consid-
ering. For instance, sidewalks provide a safe space for pedestrians in traffic which
might lead to an internalized reluctance to drive on side-walks and could also in-
fluence the decision process in a modified trolley dilemma. Additionally, there are
possible scenarios in which people can only save lives by sacrificing their own. De-
spite evidence from surveys that revealed a willingness to use self-sacrificing ADVs
(Bonnefon et al., 2016), it is questionable whether people would indeed act this way
in realistic settings. The present study specifically addresses these open questions
and aims at a high ecological validity by using a VR setting.

In this experiment, five hypotheses were tested. First, based on previous re-
search, it is postulated that people will, in general, act in favor of the quantitative
greater good, trying to keep the number of persons to be hit to aminimum (Hypoth-
esis 1). Yet, it canbe speculated that the ages of potential victimsmatter in the sense
that people might spare younger individuals at the expense of older ones (Hypoth-
esis 2). In the traffic-specific context pedestrians on the sidewalk are expected to
be protected, as they are not actively taking part in traffic. By staying on the side-
walk, people generally expect to be safe while implicitly giving consent to the finite
risk of being injured when stepping into the street. Therefore, people are assumed
to avoid hitting pedestrians on sidewalks as opposed to people standing on streets
(Hypothesis 3). On the other hand, it is hypothesized that people prefer to protect
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children, even if they are standing on streets, as opposed to adults on sidewalks
(Hypothesis 4). Finally, the last hypothesis states that people will not reject self-
sacrifice completely but consider it when a high threshold of damage to others is
reached (Hypothesis 5). To test these hypotheses, a driving simulation experiment
with state-of-the-art VR technologies was implemented, following a study by (Süt-
feld et al., 2017). The presented avatars were only male to avoid an effect of gender
difference, as previous studies showed thatmale and female avatars are treated dif-
ferently (Sütfeld et al., 2017). Participants were able to control cars as drivers and
experienced variousmodified trolley dilemma situations, as specified in the "Meth-
ods" section.

5.2 | Human Decisions in Virtual Dilemma
Situations

Results
Data from 189 participants and a total of 4000 trials, distributed into five modules
according to the aforementioned hypotheses, was analysed. Below, the results for
each module will be described separately.

Quantitative Greater Good
In the first module, it was tested whether people would act in favor of the quantita-
tive greater goodby savingmore as opposed to fewer avatars. Thismodule consisted
of three trials. The environment for this module was a suburban setting, consisting
of a two-lane road. Only standing adults were presented as avatars. In the suburban
setting, parked cars occupied both sides of the two-lane street. In the one-versus-
two andone-versus-six conditions, only 7 out of 189 participants targeted thehigher
number of avatars (Figure 5.1). In the one-versus-four condition, 12 participants tar-
geted the group of four instead of the individual; thus, in all three conditions, the
overwhelming majority of participants spared the larger number of avatars.
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Figure 5.1: Decision distribution in the Quantitative Greater Good module

To investigate this difference between the conditions, a permutation test was
used. It yielded no significant difference (p > 0.05). This shows that participants
acted similarly throughout all three conditions. For each single condition, the num-
ber of participants targeting one avatar instead of the larger number is highly sig-
nificant (p < 0.01). This data indicates that participants decided in favor of the quan-
titative greater good.

Age-Considering Greater Good

The second module tested the hypothesis that people would spare younger avatars
at the expense of older ones. It was composed of six trials in a suburban setting.
As avatars a child, a standing adult, a kneeling adult, and an old person were used.
Each trial presented one of the following six combinations of avatars: one child ver-
sus one standing adult, one child versus one old person, one standing adult versus
one old person, one kneeling adult versus one standing adult, one kneeling adult
versus one old person, and one kneeling adult versus one child.
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In the pairwise comparisons of children, adults, and the elderly, it was observed
that younger avatars were spared at the expense of older avatars (Figure 5.2). The
differences between children versus adults and elderly versus adults were highly
significant in a permutation test (p < 0.001). The results demonstrate the inverse
relation of the expected remaining lifespan of an avatar and the chance of getting
hit. This decrease in value according to age was highly significant (p < 0.01). To in-
vestigate whether the difference emerged only through variation in avatar height,
kneeling adults versus standing children and standing elderly were tested. The ob-
served difference in the children versus kneeling adults’ comparisonwas highly sig-
nificant (Figure 5.2, 4th block, p < 0.001).
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Figure 5.2: Decision distribution in the Age-Considering Greater Good module of purely age-considering decisions.

In the direct comparison of kneeling adults versus standing adults, the latter
were hit more o�en (p < 0.001). A similar pattern emerged in the comparison be-
tween kneeling adults versus the elderly; thus, kneeling and standing moderated
the participants’ decisions to some degree. (Figure 5.3) However, these results con-
firm that participants spare younger avatars at the expense of older ones, irrespec-
tive of the avatars’ heights.
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Figure 5.3: Decision distribution in the Age-Considering Greater Good module of decisions about object height.

The Influence of Context

The third module explored the influence of context. Specifically, the correspond-
ing hypothesis states that avatars located on sidewalks would be sparedmore o�en
than those in streets. Therefore, in direct analogy to the first module, a single adult
avatar on the sidewalk was matched with two to six adult avatars in the street.This
module consisted of six trials in a city setting that contained a one-way street with
sidewalks on both sides. One of the sidewalkswas blocked by parked carswhile par-
ticipants had the opportunity to drive on the other sidewalk to avoid avatars in the
street.

Compared to thefirstmodule, itwasexpected that a largerdifference in thenum-
berof avatarswouldbenecessary to lead toa consistent sacrificeof the single avatar
on the sidewalk. However, in general, this context did not seem to have a strong ef-
fect on decisions. Themajority of participants still consistently spared the high-est
number of avatars possible, regardless of the sidewalk context (Figure 5.4). Itwas in-
vestigated whether a switch point, defined by a critical imbalance of the number of
avatars, could adequately describe the participants’ decisions. That is, if the num-
ber of avatars to be hit in the street were larger than this threshold, participants
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would change from driving in the street to driving on the sidewalk to save a large
enough group of avatars. The data showed that only 2.56% of trials would need to
be changed for all participants to behave consistently according to a simple model
with a single free parameter, the switch point.

Figure 5.4: Decision distribution in the Influence of Context module. Depiction of the best-fitted model for these decisions.
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For statistical evaluation, models describing different switch points were fitted
to thedataandcompared the sumsof squared residuals of themodels to identify the
model that best fits the data. Results showed that modeling the data with a switch
point between the conditions with one-versus-two and one-versus-three avatars
described the data best (Figure 5.4), with a sum of squared residuals of 34.0. This,
in turn, indicates that participants choose to drive on the sidewalk to save a group
of three ormore avatars rather than saving only two. However, through-out all con-
ditions, the number of participants who drove on the sidewalk to savemore avatars
was significantly higher than those trying to save the avatar on the sidewalk. In
comparison to the Quantitative Greater Good module, only minor quantitative dif-
ferences were found. This shows that the sidewalk altogether has a surprisingly
small effect.

Interaction of Age and Context
n the Age-Considering Greater Good and the Influence of Context modules, the in-
fluence of age and context was investigated in isolation. The fourthmodule, was de-
signed to find out whether there was also an interaction of age and context; hence,
the city setting with the sidewalk, including child avatars, was used. There were
three trials with the following combinations of avatars: two children in the street
versus one adult on the sidewalk, one child in the street versus two adults on the
sidewalk, andonechild in the street versusoneadult on the sidewalk.Results showed
that themajority of participants again spared children as opposed to adults, despite
the sidewalk context (Figure 5.5), as could be expected based on the findings from
the previous modules.

In further analyses, two permutation tests were performed to check for differ-
ences in the target actions of participants regarding the number of avatars. The
conditions with one child in the street and one or two adults on the sidewalk were
significantly different from one another (p < 0.001). The same held for the compar-
ison of the condition with one child and one adult versus the condition of two chil-
dren and one adult (p < 0.05). The results were in accordance with the findings from
all previous modules. Furthermore, the pattern of the results was compatible with
the independent effects of the sidewalk and age.
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Figure 5.5: Decision distribution in the Interaction of Age and Context module

Self-Sacrifice

The fi�h module investigated whether participants value their own life in the VR
setup similarly to the value of other avatars. That is, they had the possibility to save
avatars at the price of sacrificing their own avatar. In close analogy to the previ-
ous modules, participants’ choices were investigated, depending on the number of
avatars in the group opposing self-sacrifice. In comparison to the non-self-sacrifice
condition in the first module, the switch point i.e., the number of avatars in the
group necessary to induce consistent decisions, was hypothesized to increase.The
Self-Sacrificemodule contained six trials in amountain setting, where a chasmwas
implemented on the right lane of the street with a construction sign in front of it.
Presented on the le� lane were varying numbers of standing adults, ranging from
two to seven avatars. The design was created to imply that participants would com-
mit self-sacrifice within the experimental paradigm by driving off the cliff when us-
ing the right lane.

Data analysis of this module followed the same procedure as in the Influence
of Context module. It was postulated that a fixed threshold could describe the be-
havior of the participants. In case the number of avatars in the street was below
the thresh-old, the group would be sacrificed. In contrast, when it was above the
threshold, participants would choose self-sacrifice. The decisions of only 5.2% of
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trials were not consistent with such a simple model.

Figure 5.6: Decision distribution in the Self-Sacrifice module. Depiction of the best-fitted model for these decisions

To see if therewas a general switching point at which the number of people com-
mitting self-sacrifice does not increase anymore, a linear regression was used to fit
six models to the data. For these models, the sums of squared residuals were com-
puted and compared. The model with a switch point between the conditions with
four and five avatars best described the data (Figure 5.6). With a value of 3, the sum
of squared errors of this model was much smaller than those of the other models.
This indicates that people are consistentlywilling to sacrifice themselves in the case
of being able to save a group of 5 or more avatars with this decision.
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Methods

Participants
Two hundred sixteen unpaid subjects participated in the study. Participants were
acquired fromvarious venues throughoutOsnabrück. Data from27participantshad
to be excluded from the analysis for various reasons: 15 participants did not com-
plete the experimentdue tonauseaordisagreementwith theexperimental settings;
12 participants did not pass training (more than six trials). In the end, data from 189
participants served for analysis (62 female, 127 male). They were aged between 18
and 67 years with a mean of 24.32 years.

Stimuli and Design
In the VR environment participants were driving a car on a one-directional track
with two lanes. The environmental surroundings varied between five settings. One
suburban and two mountain settings consisted of a dual roadway, where the start-
ing lane was randomized for each trial. The two city settings consisted of a one-way
street and a drivable sidewalk; starting lanewas always the street. The carwas driv-
ing at a constant speed of 36 km/h, visible to the participants on the car display, and
the track length ranged between 180 and 200m to avoid habituation (Figure 5.7).
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Figure 5.7: Screenshots of the VR environment in the different modules. a Age-Considering Greater Good module in the sub-
urban setting. b Quantitative Greater Good module in the mountain setting 1. c Self-Sacrifice module showing the road
sign warning of the oncoming chasm in the mountain setting 2. d Self-Sacrifice module in the mountain setting 2. e Age-
Considering Greater Good module in the city setting 2. f Age-Considering Greater Good module in the city setting 1

At the end of each lane, distinct types ofmale avatars appeared in different com-
binations, forcing participants into a dilemma-situation. The lane side onwhich the
two types of avatars appeared was randomized for each trial (excluding modules
containing a sidewalk) and did therefore not correlate with the starting lane.

To decrease the visual range and thereby guarantee a constant decision-making
time of four seconds, all settings included foggy weather. At the beginning of each
trial, a beep indicated to the participants that they had control over the vehicle. The
relatively low speed of the car was selected as a compromise to allow reasonable
time for deliberation and to have the nature of the obstacle clearly visible. At the
same time, it involves the danger that not all participants perceive a car crash as
a threat to the life of the avatars. At 15 m from the avatars, another beep signaled
that the control over the vehicle was withdrawn, as later inputs would have led to
incomplete lane change maneuvers.

Five Hypotheses were tested using different experimental modules.The Quanti-
tative Greater Good module consisted of three trials to test Hypothesis 1. The envi-
ronment for this module included the suburban and mountain setting 1. There was
always one standing adult avatar in one lane (randomized) as opposed to either two,
four, or six in the other lane.

The Age-Considering Greater Goodmodule aimed at testing Hypothesis 2. It was
composed of six trials in the suburban setting. A child, an adult, and an old person
were used as avatars. Additionally, a kneeling adult served to make sure that possi-
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ble effects were not only due to the size of the stimuli, given that the kneeling adult
was of the same height as the child. Each trial presented one of the following six
combinations of avatars: One child versus one standing adult, one child versus one
old person, one standing adult versus one old person, one kneeling adult versus one
standing adult, one kneeling adult versus one old person, and one kneeling adult
versus one child.

The Influence of Context module investigated Hypothesis 3 and consisted of six
trials in the city settingwith a one-way street plus a driveable sidewalk on the le� or
right side in the city setting 1 or 2, respectively. The settingwas randomized for each
trial. There was always one standing adult on the sidewalk and two to seven stand-
ing adults in the street, each combination occurring once for every participant.

The Interaction of Age and Context module testing Hypothesis 4 was based on
the Influence of Context module also using the city settings, including children as
avatars. Therewere three trials with the following combination of avatars: two chil-
dren in the street versus one standing adult on the sidewalk, one child in the street
versus two standing adults on the sidewalk, and one child in the street versus one
standing adult on the sidewalk.

The Self-Sacrifice module investigating Hypothesis 5 contained six trials in the
mountain setting 2. Here, a chasm was implemented in the right lane of the street
with a construction sign in front of it. The chasm was at the edge of the mountain
road and it was bottomless. A vehicle or person falling into the chasm would fall
down the steepflank of themountain. A varying number of standing adults, ranging
from two to seven avatars, was presented in the le� lane, while the chasmwas in the
right. It was created to imply that participants would commit self-sacrifice within
the experimental paradigm by driving over the chasm when using the right lane.

Procedure
A�er giving written consent, participants were seated in front of a keyboard and
equippedwith theOculus Ri�DK2 in combinationwith BoseNoise-CancellingHead-
phones. TheVRexperiment containedall instructionsandconsistedof threephases:
training trials, experimental trials, and a questionnaire. Participants used the le�
or right arrow key to change the driving lane. The training phase contained three
trials where participants had to avoid three pylons that appeared in one of the lanes
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alternately. If they hit a pylon, the trial had to be repeated. A�er successfully com-
pleting all three training trials, the various types of avatars were presented to the
participants before the experimental trials started. Finally, a questionnaire was an-
swered, which is beyond the scope of the present paper. The duration of the whole
experiment was approximately 15–20 min.

Statistical Tests
For all analyses, only final decisions were taken into account.A permutation test
was performed to investige the influences of the number of avatars on participants’
decisions in the Quantitative Greater Good, Age-Considering Greater Good and In-
teraction of Age and Context modules for each condition individually. Additionally,
a binomial test using pooled data proved significance in comparison to the null hy-
pothesis of a random distribution of choices in the aforementioned modules.

For the Influence of Context and for the Self-Sacrifice module, fractions of trials
that would need to be changed for each participant to show a consistent decision-
behavior were calculated. A fraction of up to 5% could be explained by a natural
error rate (Kuss et al., 2005). To test whether the data match the hypothesis of a
general switch point, six models of different underlying switch points were fit-ted
to the data and the performance of each was computed. Assuming that upon a cer-
tain switch point the number of participants committing self-sacrifice would not
further increase, the mean between the conditions with an avatar number higher
than a certain switch pointwas calculated. Themodel was assumed to pass through
thismean in a plateau. For the conditionswith avatar numbers smaller than the un-
derlying switch point, a linear increase up to the calculated mean was expected. To
test which model fits the data best, the sums of squared residuals were computed
and compared.
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5.3 | Developing Normative Ethics for ADVs

Discussion
When driving a car in VR, participants act in favor of the quantitative greater good.
That is, their behavior consistently aims at sparing as many avatars as possible.
This even applies to situations in which participants have to virtually sacrifice their
own avatar to save others. Age and context modulate these behavioral patterns.
Specifically, the probability to sacrifice an avatar and its expected remaining lifes-
pan showed an inverse relation. Participants consistently saved younger avatars as
opposed to older ones. Surprisingly, the context of sidewalk versus street only had
a small influence. In conclusion, the results throughout all conditions support the
hypothesis that people act in favor of the quantitative greater good, even in scenar-
ios involving a sidewalk or self-sacrifice.

Concerning the results of the quantitative greater good module, it could be ar-
gued that the participants’ decisions were guided by self-preservation, based on a
higher expected probability for themselves to survive when hitting only one avatar
com-pared to a group of avatars. However, results of the Self-Sacrifice module in-
dicate that for most participants the influence of self-preservation is limited as al-
readymore than half of the participants arewilling to commit self-sacrifice for only
a group of two avatars. This led us to believe that the decision process was mainly
guided by the aim to spare as many avatars as possible.

On the other hand, even though self-preservation seems to be limited, the re-
sults show that a considerable portion of participants value the life of their own
avatar higher than the life of another avatar as reflected by the existence of indi-
vidual switch points for avatar groups higher than two. The overall behavior in the
self-sacrificemodule couldhavealsobeen influencedby the case that itwasnot self-
evident that hitting one or more avatars would automatically lead to their death.
Indeed, a�er the experiment some participants reported that the car was too slow
to kill a human being. Before killing themselves by driving into a bottomless chasm
in the self-sacrifice trials, the participants chose to drive into the group of avatars,
risking injuries but not lethal damage. Although phrasing the trolley dilemma not
in terms of life and death but in terms of health or injury is equivalent, it might lead
to differences in decision-making. This should be taken into account when inter-
preting the results of the Self-Sacrificemodule where injuring avatars is opposed to
killing their own avatar.
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Other complex processes can be assumed to underlie decisions in the age con-
sidering greater good module. In social sciences, the term disability-adjusted life
years (DALY) is used (Murray, 1994). This is a complex measure that can be roughly
understoodas thenumber of years lost in ahealthy life. Suchadescriptionnaturally
explains the inverse relation between age and the probability of being spared. Thus,
the decision process might be better described not by simply counting the number
of lives, but with amore complexmeasure, such as the DALY. The possible influence
ofmeasures like the DALY can be underlined by the control condition using kneeling
adults instead of children, showing that the effect of sparing children in comparison
to adults was not purely determined by the size of the avatar’s visual appearance.
Nevertheless, the aspect that a collision might not necessarily lead to the death of
the victim has to be considered when comparing avatars of different ages, too. Be-
sides ageandexpected lifespan, the likeliness todie in the caseof a crashmighthave
influenced the decision of participants to hit adults more o�en than children. This
could also explain the preference to save kneeling adults in comparison to stand-
ing adults due to the increased risk of fatal injury when hit by a car in a kneeling
position. Hence, it is possible that participants were pondering complex decision
processes, including severity of injury and risk of death. These complex decision
processes were, contrary to expectations, not substantially affected by a sidewalk,
given that participants did not seem to be reluctant to drive on the sidewalk to spare
a number of avatars higher than two.

In general, though, decision processes could have been influenced by a lack of
incentives. Although VR provides amore realistic experience than surveys or picto-
rial descriptions, it can still, especially regarding self-sacrifice, be argued that par-
ticipants in contrast to real-world situations did not have to fear any consequence
for their actions. However, it is not possible to implement an experimental feature
that represents self-sacrifice or killing other people in a realistic and ethically ac-
ceptable way. It is, therefore, questionable whether people would actually be will-
ing to sacrifice themselves in order to act in favor of the quantitative greater good
when it comes to such a dilemma situation in traffic or whether their behavior only
emerged out of social desirability. This leads to another important aspect, namely
that whatever is socially desirable might considerably differ between societies. It
is to be noted that since the majority of participants in the current study are Ger-
mans and the moral behavior of people with different socio-economic and political
backgrounds can significantly vary, the results cannot easily be transferred to other
societies.

Moreover, the behavior of participants could have been affected by limitations of
graphical display and therefore immersion. This contrasts with some participants
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dropping out of the experiment because they did not feel comfortable with hitting
or even killing virtual avatars. The latter observation does not support a lack of real-
ismor immersion. However, there seem to bemany individual differences in play. In
this regard, it cannot be ruled out for sure that some participants, especially young
ones, were not as committed to the study as expected but weremainly interested in
the new VR technology offering a game-like experience. Thus, the average degree of
immersion was high, but individual variations should be taken into consideration
in future research addressing these problems.

In the field of implementing autonomous driving behavior, empirical knowledge
is relatively sparse and ethical approaches are widely debated. Usable ADVs as well
as advanced simulation techniques, like 3D VR, are relatively new. Consequently,
empirical studies rely heavily on questionnaires directing issues straight at poten-
tial customers. The behavior of ADVs and their control algorithms will be judged by
the standards and ethics of the societies in which they operate. This again empha-
sizes the crucial role of acceptance, because self-driving carsneedmoral algorithms
capable of expressing three aspects: being consistent, not causing public outrage,
andnot discouraging potential buyers (Bonnefon et al., 2015). For example, theHead
of Active Safety of Mercedes Benz, Christoph von Hugo, stated that Mercedes would
only build ADVs that would consequently save the driver of the vehicle in hope that
thiswouldmake the carmore attractive to buyers (Morris, 2016). But themorality of
such automated vehicles should be questioned as there is a gap between what peo-
ple state how they want an ADV to behave and what they would actually buy (Bon-
nefon et al., 2016). It is debatable whether ADVs should be programmed based on
economic reasons instead of human behavior or ethical arguments.

As mentioned before, traffic is a complex interaction between many road users.
The choice to always save one’s the own life in a critical situation affects the future
response of other road users. Theremay be a lot of people who would choose a self-
sacrificing ADV, but if the majority uses a self-preserving car, this will change. In
cases like these, the result could be dramatic for society since the chance of being
killed in trafficwould rise (Gogoll &Müller, 2017). In the following lines, an argument
for an obligatory ethics setting in ADVswill be developed. It will also be explain, why
a modified trolley dilemma, like it is used in this study, is suitable for a foundation
of such a regulated ethics setting.

The above mentioned standpoint of Mercedes Benz represents a moral egoist
standpoint. Such a standpoint is plausible if the driver cannot be sure how another
car will react in the case of a crash. If the passenger is not disposed to act in favor
of the greater good, why take the chance of being killed by a stranger who might
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act selfishly? This would lead to a prisoner’s dilemma like situation. Each road user
could choose between self-sacrifice as an analogy for cooperation in the prisoner’s
dilemma, or self-preservation as an analogy for defection. To maximize the good
for the society, it would be adequate to choose a possible self-sacrifice. This would
be the lowest toll for society, like in the prisoner’s dilemma the lowest combined
sentences. This could be an ADV acting in a utilitarian way, as it sacrifices the pas-
sengers for the greater good no matter how another road user would act in a crash
situation. But if one road user has the possibility to stay alive while the other road
user sacrifices her- or himself, the result would likely be thatmost people prefer the
ethics setting of self-preservation to prevent being exploited by people driving, for
example, a selfishly programmed vehicle. Hence, even if an individual would like
his or her ADV to act in a utilitarian way in traffic, the outcome for society would
be worse due to the clash of different ethical settings. For example, an ADV with
a strong passenger preservation setting might push a school bus full of children
into an abyss to ensure the safety of its own passenger. Such a tragedy could be
avoided by the same ethical setting for all ADVs, like a utilitarian one. Therefore,
one could argue for an obligatory ethics setting, a form of governmental interven-
tion as a common standard for the behavior of ADVs in crash situations. As Gogoll
andMüller, 2017 showed, a summarizedmaxim for such a standard could be tomin-
imize harm for all the people involved. Moreover, this argument also does not allow
mixed traffic as an interim solution since this comes close to the situation of per-
sonal ethics settings which would lead to the aforementioned prisoner’s dilemma,
too.

Apotential solution to thisdilemmaresides inacontractarianstance. Thepresent
findings of participants acting in a utilitarian way would, however, probably not
last long if transferred to a real traffic scenario with a variety of road users and
an according variety of intentions in possible crash scenarios. In this case, the ob-
served behavior of participants corroborates the results of the thought experiment
by Gogoll and Müller, 2017. In the present study, participants’ behavior could be
described by utilitarianism more than self-preservation. Yet, not only saving the
passenger of the vehicle at all times but also programming a vehicle to behave in
utilitarian ways, even in dilemma situations not including self-sacrifice, is contra-
dicted by German law. The first para-graph of the first article of the German consti-
tution states that the humandignity is inviolable, which implies that all humans are
equal and contradicts any evaluation of human life. This forbids the saving of one
human at the expense of others, as well as any quantifying perspective on human
lives. Even if possible solutions for the implementation of completely autonomous
cars are contradicted by the law, it is important to discuss these issues in order to
advance towards a legal solution in the future.
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According toMorris, 2016, the statement ofMercedes Benzwas later revised due
to thementioned legal issues. Nevertheless, ADVs not only have to embody the laws
but also the ethical principles of the society they operate in (Gerdes & Thornton,
2015).

Regarding the issue of self-sacrifice, it is arguable whether the trolley dilemma
is an adequate setting for the moral problems of ADVs. As Gogoll and Müller, 2017
state, the trolley dilemma is missing strategic interaction and iteration, meaning
that the participants’ actions alone determine the result of the dilemma situation.
Theparticipant’s decision is independent of otherhumanactions. Thedecisiondoes
not take responses of other road users into account. Simply spoken: The situation
in a real-life trolley-like scenario is not only determined by a personal ethics set-
ting, but by all involved road users and their ethics settings. The goal of this study
was, how-ever, to develop a derived ethics setting which most people agree on. The
only way to be able to see what people agree on, even if it is only due to social accep-
tance, is to isolate the strategic intentionsand iterations fromthepossible scenario.
In these cases, the participant’s decision is independent of the reaction of different
road users aswell as of social acceptability since only the participantwas able to see
the result of her or his action.The present findings suggest that the gap between a
set ofmandatory ethical rules, which solve the prisoner’s dilemmaand the behavior
of the participants is not as big as one would expect.

Despite the case that various studieswere conducted under the assumption that
people would like ADVs to behave similarly to humans (Goodall, 2014; Malle et al.,
2015) concerns could be raised about the uniform behavior of ADVs. Sikkenk and
Terken, 2015 found that many factors dramatically influence human behavior in
traffic, e.g. weather conditions and the driving style of other traffic participants.
Variation does not only occur in driving behavior but also in judging decisions of
humans in contrast to those of machines (Malle et al., 2015). This was also shown
by J. Li et al., 2016 who examined the differences in responsibility between humans
and machines in cases of inevitable fatal crashes. Participants had to judge the de-
cision of either a human driver or an autonomous car in a dilemma. In contrast
to human drivers, where utilitarian decisions weremost favorable, participants ex-
pected ADVs to behave in a utilitarian manner under all circumstances.

Different studies point out that the general population seems to favor utilitarian
decisions (Bonnefon et al., 2015; J. Li et al., 2016; Malle et al., 2015). This applies even
to cases inwhichdrivershave to sacrifice themselves for the greater good (Sachdeva
et al., 2015). Such behavior can be understood as an act ofmaximizing utility (Thom-
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son, 1985). Therefore, it is mostly referred to as utilitarian reasoning and decision-
making. Ab initio, utilitarian decisions offer themselves as a quantitative treatment
and appear to be suitable for ADVs. However, the problem of how to implement
ethics in machines, especially in dilemma situations, remains. A recent project at
the Bristol Robotic Laboratories (Winfield et al., 2014) tried to implement Asimov’s
three laws of robotics2 to show that robots can be ethical, as well as safe. In this ex-
periment, they defined a puck-like robot as a humanwhichmoved towards a hole in
a table. Another robot, the one with the implemented robotic laws, had the task to
save the robot that moved towards the hole. But the experiment showed that there
was no such thing as a simple rule, like the first Asimov law of robotics, to save a hu-
man life in dilemma situations. In these situations, the robot showed inconsistent
behavior when it should rescue two robots moving towards the hole. Some-times it
was able to rescue one, sometimes even both, but in the worst scenario none was
saved. Tofix that,more rules have to be applied to the initial code. Butwho is the one
to be saved first? Could there be a rule to prioritize one life over another? A simple
solution is not in sight but seems to be a crucial aspect in promoting ADVs to poten-
tial customers and allowing them to be an integral part of society. Ethical dilemmas
do not necessarily have absolute answers, but they do have significant ethical im-
plications for users. Ethicists serving as experts for ethical evaluations of robots
are key to solving the question of how ADVs should behave (Millar, 2016). Despite
several unresolved issues, there are many ethical arguments for fully autonomous
cars. Not only is it likely that they improve mobility for elderly and disabled peo-
ple, but also reduce crashes and annual fatalities in traffic, ease congestion, allow
more work-related activities while driving, and therefore a productivity gain, im-
prove fuel economy, reduce parking issues, and offer transportation to those unable
todrive. For example, theUSeconomicbenefits could reacharound25billiondollars
per year with only a 10%market penetration. Including high penetration rates, this
raises the annual benefit up to 430 billion dollars, which makes ADVs a technology
for a better future (Fagnant & Kockelman, 2015). The number of avoided fatalities is
a sufficient reason to promote ADVs. Therefore, the idea of McBride, 2016 for partial
automation only is decidedly rejected here. Instead, further research addressing
open questions should be encouraged. These range from technical issues to ethical
and psychological problems, as well as legal aspects, such as responsibility and pol-
icy issues.

2The three laws of robotics (Asimov, 2013)were created as a part of a sciencefictionnovel by Isaac
Asimov as a concrete beginning of possible ethical settings for robots. They are human centered, and
easily applicable to ADVs as well. 1. A robot may not injure a human being or, through inaction, allow
a human being to come to harm. 2. A robot must obey the orders given it by human beings except
where such orders would conflict with the First Law. 3. A robot must protect its own existence as
long as such protection does not conflict with the First or Second Laws.
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In summary, the results show that participants consistently behave in utilitarian
ways in various dilemma situations. Their decisions were only slightly modulated
by context, such as a sidewalk. Furthermore, the effect of agemight be subsumed in
an utilitarian decision process as well. Even in conditions involving a self-sacrifice,
participants’ decisions were compatible with a utilitarian strategy. The study de-
scribes driver decisions in possible traffic dilemma situationsmore accurately than
a mere survey. In contrast to previous surveys, it is shown that people are inclined
to act in a utilitarian way. The majority of participants acted in a way that their be-
havior would minimize harm to all road users. This maxim could be derived as a
mandatory ethics setting in all future ADVs, because a personal ethics setting could
result in a prisoner’s dilemma situation and more fatalities in traffic. The option
of implementing such a setting is more likely to be accepted if people indeed act
in the way discovered as opposed to the way they describe their actions. The study
provides a basis for an algorithm implementingmorals regarding ADVs. It describes
howhuman car driverswould behave in these conditions andwhat is therefore seen
as adequate behavior in general traffic situations.

132



5.3. Developing Normative Ethics for ADVs

Acknowledgements
The authors would like to thank all study project members: Aalia Nosheen, Max
Räuker, Juhee Jang, Simeon Kraev, CarmenMeixner, Lasse T. Bergmann and Larissa
Schlicht. This study is complemented by a philosophical study with a broader scope
(Larissa Schlicht, Carmen Meixner, Lasse T. Bergmann). The work in this paper was
supportedby theEuropeanUnion through theH2020-FETPROACT-2014, SEP-210141273,
ID: 641321 socializing sensorimotor contingencies (soc-SMCs), PK.

Author Contributions
This study was planned and conducted in an interdisciplinary study project super-
vised by Prof. Dr. Peter König, Prof. Dr. Gordon Pipa, and Prof. Dr. Achim Stephan.
Maximilian Alexander Wächter, Anja Faulhaber, and Silja Timm shaped the exper-
imental design to a large degree. Leon René Sütfeld had a leading role in the im-
plementation of the VR study design in Unity. Anke Dittmer and Felix Blind con-
tributed to VR implementation. Anke Dittmer, Felix Blind, Silja Timm, and Maxim-
ilian Alexander Wächter contributed to the data acquisition, analysis, and writing
process. Anja Faulhaber contributed to thedata acquisition and thewriting process.

Financial Interest
This publication presents part of the results of the study project “Moral decisions in
the interaction of humans and a car driving assistant”. Such study projects are an
obligatory component of the master’s degree in cognitive science at the University
of Osnabrück. It was supervised by Prof. Dr. Peter König, Prof. Dr. Gordon Pipa, and
Prof. Dr. Achim Stephan. Funders had no role in the study’s design, data collection
and analysis, the decision to publish, or the preparation of the manuscript.

133
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5.4 | Chapter Summary
In this chapter, we have seen that the test subjects behaved primarily utilitarian.
The decisions made may be influenced by the context of the traffic situation, but
they remain subsumable under utilitarianism. Similarly, the age of the other road
users had a minor influence on the decisions made by the subjects. The majority of
participants just acted so that their behavior minimized harm to all road users or
maximized years of life.

Therefore, we argue that the benefit of the larger group could serve as a gen-
eral guideline for future vehicles. This maxim may become a mandatory ethics re-
quirement in all future ADVs. Personal ethics settings implemented to reflect the
users’ values could lead to more traffic fatalities. Personal ethics may lead to a
prisoner’s dilemma situation, where a suboptimal outcome is chosen to prevent ex-
ploitation by other road users. However, the presented study shows that therewas a
considerable consistency over participants toward utilitarian decisions (Faulhaber
et al., 2019). Therefore we argue, that utilitarian decisions are considered appro-
priate behavior in general traffic situations (Bergmann et al., 2018). Similarly, fur-
ther studies could show that people act utilitarian themselves and demand this of
other drivers when they evaluate the situation as observers. What is exciting about
this is thatpeople especially demandutilitarianbehavior fromautonomousvehicles
(Kallioinen et al., 2019). Thus, utilitarianism not only seems to be a practical maxim
for performing socially acceptable actions in dilemma situations, but it also objec-
tively helps minimize harm in society. In summary, a utilitarian vehicle reflects the
values of the majority of society and contributes to society’s good by minimizing
casualties. Thus, as an easy-to-implement action guide, utilitarianism meets the
requirements as standard programming for self-driving vehicles (Faulhaber et al.,
2019).

There has beenmuch development in jurisprudence on this topic in the past few
years (Greger, 2018). In particular, Germany dra�ed a new traffic law that is particu-
larly capable of providing information tomake autonomous vehicles a reality on our
roads (Bundesministerium für Digitales und Verkehr, 2017). Even though the utili-
tarian approach offers an implementable solution that minimized fatalities, there
are unresolved issues. On the one hand, because the implementation of an manda-
tory utilitarian approach means discrimination against certain individuals. If a ve-
hicle selects individual road users in an extreme situation, and in case of doubt, the
elderly road users as collision targets, this represents discrimination which is not
compatible with our constitutional Law (§ 1 paragraph 1 GG). Of course, it is possible
to discard any personal information like gender and age, but still the car would ac-

134



5.4. Chapter Summary

tively target individuals compared to a group. This itself is a problematic implemen-
tation since quantification in weighing human life for the protection of another is
not consistentwith our constitution (Bundesministerium fürDigitales undVerkehr,
2017; Bundesministeriums der Justiz und für Verbraucherschutz, 2013). Thus, utili-
tarianism is hardly possible basis for a normative ethic of self-driving vehicles.

Another evenmore severe problem is that the ethics Council considers any fixed
programming for self-driving vehicles incongruent with the German constitution.
The reason is that any decision that is recorded in code is intentional. For example,
in the case of targeting in road traffic, this could be punished as intentional homi-
cide (Bundesministerium für Digitales und Verkehr, 2017; Hevelke & Nida-Rümelin,
2015a). Thus, it is not advised to implement generalized decisions in a dilemma sce-
nario.

However, what does this mean for the goal of this thesis? The course of the first
chapter described the underlying technology of self-driving vehicles. The taxonomy
of self-driving vehicles according to the SAE was discussed as well. It was shown
which activities are necessary for the driving task and in which classification the
portions of the driving task on humans and the machine are divided. In the con-
nection of these topics, it could be shown that the driving task turns out to bemore
difficult formachines than intuitively o�en assumed since the vehicle does not only
have to make calculations about its own behavior. Instead, it continuously com-
pares its own movement with other human road users, whose behavior is difficult
to predict.

Similarly, we have seen that the current legal basis does not allow the vehicle
to drive without a driver (Greger, 2018). Thus, from a legal point of view, vehicles of
automation levels 4 canonly be implemented in public traffic, if there is a human su-
pervisor involved. Therefore, it appears that the current level 3 will remain in place
until a legal and technical solution for fully autonomous driving vehicles is found.
Until that time, the development will likely remain in level 3, in which the driver
can take over tasks that are not relevant to driving but has to respond quickly to a
takeover request. However, thehuman remains in charge of all the vehicle’s actions.
As we have seen in this chapter, the machine is not allowed to make vital decisions
independently. It has also been shown that humans in level 3 vehicles have a longer
reaction time and may not intervene quickly and in time in traffic events. There-
fore, we see the irony of automation since the technology decreases driving safety
while increasing automation that is thought to prevent accidents. Because of these
remaining issues, the driving automationmight face a winter until the full automa-
tion is achieved.
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How can a standstill in development be prevented in the coming years? One so-
lution that will be proposed here is based on improving driver response by read-
ing desired actions from driver behavior. In summary, with the studies shown in
this thesis, we could demonstrate that it is possible to test self-driving vehicles and
human-machine interaction with them in virtual reality and create realistic envi-
ronments that enable valid research of the HMI in the context of ADVs. We have
seen that theway a vehicle communicates can also increase the trust of passengers
toward the ADV. This can be shown via a self-report of a simplified TAM version and
the analyses of head movements of a large data set of participants. Likewise, we
are still evaluating the extent to which a driver can react faster andmore appropri-
ately in a takeover using a human-centered HMI in an augmented reality approach
in virtual reality. At least there is supporting literature that shows similar results
(Jarosch, Gold, et al., 2019; Wintersberger et al., 2020).

Accordingly, in the next section, we will develop a proposal for a human-centric
and semi-autonomous HMI. Here, existing automation technology is used to detect
the humandriver’s intentions before the driver can act. Subsequently, themachine,
which now knows about the driver’s intention, intervenes in the driver’s actions
to make the decision and action of the human driver more precise. This action is
thought to stabilize drivingmaneuvers if the human reacts too violently or too little
due to lack of time. Wewill also discusswhether it is still possible to simultaneously
solve the ethical component and the legal issues with such an approach. Ideally, we
will be able to build a framework in which it is possible to build such an experiment
in the coming years to show that we can at least partially circumvent the current
weaknesses and hurdles on the way to automation.
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Chapter 6. Towards Multimodal Human-Machine Cooperation

6.1 | From Interaction to Cooperation
In the previous chapters, various aspects of the interaction between humans and
ADVs were explained. These chapters identified problems that may be a potential
barrier to the further development of self-driving vehicles - ranging from the very
foundation of this technology to the human-machine interaction. Yet, a closer look
also revealedopportunities to transformpotential problems intonew technical pos-
sibilities in each chapter. The following part aims to summarize the previous chap-
ters and create a new research idea based on the gathered knowledge. The sug-
gested idea is called SensARa: a machine-learning-based HMI for human-machine
cooperation thought to solve issues of the OOTLU in the case of a fast and precise
takeover, as well as legal and ethical issues of automated decision making for level
3 automation.

As seen in the first chapter, self-driving vehicles are thought to be the next step
toward large-scale processing of vast and complex data by amachine in themiddle
of our society (Dajsuren & van den Brand, 2019; Ryan, 2020). Yet, technical, legal,
social, and ethical challenges might slow down or even prevent the development of
vehicles automation higher than level 3. As described in the introduction, the auto-
mated vehicle will be confronted with uncertainties in sensors readings or the un-
trained environment. These uncertaintiesmay lead to false assumptions of the sys-
tem and are therefore a possible source for accidents (Fagnant & Kockelman, 2015).
When it comes to a fatal decision, it is not even clear onwhich basis the ADV has de-
cided since the vehicle’s algorithm ismost likely opaque. Thismakes the question of
guilt and responsibility irresolvable. Furthermore, while a systemmay be designed
for accident avoidance, there is still a small chance of inevitable accidents (Faul-
haber et al., 2019). Therefore, current systems cannot replace a responsible driver
or supervisor at assessing and evaluating a critical traffic situation. (Bundesminis-
terium für Digitales und Verkehr, 2017; Hevelke & Nida-Rümelin, 2015b).

Nevertheless, it was shown that ADVs are desirable since they most likely dec-
imate fatal accidents in individual traffic (Campbell et al., 2010). Also, they allow
for more environmental-friendly mobility as fewer cars are needed, and a more in-
clusive individual traffic, since no driving action, and therefore no driving license,
is required anymore (Chehri & Mou�ah, 2019; Cusumano, 2020; Hars, 2016). Since
acceptance in the general public is still low, it is essential to raise awareness of op-
portunities and risks in order to create understanding and acceptance in this tech-
nology (C. Lee et al., 2019; Waytz et al., 2014). One approach discussed in this thesis
is to build a human-machine interaction providing information regarding the ve-
hicle’s actions. This can be done in any modality, as long as it enables functional
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understanding of the system, but effectiveness differs. (Endsley et al., 2003; Koo et
al., 2015; Koo et al., 2016). Communication about the current state and decision of
the car increase acceptance and trust. However, the right information at the right
time is also thought to bring the driver back into the control loop in case the driver
is distracted. At the end of the introduction, virtual reality was introduced to inves-
tigate a possible human-machine interaction in a safe and realistic yet controlled
environment. Here, testing self-driving functionalities and research on the human-
machine interaction in critical traffic events are possible, while the test subjects’
reactions are monitored precisely.

In the secondchapter, thepresentedproject LoopAR intends toexamine thehuman-
machine interaction in the context of level 3 self-driving vehicles, where a human
driver can engage in NDRTs but is still responsible for all driving actions of the au-
tomation features (Dix et al., 2021; Greger, 2018). The study aims to examine if a
multimodal HMI can decrease takeover time while increasing the precision of the
human response by guiding human attention. This study included a modular and
open access unity toolboxwith sufficient realismand size to resemble realistic driv-
ing environments conform to traffic regulations. LoopAR is thought to foster VR
research and serve as mobile and cost-efficient simulator replacement. We could
show that relevant research can be achieved in mobile and cost-efficient simulator
replacement using customer-grade VR equipment. Additionally, we presented the
code required and the assets used in this environment that enable interested users
and researchers to easily and quickly adapt virtual studies in the context of vehicle
automation.

To testwhether in-vehicle verbal feedforward and feedback cues given by the car
can increase trust and acceptance in self-driving vehicles, we created a virtual driv-
ing experiencewithmore than26000participants, as seen inChapters 3 and 4. A�er
the experimental trial, we asked subjects to rate the ease of use, perceived useful-
ness, intention to use such a car, and trust in the automation. Wewere able to show
that verbal information given by the car increases trust and perceived usefulness,
which is supported by prior research (Baltes et al., 1990; Bengler et al., 2020; Endsley
et al., 2003; Koo et al., 2015; Wintersberger et al., 2020). Nonetheless, we were also
able to show that trust does not seem to be the deciding factor for acceptance since
we saw a negative effect on the intention to use such a vehicle and the perceived
ease of use in the data. Also, we found a substantial difference in the questionnaire
scores betweenmen and women and a decrease in acceptance with increasing age.

However, we saw that there is no generalizable solution for the problem of how
a self-driving car should communicate with people. Instead, we found that people
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can be divided into three groups with different adversarial needs. The first group -
the doubtful - is defined by low scores in ease of use and intention to use. It can be
assumed that the skepticism towardsADVs is not purely due to the technology itself.
Rather, we suspect that it has to dowith technical competence. As seen in the study
from Chapter 4, the reason for this is the high scores for trust and perceived use-
fulness, but the low scores for ease of use.The second group is defined by uncertain
users, with low intention scores in the AVAS condition but higher scores in the silent
automationwithout verbal cues. Herewe assume that this group is open to automa-
tion but finds the additional communication annoying and prefers the conventional
radio to the self-explanatory vehicle. The final group is the group of overestimators
with the highest scores overall conditions. Previous research also identified this
group of ADV users, which is defined by unrealistic expectations about the ADVs’
capabilities. The overestimation of the vehicles capabilities might be a substantial
factor in fatal accidents (Gillmore & Tenhundfeld, 2020; Penmetsa et al., 2021; Win-
tersberger et al., 2020).

While analyzing the recorded headmovements of the participants, we were able
to show that subjects exhibited larger but slowermovements when they weremore
accepting and faster but narrower movements when they were less accepting. In
addition to the explicit attitudes from the questionnaires, we could also show that
the headmovements during the experimental trials can be used as a validmeasure-
ment to examine implicit attitudes. From this finding, the idea arose to create an
adaptive HMI for level 3 automation vehicles that can alter its communication style
based on the behavior of a human passenger. As the head movements of the hu-
mandriver canbe associatedwith theneed for information about the current traffic
situation, the car would assess these movements and adjust the information given
accordingly so that the human driver is supported optimally in a fast takeover situ-
ation. In an automated driving situation, this could enhance trust and acceptance
since the car could quickly react to the needs of the out-of-the-loop passengerwhile
simultaneously enabling fast and precise reactions of the human supervisor in a
takeover maneuver.

Nevertheless, thedevelopmentof the tested self-driving functionalities still faces
legal and ethical obstacles. Therefore, we conducted another virtual driving exper-
iment, where we tested if a forced-choice decision in a dilemma situation can be
summed up under an ethical theory. We found that the tested subjects decided in a
utilitarian way. However, participants were influenced by the context of the traffic
situation. Similarly, the age of the other road users had a minor influence on the
decisionsmade by the subjects. Themajority of participants just acted so that their
behaviorminimized harm to all road users ormaximized years of life. Therefore, we
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conclude that minimizing damage, and in dilemma situations also minimizing the
loss of lives can be a possible implementation if the decision is not based on per-
sonal characteristics such as gender or age (Bundesministerium für Digitales und
Verkehr, 2017). Therefore, utilitarianism not only seems to be a practical maxim for
performing socially acceptable actions in dilemma situations, but it also objectively
helps minimize harm in society (Faulhaber et al., 2019).

The following and last section will be used to develop a human-machine inter-
action for level 3 automation based on the previous chapters. This interaction is
intended to turn the human and the machine into cooperation partners through
mutual knowledge about each other. This should solve the problems raised and en-
able further development of the technology.

Introduction

The question of how to design a user-friendly interaction for complex automated
systems likeautomatedcarshasbeen thesubject of scientificdiscussion fordecades
(Bengler et al., 2020; Endsley & Kiris, 1995; Norman, 1990). The main reason for this
question is that highly automated vehicles of level 3 and above will change the de-
mands on the driver’s cognitive system in a radical way (S. Li et al., 2019). The role of
humans as physically active decision-makers in vehicles will be replaced gradually
by automated systems (Lindgren et al., 2020), such as the Lane Departure Warn-
ing System (H. J. Kim & Yang, 2015) or Forward Collision Warning System (Haber,
1978). As seen throughout the thesis, with the growing efficiency of technical sys-
tems with a human fallback, human-centered interaction is becoming increasingly
important. The safety and reliability of an automated system, where humans and
machines share the DDT, cannot be achieved by optimizing technical components
alone (Schreurs & Steuwer, 2015). Instead, the reliability of automated systems is
primarily determined by the quality of interaction between humans and machines
as an intertwined process (Altendorf et al., 2017; Marberger et al., 2018). As previous
research suggests, in-vehicle communication about the vehicle’s state and the envi-
ronment can lead to a better understanding of the actions of the vehicle (Koo et al.,
2016; Wintersberger et al., 2020). Additionally, it is suggested that augmented real-
ity visualizations and warnings could be a promising technology to foster trust and
acceptance of algorithmic decisions (Nezami et al., 2021;Wintersberger et al., 2020).
Up to now, this is used to give the human a representation of the vehicle. The ideal
cooperative system should include representations of both interaction partners to
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ensure cooperation. This means that humans should understand and predict the
vehicle’s behavior, while the car can interpret and predict human behavior.

Throughout this thesis, we saw that while automation can increase safety and
comfort, its implementation is not without risk. One source of failures is a lack of
communication, when the human does not know about the vehicle’s actions and is
therefore not able to assess a traffic situation. Consequently, the responsible driver
acts inadequately. Still, not only the driver has too little knowledge about the ve-
hicle. It will be argued that the vehicle also has too little information about the
driver to enable satisfactory decision making. Since humans and machines have
only limited representations of each other (Waschl et al., 2019), we aim to develop
design recommendations to reduce the risks of misunderstandings in the human-
machine interaction on both sides. This applies in particular to situations where
humans have the task of taking over system control in the event of sensor failures
or malfunctions; the OOTLU (Endsley & Kiris, 1995). Thus, investigating the fluent
and fast control switch in the takeover is of crucial importance for the safety of au-
tonomous cars (Melcher et al., 2015).

As seen in the previous chapters, the driver in level 3 automationmust take over
immediately a�er a request, even when not engaged in driving-related activities. If
the takeover is unexpected, there is most likely an orientation phase in which the
driver tries to assess the current traffic situation (Merat et al., 2014). Unfortunately,
the driver’s reaction is o�en too slow in accident situations, as there is only a small
time frame of fewer than four seconds before an impact occurs (Green, 2000; Sum-
mala, 2000). Even in the case of fast reactions within said brief interval, studies
have shownmerely hectic responses by human drivers, which of course did neither
improve the situation nor the outcome (Melcher et al., 2015). As an alternative to
improve and shorten the takeover time and support reasonable actions, we suggest
supplying targeted information while discounting potential distractors to ease the
orientation phase and facilitate the driver’s reaction via an adaptive HUD.

Combining the chapter findings of this thesis, we can formulate a proposal for a
human-centered design. This is thought to increase the understanding betweenhu-
mans and machines. Therefore, this HMI can keep the human driver in the control
loop and represents a possible solution to the ethical and legal problems. In addi-
tion, it should thus be possible to enable a kind of trust calibration through the addi-
tional information and therefore reduce a possible overestimationwhile increasing
trust in doubtful users (Stephan, 2019). Finally, we will propose to enhance human
actions by automation, creating a humanized automation as human-machine coop-
eration rather than a fully autonomous systemwithout human drivers. In a critical
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situation, the machine can read the human intention and enhance the human re-
action that would have otherwise been uncontrolled because the human driver is
out-of-the-loop.

The European Union has formulated regulations on how the driving task shall be
safely handed over from the assistance systems to the driver, including the capacity
for the system to come to a stop if the driver does not reply appropriately. The regu-
lations include requirements for the HMI to prevent misunderstandings or misuse
by the driver. Specifically, the regulation requests a driver availability recognition
system to detect if the driver is present in a driving position, check for the safety
belt, and driver availability for a takeover. This includes eye blinking, eye closure
as well as head and bodymovements (Official Journal of the European Union, 2021).
In principle, this means closemonitoring of the driver is already possible today and
has even been approved by the EU for automated functions. Up to now, these regula-
tions of automated driving allow only under specific conditions, for example, when
the driver is available, and the vehicle is driving on roads where pedestrians and
cyclists are prohibited (Official Journal of the European Union, 2021; SAE Interna-
tion, 2014). Additionally, a physical separation should divide traffic from opposite
directions. If any of the conditions of the driver availability are not met, the system
shall immediately initiate a takeover request. Yet, the regulation itself states that in
an ongoing emergency, the deactivation can be delayed until the imminent collision
riskdisappears (Official Journal of theEuropeanUnion, 2021). These time-urgentac-
quisitions are an open backdoor to moral dilemmas. Especially in delayed takeover
situations, it can be assumed that the human driver can no longer act appropriately
in the short time available. So it remains to be said that drivermonitoring is already
possible today and even mandatory for automated vehicles of levels 2 and 3 in cer-
tain situations. It is also possible for a vehicle to resolve a critical situation without
the human driver if the latter is not prepared to take over. Even if it remains open,
how exactly a possible reaction looks like (Official Journal of the European Union,
2021). Nevertheless, it can be stated that the premises necessary for our proposal
regarding the close monitoring of the driver during a takeover are fulfilled.

Nevertheless, adaptive HMIs should not be limited to additional information to
the driver. In addition to recording the driver’smovements, feedback from the vehi-
cle to thedriver about thehumanactions is also essential to enablehuman-machine
cooperation. The background is the pragmatic turn in cognitive science (Engel et
al., 2013). In this sense, human cognition is defined as an activity that is only pos-
sible with interaction with the external world (Wilson, 2002). A central concept is
sensorimotor coupling, according to which motor actions are controlled by match-
ing expected and perceived sensory stimuli. This development matches the rapid
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progress ofmachine learning techniques in recent years. Asmentioned in the chap-
ter about the perception of self-driving cars, deep neural networks are a standard
in computer vision and a critical method for the perception of self-driving vehi-
cles (Georgevici & Terblanche, 2019) and complex systems prediction (J.-F. Chen et
al., 2014), where artificial systems o�en outperform human performance (Waldrop,
2019). Therefore, ADV’s ability to perceive and predict other road users and the
passenger will be combined with the premises of the embodied cognition to merge
them in a human-centered adaptiveHMI that provides information aswell asmotor
assistance to enable cooperation.

Theproposeddesign is basedon the LoopAR toolkit in chapter 2,where eye track-
ing data serve as anAR feedforward visual stimulus directly into VR. TheHMI should
be enhanced with machine learning algorithms to direct the driver toward the de-
sired action via specificmotor feedback. Accordingly, the car shouldwarn the driver
with additional sensory input, but it should also enhance the driver’s motor re-
sponseby interpreting intentionandexecuting thedesired action. This project aims
to bind together humans and machines in becoming true cooperation partners in
joint action. Thus, the vehicle reacts to the actual and predicted drivingmovements
and theNDRT-related behavior behind thewheel. In addition, the systemuses infor-
mation from the environment to ensure safe driving. We hope to shi� the paradigm
of future research from only visual-auditory-haptic cues to full sensorimotor inte-
gration assistance.

Materials and Methods

The experiment needs to be divided into two phases to use machine learning as ac-
tiveassistance. It includesan initial experiment,whereparticipants’ data is recorded
and later used to form amachine belief about the environment. This initial record-
ing is already done. Within the last year, we gathered data frommore than 200 par-
ticipants, in which eye tracking data, head position and rotation, steering wheel
angle, velocity, pedal angles, and the test subjects’ outcomes in critical traffic sit-
uations are recorded. As depicted in Figure 6.1 LoopAR covered the initial Setup of
calibration and driving training and stored eye tracking and driving data during a
drive in four different virtual environments with a large number of different road
users. The Motor AI drives a large amount of the experimental trial. During the
automated sections, the vehicle maneuvers the vehicle safely. In addition, we im-
plemented critical traffic events to test whether an HMI could bring the distracted
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Figure 6.1: Overview of the training phase for collecting participants’ data in four different environments

driver back into the loop. During 12 critical traffic events in the experimental trial,
the car handed over control to the human driver 2,5 seconds prior to the critical sit-
uations. The driving data within the traffic events were stored as well as the post-
study questionnaire. Depending on the condition, the experiment included an aug-
mented reality HUD that highlights potential collision partners in critical traffic sit-
uations. In the second phase, the car AI will be trained with the behavioral data
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from phase one. This data is used to shape an AI Belief and a new set of participants
will go through almost the same experiment as phase one. Gathered data of the test
subjects in critical traffic situations will be used to shape the car’s AI belief about
desired actions and outcomes (Figure6.2). Participant’s input from phase one will
be fed to the AI Belief, which will assist the driver by correcting inappropriate re-
sponses. This module is called SenseAI (Figure 6.2), and will operate with the help
of the already implemented MotorAI which controls the car outside of the critical
traffic events.
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Figure 6.2: Overview of the SensARa output of the SensAI module

However, SenseAI will not be trained on subject data alone. Trained convolu-
tional neural networks are thought to enhance it. CNNs already exist for the clas-
sification and localization of environmental objects in self-driving cars (Ouyang et
al., 2020; Rao et al., 2019; M. Yang et al., 2019). These networks extract objects from
theenvironment. With the identifiedobjects, it is feasible to extract possible actions
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from the currently available environment of the vehicle. These actions are called ve-
hicle affordances and relate the environment’s features, including other road users
and their actions, to the vehicle’s possible actions in that situation. Up to this point,
this describes the current state of the art of automated features. A first step further
towards a transparent HMI is tomake the objects identified by the vehicle visible to
the human driver. To do so, critical objects will be highlighted in the augmented re-
ality HUD used in the LooAR project (Nezami et al., 2021; Wintersberger et al., 2020).

As mentioned before, SensARa will also include a human adaptivity: this is an
analysis of the driver’s behavior in the form of eye, head, and hand movements in
real-time. With the help of support vector machines, it is possible to predict in-
tended actions up to two seconds in advance for the given context (Keshava et al.,
2020; Keshava et al., 2021). This is thought to enable intention recognition, as the
car is able to interpret the behavior of its passengers before the onset of an ac-
tion. These functionalities will be coupled with the audio-visual feedforward and
feedback of the LoopAR toolkit. Therefore, it is possible to select the affordances
according to the vehicle affordances, the human affordances and the human inten-
tions. Thus, it is primarily possible to enable a quick reaction in takeover scenarios
since the attention can be focused on specific objects in the environment, which are
crucial for accident avoidance.

The underlying idea stems from the simple use of Bayesian inference. It presup-
poses that the system has prior knowledge of the probability distribution of certain
parameters. In the example presented here, the parameters include possible ac-
tions (e.g. braking or steering) of the driver or the autonomous car. In Bayes’ theo-
rem, these actions are defined as the prior. We use the test subject’s inputs of the
first phase of the experiment to define the prior. In the second phase, these inputs
will beused toupdate thebehavior of theAI car. TheAI beliefmodule (Figure6.2) cal-
culates the probability (post-hoc) of a particular driver action p(action) in a critical
event. It uses the previous test subject inputs as an update factor (prior) and con-
stantly multiplies it with the drivers’ input (likelihood) during a critical situation.
Since the input is multiplied every instance where the participant provides input,
the probability of the action which is in line with the participant’s input, becomes
more andmore pronounced during the critical situation. Although, this rather sim-
ple system is blind to certain objects and only allows testing in already defined traf-
fic situations without moving road users. Thus, the system does not know whether
the potential collision object is a pedestrian or a tree, but only estimates the like-
lihood of a collision. Therefore, for a first experimental trial, such a system could
be used, but should be replaced, or supplemented, by the more complex methods.
CNNs are able to identify pedestrians as such and also estimate possiblemovements
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of other roadusers (Ouyanget al., 2020). Thus, the systemgains accuracy and is able
to perform finer coordination, such as the protection of vulnerable road users.

Still, it remains open how this could possibly be a solution for the legal prob-
lems. Should SensARa intervene in traffic events based on the affordances and the
human intention alone, it will remain amachine decisionwithout humanaction. An
independent decision, without an action from the driver, must not exist. Therefore,
driver intention should be used in a further step not to replace human actions but
rather to improve them. In the next step, SensARa should be able to optimize the
drivers’ performancewith the system’s knowledge of the user’s state and intention,
rather than replacing it (see Fig. 6.3). With the additional knowledge of the sensimo-
tor coupling, it is possible to guide themovement execution of the drivers intended
and executed action, enabling faster and precise reactions. This is proposed, since
the humanperception is thought to be closely bound to the action (Clark, 2006; Noë,
2009). The system uses environmental and user data in real-time to capture the in-
tention and possibilities for action to improve the actual input data. The steering
and pedal input is then adjusted toward the desired action, considering possible
positive outcomes. This is realized with motor feedback cues in the steering wheel
and pedals. This way, the driver’s actions are not overruled but enhanced.

Figure 6.3: Component overview over the SensARa so�ware architecture

Now, the question is how exactly this system can be embedded in a possible ex-
periment. We hypothesize that subjects will not be able to respond immediately
and appropriately in a time-sensitive event. We assume, for example, that a steer-
ingmovementwill be performed too excessively or too inert when the participant is
under acute timepressure. Wedonot imply that thedrivers’ actions are random. In-
stead, we suggest inappropriate behavior of either too large or too littlemovements.
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Togetherwith intention recognition, these inappropriatemovements allow theAI to
smoothen or enhance the action towardmore plausible and desired actions. The AI-
belief will use the input from the vehicle affordance, the human affordance, and the
intention recognition to identify and act according to the human will. The SenseAI
module then uses the result to adjust the driver’s reaction towards a probable out-
come. The SenseAI does not take action on its own but instead infers the intended
action based on its data-driven prior distribution on possible actions and current
participant’s input as well as the machines’ predictions of users’ input. Behavioral
output together with a questionnaire will then be used to investigate the effective-
ness of this cooperation, checking the outcomes of critical traffic events against the
intended outcomes of the participants (Figure 6.2). Now that we have explained the
theoretical setup,wewill present apossible experimental setup. A�erward, thepos-
sible strengths and weaknesses of the experiment will be discussed.

Apparatus and Setup
For the technical apparatus,wesuggest a computer equippedwithan Intel(R)Xenon®
E5-1607 v4, equivalent or better, 32 GB RAMwith a 64-bit operating systemWindows
10 Professional. An Nvidia GeForce RTX 2080Ti, served as a graphics processing unit
to ensure a stable rate of about 90 frames per second. Similarily, we suggest the
the HTC Pro Eye with a sampling rate of 90HZ, including the HTC base stations 2.0,
as a VR setup and a customer-grade gaming steering wheel as the input device. The
setup used and presented here has already been tested intensively in other VR stud-
ies and has proven to be very efficient in three large studies with over 12 months of
continuous operation in the MS-Wissenscha�, LoopAR, and EEDA projects.

Experimental Procedure
Asmentioned before, the proposed experimental design for SensARa is based on the
LoopAR environments subject in chapter 2 of this thesis. Therefore, SensARa uses
almost the identical procedure. A training trial scene is presented a�er the initial
eye-tracking and seat calibration. Here the test subjects are introduced to the vir-
tual car and the HMI. Participants are asked to take over manual control and ma-
neuver through an obstacle course to complete the training. A�er completing the
training scene, the experimental scene starts. At the beginning of each scenario,
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the car drives fully autonomous within the legal speed limits, which are being dis-
played in the head-up display that serves as HMI later in the experiment. In corre-
spondence to the car speed, the scenes vary in length from 1,200m in the city scene
to 3,600m on the highway. Each scene is loaded separately to enable a recalibration
of the eye-tracker if the accuracy decreases due to participants’ head movements.
Every scene entails three critical traffic situations in which the test subjects are re-
quired to take over control of the car. A�er completing the trials in all four scenes,
participants are asked to fill out a questionnaire on demographic data, the level of
immersion, their previousVRexperience, and their previoushoursof gaming,which
concludes the experiment. In addition, as a lesson from the incomplete datasets of
the MSWissenscha�, we use the AVAM questionnaire.

Stimuli and Critical Traffic Events

Stimuli

As stimuli, we use the information within the augmented reality head-up display
provided by the autonomous vehicle (Figure 6.4). To decrease the takeover time of
the driver, we give visual and auditory warning signals - just like in the previous
LoopAR project. The stimuli appear when a takeover request starts. Therefore, the
takeover request starts with a beep followed by a verbal warning (Veitengruber et
al., 1977) accompanied by a red warning triangle (ISO 3864) on the windscreen. Fol-
lowing the initial warning, the visual warning sign blinks for two seconds to cue the
driver’s attention (Endsley et al., 2003). While the warning sign is flashing, the let-
tering informs the driver of the takeover request in a written form. The warning
sign disappears a�er two seconds to give the driver an unobstructed view of the sit-
uation, only marking possible obstacles (Figure 6.4 bottom le�). Finally, the car will
grant control to the human driver 0.5 seconds later. The takeover request is final-
ized, and a small icon in the lower-le� corner indicates that the driver is in complete
control.
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Figure 6.4: Panel of AR HUD in the proposed HMI

Critical Traffic Events

To assess the test subject’s performance in terms of take-over time and reaction
precision, we investigate driver reactions in a total of 12 critical traffic events. A
take-over request is demanded when a car detects a critical situation that an arti-
ficial agent cannot resolve correctly without human intervention. This could be a
deer jumping in front of the car, or a broken car blocking the road. These events
depict situations inwhich the car cannot solve the situationwithin the legal bound-
aries. One example of a legal boundary is that an autonomous car is not allowed to
cross a continuous line on the road, whichmight be necessary if an obstacle blocks
thecar’s lane. In this case, the control shouldbehanded to thehumandriver. Inboth
of our experimental phases, we will, therefore, compare the outcomes of the criti-
cal traffic events and the quality and time of the driver’s response. Once the critical
traffic event is overcome, the car suggests a reinitialization of the autonomous driv-
ing mode in the form of a visible pictogram accompanied by text in the windscreen
(Figure 6.4 bottom right). Another beep sound (with lower frequency) indicates suc-
cessful transmission of control back to the car. The event zone prefab is designed
to be easily customizable for different critical traffic event scenarios and environ-
ments.
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Environment

The LoopAR environment is based on real geographical information of the city of
Baulmes in the Swiss Alps. The region is selected due to its variety in terrain, in-
cluding a small village, a country road, a mountain pass, and a region suitable for
adding a highway section, totaling around 25km² of environment and an 11km drive
on different roads. We decided to include these environments because urban areas,
rural areas, and highways are the three main areas of car transportation. These
areas demand different driving skills from an automated driving vehicle and a hu-
mandriver. Tomake the regionaccessible inUnity, weused the collaborative project
OpenStreetMap (OSM) (OpenStreetMapFoundation, 2004). Weused theopen-source
3D so�ware Blender (Blender Foundation, 1995) to import the region and to extract
the data. This provided information about vegetation, different street types, bod-
ies of water, and buildings on the terrain, which we could use as references to build
a close-to-reality, natural scenery. There is an entire network of streets that con-
nects the scenes. Many of the assets used are from Unity’s asset store and the 3D
platforms Sketchfab and Turbosquid. Each of the four scenes can be customized
anytime. It is therefore possible to change the number, size, and shape of all objects
in each scene. Like previous work of the WestDrive project, LoopAR was developed
for a special investigation but served as a foundation for various VR research.

Platform

SensARa is a further development of LoopAR, which is built in the Unity Editor. This
so�ware is a game engine platform based on C# by Unity Technologies, which sup-
ports 2D, 3D, AR & VR applications. The Unity editor and the Unity Hub run on Win-
dows andMac, and Linux (Ubuntu and CentOS), and built applications can be run on
nearly all commercially usable platforms and devices. Unity also provides a large
variety of available application programming interfaces and is compatible with nu-
merous VR and AR devices (Juliani et al., 2020). Additionally, Unity enables the de-
velopers to access the Unity asset store, which is a large library of various assets
such as 3D Objects and scripts that can be used to create versatile projects.
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Traffic Behaviour

All cars used are based on the Unity standard wheel collider of the Unity3D physics
engine. In the Car Core Module, user input is translated towards the motor con-
trol of the participant’s car. The input consists of the motor torque, brake torque,
and steering applied to the wheels. In addition to that, the Car Core Module can
be accessed similarly by the AI Control Module. This allows a seamless transition
from autonomous to manual driving. Furthermore, a gear system simulates vary-
ing torque on the wheels, increasing stability in steep road sections. Separate AI
behavior modules handle the traffic behavior of the cars. The AI can follow prede-
fined paths. Speed limit triggers inside the scene manipulate the AI’s aimed speed,
which is handling the input propagated to the Car CoreModule (Figure 6.2). Another
behavior allows the AI cars to keep their distance from each other. Currently not
implemented is an obstacle avoidance behavior. The goal is to create an easily con-
figurable and interchangeable traffic AI for multiple study designs. We maximize
the realism of the car physics and the traffic simulation with these measures while
ensuring easy adjustments. Paths followed by AI Cars andwalking pedestrianswere
defined by mathematical bezier curve paths (J.-w. Choi et al., 2010), which were re-
alized by a creation tool from previous Westdrive Projects.

Critical Traffic Events

Several trigger components realize the critical traffic events that are the core com-
ponent of the SensARa trials. These independent triggers are activated when the
participant’s car enters the start trigger. The event zone is restricted within trig-
gers. These triggers get activated if the car crashes into them, which is considered
as participant’s failure and leads to a black screen followed by respawning the car at
a point a�er the event and giving back the control to the car. Furthermore, hitting
the marked objects by the HUD also leads to respawning. The successful outcome
of the scenario is when the participant enters the end trigger without crashing. The
triggers are all visible in editor mode and invisible to the participant.
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Behavioural Data

Gatheredexperimentdata consists of theparticipant’s input sourceandeye-tracking
data. The eye-tracking component comprises calibration, validation, and online
gaze ray-casting, which can record necessary gaze data during the experiment. The
component is built for the Tobii HTC Vive Pro Eye device but is intended to keep the
VR component interchangeable. Currently, it is intended as a simple connector to
tap into SRanipal and the Tobii XR SDK (Figure 6.2). The eye calibration is performed
with the built-in Tobii eye calibration tool. The validation is set in the corresponding
validation scene, which provides a simple scenario with a fixation cross. Validation
fails if the validationerror angles exceedanerror angle of 1,5° or theheadwasmoved
by 2” from the fixation cross. The information about the eye orientation, position,
and collider hits will be stored with a calculated gaze ray of both eyes during the
experiment. Currently, it is set to receive information about any object inside these
rays to prevent the loss of viable information by objects covering each other. Scene-
relevant information like the number of failed critical traffic events will be added
shortly. All data is stored using generic data structures, serialized into JavaScript
Object Notation (JSON), and saved with a unique participant ID at the end of each
experimental block. The generic data structure used in the project ensures flexibil-
ity, as different data types can be added or removed from the serialization compo-
nent. A calibration manager-script stores information about the seat calibration,
eye validation error, and relevant test-drive results of every participant. This ap-
proach guarantees the highest compatibility with different analysis platforms such
as R or Python.

6.2 | A Call for Future VR Research
As seen, SensARa enhances the currently existing LoopARexperimentwithmachine
learning methods to enable the active assistance and augmentation of human be-
havior in highly automated vehicles. Therefore, it gives the test subject optimal sen-
sory input and assists the participant with the motor behavior to ensure a fast and
precise response of the human driver in case of a takeover request. The machine
is guided by the possible actions in the directly perceived environment and the hu-
man driver’s actions that are considered probable. With the knowledge of possible
actions and thedriver’s intentions, the systemcanaugment the driver’s subsequent
actions.
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However, the exciting part is not thatmachine learning is used to anticipate and
execute possible actions of the vehicle and the driver, but the system’s legal and
ethical implications. Based on the intention recognition, the system starts to pre-
filter the possible actions of the driver. This information is then compared with the
driver’s current behavior and prioritized by the system according to desirability or
likelihood of a safe outcome. It should be noted that the system constantly com-
pares its predictions with the current behavior of the driver, so it is possible for the
driver to override incorrect system assumptions. This is because the system only
influences the driver’s steering and pedal movements and does not actively over-
ride them. Therefore, the human actions remain just that: Human.

Accordingly, there is no pre-programmed decision but rather a multi-level sys-
tem of visual and auditory cues and haptic feedback leading to an improved version
of the driver’s behavior. By abstracting the vehicle affordances and the human in-
tention, the system can achieve at least a safe ground state even if the driver is not
available. This means that the decisions are in principle, initiated by the human
driver. Therefore, this system persists as human action in a legal framework. In the
case of an unresponsive driver, e.g., a medical emergency, the minimal risk state
accounts in these cases.

This is, of course, only a very first dra�, which remains vague regarding the exact
details, and which neither deals with suitable machine learning methods nor with
the implementation of the previously mentioned Bayes Theorem. An implementa-
tion in a VR experiment seems quite possible since the virtual environment allows
a controlled and safe environment for testing such functionalities. Nevertheless, as
mentioned in the Introduction, the real world is muchmore complex than a virtual
environment, and the vehicle will always encounter situations for which it has not
been trained. Therefore, transferring the system presented here into the real world
is questionable.

Another aspect of the experiment that needs to be considered is the handling of
objects and the possible replications. In the preceding experiments, we used kine-
matics for all dynamic objects to create a lower computational load, a stable visual
input over each experiment, and facilitate changes in the scene. Due to the inter-
actions necessary for the current experiment, we needed to access the physics en-
gine of Unity, which does not allow the same amount of control as using kinematics
for dynamic objects but provides amore realistic environment, which improves the
feeling of presence. Even though there are some limitations, we still argue that we
provide a functional experimental design that can test the efficiency of adaptive and
cooperative HMI in critical events, where a takeover is needed.
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The presented project proposal findings could help strengthen the connection
betweenmanandmachine in the context of automatedvehicles of level 3 andhigher
and thus increase the traffic safety of such systems. In addition, conclusions could
be drawn from the HMI presented here about how humans and embodied agents
could cooperate more generally. The presented methods of the vehicle and human
affordances, together with the intention recognition as well as the likelihood calcu-
lations, could be used to foster cooperation between humans and robots in various
ways.

6.3 | Concluding Remarks
Finally, it shouldonceagainbeemphasized that theentireprojectWestdrive is thought
to serve future VR research. We are more than proud to know that new projects at
the IKW, namely SpaRE, EEDA, HumanA andWD Ride are based on the project West-
drive. Additionally we are happy to see that the TU Chemnitz, Korea University Seol
and BASt already use our toolbox. Again I would like to expressmy gratitude for the
wonderful years in this working group and I am excited to see themany great ideas
for the continuation and extension of Project Westdrive.
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7.1 | LoopAR Questionnaires
The following three questionnaires are part of the LoopAR experiemental design.
This accounts for the published toolkit as for the experimental setup. First Ques-
tionnaire is the System Usability scale that was used to verify the usability of the
LoopAR toolkit itself. The two following questionnaires are part of the LoopAR ex-
periment. Here we used the AVAM to later on ask for attitudes towards self-driving
cars, a�erparticipants experiencedoneof the threeexperimental conditionsof that
experiment. All three questionnaires were created using Google Forms, handed out
in Paper form.

Table 7.1: Westdrive X LoopAR Usability Questionnaire
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Table 7.2: LoopAR AVAM german version
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Table 7.3: LoopAR AVAM english version
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7.2 | Motor City: Supplementary Material
The Supplementary Material for this article can be found at:
https://www.frontiersin.org/articles/10.3389/fict.2020.00001/
full#supplementary-material

Westdrive recommended system specs:
GPU: NVidia GeForce GTX 1080 ti, equivalent or better.
CPU: Intel(R) Xenon ® E5-1607 v4, equivalent or better.
RAM: 32 GB
Video Output: HDMI 1.4, DisplayPort 1.2 or newer.
Operating System: Windows 8.1 or later, Windows 10.

Character Creation: To create newcharacters for the city it needs twoexternal tools.
One is Fuse CC from Adobe and the other is the Mixamo website. In Fuse CC, a free
3D design program by adobe, it is possible to create figures according to your own
imagination. This created model can then be uploaded to the program at Mixamo,
which can automatically create animations (Aguiar et al., 2014). From this website,
finished models with animations can be downloaded, which then only need to be
implemented into the project.

Unity® 3D learning: www.unity.com/learn.

Online Character animation: www.mixamo.com.
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7.3 | Talking Cars-doubtful users:
Supplementary Materials

Methods
To perform the Manova and it’s follow-up data has been prepared for transfer from
python pandas CSV format by replacing categorical labels to numerical values. Af-
terward the followingstatementhasbeenused inSPSS inorder to calculateMANOVA
and follow-up LDA as well as effect sizes.

MANOVA IntentionUsefulnessEaseTrustbyAgeGroup(0,4)Gender(0,1) Condition(0,2)
/DISCRIM=STAN RAW CORR
/PRINT=SIGNIF(MULTIV,UNIV,EIGEN,DIMENR)
/DESIGN AgeGroup, Gender, Condition, AgeGroup by Gender

COMPUTESuper_Condition= (−.03420∗ Intention)+ (.03247∗Use f ulness)+ (−.01176∗
Ease) + (.01498 ∗ Trust) EXECUTE.

COMPUTESuper_Gender= (−.01026∗ Intention)+ (−.00212∗Use f ulness)+ (−.02059∗
Ease) + (−.00629 ∗ Trust). EXECUTE.

COMPUTESuper_AgeGroup= (−.00850∗ Intention)+ (−.00647∗Use f ulness)+ (−.01570∗
Ease) + (−.01029 ∗ Trust). EXECUTE.

COMPUTESuper_AgeGroup_2= (.01947∗ Intention)+ (.01436∗Use f ulness)+ (−.00371∗
Ease) + (−.03451 ∗ Trust). EXECUTE.

COMPUTE Super_AgeGroup_Gender = (−.02251 ∗ Intention) + (.00903 ∗Use f ulness) +
(−.02492 ∗ Ease) + (−.01862 ∗ Trust). EXECUTE.
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Category Question slider Possible Answer

Intention
to use 1

Ich würde so ein Auto im
echten Verkehr nutzen y 0-100

Perceived
Usefulness 4

Ich denke, dass
das gesehene Fahrzeug
in meinem Alltag
nützlich wäre.

y 0-100

Perceived
Ease of Use 2

Die Nutzung von so
einem Fahrzeug
würde mir
leicht fallen.

y 0-100

Trust
Ich habe mich während
der Fahrt sicher gefühlt . y 0-100

Sex
Bitte benenne
dein Geschlecht. n

männlich
weiblich
intersex
keine Angabe

Age Dein Alter: n numpad

Aviophobia Hast du Flugangst? n Ja/Nein

Driving
Frequency

Wie viele Jahre fährst
du schon regelmäßig? n numpad

Playing
Hours

Wie viele Stunden
in der Woche
spielst du ungefähr
Videospiele?

n numpad

VR Playing
Frequency

Wie o� hast du schon
Virtual Reality genutzt? n

Noch nie
Ein mal
unter 10
mehr als 10 mal

Table 7.4: Simplified TAM questionnaire for the MS Wissenscha� experimental setup. Here the initial TAM 2 was reduced to
one question per Item

Tables for all calculated effect

age group below 20 20 - 40 40 - 60 60 - 80 above 80

below 20 0 0.40 0.50 0.43 0.17 / 0.2
20 - 40 0.40 0 0.10 0.01 0.18 / 0.20
40 - 60 0.50 0.10 0 0.08 0.28
60 - 80 0.43 0.01 0.08 0 0.20 / 0.22

above 80 0.17 / 0.2 0.18 / 0.20 0.28 0.20 / 0.22 0

Table 7.5: Effect Sizes between different age groups on Intention to use, perceived usefulness, perceived ease of use and trust.
Numbers in the table present the Cohen’s D and in the case of difference Hedges G
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condition AVAS RadioTalk TaxiDriver

AVAS 0 0.05 0.11
RadioTalk 0.99 0 0.06
TaxiDriver 0.11 0.06 0

Table 7.6: Effect Sizes between different condition on Intention to use, perceived usefulness, perceived ease of use and trust.
Numbers in the table present the Cohen’s D and in the case of difference Hedges G

Gender/Age Group Male / below 20 Male / 20 - 40 Male / 40 - 60 Male / 60 - 80 Male / 80+

Male / below 20 0 0.30 0.36 0.39 0.28 - 0.32
Male / 20 - 40 0.30 0 0.06 0.07 0
Male / 40 - 60 0.36 0.06 0 0.01 0.05
Male / 60 - 80 0.39 0.07 0.01 0 0.06

Male / 80+ 0.28 - 0.32 0 0.05 0.06 0
Female / below 20 0.31 0.01 0.05 0.06 0.04
Female / 20 - 40 0.73 0.42 0.36 0.35 0.39 - 0.41
Female / 40 - 60 0.90 0.58 0.51 0.51 0.53 - 0.56
Female / 60 - 80 0.78 - 0.80 0.46 0.40 0.40 0.42 - 0.44

Female / 80+ 0.29 - 0-33 0 0.03 0.05 0.01

Table 7.7: Effect Sizes between different combination of gender and age group on Intention to use, perceived usefulness, per-
ceived ease of use and trust. Numbers in the table present the Cohen’s D and in the case of difference Hedges G

Gender/Age Group Female / below 20 Female / 20 - 40 Female / 40 - 60 Female / 60 - 80 Female / 80+

Male / below 20 0.31 0.73 0.9 0.78 - 0.80 0.29 - 0-33
Male / 20 - 40 0.01 0.42 0.58 0.46 0
Male / 40 - 60 0.05 0.36 0.51 0.40 0.03
Male / 60 - 80 0.06 0.35 0.51 0.40 0.05

Male / 80+ 0.04 0.39 - 0.41 0.53 - 0.56 0.42 - 0.44 0.01
Female / below 20 0 0.42 0.57 0.46 0.01
Female / 20 - 40 0.42 0 0.15 0.03 0.37 - 0.40
Female / 40 - 60 0.57 0.15 0 0.11 0.51 - 0.55
Female / 60 - 80 0.46 0.03 0.11 0 0.41 - 0.44

Female / 80+ 0.01 0.37 - 0.40 0.51 - 0.55 0.41 - 0.44 0

Table 7.8: Effect Sizes between different combination of gender and age group on Intention to use, perceived usefulness, per-
ceived ease of use and trust. Numbers in the table present the Cohen’s D and in the case of difference Hedges G
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Disclaimer

All experiments reported in this thesis are conformwith theDeclaration ofHelsinki.
Additionally, all experiments have been approved by the ethics committee of the
University ofOsnabrück. Allmeasurementswithin the faculty in2020and2021were
carried out with a hygiene concept approved by the university.

I hereby confirm that I wrote this thesis independently and that I have notmade
use of resources other than indicated in this thesis. I guarantee that I significantly
contributed to all materials used. This thesis was not published, expect the parts
indicated above. Any of these publications, not this thesis itself have been used to
fulfill any other examination requirements.
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