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Abstract
Neuroscience, psychology, and many other fields, such as anthropology or philos-ophy, try to understand our cognition and cognitive processes. However, as timepassed, new views on cognition emerged. One of the newest views on cognition,known as 4E cognition, refers to embedded, embodied, extended, and enactedcognition. Alternatively, to put it in simpler terms, our cognition and cognitiveprocesses emerge from us by being in our environment, interacting with our envi-ronment, and enacting our actions within our environment. Although the need tostudy human cognition from a higher perspective led to the emergence of cognitivesciences, despite these advancements, our experimental methods have stayedrelatively unchanged for the past centuries.
The recent trends in cognitive science and related fields lean toward real-worldexperimentation. The main argument for real-world experimentation is the ecolog-ical validity of our experimentation and finding. However, despite all the positivevoices advertising for real-life experimentation, there are also significant concernsand voices against such a movement. Real-world is full of dynamics and sourcesof noises and events no one has studied in detail before. As alluring as the idea ofmoving out of the lab and doing experiments in real life is, the challenges of real-lifeexperimentation should not be neglected, at least with our current methods andtool kits.
However, one does not need to entirely abandon the control of the lab environmentto get closer to real-life experimentation. Immersive virtual reality experiencescan offer a close to the real-life and interactive foundation for conducting cogni-tive science experiments. Virtual reality experiments can offer the same level ofcontrol over the conditions and precision in measurements as laboratory-basedexperimentation yet enable a realistic, immersive environment to simulate real-lifesituations.
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Chapter 0 Acknowledgements

This dissertation seeks to investigate the ecological validity of immersive virtualreality experimentation. The investigation tries to see if virtual reality experi-mentation can augment the lab-based experiments to simulate closer to real-lifesituations. The second point of focus is on the notion of ecological validity. Herewe tried to investigate which factor among realistic cues, environment, or interac-tion with the environment plays a vital role in improving the findings of cognitivescience experiments. This dissertation seeks to answer these questions with differ-ent experiments made and conducted using immersive virtual reality simulations.These studies first investigate virtual reality technologies’ current state of theart. These experiments push the limits of what others previously performed invirtual reality experimentation in terms of immersion and realism. We studiedecological validity using these environments. This work examines the hypothesisthat "realism" indeed matters and, more importantly, that realism in the interactionwith the environment can give us more understanding regarding our observations.Finally, we will observe participants in their behavior using virtual reality exper-iments with minimal to no intervention to validate the effectiveness of virtualreality experimentation.
Of course, the studies presented in this work also have further research questionsto answer. These research questions include Gaze behavior during tool interactionor planning while sorting objects on a shelf is an example of investigating low-levelcognitive processes. The role of perspective on the moral judgments in trolleydilemma situations or change of attitude and acceptance toward self-driving ve-hicles is more on the psychological aspects of cognition. However, when addedtogether, the observations gained in each study offer solid arguments towardnot only the benefits of virtual reality experimentation but the importance ofstudying cognition within a natural context in real work with naturalistic interac-tions. This dissertation provides arguments in favor of virtual reality as a suitableexperimentation tool and environment in the absence of standard and precisereal-life experimentation methods as a way to simulate real-life experiences in ourexperiments.
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1 General Introduction

In the current state of technology and research in cognitive science as well asrelated fields which try to understand human cognitive processes, there should bea middle ground that can optimize and maximize the validity and generalizationof scientific findings to the real world. The 4E cognition banner tells us thatcognition is embedded, embodied, extended, and enacted. Under these premisesone realizes that it is not possible to study human cognition in an environmentdeprived of naturalistic social and environmental interactions. Furthermore, it isnot crucial whether the ecological validity only refers to the experimental cues orthe experimental setup. After all, the final goal in any study is to reach a valid andgeneralizable theory that explains the observed phenomenon and extend thesefinding to explain the naturalistic responses and behavior in the real world.
This dissertation argues that virtual reality can offer a great degree of freedom toresearchers in cognitive science and similar fields. The ability to be "present" in anenvironment, albeit virtual, and interact with objects presented in the environmentas well as acting closer to the natural behavior satisfied the premises of the 4Ecognition. Here, depending on the needs of the hypothesis, the researcher cancome up with both ecologically valid stimuli and the environment under bothstrict or broad definitions of the term. The strict definition follows more in thedirection of the original guidelines of Brunswick (Brunswik, 1955 , Brunswick,1956) whereas the broad definition follows the suggestions of Shamay-Tsoory andMendelsohn (Shamay-Tsoory and Mendelsohn, 2019) regarding ecological validity.The degree of freedom offered by virtual reality experiments is that one can design
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experiments with any desired complexity or simplification and still achieve thelaboratory level of control over the stimuli presentation and the experimentalprocedure.
However, the benefits of settling on Virtual reality as a middle ground betweenlaboratory and real-life in studying cognition is not limited only to the freedom it of-fers in experiment design. The recent innovations and advancement in the designof the virtual reality hardware as well as other sensory physiological measure-ment hardware such as but not limited to eye tracker, ECG, and skin conductancealongside mobile brain/body imaging techniques (MoBI), enables a greater varietyof experiments to be conducted in virtual environments. Today’s interconnec-tivity through advancements in computer networking can provide a foundationfor almost instantaneous realistic social interactions in the scale possible before.Therefore one can look at virtual reality itself as the new laboratory.
However, before diving deeper into the investigation of virtual reality as a middleground for performing experiments, one must first understand where we standregarding our experiments. To start investigating how researchers conduct mostcognitive science experiments today, one must first understand when this fieldemerged. The first-ever neuro-surgery on the spinal cord is estimated to go asfar back as 1700 BC in ancient Egypt, evident from Edwin Smith surgical papyrus(Hughes, 1988). However, the study of brain and behavior as it became knownas neuroscience and psychology today are relatively modern fields of study. Itwas only in the 20 century where others in science started to view the study ofthe brain and its function as its field of research and independent of other fieldsand medical research (Cowan et al., 2000). The same story goes for the field ofexperimental psychology. Although psychology as a field has existed since the late18th century, the emergence of modern experimental psychology only goes backto the 1830s in Leipzig, Germany (Leahey, 1991). Although these fields are amongthe contemporary fields of studies, psychology and neuroscience and related areasof studies are all considered among empirical research fields today.
Since empirical research values hypothesizing and observation and later clearstatistical analysis, it requires a well-designed and thought-through experiment(Harrington, 2010). Empirical research often calls for awell-controlled experimentalsetup. Such setup requires a set pre-determined dependant and independentvariables and hypothesis. Additionally, the empirical design tries to minimize anyunexpected random effects and factors that might otherwise alter the result of
2
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the observations. This clearly structured mindset in study design consequentlyimproves the replicability of the experiments.After all the main goal of an empiricalexperiment is not to prove any hypothesis but to find statistically valid evidencesupporting it. However, this call for controlling all factors in a study to predefinedhypotheses usually means that researchers have to oversimplify and focus theirexperiments on a single hypothesis. Although the current methods in empiricalresearch led to many valid discoveries, some would argue against the ecologicalvalidity of such simplifications when it concerns our complex human brain neuronalconnectivity and human behavior.
The most recent view on human cognition is that our cognition is embodied, em-bedded, extended, and enacted (Newen et al., 2018). The embodiment of cognitionmeans that the scope of our cognition is not just bound to our brain functional-ity, but it requires the body. The embedded cognition means that our cognitionemerges from the interaction of our body with the environment. Extended cog-nition is because our brain and body do not exist in a separate reality, but theenvironment and the objects we interact with can become part of our cognition.Lastly, cognition enacted cognition means that our cognitive processes emergewith enacting actions within the environment (Newen et al., 2018). This view oncognition means that to understand different cognitive processes truly, we cannotseparate the subject from the natural environment and objects they use for aspecific cognitive process under the study. And here, virtual reality seems to beable to satisfy the premises of this view.
The empirical research cycle consists of five consecutive phases. It starts withobservation of a phenomenon and starting the investigation of its causes. After-wards is the induction phase, where the researcher tries to formulate a hypothesisthat can generalize the explanation for the phenomenon. The third phase is wherethe researcher designs the experiment, to test the hypotheses they came up withwithin the induction phase for their validity. From here on, the researcher will runthe experiment and will try to evaluate the data and evidence gathered in orderto formulate a theory about the roots and causes of the phenomenon (Heitink,1999). The goal of this dissertation is not to discredit the way empirical researchhas been conducted so far but to improve the deduction and testing phases inorder to better investigate the natural causes of the phenomenon consideringthe points made about our cognition. One of the issues with complete real-lifeexperimentation is in the design phase of empirical research. It is in this phase thatwill become more challenging for the researcher to come up with a good design.
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The issue stems from the inherit hardship to control what exact cues and stimulithe participants will perceive.Moreover, the researcher cannot be sure of the envi-ronmental effects on the main observation and hypothesis under investigation. Inother words the unpredictability of real world environments makes it one of theissues to design a well designed experiments to be conducted in real world.. Herevirtual reality offering complete control over the cues and stimuli while simulatingthe real world, is therefor, a suitable tool to conduct the experience in.

Moreover, to what we learned about our cognition,it is said that humans aresocial beings (Shamay-Tsoory and Mendelsohn, 2019). Meaning we are not justsimply an isolated brain in a jar, but rather our behavior is also entangled withour social interaction with other beings, be it other humans, animals, or robots.therefor human beings being social beings consequently means, how and underwhat circumstances (i.e., cooperation, competition, solo) specific phenomenon orinteraction took place can dramatically affect the underlying cognitive, behavioural,and neuronal processes under investigation. (Shamay-Tsoory and Mendelsohn,2019, Ladouce et al., 2017). Therefore, it only makes sense to also investigatehuman cognitive processes in the context of our natural environment replicatingour naturalistic interaction with the object in the environment under realisticsocial circumstances. The study of cognition is far from perfect. Researchers havealready been performing experiments and discovered many underlying low-levelprocesses in our cognition. Nowadays, lab-based experiments have improved a lotfrom decades ago, and if fact we are performing these experiments almost at thehighest possible quality.

Nevertheless, lab-based experimentation has its limitations, especially consideringwhat was mentioned above about the new views on our cognition. Therefore, thenew movement toward real-life experimentation becomes the logical next step forfuture research in the field. Therefore, In this introduction, we will discuss morearguments in favor of this movement. However, ecological validity as mentionedearlier regarding scientific findings also depends on very well design experimentsTherefore, this dissertation will try to provide enough evidence and arguments infavor of virtual reality a well-balanced compromise to investigate human cognitionin real world.
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1.1 From laboratory to real life
There are already strong voices in critique of ecological validity of Lab-based exper-iments in neuroscience, behavioural studies and psychology (Shamay-Tsoory andMendelsohn, 2019, Ladouce et al., 2017, Griffiths, 2015, Brunswik, 1943). Over60 years ago, the cognitive revolution legitimized the scientific study of cognitionin its form today as cognitive science(Figure 1.1) (Griffiths, 2015; G. A. Miller,2003). As it is observable from this point of view (Figure 1.1) study of cognitionrequires a higher level of investigation, and it is indeed a interdisciplinary endeavor.It requires higher level understanding of previously low level independent fieldsof study with their own unique approaches to experimentation. Therefore, thisnew approach of studying cognition also requires a change in our experimentationto reflect this interdisciplinary and higher-level investigation. There new givenformal models of cognition and cognitive science made it possible to investigatecognitive processes in between people’s history and their actions in contrast totraditional Behaviourism’s stimuli-response methods(Griffiths, 2015). However,after decades of research in the field, our methods stayed relatively similar to theprevious ones in the past (Mandler, 2011, Griffiths, 2015). Therefor, to answer aquestion about the brain, one comes up with a set of hypothesis, brings the properamount of people to the lab to participate in a task in order for the researcher toevaluate their hypotheses(Griffiths, 2015).

There is increasing evidence that the traditional reductionist cognitive scienceoverlooked important aspects of cognitive science (Ladouce et al., 2017). Themain issue raised is mostly a critique toward current lab-based experiments withartificial stimuli and fixed responses. Consequently these findings have lowerecological validity as compared to the real-world behaviour (Shamay-Tsoory andMendelsohn, 2019, Ladouce et al., 2017). As mentioned in the 4E CognitionImovement, human cognition is intertwined with actions and environment as wellas social circumstances (Newen et al., 2018). Therefore, traditional lab-basedexperiments often focus on investigating the cognition regarding participants asisolated agents. Researchers often conduct experiments in artificial, sensory, andsocially deprived environments (Figure 1.2). This form of approach inevitably limitour understanding of the naturalistic cognitive, emotional and social phenomenon
Iembodied, embedded, extended and enacted
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Figure 1.1: Cognitive science as proposed in 1978 where each line represent andinterdisciplinary study that existed at the time.G. A. Miller, 2003
(Shamay-Tsoory and Mendelsohn, 2019).
In this argument, real-world experiments indicate experimentation and measure-ments conducted in an environment that is relevant to everyday life (Shamay-Tsooryand Mendelsohn, 2019). In recent years these critiques toward lab-based experi-ment and the trend of moving toward real-life environments gained more and moresupport and argumentation (Shamay-Tsoory andMendelsohn, 2019, Ladouce et al.,2017, Griffiths, 2015, Zaki and Ochsner, 2009, Kingstone et al., 2003). The lowecological validity of lab-based experiments has been criticized already in 1991 byone of the founders of cognitive science, Neisser, who showed his disappointmentof studies with low ecological validity (Shamay-Tsoory and Mendelsohn, 2019)concerning memory writing "In the study of memory as else-where in psychology.There are certain to be more and more naturalistic studies in the years to come.Many of them will be less than outstanding in quality, but that is part of science:No one rejects evolutionary biology out of hand just because some Darwinianstudies are flawed." (Neisser, 1991). With the improvement in hardware, especiallythat of mobile brain imaging such as mobile EEG and mobile FNIR, the so-calledMoBI technology, more cognitive and neuroscience researchers are moving towardconducting their experiments in real-life environments. (Griffiths, 2015; Ladouceet al., 2017; Parada and Rossi, 2020).
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Figure 1.2: An overview of current experiment types performed in cognitivescience according to the work of Shamay-Tsoory and Mendelsohn, 2019. (a)traditional lab-based experiments. It depicts isolated motionless participants withartificial stimuli as a meaningless list of words that is out of real-world contextwhere the participant responses are limited and cannot affect the situation("persondependant limitation" Shamay-Tsoory and Mendelsohn, 2019. (b) The participantis presented with meaningful stimuli, but the rest is the same ("situation dependantlimitation" Shamay-Tsoory and Mendelsohn, 2019). (c) the participant can explorean object with limited movement and therefore show a higher level of actionsand cognitive activity but has no control over the context. (d) the participant ispresented with artificial social stimuli and is unable to move. (e and f) lab-basedunidirectional and bidirectional dyadic interaction but with limited context. (g)social interaction in order to investigate lab-based group dynamics, (h) real-lifemulti-directional interaction. The final approach allows for understanding andmeasuring social interaction in a real-life situation.Shamay-Tsoory and Mendelsohn, 2019

Like many voices advocating the path of real-life experimentation, there is alsoopposition or concerns again this approach. One main critiques, although sup-
7



Chapter 1 General Introduction

porting the main goal of augments such as that of Shamay-Tsoory (Shamay-Tsooryand Mendelsohn, 2019), is the misuse of the term "ecological validity" as it wasintroduced by Egon Brunswick (Kihlstrom, 2021, Holleman et al., 2020, Brunswik,1955, Brunswick, 1956). These research both mentions that Hammond, a studentof Brunswick, already had pointed out the misuse of the term "ecological validity"decades ago (Hammond, 1998. In Brunswick’s definition of the term "ecologicalvalidity" refers to the ecological validity of the cue rather than the experiments(Hammond, 1998 , Holleman et al., 2020 , Kihlstrom, 2021). The first misuse of theterm happened in an article from 1962 by Martin T. Orne. The main argument ofOrne in his article is that psychologists treat human subjects by mistake as "passiveresponders to the experimental stimuli." but actually, the perception of the subjectfrom the stimuli might differ from the intention of the experimenters (Kihlstrom,2021). However, arguably, in this case, even Kihlstrom, who brought up the issuewith the misuse of the term, admits that the usage of the term in this context isnot entirely against the original term coined by Brunswick (Kihlstrom, 2021).
Whether misused or not, nonetheless, researchers are mainly interested in theecological validity of the experiments themselves (Kihlstrom, 2021). Furthermore,admittedly this concern does not limit to only a specific field such as social psychol-ogy. Many others, including Neissen, mentioned that "studies employing nonsensesyllables and other verbal-learning paradigms lacked ecological validity and hadtaught us virtually nothing about memory in real life" (Kihlstrom, 2021). The arisingissue here is, as pointed by Holleman, that term "ecological validity" as Brunswickdefined neither mentioned that the experimental research should resemble the reallife, or be close to it, nor implied that higher ecological validity would guaranteegeneralization to the real world (Holleman et al., 2020). Here one can argue thatwhat matters, in the end, is the validity and generalizability of the scientific findingsin explaining a real-life phenomenon.
When in the end, it comes down to the validity of scientific findings, there aredifferent points to consider regardless of which definition of ecological validity onechooses to accept. According to Kihlstrom, in our modern scientific terminology.The original definition offered by Brunswick concerns itself with the experimentalcues. The revisionist definition by Orne concerns itself with the "experiment" itself.A more modern and loose definition offered by Shamay-Tsoory and Mendelsohn,which Kilhstrom and Holleman call "mundane reality" (Kihlstrom, 2021, Hollemanet al., 2020). No matter which definition we take, if the cues presented in an exper-iment are far from what people encounter in real life, it will lower the experiment’s
8
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ecological validity. Therefore, at the end of this long discussion of a terminol-ogy, what matters is higher ecological validity, be it in its traditional sense or themodern one, which will improve and help us investigate and understand humancognitive processes better. After all, even Kihlstrom and Holleman, both writingagainst misuse of the terminology, supports Shamay-Tsoory and Mendelsohn intheir endeavor and the point they try to portrait (Kihlstrom, 2021, Holleman et al.,2020).
However, a more valid question to ask today is if we are, if at all, ready for real-lifeexperimentation. When moving toward real-world experimentation, there aremany challenges the cognitive science community should overcome. Currently themobile brain/body imaging community, better known as MoBI, is at the head ofthis movement toward real-world experimentation. They advocate using mobilebrain imaging techniques to observe cognitive acts occur naturally with all theircomplexities (Parada, 2018). This observation can happen in either semi- or un-structured setup (Parada and Rossi, 2020). However, there is still a lack of generalagreement on what constitutes a "MoBI experiment" (Parada and Rossi, 2020).Here MoBI movement refers to those who try to take the neuroimaging techniquesout of the lab and bring them to the real world. The next challenge is that whatphysiological, behavioral, or/and neuronal data should be measured and to whatextent these measurements can avoid interfering with the subject’s naturalisticactions (Parada, 2018). These challenges are just the very general challenges facingthose who follow the movement toward real-world experimentation.
More fundamental issues can arise from a reductionist, simplified lab experimentto a broad naturalistic observation in a real-life experiment. One study providesevidence that human attention allocation differs between the laboratory and thereal world. (End and Gamer, 2017). In laboratory-based experiments, the head andbody movements are most of the time restricted, Foulsham et al., 2011 has shownthat the saccadic eye movements are fundamentally different in the laboratory andnatural environment. Moreover, since the whole movement of real-life experimen-tation is relatively recent, where the MoBI community movement started around14 years ago (Parada, 2018), there might be many more underlying differences invarious cognitive processes that we are essentially unaware of. Therefore anyonewho is supportive and tries to move toward real-world experimentation shouldbe aware of the possible issues and differences arising from investigating humancognitive processes in their full complexity under a dynamic and complex real-lifeenvironment.
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Nowadays the traditional experimentation in all cognition-related fields is well es-tablished. The hardware has finally caught up to the needs of conducting a complexreal-life experiment. However, methods of analysis and data acquisition shouldalso catch up in order to reach valid conclusions from real-world experimentation(Parada and Rossi, 2020). There are more and more computation methods beingproposed and investigated in order to help the analysis to catch up with what thetechnology and real-life experimentation can offer (Griffiths, 2015). Meanwhile, allthe challenges regarding real-life experimentation will be partially inherited by anymethod that tries to simulate real-life experimentation. However, this dissertationtries to argue that virtual reality experiments could be utilized to mitigated partof the complexity at the same time, offer and combine most of what real-life ex-perimentation can offer such as correct understanding of our cognitive processescombined with the benefits of the well-designed strict lab-based experiments.

1.2 Virtual reality
The following sections are there to familiarize the reader with virtual reality’s maintechnical aspects that will be discussed in more detail throughout this dissertation.In the following parts, we will briefly go over the history of virtual reality fromconcept to entering the consumer market and key technologies used in virtualreality hardware that enables seamless, immersive, and interactive virtual realityexperiences. After which, we will shortly discuss the state of the art of virtualreality hardware and software implementation. In the final part, we will go backto the main argument of using virtual reality experiences as an environment toconduct research. By the end of this general introduction, the reader is expectedto be familiarized with virtual reality and can follow the main line of argumentationand investigation in this work.

1.2.1 What is Virtual Reality

One of the broadest definitions of Virtual Reality that holds to this day is theone introduced by Frederick P. Brooks. In his paper, he defines a virtual realityexperience as any experience in "which the user is effectively immersed in aresponsive virtual world. This implies user dynamic control of viewpoint" (Brooks,1999). A year earlier, Zheng Chan, and Gibson defined virtual reality as a form
10
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of computer-human interface that simulates a real-world, where the users areimmersed in the computer-generated world and can freely move around, observeit from different angles, and even interact with the environment (Zheng et al.,1998). Although slightly different, one can observe that all attempts of definingvirtual reality agree on immersion and some degree of freedom which should atleast allow observing the environment from different angles.
Although with the emergence of new technologies such as augmented reality,their borders of definitions become blurry or even create new terms such as crossreality (XR). In terms of technology, augmented reality or AR extends our reality andtherefore is in line with the embodiment movement. In essence, augmented realitytries to project information, in various methods and forms, onto our reality toenhance and augment it. Combining augmented reality techniques with computer-generated environments will lead to the field’s ultimate goal: cross reality or XR,an attempt to perfectly blend virtual worlds and our real-world with projectedaugmented information. The main takeaway from all the possible definitions isthat they all insist on "immersion". One can say the main difference between VRand its preceding technologies is "the sense of immediacy and control created byimmersion: the feeling of being there or presence that comes from a changing visualdisplay dependent on the head and eye movements" (Psotka, 1995). Therefore wecan define virtual reality as any computer-generated virtual world that gives theuser a sense of immersion and enables the users to interact with the environmentin a naturalistic manner immediately.

1.2.2 History of Virtual Reality

Despite the current popularity of virtual reality experiences in the last decade,the history of such immersive experiences can stretch back as far as almost threecenturies ago. The earliest example of an immersive experience is a panoramicpainting by an Irish painter Robert Barker in Leicester Square in 1793(Berkman,2018). The building itself, with its multiple floors and stairs, is an immersiveexperience that has been patented as such by Barker in 1796 (Figure 1.3). Afterwhich were similar techniques have been used by other artists to create immersiveexperiences, which a famous immersive experience Cinéorama by Grimoin-Sansonbeing exhibited in Paris in the year 1900 (Berkman, 2018). Cinéorama is aninteresting case as the techniques used in Cinéorama are still used today in theentertainment industry. Cinéorama (1.4) featured ten synchronized videos projects
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on thewalls of a circular roomwhere the visitors were standing on a balloon-shapedplatform simulating the experience of a balloon ride over the Paris(Berkman, 2018).These primitive early examples are far from modern-day virtual reality experience;however, they can be considered the earliest forms of virtual reality by immersion.

Figure 1.3: Cross-Section view of the building and paintings created by RobertBarker in 1973 and later patented by him in 1796. The Cross-Section shows apainting on a round wall stretching up for multiple floors as well as stairs leadingto various sections of the building with different panoramic paintings simulating achange in the view. London, 1801

Despite clearly successfully eliciting the sense of immersion, these techniqueswere still far from modern experience. The most important event which paved theway for modern-day virtual reality is undoubtedly the invention of stereoscope(Berkman, 2018). Sir Charles Wheatstone attempted to describe the essenceof binocular vision and depth perception in his paper in 1838., which he calledstereopsis (Wheatstone, 1838). Stereopsis, according to Wheatstone, is the factthat for any object with moderate distance from our eyes, each eye perceives aslightly different two-dimensional image of the object. This difference later enablesour brain to perceive depth and three-dimensional information from observedscenes and objects. Sir Charles Wheatstone has used this knowledge to invent a
12
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Figure 1.4: Illustration of Cinéorama. The illustration shows visitors standing on aplatform in the shape of an air balloon where the cameras beneath the platformare projecting synchronized videos on circular walls surrounding the visitors.Poyet, 1900
stereoscope in 1832 (Figure 1.5). Stereoscope uses the reverse of this phenomenonby presenting two slightly different two-dimensional images of the same sceneryto each eye separately, creating a sense of depth for the observer(“Stereoscope”,2021). Although it cannot be strictly called a virtual reality experience, it is thebasic principle which all modern virtual reality devices function to create a three-dimensional environment for the user.

Between the invention of the stereoscope and the emergence of consumer-gradevirtual reality devices, there were many examples of non-commercial and failedprototypes. One of the first modern-day immersive experiences was a devicenamed Sensorama invented by cinematographer Morton Heilig in the 1950s (Vir-tual Reality Society, 2017). The device was an attempt to stimulated all the sensesand featured a stereoscopic display as well as fans, a small generator, and a vi-brating chair (1.6). Later the first virtual reality device, which was connected to acomputer instead of a camera, was introduced by Ivan Sutherland and his studentBob Sproull in 1968 (Virtual Reality Society, 2017). Although the device was di-rectly connected to a computer, the graphic processing power only allowed forillustration of wireframe object and device, which were too heavy to be worn byanyone. Therefore it was suspended from the ceiling, matching the name given
13
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Figure 1.5: Illustration depicting the stereoscope invented by Sir Charles Wheat-stone in 1832. The device utilizes two mirrors tow reflect sightly different imageof the object into each of the observers eyes creating a sense of depth from twodimensional images. Wikimedia, 2010
to it, Sword of Damocles (Virtual Reality Society, 2017). In 1986 Jaron Lanierand Thomas Zimmerman found the VPL Research (Virtual Reality Society, 2017)where Jaron Lanier coined the term virtual reality, which is commonly used todayto refer to the technology ((Berkman, 2018)). Later in 1989, NASA started to usevirtual reality to train astronauts in the project VIEW in partnership with VPL Re-search (Rosson, 2014). All these advancements slowly paved the path for today’sconsumer-grade VR, which was successfully introduced in 2014 by the startupcompany Oculus (Virtual Reality Society, 2017). Since then, with advancementsin computer graphics, more companies have joined the industry offering afford-able virtual reality experiences with devices that can satisfy various needs fromentertainment to business to academia.

1.2.3 How does Virtual reality work

As mentioned above, stereopsis is one of the foundations of binocular depthperception (Wheatstone, 1838). When presented with a scene in real life, if faraway from the eyes, the perspective lines connecting distant objects to our eyesare perfectly parallel (Wheatstone, 1838). However, in closer distances, as the eyes
14
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Figure 1.6: On the left an image of the device Sensorama in use. On the leftan illustration of the device from cross side view by Morton Heiligg from theUS3050870A patent filled by Morton Heilig in 1961. (Morton Leonard Heilig,1962). Parveau and Adda, 2020

converge, these lines are not on parallel planes anymore and will naturally start toconverge on the fixated object (Wheatstone, 1838, Hess, 2019). This phenomenonleads to each eye receiving a slightly different image of the fixated object. Ourbrain is then able to pick up this slight disparity to create a sense of depth for thefixated object (Poggio and Poggio, 1984). Using two stereoscopic two-dimensionalimages and presenting them separately to each eye is the basis of how virtuallyall modern virtual reality headsets immerse their users in a three-dimensionalenvironment.
To better understand how the virtual reality goggles work and their shortcomings, itis important to dive deeper into their structure. In order to access how well virtualreality goggles perform in simulating real-world binocular vision, we have first toexplain how human binocular vision works in more detail. Here our main focusis on the physics of the light and eyes that leads to binocular vision rather thanthe neurological consequence of our eyes structure which leads to the unificationof observed images from each eye and perception of depth. Due to having twoeyes positioned with a small distance horizontally, the physics of light dictates thatthere will be a slightly different projection of the fixated object on the retina withinthe two eyes. (Harris, 2004). The geometry of binocular vision is undoubtedly
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complicated, especially since binocular vision can only happen in the overlappingarea of both eyes’ fields of view (cite). However, the projected image of the fixatedobject on the retina of each eye still can be mathematically calculated (Harris,2004). Knowing the physics and the geometry of binocular disparity, there weremany attempts and multiple ways for creating stereoscopic displays (Lipton, 2012).
In order to create the stereoscopic view, most virtual reality goggles use twoindependent LCDs, which render two different stereoscopic images near the user’seyes. A set of specific lenses then are utilized to project the images shown onthe displays to a farther plane in user’s view as depicted in figure 1.7(Reicheltet al., 2010,Jamali et al., 2018). However, effective in creating a stereoscopicimage, simple placement of displays near eyes raises multiple issues, specificallyaccommodation-convergence in these displays (Reichelt et al., 2010). When fix-ating a near target from an afar target, accommodation is the reflex action ofthe eyes, where convergence is the physical inward movement of the eyes en-abling single binocular vision (Jung, 2019). Currently, multiple solutions suchas accommodation-invariant computation near-eye displays or adaptive focus,each with its benefits and downsides, have been proposed as a solution for theaccommodation-convergence mismatch(Jamali et al., 2018). Despite these issues,modern virtual reality head-mounted displays can utilize the techniques mentionedearlier to render highly accurate and sharp three-dimensional imagery for the users.

What mentioned above, however, only explained how virtual reality experiencespresent a three-dimensional environment. However, for an experience to beconsidered immersive, one has to be able to also change the viewpoint by movingtheir head and realistically interact with the environment (Zheng et al., 1998).When it comes to interaction with the environment, there are multiple methodsfor handling users’ interactions with the virtual environment. Here the main typesof human-machine interfaces used for interaction with the virtual environmentcan be distinguished into three categories according to Mine (Mine, 1995).
• Direct user interaction: directly interacting with the virtual environmentusing hand tracking and gesture recognition (Mine, 1995 , Streppel et al.,2018).
• Physical controls: using physical objects to interact with the virtual environ-
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Figure 1.7: simple schematic of a typical virtual reality head mounted displaywhere AOD indicates apparent object distance perceived by brain using the visualdisparity cues of the images on the left and the right eye displays. TDD is the truedisplay distance as contrast to the apparent display distance (ADD) achieved byusing VR lenses. Jamali et al., 2018
ment such as virtual reality controllers, steering wheels, etc... (Mine, 1995 ,Streppel et al., 2018).

• Virtual controls: using virtual elements such as a virtual paint brush to interactwith the virtual environment (Mine, 1995 , Streppel et al., 2018).
Currently, most virtual reality hardware uses physical controllers as the mainmethod of interaction with the virtual world. However some manufacturers suchas HTC and Oculus or with addition of extra hardware such as Leap Motion onecan also use hand gestures and hand tracking for direct user interaction (Vive,2021,Oculus, 2021,ultraleap, 2021).
In order to achieve naturalistic interaction with the virtual environment, all VRdevices should be able to track essential parts of the body that matters for animmersive experience. This tracking mainly includes the tracking of the controllersor the hands based on the setup, as well as the head, which is considered a keytechnical component of the current VR and AR head mounted displays (Gourlayand Held, 2017). Currently, virtual reality devices use mainly two methods oftracking, namely Inside-out and Outside-in tracking (Gourlay and Held, 2017).The tracking offered by these devices is typically either 3 degrees of freedom,

17



Chapter 1 General Introduction

DoF, for tracking rotation or 6 DoF for additional positional information in three-dimensional space (Gourlay and Held, 2017). Using inside-out tracking sensorssuch as IMU and cameras embedded on the device is responsible for tracking themovement of the headset and controllers. The quality of the tracking is furtherimproved if the structure of the tracking area is known (Gourlay and Held, 2017).Here the main differential factor between the two modes of tracking is that theposition of the tracking equipment is outside of the headset itself (Gourlay andHeld, 2017). In this scenario, one of the main methods of tracking introduced byValve known as lighthouse tracking can be considered a hybrid approach (Figure1.8). Non the less all methods above can offer a 6DoF tracking with a low latencyof 6.71 ±0.80ms as measured for HTC Vive (Caserman et al., 2019).

Figure 1.8: a simplified depiction of main ways of tracking in virtual reality. On theleft is an example of an inside-out tracking system where the camera is attachedto the head mounted display. On the right is an example of an outside-in trackingwhere multiple external cameras are setup and used to track user’s head and bodilymovements. Ishii, 2010

As mentioned above, both methods of tracking, Inside-out and Outside-in, comewith their own sets of benefits and drawbacks. In the lighthouse, tracking can beconsidered a form of inside-out hybrid tracking as the positional information iscalculated on the head-mounted display itself (Gourlay and Held, 2017). In this
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method tracking the position of the HMD and subsequently the head is calculatedbased on the relative known position of the sensors on the device and the angularspeed of infrared beams emitted by the lighthouses as horizontal and verticalsweeps (Gourlay and Held, 2017). General Outside in tracking has the benefitof precision since the tracking features, typically in light emitters, are built ontothe virtual reality device itself. This method means that tracking is not dependanton environmental factors such as environmental illumination (Gourlay and Held,2017). On the other hand, inside tracking does not require any external setup,and the device can move freely in the environment (Gourlay and Held, 2017). Inconclusion, the choice of the appropriate tracking type should be decided basedon the particular needs of the use case at hand.
Indeed, there is also a demand for improvement in hardware and applicationprogramming interfaces such as game engines for the virtual reality technology tobe possible. As previously mentioned the process of tracking and changing thecamera’s viewport in virtual reality is a complicated mathematical task (Gourlayand Held, 2017, Caserman et al., 2019). In 1965 Gordon Moor stated that thenumber of transistors on a chip, and consequently computational power of achip, will double in every technology generation, and this law seems to holdfor now (Lundstrom, 2003). By 2008, graphic cards such as Nvidia Geforce®8800 GTX were capable of processing 330 Giga floating-point operations persecond (Owens et al., 2008). Modern graphic cards are built not only around the3D graphics rendering pipelines which excel at the job of rendering computer-generated graphics but essentially have turned into a powerhouse that enablehighly paralleled computation (Owens et al., 2008).

1.2.4 Virtual Reality, immersive yet controlled

From the definition of a virtual reality experience, one can see that being immersiveand naturalistic interaction with the environment are the basis of a virtual reality ex-perience. However, by definition, virtual reality is a computer-generated immersiveexperience (Zheng et al., 1998). In the real world, it is nearly impossible to controlevery aspect of the experimental environment and keep the environmental factorsconsistent between each experimental session (Gray, 2021). However, since avirtual reality experience is computer generated and controlled using programminglanguages, the experiment’s designer controls every aspect of this immersive envi-ronment. For instance, the timing of events, a similar experience between each
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experiment, the world’s physics, and interaction. Therefore, such an experience isexplicitly controlled despite the realism or immersion.

Although this control might not be necessary for other use cases of virtual realityexperiences such as entertainment, it is essential when it concerns the validityof neuroscientific experiments (Parada and Rossi, 2020). After all, one of themain reasons that most neuroscientific experiments are done inside the laboratoryenvironment is the ability to control the environment. Keeping the environmentconsistent between different subjects reduces the chance of encountering randomeffects due to unaccounted factors and helps with the replicability of the study(Gray, 2021). Therefore, being able to create realistic and naturalistic environmentsand interactions and still insuring the ecological validity of the experiment meansthat we can get closer to investigating neuroscientific phenomenon in a closerto reality environment (Shamay-Tsoory and Mendelsohn, 2019,Holleman et al.,2020). Therefore irtual reality environments being immersive yet controlled canimprove the validity of the experiments by enabling closer to real-life experiments(Fan et al., 2021).

At the beginning of this general introduction, we discussed the laboratory’s eco-logical validity versus real-life neuroscientific experiments. Furthermore, we men-tioned that our cognition is embodied, embedded, extended, and enacted (Newenet al., 2018). Meaning, it is evident that we cannot study the human brain andcognition, especially behaviors that are due to social interaction with others, in-teracting with the environment in the oversimplified laboratory environment.(Shamay-Tsoory and Mendelsohn, 2019). It is also important to note that certainexperiments are, in essence, either impossible or immensely difficult to performin either laboratory or the real world. As an example of such experiments, onecan mention the trolley dilemma problem or body modification/perception. Con-sequently, an immersive virtual reality experience can help us study cognitivebehaviors in a closer to reality setup and allow experimentation and performingmeasurements previously nearly impossible to perform (Kilteni et al., 2012; Tarrand Warren, 2002).
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1.3 Short comings of virtual reality environments
We have previously touched on the most important benefits of using virtual realityenvironments; however, it is vital that we also discuss possible downsides and dif-ficulties associated with creating and performing virtual reality-based experiments.One of the main difficulties in creating immersive virtual reality experiments is thelevel of programming skills required to create such environments (Nezami et al.,2020). Here the expertise is not only to create the task, the environment, care forproper serialization of data, Etc. Sine they all, directly affect the performance ofthe virtual reality experiments. As mentioned before, despite the current advance-ments in computation and graphics processing, virtual reality experiments areheavily demanding on the computational side. Without proper optimizations in theprogramming of the virtual reality environment, the frame rate and performanceof the experiment can be heavily affected even on the best of today’s hardware.The optimization of frame rate is also of high importance, considering the criticalrole frame rate plays in immersion and motion sickness induced by virtual realityhardware. After all, if the immersion is broken or the participant cannot continuethe experiment due to severe motion sickness, the experiment itself or the senseof being closer to real-life is very negatively affected.
The subject of performance in virtual reality-based experiments is a serious matterto consider. Most virtual reality experiments, including those presented in thisdissertation, are made with traditional Game engines such as the Unity3D gameengine. However, game engines are optimized to prioritize visual fidelity overprecision and persistence. This optimization means that if the game engine’s longerprocessing time predicts a visual lag in the output rendered environment, it mightdiscard a particular frame. Secondly, most game engines, including Unity3D doesnot provide a constant frame rate. There are ways around this issue, such as usingthe physics loop, which ensures a constant frame rate; however, the programmerof the environment has minimal control over how the graphic process will processeach frame for rendering. Lastly, there is an inherent delay between the momentthe processor executes a line of code until the virtual reality headset can render aframe on its displays. Scientific experiments, specifically those of psychology orneuroscience, are typically concerned with time-sensitive events such as variousvisual or auditory stimuli onset, reaction times, and eye gaze information of brainactivity that requires precise synchronization with such events. Consequently, oneshould invest more time than usual optimizing the virtual reality experiment toensure correct recording of data and presentation of the experiment. Perhaps one
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should develop an engine specific to scientific experiments that can address theissues mentioned above.
The other important consideration when deciding to go with a virtual reality ex-periment is the state of the art of measuring hardware. Currently, there are avariety of eye trackers being implemented within the most common virtual realityhead-mounted displays, with Tobii and Pupils lab being the most noteworthy andcommonly used eye trackers for virtual reality. However, 3D eye tracking in VR isrelatively new compared to the traditional 2D eye trackers such as eye link. Not onlythe sample rate in these devices are considerably lower (around 120Hz), these eyetrackers also have to overcome issues such as eye accommodation-convergenceof head-mounted displays. Similarly, attempts for combining neuroimaging tech-niques such as EEG in virtual reality experiments are also recent and need moretime to mature (Tauscher et al., 2019). In conclusion, despite the massive benefitsof moving toward virtual reality experiments as closer to reality substitution of theLab experiments, one has to consider the shortcomings that can directly affectthe outcome of the experiments.

1.3.1 Chapters’ Overview

The main goal of this thesis is to investigate Virtual Reality as a tool to improve theecological validity of neuroscientific and psychological behavioral experiments. Ittries to investigate both benefits and shortcomings of immersive virtual reality ex-periments and gives insight into howone can develop realistic yet high performancevirtual reality experiments. Other researchers have already proved the validity ofimmersive virtual reality experiences in various studies and disciplines, includingbody perception and ownership (Peck et al., 2013; Slater et al., 2009; Slater et al.,2010), treatment of psychological disorders (North et al., 2002), trolley problem(J.-F. Bonnefon et al., 2015; Kallioinen et al., 2019), and many other psychologicalor neuroscientific experiments. However, as mentioned before, immersive virtualreality technologies are relatively new. There is new advancement on the softwareand the hardware, including but not limited to computational power and the virtualreality head mounted display itself, including various interaction methods, has thepotential to enable researchers to bring their experiment even closer than ever toa genuine real-life experience.
In this thesis, the first part concerns the techniques and practices of building virtual
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reality experiments. In the first chapter, we conduct experiments related to self-driving cars in two relatively large virtual reality environments. However, to notlimit the environments to just one purpose, we have developed the environment asgeneric areas so that other researchers can use them for experimentation toward agradient of subjects such as spatial navigation or social interactions. These studiesalso try to reflect the best practices and concerns when designing immersive andrealistic virtual reality experiments. Afterward, we briefly investigate the state ofthe most common eye-tracking hardware available for virtual reality experimentsand try to solve the shortcomings of the current common development platform ofvirtual reality experiments, namely Unity3D game engine, to perform a real-timemulti-participant social interaction or joint action studies. Therefore the first halfof this dissertation serves as an overview of the methodical matters of developingan immersive virtual reality experiment.
In the second part, this work will focus on the scientific outcome of virtual realityexperiments. In the second chapter, we investigate task planning using virtualreality experiments. The studies in chapter three are regarding immediate planningin sorting tasks or gaze pattern when interacting with familiar or unfamiliar tools.While the first study discovers the just-in-time nature of planning in a sorting task,it also shows some clear evidence of the effect of the need to naturally interactwith an actual size shelf in the sorting patterns of participants: the second studyand a replication of an in-lab experiment confirming the same results. However,indicate that different effects were not visible in an interaction using virtual handsinstead of the controller. Chapter three returns to the premise of using virtualreality experiments to perform experiments impossible in real life, investigatingthe trolley dilemma and acceptance of self-driving cars. Here the experiments areclosest to the big picture of this thesis that a well-crafted immersive virtual realityexperiment can be used to elicit and subsequently measure desired behaviors.
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2.1 Layman’s summary
How can one design a scientifically valid experiment using virtual reality and virtualenvironments. Virtual reality experiences are computer-generated simulations.Here it is important to emphasize that simulated is a synonym to programmed. Fora virtual reality experiment to be valid, in other words for it to work and be under-stood by the participant precisely as the experimenter intended it to, there aremany challenges to overcome. First of all, such simulations, namely virtual realityenvironments, are not just a simple programming problem. The programmer needsto have a deep understanding of the currently available programming techniques,any game engine or programming language that supports VR, computer graphics ,which evolves around 3d geometry, and even perhaps fundamentals of physics.Every asset, every 3d model, needs to be purchased and optimized or made out ofscratch. Every behaviour should be programmed in advance. These are just thepart of challenges of doing any virtual reality experiment.
In light of the mentioned complexity of creating virtual environments the West-drive and Westdrive LoopAR environments were built. Initially, these projectswere meant to be an environment to investigate trust in self-driving cars andthe role of audiovisual warning in reducing the driver’s reaction time in a criticaltake-over request. However, we soon realized the gap and the need for realisticvirtual environments that one can modify with little programming knowledge.These environments offer generic, large realistic environments containing the most
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common driving environment, such as mountain roads or country roads. However,one can also utilize these environments for other research, such as face perceptionor spatial navigation. These environments offer dynamic scenery with cars andpedestrians with naturalistic behavior. But the base environments can be used inany experiments that need a naturalistic outdoor environment.
Nevertheless, projects Westdrive and Westdrive LoopAR are not only simulatedenvironments. They offered a great learning experience throughout their devel-opment process as to the possible limitations and challenges that need to beaddressed while creating virtual reality experiments. From synchronization ofdifferent data, acceptable frame rate to overcome motion sickness induced bywearing virtual reality headsets, to creating stable environments that providelaboratory-grade controlled experiments yet can be run without any interferencegathering behavioral data for months from thousands of people. These projectsoffered an understanding of the current state of the art and what is possible forfuture research using virtual reality environments.
At the same time, creating these large-scale environments clarified the short-comings of the current state-of-the-art hardware and software for virtual realityexperimentation. The lack of such computer networking platforms that is reliableenough which can be used for simultaneous study of more than one participant inthe same environment is an example of one of the major shortcomings. The varietyof offered measurement hardware is also another concern that is of importance forscientific research. One of the most common integrated measurement devices inthe modern virtual reality glasses are eye trackers. However, the specifics of theirperformance are not transparent or clear for researchers. That is why we triedto compare two different integrated eye trackers on the market and develop alightweight yet practical framework for multi-participant experimentation in virtualreality.
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2.2 Project Westdrive: Unity city with self-driving cars
and pedestrians for virtual reality studies

This section was submitted as a peer reviewed paper in the Frontiers in computerscience together with Maximilian Alexander Wächter, Gordon Pipa, and PeterKönig. See Publication List for details.

2.2.1 Abstract

Virtual environments will deeply alter the way we conduct scientific studies on hu-man behavior. Possible applications range from spatial navigation over addressingmoral dilemmas in a more natural manner to therapeutic applications for affectivedisorders. The decisive factor for this broad range of applications is that virtualreality (VR) is able to combine a well-controlled experimental environment togetherwith the ecological validity of the immersion of test subjects. Until now, however,programming such an environment in Unity requires profound knowledge of C#programming, 3D design, and computer graphics. In order to give interested re-search groups access to a realistic VR environment which can easily adapt to thevarying needs of experiments, we developed a large, open source, scriptable, andmodular VR city. It covers an area of 230 hectare, up to 150 self-driving vehiclesand 655 active and passive pedestrians and thousands of nature assets to makeit both highly dynamic and realistic. Furthermore, the repository presented herecontains a stand-alone City AI toolkit for creating avatars and customizing cars.Finally, the package contains code to easily set up VR studies. All main functionsare integrated into the graphical user interface of the Unity Editor to ease theuse of the embedded functionalities. In summary, the project named Westdrive isdeveloped to enable research groups to access a state-of-the-art VR environmentthat is easily adapted to specific needs and allows focus on the respective researchquestion.
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2.2.2 Introduction

With the opening of the consumer market in recent years, VR has penetrated manyareas of everyday life: there are e.g., applications for marketing, the games industryand for educational purposes (Anthes et al., 2016; Burke, 2018; A. Miller, 2018).Research on human behavior is also beginning to take an interest in experimentsin virtual reality (de la Rosa & Breidt, 2018; Rus-Calafell et al., 2018; Wienrichet al., 2018). For instance, it is possible to embed ethical decision making in aseemingly real context in order to achieve a higher validity of experiments (Faul-haber et al., 2019; Sütfeld et al., 2017). Further, studies based on VR techniquesaddress questions regarding spatial navigation, such as neurological correlations ofhuman navigation (Epstein et al., 2017), as well as gender differences in navigationtasks in a well-controlled environment (Castelli et al., 2008). Although there arealready available tools for creating virtual cities, these applications have not yetbeen designed for experiments on human behavior, but rather for planning andsimulating urban development (Botica et al., 2015; CityEngine, 2013; Dong et al.,2019; “VR Design Studio | FORUM8 | 3D VR & Visual Interactive Simulation”,n.d.). Furthermore, it is possible to use VR in a variety of psychotherapeutic andclinical scenarios (A. Li et al., 2011; Riva, 2005). Not only is this cost-efficient andmore interactive than classical psychotherapy (Bashiri et al., 2017), it also offersthe possibility to use this treatment at home, as VR becomes more widespread inthe future. This means that VR has the potential to increase access to insights ofhuman behavior as well as to psychological interventions (Freeman et al., 2018;Slater & Wilbur, 1997). Finally, VR can be combined with further technologies,such as EEG (Bischof & Boulanger, 2003)and fMRI, facilitating research of clinicaldisorders (Reggente et al., 2018). In summary, VR techniques have the potentialto heavily advance research in the human sciences.
Still, compared to classical screen experiments, VR-based experiments are complexand require extensive programming, which is an intricate task by itself (Freemanet al., 2018). This causes VR experiments in behavioral research to lag behind theiractual potential (Faisal, 2017). Even if already existing experiments are transferredto VR, knowledge of software and hardware must be acquired, meaning a largerexpenditure of time and content (Pan & Hamilton, 2018). Westdrive is developedto eliminate these obstacles in the context of studies on spatial navigation andethical aspects. It shortens the time required for the setup of or the transfer toVR experiments by a considerable magnitude either by enabling researchers touse the project scene directly, or indirectly by letting them use only the provided
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assets and code.

2.2.3 Results

2.2.4 Key Features

Probably the most crucial features ofWestdrive are size, modularity and the simplehandling of complex environments, since all components of the City AI toolkit canbe used independently even without any programming knowledge.
Size is often a critical factor for virtual environments. This is the case with e.g.,navigation tasks within VR (S. U. König et al., 2019). A distinction is made herebetween room-sized vista space and large environmental space. Small rooms areeasier to grasp and therefore it is only possible in large environments to distinguishbetween test subjects who navigate using snapshots of landmarks only and thosewho have learned a true map of their environment (Ekstrom & Isham, 2017).
The modularity of a virtual environment is of equal importance. Not only doesbuilding realistic cities require the consideration of many different aspects, butdifferent research projects also depend upon distinctive dynamic objects. For exam-ple, an experiment on the trolley dilemma requires driving vehicles and pedestrians(Faulhaber et al., 2019). A therapeutic application for fear of heights requires highbuildings and animated characters to make the environment appear real (Freemanet al., 2018). Project Westdrive offers a wide variety of applications due to itsmodularity, both of the static environment which comprises trees, pavements,buildings, etc. and the dynamic objects like pedestrians or self-driving cars.
Additionally, the aforementioned managers of the City AI toolkit enable a simplehandling of the project. The City AI toolkit, which facilitates implementation ofpaths, pedestrians and cars, which are all usable within the Unity GUI without anyexperience in coding. All of the components are accessible within the Unity Editor.All managers can be edited separately according to the respective requirements ofan experiment. In this sense, these separately adjustable components also supportmodularity as only adjustments for the necessary components have to be made.
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To use the project, only a powerful computer, VR glasses and the free Unityprogram are needed1. If the aforementioned requirements are met, the scenepresented here can be changed or manipulated at will. It is also possible to makealterations exclusively in the GUI of the Unity editor without writing any code.This project offers not only the templates for static models, but also the functionsintegrated into the GUI for paths, character creation, and the creation of movingcars.
Westdrive and the City AI have been created with having simplicity in mind torelieve users from as much time-consuming preparations and programming aspossible. Yet, as an open source project under constant development, we alsoencourage future researchers to further improve the project or change the codesbased on their specific needs. Westdrive gives the user the possibility to carry outa multitude of investigations on human behavior through the key features. Forexample, the simple routing of pedestrians and cars makes it possible to carry outstudies on trolley dilemmas or the human-machine interaction. Also, due to therealism of the avatars (Fig. 2.1) it is possible to build therapeutic applications forthe treatment of fear of heights or social phobias. However, this is only a verysmall part of the possible applications.

Figure 2.1: Overview of all used Fuse CC Avatars in the virtual city
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2.2.5 Methods

Project Structure

The Westdrive virtual environment is built in Unity 2018.3.0f2 (64 bit), a game en-gine platform by Unity Technologies. This engine is used together with a graphicaluser interface (GUI) called the Unity editor, which supports 2D and 3D graphics aswell as scripting in JavaScript and C# to create dynamic objects inside a simulation.Unity runs on Windows and Mac and a Unity-built project can be run on almost allcommon platforms including mobile devices like tablets or smartphones. We havechosen this software due to many available application programming interfaces(APIs) and good compatibility with a variety of VR headsets (Juliani et al., 2020).Moreover, the use of Unity grants access to an asset store, which offers the optionto purchase prefabricated 3D objects or scripts which only need to be importedinto an already existing scene. Thus, Westdrive is a modular virtual environment,making it easy to integrate other software now and in the future.
The Westdrive repository contains a city as one completed game scene. All as-sociated assets including driving cars, walking characters, buildings, trees, plants,and a multitude of smaller 3D objects such as lanterns, traffic lights, benches etc.are included and offer a high level of detail (Fig. 2.2). It also contains the relevantcode that executes interactions and animations of the mentioned objects. Thus,users have all desirable components for an experiment in one consistent package.Westdrive can be divided into two sub-areas. On the one hand there is the staticenvironment and on the other hand there is the code for interactions betweendynamic objects. Both will be explained in the following.

Static Environment

The static environment models a large urban area. It includes 93 houses, severalkilometers of roads and footpaths, about 10,000 small objects and about 16,000trees, and plants on a total area of about 230 hectares. A large part of the 3Dobjects used for this purpose are taken from the Unity asset store for free. A list ofused assets and their licenses can be found in the specified repository. However,the design of the city presented here can be varied at will in the editor and an
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Figure 2.2: Overview of the level of detail in the simulated city of the projectWestdrive in a completed scene.

included mesh separating tool. It is possible to change the size, shape and amountof individual buildings, streets, cars, and pedestrians in the GUI of the Unity Editor.The same applies to all other assets presented here. The static environment alonecan thus be used indirectly for the development of further VR simulations asthe project provides a large number of prefabricated assets (prefabs) that do nothave to be created again. Consequently, it is possible to easily develop a broadrange of scenarios for realistic VR experiments by simply manipulating the staticenvironment to match respective needs.

Scripting Dynamic Objects

To use Westdrive to its full extent, the code described here is of essential im-portance. The code is written entirely in C# based on Microsoft’s Net 4.0 API
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level and envelopes all functions for the stand-alone City AI toolkit (Fig. 2.5). Thisincludes six components developed by us: a Path Manager to create and manipu-late paths for pedestrians and cars, a Car Engine script that allows cars to moveindependently, and a Car Profile Manager to create different profiles for differentcars (e.g., the distance maintained to other vehicles, engine sound and car color).Additionally, there is the Pedestrian Manager and the Character Manager, thatcontrol animations and spawn points for moving characters along their definedroute and an Experiment Profile Manager, which defines the experimental context,like routes, audio files, and scripted events along the path. The City AI worksas a stand-alone toolkit in the GUI of the Unity editor. In short, it is possible todefine fixed routes with spawn points for pedestrians and cars along which thenon-playable characters (NPCs), such as pedestrians and cars, will move. Only ifvisual change of characters is desired an external tool is necessary2.

Figure 2.3: Impressions of cars in the highly realistic city scene.

To enable well-controlled movements of cars and pedestrians, we developed a pathcreation toolkit inside the City AI which incorporates mathematical components ofBezier Splines (Prautzsch et al., 2002). This results in a deterministic and accuratepath following system which is only dependent on units of time in a non-physics-based simulation. The users can themselves change the control points of the
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path inside the editor (see Fig. 2.4). It is also possible to define the durationof the route or the circuit in the Unity editor. Furthermore, the kinematic pathcreation facilitates the creation of spawn points for different asset types (cars andpedestrians at themoment, see Fig. 2.3, 2.1) for each path. All these functions workwithout programming knowledge. The following components of the City AI arealso depicted in Fig. 2.4 to give a better overview of interactions and possibilitieswithin Westdrive:

Figure 2.4: Overview in the Editor of the Car Profile Manager, the Car Engine andthe according parameter bar. These functions allow users to use different types ofvehicles in the city. The Car Profile changes the appearance of the vehicles, suchas color, engine noise and sensor length. Car Engine allows the vehicles to moveindependently on the defined routes through the city and to accelerate, brakeand steer independently. For each of these functions defaults are provided. Anadjustment of these parameters is therefore only necessary for new vehicles.

Path Manager: This is the basis for all moving objects in Westdrive. With just afew clicks in the editor, the user can create new routes for pedestrians and carsor change existing routes. To do so, the control points of the already mentionedSplines can be moved using the mouse only. Afterwards it is possible to set thespeed for objects on this route.
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Car Engine: This component enables vehicles to steer, brake and accelerate inde-pendently both at traffic lights and in the event of an imminent collision with otherroad users.
Car Profile Manager: This component allows users to create and manage multipleindependent profiles for cars. It enables creation of various types of cars withdifferent characteristics such as engine sound, color, or a different spacer forpreceding vehicles.
Pedestrian and Car Manager System: These systems take care of automatic spawn,restart, and re-spawn of all pedestrians and cars in the scene. They have the abilityto load resources in an either synchronous or asynchronous manner, to ensure asmooth-running experiment.
Experiment Profiles and Procedure Controller: These scripts enable users to createdifferent experiments within the environment. These profiles set up parametersfor e.g., the routes that cars will follow. They also trigger the beginning and theend of the experiment; the end of the experiment blocks and they disable dynamicobjects not necessary in the scene if needed. The Procedure Controller usesthe Experiment Profile to automatize the experimental procedure e.g., by endingblocks, altering the appearance of or completely excluding dynamic objects.
All of these managers assign the correct scripts to objects and move them to aresources folder in order for them to be spawned in runtime when the experimentstarts. These toolkits ensure that cars and pedestrians have all the necessarycomponents attached to them.

Implementation

As head-mounted display (HMD), the HTC Vive Pro is used at our department.At the time of writing, this virtual reality device is the most advanced technologyavailable (Ogdon, 2019). In order to transfer the player’s head movements into thevirtual reality, HTC utilizes two passive laser-emitting “lighthouses” that have tobe attached to the ceiling in two opposing corners of the room. The two handheldcontrollers and the headset use no <70 combined sensors to calibrate the positions
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of controllers and headset, measuring the time difference in sending and receivingthe emitted signal (Ahmad, 2020). To use the HTC Vive Pro and the HTC SetupSoftware, an account at the online gaming platform Steam is necessary. Thisrequires a stable internet connection, as both Steam and the HTC Setup softwareare free to use. Since this device is one of the most expensive ones on the market,it is used mainly for academic or industrial research rather than private gaming.
It is also worth mentioning, that although Westdrive has been developed for theHTC Vive Pro, it can easily be transferred to other virtual reality HMDs. The lastcomponent for the implementation is the Unity software. Unity can also be usedfree of charge as long as a project is not used commercially. Licenses are free forstudents and researchers. The Unity editor can be downloaded from the Unitywebsite. Now it is possible to create a project order and convert the files from therepository presented here into Unity.
A more detailed description of how to set up Westdrive as well as an exampleof the functionalities can be found as tutorial videos in the repository and in theSupplementary Materials.

2.2.6 Discussion

Current Limitations

Due to the complexity of the project and the differences between a deterministicsimulation and a computer game, there are still many possible improvements tobe implemented. With current enhancements like occlusion culling where, objectsare not rendered when they are not seen by the player, simplified shadows, andmesh combining, an acceptable frame rate of at least 30 fps can be achieved usingan NVidia GeForce RTX 2080 TI in combination with an Intel(R) Xenon E5-1607v4. The desired goal in the course of further research will be to reach the stable90 Hz suggested by virtual reality technology providers such as HTC and Oculus.

It is important to note that the code does not calculate the mentioned objectsphysically, but kinematically, so no physically simulated forces are applied toany moving objects. There are several reasons for this: on the one hand, the
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computational requirements of the computer on which Westdrive is used on arekept as low as possible. On the other hand, an exact control bar of the visualstimuli can be guaranteed, because each object is spatially located exactly at thesame place at the same time. Furthermore, it makes potential directed changeseasy, as no physical interactions have to be reverse engineered.
Another point is that there is currently no structured software architecture. Sofar, the priority has been on the simple handling of all functionalities within theeditor to facilitate the creation of own experiments. A structured architecture isstill under development.

Outlook

Concluding, we again want to emphasize the impact Westdrive can have on futureVR research. Already over a decade ago, the potential of combining VR withphysiological measurements has been discussed (Bischof and Boulanger, 2003),but only in the past years, when software became affordable, there was a renewedinterest in VR in science (Interrante et al., 2018). The main advantage of the projectis a simple implementation of a versatile project which, despite its complexity,can be altered quickly and easily without programming knowledge. Likewise, theexperiment in its basic form doubles as an eye-tracking study. The code for theimplementation is not included in this version, mainly because it was not writtenby the two authors, but by the Seahaven research group, investigating spatialnavigation in a virtual environment (König et al., 2019). However, the repositorywill be constantly updated, thus it will also contain the required eye tracking codefor Pupil Labs in the future. Westdrive as a city environment offers many areas ofapplication. Nevertheless, the project is constantly in development and extension.At least two more scenes are currently planned in order to allow for an evenwider application, for example the investigation of trolley dilemmas (Thomson,1984) using a railway track or possible applications of the acceptance of newmobility concepts. All improvements and added scenes will be released via GitLab.Additionally, we are going to further clear up old parts of code and unused assetsas code janitor, as well as fixing any possible typo or mistake in the code. At thesame time, we will expand the comments and wiki section to have a user guide onhow to use the project.
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Since we are constantly improving the code and add functionalities, this cleanup isan ongoing process.
In this work, particular importance was attributed to a comprehensible formulationin order to ensure an understandable documentation of the work performed.There is an almost unlimited number of application possibilities for the extensionof this project. The authors are looking forward to the many great ideas for thecontinuation of Westdrive.
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Figure 2.5: Scheme of the City AI features in Westdrive. This illustrates theinteraction of the different managers of the toolkit to enable spawned cars andpedestrians as well as different experimental setups saved in one scene. Theseexperimental profiles trigger the procedure controller, which takes care of the onsetand ending of the experiment and creates the subject’s car or avatar. This alsotriggers the car and pedestrian manager, which are responsible for the spawningof passive cars and pedestrians. In combination with the Car Profiles and the AssetList, the various cars and pedestrians required for the experiment are created inthe experiment.
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2.3 Westdrive X LoopAR: AnOpen-Access Virtual Real-
ity Project in Unity for Evaluating User Interaction
Methods during Takeover Requests

This section was submitted as a peer reviewed paper in MDPI Sensors togetherwith Maximilian AWächter, Nora Maleki, Philipp Spaniol, Lea M Kühne, Anke Haas,Johannes M Pingel, Linus Tiemann, Frederik Nienhaus, Lynn Keller, Sabine U König,Peter König, Gordon Pipa. See Publication List for details.

2.3.1 Abstract

With the further development of highly automated vehicles, drivers will engage innon-related tasks while being driven. Still, drivers have to take over control whenrequested by the car. Here, the question arises, how potentially distracted driversget back into the control-loop quickly and safely when the car requests a takeover.To investigate effective human–machine interactions, a mobile, versatile, and cost-efficient setup is needed. Here, we describe a virtual reality toolkit for the Unity 3Dgame engine containing all the necessary code and assets to enable fast adaptationsto various human–machine interaction experiments, including closely monitoringthe subject. The presented project contains all the needed functionalities forrealistic traffic behavior, cars, pedestrians, and a large, open-source, scriptable, andmodular VR environment. It covers roughly 25 km2, a package of 125 animatedpedestrians, and numerous vehicles, including motorbikes, trucks, and cars. It alsocontains all the needed nature assets to make it both highly dynamic and realistic.The presented repository contains a C++ library made for LoopAR that enablesforce feedback for gaming steering wheels as a fully supported component. It alsoincludes all necessary scripts for eye-tracking in the used devices. All the mainfunctions are integrated into the graphical user interface of the Unity editor or areavailable as prefab variants to ease the use of the embedded functionalities. Thisproject’s primary purpose is to serve as an open-access, cost-efficient toolkit thatenables interested researchers to conduct realistic virtual reality research studieswithout costly and immobile simulators. To ensure the accessibility and usabilityof the mentioned toolkit, we performed a user experience report, also included inthis paper.
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2.3.2 Introduction

What defines the user-friendly design of automated systems has been the subjectof scientific discussion for decades (Bengler et al., 2020; Norman, 1990). Especiallyin the upcoming years, when automated vehicles of SAE (society of automotiveengineers) automation levels 3 and 4 will emerge, the demands on the driver’scognitive system will alter radically, as the role of humans as continuously activedecision-makers in vehicles is replaced by automated systems (S. Li, Blythe, et al.,2019; Lindgren et al., 2020). Such techniques include theAudi traffic jampilot (Audi,2017) or Tesla’s full self-driving beta (Tesla, 2020). Airlines’ experiences, whereautomated systems are already widely integrated, clearly state that such systems’safety and reliability cannot be achieved by optimizing technical components alone(Masalonis et al., 1999). Instead, the reliability of highly automated systems isprimarily determined by the driver’s cognitive processes, meaning how fast a safetransition to manual drive is possible (Zeeb et al., 2015) .
The need for a fast and safe transition applies particularly to situations wherehumans have the task of taking over system control in the event of sensor failuresor malfunctions (Abe et al., 2011; Maurer, 2015). Thus, investigating the fluentintegration of the takeover request (ToR) is crucial for the safety of any systemwith even partially automated driving features (Marberger et al., 2018). During atakeover request, the human driver most likely has to take over control in under 10s, even when not engaged in driving-related activities (Dogan et al., 2019; C. Goldet al., 2013; Melcher et al., 2015). Naturally, an orientation phase follows as thehuman driver has to assess the traffic situation (C. Gold et al., 2013). Unfortunately,the driver’s reaction is often too slow in critical situations, potentially resulting inan accident in the small time frame (<4 s) before an impact occurs (Green, 2000;Summala, 2000). Even in the case of fast reactions within a time frame under 10s, studies with prolonged driving have shown hectic responses by human drivers,which of course neither improved the reaction time nor the situational outcome(Endsley & Kiris, 1995; Jarosch et al., 2019).
This manuscript presents a new toolset for human–machine interaction researchapart from typical screen-based simulators. Existing simulators are often basedon actual car interior designs. Therefore, they offer only limited possibilities forhuman–machine interaction (HMI) research (Morra et al., 2019). A very similarproblem is posed by research on prototype cars in the real world, where realisticaccident scenarios are costly and can only be generated to aminimal extent without
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endangering the test person involved. The project, called LoopAR, provides notonly all the needed assets and an environment but also all the needed code todisplay the information of a takeover request as a freely programmable augmentedreality (AR) feature in the windshield. The developed HMI displays the takeoverrequest and highlights critical traffic objects to enable participants to take overmore quickly and precisely. Our research is aimed toward safe and effectivecommunication between car and driver. This is not only beneficial in terms ofsafety for the passengers but could also increase customer acceptance of highlyautomated vehicles, since up until now, malfunctions have been vital concerns ofpossible customers (Howard & Dai, 2014a). Since LoopAR is based on the projectWestdrive (Nezami et al., 2020), all the code needed and designed scenes areavailable in a Github repository. Project Westdrive is an open science VR projectthat tries to enable many researchers to conduct VR studies. It provides all thenecessary code and assets in a public repository to set up VR studies. LoopAR is anextension of the Westdrive toolkit, focusing on the human–machine interaction.To fully use the project presented here, only a powerful computer, VR glasses, asimulation steering wheel and pedals, as well as Unity as a development programare required.

2.3.3 Methods and Main Features

The main focus of the presented project is versatility and modularity, which allowsthe fast adjustment of the environmental and functional objects via prefab and theprovided code in the toolkit. Research on the interactions between humans andcars is mostly done with stationary simulators. Here, a whole car chassis is used,or only the interior is set inside a multi-screen setup. However, these classicalsetups are often expensive, and adjustments or graphical improvements of thestimuli used in an experiment are often not possible (Cruden, n.d.). In the past fewyears, there has been a significant shift in research toward virtual environments.This is reflected by applications like Cityengine and FUZOR (CityEngine, 2013;Kallotech, n.d.) and by the software for driving environments (Dosovitskiy et al.,2017). Still, experimental designs on human–machine interaction, in terms ofspecific car interior adjustments, are not possible yet. Therefore, the presentedproject enables the user to create experimental conditions and stimuli freely. Allfunctionalities that are mentioned in the following are independent and can be
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adjusted at will. Additionally, the presented project does not need a specifichardware setup, making it easily adaptable and future-proof. New components,e.g., new GPUs and new VR devices, can be easily integrated into the setupdisplayed in Figure 2.6. The current requirements only apply to the VR devicesused and are not bound to the toolkit. The following figure depicts an overviewof the default experimental procedure, environmental structure, and data flow ofthe toolkit. Again, all of these defaults can be adjusted at will. The configurationspresented here are intended to allow for a quick adaptation to other experiments.

Figure 2.6: A simplified overview of the toolkit structure. It includes the defaultexperimental procedure, a possible example of how the environmental structurecan be used, and the standard data flow of the toolkit.

Platform

Project LoopAR is made with the Unity editor 2019.3.0 f 3 (64bit). This software is awidely used game engine platform based on C# by Unity Technologies, supporting2D, 3D, AR, and VR applications. The Unity editor and the Unity Hub run onWindows, Mac, and Linux (Ubuntu and CentOS), and built applications can be runon nearly all commercially usable platforms and devices. Unity also provides manyavailable application programming interfaces and is compatible with numerous VRand AR devices (Juliani et al., 2020).
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The backend code of the project LoopAR was developed entirely using C# withinUnity3D Monobehaviour scripting API. The backend comprises functionalitiesincluding dynamic loading of the environment, AI car controls, pedestrian controls,event controls, car windshields augmented reality controller, data serialization, andeye-tracking connection. Additionally, the presented project contains a C++ libraryenabling the force feedback for Microsoft DirectX devices that enables variousforce feedback steering wheels to function as controllers altogether. LoopAR codehas been developed with modularity in mind to avoid complicated and convolutedcode. All functionalities can be enabled or disabled individually using the Unityeditor’s graphical interface based on need.

Figure 2.7: LoopAR map preview: mountain road (3.4 km), city (1.2 km), countryroad (2.4 km), and highway (3.6 km).
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Virtual Environment

To test human–machine interactions, an interactive and realistic 3D environmentis needed. LoopAR aims at a fully immersive experience of a highly automatedcar encountering critical traffic events. To be able to investigate different drivingconditions and scenarios, we created four independent scenes. In the followingsection, the environment design decisions are presented together with a shortdescription of the experimental scenes.
The LoopAR environment is based on real geographical information of the city ofBaulmes in the Swiss Alps. We selected this region due to its variety of terrain,including a small village, a country road, a mountain pass, and a region suitablefor adding a highway section, totaling around 25 km2 of environment and an11 km continuous drive through different roads. To reduce the computationaldemands, we sliced the terrain into four areas. Due to the road network design,these separate environments can be merged (see Fig. 2.7). These areas demanddifferent driving skills from an automated driving vehicle and a human driver,reacting in different situations with different conditions according to the landscapeand traffic rules. To make the region accessible in Unity, we used the collaborativeproject OpenStreetMap (OSM) (OpenStreetMap, n.d.) and the open-source 3Dsoftware Blender (Foundation, n.d.).
OpenStreetMap is a project with the aim of creating a free map of the world. Itcollects the data of all commonly used terrains on maps. The project itself collectsinformation, so the data are free of charge. The virtual environment contains amountain road scene (see Fig. 2.8), including curvy roads winding through a forestand steep serpentines running down amountain. These curvy roads require variousdriving speeds (from 30 km/h or slower, up to 100 km/h on straight stretches).The overall traffic density is low.

The second area of the environment is the village “Westbrück” (See Fig. 2.8). Here,it is possible to test events in a more inhabited environment. This environment ischaracterized by narrow streets and dense traffic in low-speed environments.Thethird scenario is the country road scene (see Fig. 2.8), designed for medium tohigh speed ( 70 km/h), medium traffic density, and a long view distance. The lastscenario for the participants is the highway scene (see Fig. 2.9), enabling critical
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Figure 2.8: (a) Pictures of the different scenes from the mountain road. (b) Picturesof the different scenes from the village “Westbrück”. (c) Pictures of the differentscenes from the country road.

traffic events with a higher speed and a low to medium traffic density.
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Figure 2.9: (d) Pictures of the different scenes from the highway.

Critical Traffic Events

To test the participant’s behavior in critical traffic events, we created limited eventzones, where the monitoring of a participant can be achieved in a well-controlledenvironment. In Figure 2.10, one example of a traffic event is displayed. Eachenvironment (mountain road, city, country road, and autobahn) has three criticaltraffic events. These zones are the core of the possible measurements in thepresented toolbox. Simply put, the event system is realized by a combinationof several trigger components. These independent triggers are activated whenthe participant enters the start trigger (Figure 4: green gate). The event zone isrestricted within “boundary” triggers (Figure 2.10 : yellow boxes). These triggersget activated on contact, which is considered a participant’s failure. Contact withthe event triggers leads to a black screen followed by a respawn of the car at apoint after the event (Figure 2.10: pink box) and giving back the car’s control. Anevent is labeled as “solved” when the participant enters the end trigger (Figure2.10: red gate) without crashing, i.e., making contact with the “boundary” triggers.All critical events can be adjusted at will, and a prefabricated file is stored in therepo to create new events. The triggers are all visible in editor mode but invisibleto the participant.
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Cars and Traffic Behavior

Within the event zones, dynamic objects, such as other road users, are needed tocreate realistic traffic scenarios. The repository presented here contains variousanimated pedestrians, animals, and cars to create a broad range of critical situations.Additionally, there are some busses and trucks, and some construction site vehiclesthat can be used. Furthermore, a user’s own fbxmodels, as well as vehicles from theUnity asset store, can be added. For more details, please see the SupplementaryMaterials. All cars used are based on the Unity wheel collider systems of theUnity3D physics engine. In the Car Core Module, user input is translated into themotor control of the participant’s car. The input consists of the motor torque, braketorque, and steering, which are applied to the wheels. This functionality is calledAI control. It allows a seamless transition from automated to manual driving whenactivated. To facilitate realistic traffic behavior, an additional AI module enablescars to follow predefined paths. Paths followed by AI Cars and walking pedestrianswere defined by mathematical Bézier curve paths (Prautzsch et al., 2002), whichwere realized by the Path-creator tool (Lague, 2021). Speed limit triggers inside thescene manipulate the AI’s aimed speed, handling the input propagated to the CarCore Module. Another module of the car AI allows the AI cars to keep a distancefrom each other. The goal is to create an easily configurable and interchangeabletraffic AI for multiple study designs. With these measures, we maximized the carphysics and traffic simulation realism while ensuring easy adjustments.

Experiment Management

Data sampling, dynamic objects, and driving functionalities within the event zonesare controlled by a system of experiment managers that handle scene-relevantinformation and settings shortly before and during the real experiment phase. Ithandles different camera settings, the information given by triggers inside thescene, and the participants’ respawn in case of failure. Before an experimentstarts, initial adjustments start the experiment. These adjustments configure theexperiment to the participant and include the eye calibration, eye validation, seatcalibration, and a test scene.
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Figure 2.10: Traffic event prefab and its implementation.

The eye-tracking component in this setup comprises an eye-tracking calibration,validation, and online gaze ray-casting, which can record necessary gaze dataduring the experiment. The component was built for the Tobii HTC Vive Pro Eyedevice but is intended to keep the VR component interchangeable. It was designedas a simple connector to tap into SRanipal and the Tobii XR SDK (see Fig. 2.11).The eye calibration is performed with the built-in Tobii eye calibration tool. Thevalidation is set in the corresponding validation scene, which provides a simplescenario with a fixation cross. Validation fails if the validation error angles exceedan error angle of 1.5° or the head is moved by 2” from the fixation cross. Duringthe experiment, the eye orientation, position, and collider hits are stored with acalculated gaze ray of both eyes. Currently, it is set to receive information aboutany object inside these rays to prevent the loss of viable information by objectscovering each other.
In addition to the eye-tracking data, input data of the participant as well as scene-
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relevant information, such as the number of failed critical traffic events, are savedusing generic data structures and Microsoft Linq, serialized into JavaScript objectnotation (JSON), and saved with a unique ID at the end of each scene. The genericdata structure used in the project ensures flexibility, as different data types can beadded or removed from the serialization component. This approach guaranteesthe highest compatibility with varying analysis platforms such as R or Python forthe data gathered with LoopAR.

Figure 2.11: Scheme of the LoopAR functionalities and components illustratingthe interaction of the different services and manager scripts within the Unityenvironment.

By conducting data saving, and given the nature of the experimental setup, weaim for a stable and high frame rate to provide a less sickness-inducing experience.A stable visual experience can be seen as a prerequisite to avoid potential sickness(LaViola, 2000). The desired optimum for the experiments is a stable frame ratematching the fixed rate of 90 Hz used by the manufacturers HTC and Oculus. Ourcurrent frame rate in the different scenes yields an average of 88 samples per
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second in our test setup, matching the maximum sampling rate of the HTC Vivewith 90 fps.

Requirements

The setup used and presented here is thought to be a cost-efficient and very mobilereplacement for maintenance-intensive, rigid, and expensive driving simulators forstudies on human behavior in the context of self-driving cars. A key advantage isfreedom regarding the selected components. The only requirement for operationis granting the computing power for the entire system, which consists of a coresetup only of a computer, a head-mounted display, and a steering wheel (see Table1).
As a virtual reality device, we used the HTC Vive Pro Eye with an integrated TobiiEye Tracker. It is a cable-bound head-mounted display that enables the participantto transfer movements into virtual reality. Although we are using the Vive Proexclusively at our department, the LoopAR experiment is not dependent on thisspecific VR device. We used the components of the setup with 90 fps samplingand display.

2.3.4 Discussion

In the presented paper, we describe LoopAR as a modular toolkit to test a takeoverof control in critical traffic situations from automated cars to human drivers bycombining VR and eye-tracking in an interactive and immersive scenario. Its currentstate and design provide a promising, new, low-cost, and mobile setup to conductstudies that were traditionally only done in stationary simulators. The current code,as well as the 3D environments, can be adjusted at will. With newly implementedcode, it is not only possible to simulate a large and highly realistic VR environment,but it is also possible to create a broad range of applications in VR research thatis not only bound to HMI investigations. A large part of the assets used are fromUnity’s asset store and the 3D platforms Sketchfab and Turbosquid. Therefore, it
51



Chapter 2 Virtual Environments and techniques

is possible to change the number, size, and shape of all objects in each scene.
All of the functionalities above, and assets presented here, are under constantimprovement. By writing, five new projects, ranging from ethical decision-makingover EEG implementation to human spatial navigation, arise from the presentedtoolkit, which will also develop new assets and features implemented into thetoolkit later on. The authors want to emphasize the modularity and adaptability ofthis VR toolkit.

User Reports

To check for the user friendliness of the presented toolkit, a System usabilityscore (SUS)-based report was performed (Lewis, 2018). Here, we asked 11 of thecurrent users between the age of 23 and 34 (5 female) to evaluate the usage ofthe main features in the toolbox starting from cloning the repository, adjustingthe environment, and manipulating dynamic objects in an example scene. Whiledoing so, we asked the participants to evaluate the feasibility of the tasks. Userexperience in Unity and C# programming varied from no experience to expertlevels with more than 3 years of experience. Our top findings, depicted in indicatethat the toolbox is perceived as well documented, and advanced Unity users facedno major problems building and altering their project created with this toolbox(see Fig. 2.12). While some steps in the procedures might be challenging to newusers, the Westdrive X LoopAR toolbox seems to be a useful foundation for allusers.

2.3.5 Conclusion

This article describes a new virtual reality toolkit for Unity applications investi-gating human–machine interaction in highly automated driving developed by us.The presented setup is thought to be a mobile, cost-efficient, and highly adapt-
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Figure 2.12: Visualization of the usability report items: (a) a radar plot of the systemusability scale data; (b) a word cloud showing most frequently used words in thecomments; and (c) a severity of issue bar plot, related to the tasks in the usabilityreport. Low equals no delay in time or perceived obstacles, medium refers to acompleted task with added effort. High indicates noticeable delay or frustrationand that the participant may not be able to complete the task.

able alternative to chassis simulators that closely monitor the participants. It isparticularly noteworthy that there is not only a drastic reduction in costs but alsoan improvement to the adaptability of the software as well as the used hardware.All components are fully upgradable, in case there are better products in termsof image quality or computing power. LoopAR allows interested researchers toconduct various virtual reality experiments without creating the needed environ-ment or functionalities themselves. For this, we have provided an area of almost25 km2 based on OSM data. The toolkit presented here also includes all thenecessary assets and basic prefabs to quickly and precisely create a wide varietyof virtual environments. Additionally, the LoopAR toolkit contains components ofthe experimental procedure and data storage.
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Supplementary Materials

The following are available online at https://www.mdpi.com/1424-8220/21/5/1879/s1, Unity 3D: www.Unity3d.com; Online Character animation: www.mixamo.com; Adobe Fuse CC: www.adobe.com/products/fuse.html; Blender 2.81:www.blender.org.
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2.4 Stress testingVREye-tracking SystemPerformance
This section was submitted as a peer reviewed conference talk in the 3rd Interna-tional Neuroergonomics Conference together with Ashima Keshava, Nora Maleki,Linus Tiemann, and Peter König. See Publication List for details.

2.4.1 Extended Abstract

Eye-tracking experiments in virtual reality (VR) have become progressively popularin the last decade. These experiments measure human eye movement behavior innaturalistic settings that afford complex, natural head and body movements. Giventhe complexity, eye-tracking systems require high spatial accuracy and precision ofthe measured gaze in the face of natural movements, differing illumination, depthof field, and calibration decay. (Holmqvist et al., 2012) have stressed the needfor assessing eye-tracking data quality in general. Furthermore, there is a lack ofdata quality standards when it comes to VR head-mounted displays specifically.The present study aims to introduce a standardized way of benchmarking VR eye-tracking systems to assess their feasibility for vision research in mobile settings.
We adapted a 2D screen-based eye-tracker test battery Ehinger et al., 2019 toVR-based head-mounted displays. The test battery includes ten spatial accuracyand precision tests for standard gaze parameters like gaze position, pupil dilation,blink detection, and smooth pursuit. We then used the test battery to comparethe performance of two commercially available VR head-mounted displays (HTCVive Pro Eye and Varjo VR-2 Pro) with a built-in eye-tracker for 13 participants(Figure 2.13A).
Here, we report our results based on the most critical metrics, namely: 1. SpatialAccuracy (Figure 2.13B): we calculated the calibration error across a 5x5 grid offixation locations. Our results show that both HTC Vive Pro Eye and Varjo VR-2 Prohave a mean calibration error greater than 1 degree without an explicit validationof the calibration accuracy. In the horizontal direction, HTC Vive had a mean errorof 1.28°, IQR=[0.60, 1.17], and Varjo had a mean error of 3.29°, IQR=[1.55, 3.45].In the vertical direction, HTC Vive had a mean error of 0.89°, IQR=[0.50, 1.19]and Varjo had a mean error of 4.93°, IQR=[2.24, 6.93]; 2. Spatial Precision (Figure2.13C): we used the median absolute deviation of the calibration error across the5x5 grid to measure the eye trackers’ spatial precisions. We found that the mean
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precision in the horizontal axis of the HTC Vive Pro Eye was 3.22° (SD: ±0.75) and4.76° ± 1.48 for Varjo. In the vertical direction, HTC VIVE Pro Eye had a precision of1.86°± 0.76, and Varjo had 4.02°±2.33; 3. Calibration Decay: to assess the decay ofcalibration during the experiment, we calculated the mean difference in calibrationerror just after eye-tracker calibration and at the end of each test block. HTCVive showed a mean calibration decay of 4.09° ± 1.06 in the horizontal directionand 3.21° ± 1.09 in the vertical direction. In contrast, the Varjo system showed acalibration decay of 5.86° ± 2.46 in the horizontal direction and 5.11° ±1.95 inthe vertical direction; 4. Effect of Illumination on Pupil Dilation (Figure 2.13D): wefurther investigated the pupil size detection differences between the eye trackersfor different illumination levels. Our results show that the Varjo VR-2 eye trackerestimated larger normalized pupil sizes than the HTC VIVE (mean difference = 2.55% ± 4.47 ); 5. Blink Detection (Figure 2.13E): we investigated how well the twoeye trackers detected blinks by asking subjects to voluntarily blink 10 times duringa test block. We found the HTC Vive Pro Eye detected 10.49 ± 3.14 blinks, andthe Varjo VR-2 Pro system detected 1.40 ± 1.82 blinks; 6. Smooth Pursuit (Figure2.13F): In the smooth pursuit task, we found that the HTC Vive system tracks theeyes at -0.18°/s ± 4.11 slower than the stimulus velocity, whereas the Varjo systemtracks the eyes at -3.84°/s ± 3.27 slower than the stimulus velocity. Our resultsshow that both VR eye-tracking systems are somewhat error-prone and can havehigh variance across different subjects. Hence, vision researchers should not takethe quality of the data measured by these systems as a given. In studies that relyon high spatial accuracy or measurement of specific gaze features like blinks orpupil dilation, the eye-tracking equipment alone can make an immense difference.Our study offers an implemented test battery to evaluate and benchmark VR eye-tracking systems based on several gaze features useful for naturalistic experiments.The tests can comprehensively assess the quality of commercially available VR eyetrackers beyond the values provided by the manufacturers. Furthermore, we havemade the VR setup, the collected data, and the analysis pipeline available publiclyto help researchers adapt this study for any VR-based eye tracker.
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Figure 2.13: A) Exemplar raw data showing horizontal gaze angle for the fixationprobe shown in VR for the two head-mounted displays (HMDs). The blue samplescorrespond to fixations and the orange to the saccades. B) The calibration errorfor the two HMDs across 10 subjects. We computed the calibration error (in visualdegrees) as the 20% winsorized mean of the difference between the fixation probeposition and the actual fixation position. Thus, each dot represents one subjectand the calibration error for the two devices. C) The precision of the HMDs acrosssubjects. Here, we used median absolute deviation as a metric of precision, wherelower values correspond to high precision and vice versa. D) % Difference in thenormalized pupil sizes measured by the two devices for the different environmentluminance. Green dots indicate each subject, and the black dots represent meandifference, and the error bars represent the standard error of mean. E) Numberof Blinks detected by the eye tracker. Each green dot represents the number ofblinks per subject and test block. The filled black dots represent the mean numberof blinks, and the error bars show the standard error of the mean. F) Velocity ofthe tracked gaze for a moving stimulus during smooth pursuit. Green dots indicateeach subject, and the black dots represent mean difference, and the error barsrepresent the standard error of mean.
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2.5 A framework for low-level joint action in VR
This section was submitted as a peer reviewed conference talk in the 3rd Interna-tional Neuroergonomics Conference together with Nora Maleki1, Marten Mildt,Florian Pätzold, Vincent Schmidt1, Linus Tiemann1, Jasmin L. Walter1, Josefine A.Zerbe1, Dirk C. Gütlin, Anke Haas Anne Lang, Peter König and Artur Czeszumski.See Publication List for details.

2.5.1 Extended Abstract

Social interactions, including joint actions, are a central aspects of human life(De Jaegher et al., 2010; Frith, 2007; McCabe et al., 2001). Joint action can bedescribed as any social interaction whereby two or more people temporally andspatially align their actions (Sebanz et al., 2006). Due to their interactive nature,however, joint action studies are usually conducted under strictly supervisedlaboratory conditions with simplistic stimuli to obtain maximum control over allvariables (Redcay and Schilbach, 2019). As a consequence, traditional paradigmsoften struggle to achieve an adequate level of ecological validity (Parsons et al.,2017 ). A potential solution to studying joint action in a more realistic settingwithout incriminating experimental control is the use of Virtual Reality (VR), inparticular head-mounted displays (Chicchi Giglioli et al., 2017; Marín-Moraleset al., 2018). Moreover, aspects of participants’ behavior can be measured andcontrolled in real-time, including subtle factors like non-verbal communication orinterpersonal distance. Furthermore, VR technologies enable researchers to con-duct experiments that are dangerous or unethical in real life (Niforatos et al., 2020;Skulmowski et al., 2014a). Consequently, implementing joint action paradigmsin VR could significantly reduce their variability while substantially increasing anexperiment’s reliability, replicability, and transparency (Pan and Hamilton, 2018).
Given its advantages, it is curious why there is a lack of low-level joint actionresearch conducted in VR and a possible reason might be technical limitationsdue to multiplayer networking. Joint action studies focus on subtle behavioralfactors and often rely on eye-tracking or reaction time measurements. Networkingthese variables becomes crucial for real-time interaction, and hence, an authenticsimulation. However, since the majority of networking solutions are designed forconsumer applications such as online gaming, they often lack low-level control ofthe networking variables and other essential modification options. To solve this
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need, we propose the new networking framework “LightNet” that is specificallydesigned for multiplayer experiments in VR. LightNet is a C# library created for -but not limited to - the usage with the game engine Unity and it allows for cus-tomizable real-time interaction between participants. LightNet provides completecontrol over sent and received data, and allows precise assignment of transferredvariables, therefore improving data management options, performance, and framerate of the virtual experiment. Like this, redundant or irrelevant information willnot be transferred which makes data propagation more efficient. Further, LightNetis utilizing a reliable but slow TCP (Transmission Control Protocol) channel fortransferring sensitive information like the experiment state, and an unreliable butfast UDP (User Datagram Protocol) channel for data that requires a quick response,like precise synchronization of position data between participants. Typical net-work solutions also emphasize a symmetric design of the contents and roles ofagents inside the virtual environment, thereby restricting the design of dyadicexperiments which is not the case with LightNet. Additionally, it benefits from alightweight architecture which can facilitate the usage for experimenters. In short,due to its customizable structure, LightNet allows individual modifications andcustomization of data transmission between participants, providing the necessarycontrol that is crucial for low-level joint action experiments. To test its practicalitywe implemented two networking examples, each based on a well-known jointaction study. The first example is based on a shared gaze study during a visualsearch task (Brennan et al., 2008). Similar to the original design, participants com-plete an O-in-Q search task but we adjusted the stimuli to trophies on a “Wallof Fame” (Figure 2.14b). To implement the networking functionality, we neededto transfer the continuous shared gaze data of both participants while also trans-mitting the complex stimuli information due to changing, randomized numberand rotation of distractors and target. The second experimental design originallyexamined mechanisms of anticipatory control during joint action (Knoblich andJordan, 2003). While the task stayed similar to the original study, we adjustedthe design so that participants control the beam of a laser cannon (tracker) ona spaceship to stay as close as possible to a moving target (Figure 2.14c,d). Thechallenges of this example centered around networking and controlling the trackerand auditory feedback as they depend on both participants’ input. In both net-working examples, we explore different levels of modifying the 3D environmentto increase immersion, encourage participant engagement, and add storytellingelements to the task. As our focus was to design a general framework, we re-frained from recording data after successfully piloting the examples. However,
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LightNet (github.com/Ben1138/lightnet-unity) and the second networking exam-ple (github.com/Westdrive-Workgroup/Dyadic-interactions-2) are freely availablefor implementation or conduction. Overall, the networking examples demonstratethe usability of our networking solution LightNet and provide a framework forlow-level joint action research in VR.
In conclusion, VR could be a promising solution, allowing real-time interaction ina controlled and ecologically valid setting. Applied to joint action, VR potentiallyincreases a study’s reproducibility, replicability, and transparency. Since appropriatenetworking is crucial for multiplayer experiments, we propose the new networkingsolution LightNet. Further, by implementing two networking examples, we providea proof of concept for our framework. Thus, the presented networking solutionLightNet and the networking examples can make VR more accessible for thescientific landscape of joint action research.
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Figure 2.14: Networking examples. Example 1, (a) main menu (left) and LightNetgraphical interface (right), (b) experimental setupwith visible gaze spheres. Example2, (c) handle to control the laser beam (tracker), and target, (d) dyadic experimentalsetup.





3 From Lab to Virtual Lab

3.1 Layman’s summary
This thesis tries to brand virtual reality as a middle ground between traditionallaboratory-based experiments and real work experimentation. As such, it advo-cates the use of virtual reality as a valid experimentation method. Therefore, we tryto validate this claim by replicating well known experiments using virtual reality. Ifwe observer the same result as the original experiments, we can confidently statethat virtual reality experiments are at least on the same level as the traditional labbased experiments. Additionally, we tried to recreate or design experiments thatbenefit from natural interaction with the environment or environmental objects.

The experiments presented in this chapter involve natural interactions with envi-ronmental objects. Therefore, this requirement needs planning for the action andwill affect where and in what order participants will look at different objects. In thefirst study, the goal is to lift or use a tool. The tool might be familiar or unfamiliarin shape. Nonetheless depending on whether one needs to use or simply lift atool, it requires the participants to study and analyze the presented tool with theireyes. Moreover, we have asked the participants to use natural hand gestures andmovements to grasp and utilize the tools. In the second experiment, participantshad to sort objects on a shelf based on given instruction. The task resembled a
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game of SudokuI but on color and shape of objects instead of number and in amore simplified manner. However, these experiments involve not only planningbut also the full-body movement of the participant. Both studies shed light on theimportance of naturalistic interaction and realism on the data we can gather in anexperiment and, therefore, their contribution to understanding complex cognitiveprocesses such as action planning.

Ia Japanese logic-based number-placement puzzle
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3.2 ActionAffordanceAffects Proximal andDistal Goal-
oriented Planning

This section was submitted as a peer reviewed article in the European Journal ofNeuroscience together with Ashima Keshava, Nina Gottschewsky, Stefan Balle,Thomas Schüler, and Peter König. See Publication List for details.

3.2.1 Abstract

Seminal studies on human cognitive behavior have been conducted in controlledlaboratory settings, demonstrating that visual attention is mainly goal-directedand allocated based on the action performed. However, it is unclear how farthese results generalize to cognition in more naturalistic settings. The presentstudy investigates active inference processes revealed by eye movements duringinteraction with familiar and novel tools with two levels of realism of the actionaffordance. We presented participants with 3D tool models that were eitherfamiliar or unfamiliar, oriented congruent or incongruent to their handedness, andasked participants to interact with them by lifting or using. Importantly, we usedthe same experimental design in two setups. In the first experiment, participantsinteracted with a VR controller in a low realism environment; in the second, theyperformed the task with an interaction setup that allowed differentiated hand andfinger movements in a high realism environment. We investigated the differencesin odds of fixations and their eccentricity towards the tool parts before actioninitiation. The results show that participants fixate more on the tool’s effector partbefore action initiation for the use task for unfamiliar tools. Furthermore, withmorerealistic action affordances, subjects fixate more on the tool’s handle as a functionof the tool’s orientation, well before the action was executed. Secondly, the spatialviewing bias on the tool reveals early fixations are influenced by the task and thefamiliarity of the tools. In contrast, later fixations are associated with the manualplanning of the interaction. In sum, the findings from the experiments suggestthat fixations are made in a task-oriented way to plan the intended action wellbefore action initiation. Further, with more realistic action affordances, fixationsare made towards the proximal goal of optimally planning the grasp even thoughthe perceived action on the tools is identical for both experimental setups. Takentogether, proximal and distal goal-oriented planning is contextualized to the realismof action/interaction afforded by an environment.
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3.2.2 Introduction

A longstanding goal of the cognitive sciences is to understand cognition, behavior,and experience as it unfolds in the natural world (Parada and Rossi, 2020). Given thetechnological advancements made in the last decade, there are fewmethodologicalroadblocks to understanding natural cognition where laboratory studies can beextended to naturalistic settings and hopefully lead towards new insights (Ladouceet al., 2017; Parada, 2018). More recently, a pragmatic turn has emerged in thefield where there is a greater push towards incorporating the body and bodilyactions to infer cognitive function (Engel et al., 2013).
Human tool use is an explicitly natural cognitive function that involves the transferof proximal goals (e.g., placement of grasp) to distal goals for the tool (Arbib et al.,2009). Moreover, simple tools fundamentally expand the body representations toinclude representations of the tool in the peripersonal space (Berti and Frassinetti,2000; Farnè et al., 2005; Maravita et al., 2002). Furthermore, tool use is differenti-ated from other object-based actions where the tool is “acted with” (S. H. Johnsonand Grafton, 2003 and requires semantic knowledge of the tool as well as thenecessary skill to perform actions with it Johnson-Frey, 2004). Hence, tool useinvolves complex behaviors ranging from cognitive and semantic reasoning toperceptual and motor processing.
When using tools, a wealth of information is parsed to produce the relevantaction. The semantic knowledge associated with the tool helps understand howit is used, the mechanical knowledge maps the physical properties of the toolfor potential usage, and finally, sensorimotor knowledge helps decipher possiblemovements required to use the tool (Baumard et al., 2014). The amalgamation ofthese knowledge sources (which can be unique to a tool) necessitates planningany action associated with the tool. When this knowledge is not readily available,inferential processes must be deployed to deduce the relevant action.
In naturalistic settings, studies have shown that eye movements are made tolocations in the scene in anticipation of the following action (Hayhoe, 2004; M. F.Land and Hayhoe, 2001; Pelz and Canosa, 2001). (Belardinelli, Stepper, et al., 2016)showed that eye movements are goal-oriented and are modulated in anticipationof the object interaction task. There is strong evidence that task plays a vital rolein how the eyes scan the scene and are differentiated between passive viewingand pantomimed interaction (Belardinelli et al., 2015). Similarly, Keshava et al.,
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2020 showed that rudimentary object interactions can be decoded using eye-movement data alone. rudimentary object interactions can be decoded usingeye-movement data alone. Even in the absence of an interaction, task relevanceplays an important role (Castelhano et al., 2009; Henderson and Hayes, 2017).These studies point towards gaze control being the consequence of knowledgeand task-driven predictions (Henderson, 2017).
Moreover, (Belardinelli, Barabas, et al., 2016) investigated the role of anticipatoryeye movements when interacting with familiar and unfamiliar tools in a controlledlab setting. These tools had differentiable parts: tool handle and effector. Theresults showed that in the case of unfamiliar tools, preparatory eye movementsare made to the tool-effector to extract the mechanical properties of the toolas the semantic information was not readily available. This effect was enhancedwhen subjects were asked to perform tool-specific movements instead of a genericaction of lifting the tool by the handle. The authors, hence, concluded that eyemovements are used to actively infer the appropriate usage of the tools fromtheir mechanical properties. In the study, the tools were presented as images ona screen, and participants pantomimed lifting or using the tool. While the studyrevealed valuable insights into anticipatory gaze control, a question remains ifthese results are part of natural cognition and can be reproduced in more realisticenvironments.
Herbort and Butz, 2011 further investigated the interaction of habitual and goal-directed processes that affect grasp selection while interacting with everydayobjects. They presented objects in different orientations and showed that graspselection depended on the overarching goal of the movement sequence dependenton the object’s orientation. Belardinelli, Stepper, et al., 2016 further showed thatfixations have an anticipatory preference for the region where the index finger isplaced. Consequently, the location of fixations is predictive of both proximal goalsof manual planning and task-related distal goals.
When studying anticipatory behaviors corresponding to an action, one must alsoask whether symbolized action is enough and how real the action should be.Króliczak et al., 2007 showed brain areas typically involved in real actions arenot driven by pantomimed actions and that pantomimed grasps do not activatethe object-related regions within the ventral stream. Similarly, Hermsdörfer et al.,2012 showed a weak correlation between the hand trajectories for pantomimedand actual tool interaction. These studies indicate that the realism of sensory
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and tactile feedback while acting (e.g., a grasp) can be an essential factor whenstudying anticipatory behavioral control.

In virtual reality (VR), realistic actions can be studied by simulating an interactionwithin an environment. Using interfaces such as VR controllers, ego-centric visualfeedback of a hand can be simulated. These interfaces usually consist of hand-held devices that are tracked in space and through which different actions arecontrolled by pressing buttons. One advantage of controller-based VR interactionis the possibility of haptic feedback. One disadvantage is that the hand posturewhile holding the controller does not always correspond to the user’s virtual visualfeedback when the simulated hand performs the action. Conversely, camera-basedinteraction interfaces such as LeapMotion, capture the real-time movements ofthe user’s hand and use finger gestures, like wrap grasp or pinch grasp, to controldifferent actions in the environment. These interfaces give the user realisticvisual feedback of their finer hand and finger movements, while they can not givehaptic feedback. Consequently, the chosen method of interaction in VR can afforddifferent levels of realism and could elicit different behavioral responses.

In the present study, we investigated anticipatory gaze control in two differentexperiments. We were interested in the extent to which the realism of the ac-tion affordance and the environment modified the results shown by Belardinelli,Barabas, et al., 2016. We asked participants to lift or use 3D models of tools inVR that were categorized as familiar or unfamiliar. Additionally, we extended theexperimental design to include the tool handle’s spatial orientation, congruent orincongruent to the subjects’ handedness.

In experiment-I, subjects performed the experiment in a low realism environemntand action affordance and interacted with the tool models using a VR controller,which mimicked grasp in the virtual environment by pulling the index finger. Inexperiment-II, subjects were immersed in a high realism setting where they inter-acted with the tools using LeapMotion, which required natural hand and fingermovements. Thus, the action affordance appeared closer to the real world. Withthis experimental design, we investigate the influence of task, tool familiarity, thespatial orientation of the tool, and, notably, the impact of the realism of the actionaffordance.
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3.2.3 Methods

Figure 3.1: Experimental Task. In two virtual environments participants interactedwith tools in two ways (LIFT, USE). The tools were categorized based on familiarity(FAMILIAR, UNFAMILIAR) and presented to the participants in two orientations(HANDLE LEFT, HANDLE RIGHT). The two virtual environments differed basedon the mode of interaction and perceived realism, wherein in one experiment,subjects’ hand movements were rendered virtually using the HTC-VIVE controllers.In the other experiment, the hands were rendered using LeapMotion, allowingfiner hand and finger movements. Panel A shows the timeline of a trial. Panel Bshows a subject in real-life performing the task in the two experiments. Panel Cshows the differences in realism in the two experiments; TOP panels correspond toexperiment with the controllers, the USE and LIFT conditions for an UNFAMILIARand FAMILIAR tool, respectively with the tool handles presented in two differentorientations. BOTTOM panels illustrate the three different conditions in a morerealistic environment with LeapMotion as the interaction method. Panel D Familiartools, from top-left: screwdriver, spatula, wrench, fork, paintbrush, trowel. Panel EUnfamiliar tools, from top-left: spoke-wrench, palette knife, daisy grubber, lemonzester, flower cutter, fish scaler.
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Experimental Task

Subjects were seated in a virtual environment where they had to interact with thepresented tool by either lifting or pretending its use. The time course of the trialsis illustrated in Figure 3.1A. At the start of a trial, subjects saw the cued task for2 sec after which the cue disappeared, and a tool appeared on the virtual table.Subjects were given 3 sec to view the tool, after which there was a beep (go cue)which indicated that they could start manipulating the tool based on the cued task.Subjects were seated in a virtual environment where they had to interact with thepresented tool by either lifting or pretending its use. After interacting with thetool, subjects pressed a button on the table to start the next trial.

Participants

For experiment-I with the HTC Vive controller’s interaction method, we recruited18 participants ( 14 females, mean age=23.68, SD=4.05 years). For experiment-IIwith the interaction method of LeapMotion, we recruited 30 participants (14 fe-male, mean age=22.7, SD=2.42 years). All participants were recruited from theUniversity of Osnabrück and the University of Applied Sciences Osnabrück. Partic-ipants had a normal or corrected-to-normal vision and no history of neurological orpsychological impairments. All of the participants were right-handed. They eitherreceived a monetary reward of C10 or one participation credit per hour. Beforeeach experimental session, subjects gave their informed consent in writing. Theyalso filled out a questionnaire regarding their medical history to ascertain they didnot suffer from any disorder/impairments which could affect them in the virtualenvironment. Once we obtained their informed consent, we briefed them on theexperimental setup and task.

Experimental Design and Procedure

The two experiments differed based on the realism of the action affordance and theenvironment. Figure 3.1B illustrates the physical setup of the participants for thetwo experiments. In experiment-I, subjects interacted with the tool models usingthe HTC Vive VR controllers. While in experiment II, subjects’ hand movementswere captured by LeapMotion.
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Figure 3.1C illustrates two exemplar trials from the experiments. We used a2x2x2 experimental design for both experiments, with factors task, tool familiarity,and handle orientation. Factor task had two levels: LIFT and USE. In the LIFTconditions, we instructed subjects to lift the tool to their eye level and place it backon the table. In the USE task, they had to pantomime using the tool to the best oftheir knowledge. Factor familiarity had two levels, FAMILIAR and UNFAMILIAR,which corresponded to tools either being everyday familiar tools or tools that arenot seen in everyday contexts and are unfamiliar. The factor handle orientationcorresponded to the tool handle, which was presented to the participants eitheron the LEFT or the RIGHT. Both experiments had 144 trials per participant, withan equal number of trials corresponding to the three factors. Subjects performedthe trials over six blocks of 24 trials each. We measured the eye movementsand hand movements simultaneously while subjects performed the experiment.We calibrated the eye-trackers at the beginning of each block and ensured thatthe calibration error was less than 1 degree of the visual angle. At the beginningof the experiment, subjects performed three practice trials with a hammer tofamiliarize themselves with the experimental setup and the interaction method.Each experiment session lasted for approximately an hour. After that, subjectsfilled out a questionnaire to indicate their familiarity with the 12 tools used inthe experiment. They responded to the questionnaire based on a scale of 5-pointLikert-like scale where 1 corresponded to “I have never used it or heard about it,”and 5 referred to “I see it every day or every week.”

Experimental Stimuli

The experimental setup consisted of a virtual table that mimicked the table in thereal world. The table’s height, width, and length were 86cm, 80cm, and 80cm,respectively. In experiment-I, subjects were present in a bare room with grey wallsand constant illumination. They sat before a light grey table, with a dark greybutton on their right side to indicate the end of the trial. Similarly, in experiment-II,subjects were present in a more immersive, realistic room. They sat in front ofa wooden workbench with the exact dimensions of the real-world table and abuzzer on the right to indicate the end of a trial. We displayed the task (USE orLIFT) over the desk 2m away from the participants for both experiments.
For both experiments, we used the toolmodels as presented in Belardinelli, Barabas,et al., 2016. Six of the tools were categorized as familiar (Figure 3.1D) and the
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other six as unfamiliar (Figure 3.1E). We further created bounding box collidersthat encapsulated the tools to capture the gaze position on the tool models. Themean length of the bounding box was 34.04cm (SD=5.73), mean breadth=7.60cm(SD=3.68) and mean height= 4.17cm (SD=2.13). To determine the tool effectorand tool handle regions of interest, we halved the length bounding box collidersfrom the center of the tool and took one half as the effector and the other half asthe handle. This way we refrained from making arbitrary-sized regions-of-interestfor the different tool models.

Apparatus

For both experiments, we used an HTC Vive head-mounted display (HMD)(110◦

field of view, 90Hz, resolution 1080 x 1200 px per eye) with a built-in Tobiieye-tracker II. The HTC Vive Lighthouse tracking system provided positionaland rotational tracking and was calibrated for a 4m x 4m space. For calibrationof the gaze parameters, we used 5-point calibration function provided by themanufacturer. To make sure the calibration error was less than 1◦, we performed a5-point validation after each calibration. Due to the nature of the experiments,which allowed a lot of natural head movements, the eye tracker was calibratedrepeatedly during the experiment after each block of 36 trials. We designedthe experiment using the Unity3D game engine III (v2019.2.14f1) and controlledthe eye-tracking data recording using HTC VIVE Eye Tracking SDK SRanipalIV(v1.1.0.1).
For experiment-I, we used HTC Vive controllerV (version 2.5) to interact with thetool. The controller in the virtual environment was rendered as a gloved hand.When participants pulled the trigger button of the controller with their right indexfinger, their right virtual hand made a power grasp action. To interact with thetools, subjects pulled the trigger button of the controller over the virtual tools andthe rendered hand grasped the tool handle.
Similarly, in experiment-II, we used LeapMotionVI (version 4.4.0) to render the

IIhttps://enterprise.vive.com/us/product/vive-pro-eye-office/IIIUnity, www.unity.comIVSRanipal, developer.vive.com/resources/vive-sense/sdk/vive-eye-tracking-sdk-sranipal/VSteamVR, https://valvesoftware.github.io/steamvr_unity_plugin/articles/Quickstart.htmlVILeapMotion Unity modules, https://developer.leapmotion.com/unity
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hand in the virtual environment. Here, subjects could see the finer hand and fingermovements of their real-world movements rendered in the virtual environment.When participants made a grasping action with their hand over the virtual toolhandle, the rendered hand grasped the tool handle in the virtual environment.

Data pre-processing

Gaze Data

As a first step, using eye-in-head 3D gaze direction vector for the cyclopean eyewe calculated the gaze angles in degrees for the horizontal θh and vertical θvdirections. All of the gaze data was sorted by the timestamps of the collectedgaze samples. The 3D gaze normals are represented as (x, y, z) a unit vector thatdefines the direction of the gaze in VR world coordinates. In our setup, the xcoordinate corresponds to the left-right direction, y in the up-down direction, z inthe forward-backward direction. The formulas used for computing the gaze anglesare as follows:
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Next, we calculated the angular velocity of the eye in both the horizontal andvertical coordinates by taking a first difference of the angular velocity and dividingby the difference between the timestamp of the samples using the formula below:
ωh =∆θh/∆t

ωv =∆θv/∆t

Finally, we calculated the magnitude of the angular velocity (ω) at every timestampfrom the horizontal and vertical components using:
ω =
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To classify the fixation and saccade-based samples, we used an adaptive thresholdmethod for saccade detection described by Voloh et al., 2019. We selected aninitial saccade velocity threshold θ0 of 200 ◦/sec. All eye movement sampleswith an angular velocity of less than θ0 were used to compute a new threshold
θ1. θ1 was three times the median absolute deviation of the selected samples. Ifthe difference between θ1 and θ0 was less than 1 ◦/sec θ1 was selected as thesaccade threshold else, θ1 was used as the new saccade threshold and the aboveprocess was repeated. This was done until the difference between θn and θn+1was less than or equal to 1 ◦/sec. This way we arrived at the cluster of samplesthat belonged to fixations and the rest were classified as saccades.
After this, we calculated the duration of the fixations and removed those fixationsthat had a duration less than 50 ms or were larger than 3.5 times the medianabsolute deviation of the fixation duration. For further data analysis, we onlyconsidered those fixations that were positioned on the 3D tool models. Wefurther categorized the fixations based on their position on the tool, i.e., whetherthey were located on the effector or handle of the tool.

Data Analysis

Odds of Fixations in favor of tool effector

After cleaning the dataset, we were left with 2174 trials from 18 subjects inexperiment-I and 3633 trials from 30 subjects in experiment-II. For both experi-ments, we analysed the fixations in the 3 second period from the tool presentationtill the go cue. For the two experiments, we modeled the linear relationship ofthe log of odds of fixations on the effector of the tools and the task cue (LIFT,USE), the familiarity of the tool (FAMILIAR, UNFAMILIAR), and orientation of thehandle (LEFT, RIGHT). All within-subject effects were also modeled with randomintercepts and slopes based on the subjects. We were also interested in modelingthe random effects based on the tool to assess the differential effects on theindividual tools. We did not have enough data to estimate random item effects, sowe fitted a random intercept for the 12 tools.
We used effect coding (Schad et al., 2018) to construct the design matrix for thelinear model, where we coded the categorical variables LIFT, FAMILIAR, RIGHTto -0.5 and USE, UNFAMILIAR, LEFT to 0.5. This way, we could directly interpret
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the regression coefficients as main effects. The model fit was performed usingrestricted maximum likelihood (REML) estimation (Corbeil and Searle, 1976) usingthe lme4 package (v1.1-26) in R 3.6.1. We used the L-BFGS-B optimizer to findthe best fit using 10000 iterations. Using the Satterthwaite method (Luke, 2017),we approximated degrees of freedom of the fixed effects. For both experiments,the Wilkinson notation (Wilkinson and Rogers, 1973) of the model was:

log
p( f i xati ons on e f f ector )

p( f i xati ons on handle)
∼

1+ t ask ∗ f ami l i ar i t y ∗handle_or i ent ati on

+ (1+ t ask ∗ f ami l i ar i t y ∗handle_or i ent ati on|Sub j ect )+ (1|tool )(3.1)
As we used effects coding, we can directly compare the regression coefficients ofthe two models. The fixed-effect regression coefficients of the two models woulddescribe the differences in log-odds of fixations in favor of tool effector for thecategorical variables task, familiarity, and handle orientation.

Spatial bias of fixations on the tools

In this analysis, we wanted to assess the effects of task, tool familiarity, and handleorientation on the eccentricity of fixations on the tools. To do this, we studied thefixations from the time when the tool was visible on the table (3s from the start oftrial) till the go cue indicated when subjects could start manipulating the tool. Wedivided this 3s period into 20 equal bins of 150ms each. For each trial and timebin, we calculated the median distance of the fixations from the tool center. Next,we normalized the distance with the length of the tool so that we could comparethe fixation eccentricity across different tools.

To find the time-points where therewere significant differences for the 3 conditionsand their interactions, we used the cluster permutation method. Here, we use thet-statistic as a test statistic for each time-bin, where t is defined as:
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t =
p

N ∗ x

σ

and, x is the mean difference between conditions, and σ is the standard deviationof the mean and N is the number of subjects. We used a threshold for t at 2.14which corresponds to the t-value at which the p-value is 0.05 in the t-distribution.We first found the time-bins where the t-value was greater than the threshold.Then, we computed the sum of the t-values for these clustered time-bins whichgave a single value that represented the mass of the cluster. Next, to assess thesignificance of the cluster, we permuted all the time-bins across trials and subjectsand computed the t-values and cluster mass for 1000 different permutations. Thisgave us the null distribution over which we compared the cluster mass shownby the real data. We considered the significant clusters to have a p-value lessthan 0.05. In the results, we report the range of the significant time-bins for the 3different conditions and their interactions and the corresponding p-values.

3.2.4 Results

The present study investigated the differences in gaze-based strategies depen-dent on task, tool familiarity, and handle orientation. Here, we investigated twoanticipatory gaze-based strategies 3 seconds before action initiation; the odds offixations in favor of the tool effector and the eccentricity of the fixations throughtime towards the tool effector. We further compared the differences in two exper-iments that had the same experimental design but differed in the realism of theaction affordance and environment.
First, we were interested in how the participants subjectively assessed the famil-iarity of the 12 tools. 3.2A shows the subjective familiarity ratings for each ofthe familiar and unfamiliar tools used in the study. The mean familiarity rating forfamiliar tools in experiment-I was 4.55 (SD=0.60) and for unfamiliar tools 1.81(SD=1.17). In experiment-II, the mean familiarity rating for familiar tools was 4.48(SD=0.52) and for unfamiliar tools 1.56 (SD=1.04). To determine the differences inthe subjective familiarity ratings for the two experiments and our categorizationof familiarity, we performed a mixed-ANOVA with familiarity as a within-subjectfactor and the experiment group as the between-subject factor. We found no
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Figure 3.2: A) Participants’ familiarity rating of the tools. Participants provided theirsubjective rating of familiarity with the 12 tool stimuli on a 5-point Likert scale.The small circles correspond to ratings from individual subjects. The larger circlescorrespond to the mean rating for each tool, and error bars represent the standarddeviation across subjects. B) Percentage of fixations allocated to the environmentvs. the tools for the two different experiments. The circles correspond to themean percentage of fixations across subjects, and the error bars represent thestandard deviation. As seen here, the realism of the environment did not affecthow participants allocated their attention in the experiments.
differences in the familiarity ratings between the two experiments (F(44)=3.08,p-value=0.08). Furthermore, there were significant differences in the subjectiverating of the tools (F(44)=3094.05, p-value<0.001). There were also no significantinteractions between the two factors (F(44)=2.52, p-value=0.11). Figure In sum,our experimental condition of familiarity was consistent with the participants’subjective rating as well.
Next, we wanted to make sure that the differences in the virtual environments didnot affect the way subjects allocated their attention to the experimental task. Wecalculated the mean percentage of fixations positioned on the tool vs. anywhereelse in the environment for each subject across trials. Figure 3.2B shows thepercentage of fixations allocated to the tools vs. the environment for the twoexperiments. For experiment-I with the interaction method of VR controller and a
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less realistic environment, the mean percentage of fixations on the environmentwas 0.29 (SD=0.08) and on the tools 0.78 (SD=0.10). Conversely, in experiment-IIwith LeapMotion as the interaction method and a more realistic environment, thepercentage of fixations allocated to the environment was 0.30 (SD=0.15) andon the tools 0.80 (SD=0.14). To test if these differences were significant, weperformed a mixed-ANOVA with fixation location as a within-subject factor, thetwo experiments as a between-subject factor, and the percentage of fixations asthe dependent variable. We found no differences in the percentage of fixationsbetween the two experiments (F(47)=2.86, p-value=0.09). There were significantdifferences in the percentage of fixations located on the tool vs. the environment(F(47)=217.47, p-value<0.001). We did not find any interactions between thetwo factors (F(47)=0.02, p-value=0.87). These results show that the allocation ofattention was primarily task-oriented and was not affected by the differences inthe virtual environment of the two experiments.
Next, we compared the log-odds of fixations in favor of the tool effector across thethree conditions: task, tool familiarity, and handle orientation in the 3s period whenthe subjects studied the tool. Figure 3A shows the log-odds of the fixations on thetool effector for experiment-I (with HTC VIVE Controllers) and experiment-II (withLeapMotion). In experiment-I (Figure 3.3A, left panel), subjects showed a meanlog odds of 0.01 (95%CI = [-0.04, 0.08]) for the LIFT task and for the USE taskthe mean log-odds were 0.19 (95%CI = [0.11, 0.28]). For the FAMILIAR tools, themean log-odds in favor of the tool effector were -0.16 (95%CI = [-0.23, -0.09]) andfor UNFAMILIAR 0.35 (95%CI = [0.25, 0.45]). For the RIGHT oriented tool handle,the mean log-odds were 0.14 (95%CI = [0.06, 0.21]) and for the LEFT orientedtool handle, the mean log-odds were 0.08 (95%CI = [-0.09, 0.26]). To assess thesignificance of the factors, we used linear mixed models. For the linear model,we used effect coding so the regression coefficients can be directly interpretedas main effects. There was a significant main effect of factor task (USE - LIFT) β= 0.18 (95%CI = [0.08, 0.27], t(70.09)=3.7), with a p-value < 0.001. There was asignificant main effect of familiarity (UNFAMILIAR - FAMILIAR ) β = 0.58 (95%CI= [0.09, 1.08], t(10.79)=2.33), with p-value = 0.04. The main effect of handleorientation was not significant (LEFT - RIGHT) β = -0.04, (95%CI = [-0.29, 0.21],t(16.94)=-0.32), p-value = 0.75. We found a significant interaction of task andfamiliarity with β = 0.24 (95%CI = [0.03, 0.45], t(25.88)=2.21), p-value = 0.036.The interaction of task and handle orientation was not significant, β = 0.19 (95%CI= [-0.05, 0.43], t(21.26)=1.55), p-value = 0.13. The interaction of familiarity andorientation was not significant , β = -0.28 (95%CI = [-0.56, -0.004], t(17.07)=-1.99),
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p-value = 0.06. The 3-way interaction was also not significant, β = -0.005 (95%CI= [-0.37, 0.36], t(1695)=-0.02), p-value=0.97.
In experiment-II (Figure 3.3A, right panel), subjects showed a mean log odds of0.08 (95%CI = [-0.04, 0.22]) of fixations on the tool effector for the LIFT taskand for the USE task the mean log-odds were 0.22 (95%CI = [0.09, 0.36]). Forthe FAMILIAR tools, the mean log-odds in favor of the tool effector were 0.04(95%CI = [-0.08, 0.16]) and for UNFAMILIAR 0.25 (95%CI = [0.12, 0.39]). For theRIGHT oriented tool handle, the mean log-odds were 1.18 (95%CI = [1.06, 1.29])and for the LEFT oriented tool handle, the mean log-odds were -0.32 (95%CI= [-0.45, -0.20]). Using the linear mixed model, we assessed the significanceof the three factors. There was a significant main effect of factor task (USE -LIFT) β = 0.13 (95%CI = [0.01, 0.25], t(27.28)=2.13) with a p-value = 0.04. Themain effect of familiarity (UNFAMILIAR - FAMILIAR ) was not significant β = 0.35(95%CI = [-0.06, 0.77], t(10.02)=1.67) with p-value = 0.12. The main effect ofhandle orientation (LEFT - RIGHT) was significant, β = -1.74 (95%CI = [-1.99,-1.48], t(28)=-13.65), p-value <0.001. We found a significant interaction of taskand familiarity with β = 0.25 (95%CI = [0.09, 0.41], t(43.64)=3.13), p-value =0.003. The interaction of task and handle orientation was not significant, β = 0.11(95%CI = [-0.06, 0.28], t(31.90)=1.29), p-value = 0.20. Similarly, the interaction offamiliarity and orientation was significant, β = 0.33 (95%CI = [0.15, 0.50]), p-value= 0.001. The 3-way interaction was also not significant, β = -0.09 (95%CI = [-0.39,0.19], t(2201)=-0.65), p-value=0.51.
Figure 3.3B summarizes the regression coefficients of the linear model from bothexperiments. Importantly, we see that the main effect of the task is significant forboth experiments. Similarly, the interaction of task and familiarity is significant forboth experiments. However, the effect of handle orientation is only significant inexperiment-II with the LeapMotion interaction method.
Next, we were interested in the effect of task, tool familiarity, and handle orienta-tion on the eccentricity of the fixations on the tool before action initiation. Wecalculated the relative distance of fixations from the center of the tool in the 3speriod when the subjects studied the tool. We used cluster permutation teststo evaluate the time periods when the effects of the different conditions weresignificant. As shown in Figure 3.4A, in experiment-I, the differences in task (USE -LIFT) were significant from 1.05s to 1.95s period, p-value<0.001. Differences intool familiarity (FAMILIAR - UNFAMILIAR) were significant from 0.15s to 3s with a
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p-value <0.001. Moreover, the differences in the two orientations (LEFT - RIGHT)were not significant. The interaction of task and familiarity were significant from0.3s to 2.55s, p-value=0.006. The interactions of task and handle orientation, andthe interaction of handle orientation and tool familiarity were not significant inany time period.
Similarly, figure 3.4B shows the eccentricity of fixations from the center of thetool during the 3s period when the subjects studied the tool in experiment-II.The differences in task were significant in two time periods 0.45s to 2.4s, p-value< 0.001 and from 2.7s to 3s, p-value=0.03. The differences in familiaritywere significant from 0.15s to 3s, p-value < 0.001. Furthermore, the differencesin handle orientation were significant from 0.75s to 1.8s, p-value < 0.001. Asignificant interaction of task and familiarity from 0.45s to 1.5s with p-value<0.001. There were also significant clusters in the interaction of task and handleorientation, from 0.3s to 3s with p-value<0.001 and for tool familiarity and handleorientation from 0.15s to 3s with p-value < 0.001.

3.2.5 Discussion

The primary aim of this study is to investigate how gaze-based strategies varyfor tasks, tool familiarity, and manual planning in naturalistic settings. With ourstudy, we successfully added to the current body of research in two importantways. Firstly, irrespective of the realism of the action affordance in virtual envi-ronments, the number, and location of anticipatory fixations were modulated bygoal-oriented factors of task and tool familiarity. Secondly, anticipatory fixationsrelated to proximal manual planning were only seen when the setup allowed formore realistic action affordances with the virtual hand mimicking finer hand andfinger movements. In sum, proximal and distal goal-oriented planning is highlycontextualized to the realism of action/interaction afforded by the environment.
We conducted two experiments to disentangle the role of action affordance forgoal-oriented planning. Participants interacted with 3D tool models using VRcontrollers in a low realism setup, which produced a virtual grasp by pulling theirindex fingers. Here, we showed that the odds of sampling visual informationfrom the mechanical properties of a tool are different based on the specificityof the task. Moreover, given tool familiarity, the odds of fixating on the effectorincreased for unfamiliar tools. Tool-specific knowledge also played a major role
80



From Lab to Virtual Lab Chapter 3

when subjects were instructed to produce tool-specific movements. Moreover,the spatial orientation of the tool did not affect the odds of fixations for the tooleffector. In sum, with the preparation of a symbolic grasping action, fixations wereaffected by distal goal-oriented factors of task and tool familiarity.
In a high realism setup, participants interacted with tool models by producingan actual grasp over the tools. The results were similar to the first experiment.However, we additionally found a significant effect of spatial orientation of thetool where the odds of fixations in favor of the tool effector decreased whenthe tool was presented incongruent to the subjects’ handedness. These resultssuggest that fixations are directed towards the handle of the tool in anticipationof planning the proximal goal of an optimal grasp. Interestingly, the optimal graspplanning is initiated from the beginning until the end of the viewing time windowand might be more critical than inspecting the tool effector to produce the correctaction. Taken together, the preparation of a realistic grasping action modulatedanticipatory fixations related to both proximal and distal goal planning.
These results are in line with the findings reported by Belardinelli, Barabas, et al.,2016. They investigated behavioral responses to task and tool-based affordancesin a lab where subjects responded to stimuli images on a computer screen andpantomimed their manual actions. Moreover, they presented the tools with thehandle always oriented on the right and congruent to the subject’s handedness.Our results suggest that well before action initiation, subjects had to substantiallyplan their hand movement on the tool to interact with it. This effect is indicative ofan end-state comfort planning (Herbort and Butz, 2012) where both proximal anddistal goal-oriented planning interacts to modulate anticipatory fixations. From theperspective of ecological validity, our findings give a fuller view of how differentplanning strategies are needed to produce relevant action. Our study shows thatwithin a naturalistic setting, task, tool familiarity, and the spatial orientation ofthe tool affect the planning and production of relevant actions. Hence, our studyoffers a veridical and ecological valid context to aspects of anticipatory behaviorcontrol.
Studies in eye-hand coordination (Belardinelli et al., 2018; Johansson et al., 2001;Lohmann et al., 2019) have shown that eye movements are predictively madetowards the grasp contact points. Furthermore, Flanagan et al., 2006 proposed thatpredictions aremade in an event-orientedmanner and are at the heart of successfulcontrol strategies for object manipulations. They posit that predicted sensory

81



Chapter 3 From Lab to Virtual Lab

events are compared with actual events like grasping, lifting, moving the objectto monitor task progression. In contrast, Iacoboni et al., 2005 and Wohlschlägeret al., 2003 showed that goal-oriented planning is specified at an abstract levelrather than at the movement level. Our results suggest that the anticipatory gazebehavior specific to task and tool familiarity is seen only when additional graspcontrol planning is not needed. Inversely, optimal motor control might supersedeplanning based on other distal goals. Here, we make the case that predictions aremade for action outcomes at various scales, and that eye movements are used toplan both optimal grasp control and task-specific requirements well before actioninitiation.
Our study adds to the growing body of evidence that anticipation and predictionare at the core of cognition (Pezzulo et al., 2007). Motor theories of cognition haveproposed that simulations of actions reuse internal models of motor commands toeffect multiple predictions (Jeannerod, 2006). The simulation of action theory hasbeen used to explain numerous phenomena of planning, prediction of externalevents, visual perception, and imitation. Hoffmann, 2003 introduced anticipatorybehavior control as the mechanism by which action-effect representations are ac-tivated by the need for an effect-related goal and contingent stimuli. Furthermore,Pezzulo et al., 2021 recently proposed that generative models provide top-downpredictive signals for perception, cognition, and action during active tasks andthese signals are otherwise weak and/or absent when the brain is at rest or thestimuli are weak. Our study shows that anticipatory behavior is tightly linked tothe production of task-relevant actions and contextualized to the realism of theaction affordance.
Notably, our study shows that different constraints on the method of interactioncan also result in different anticipatory behavioral responses. From the perspectiveof Gibson, 1977, the affordances of the environment are tightly linked to the actionsthat one can perform in it. Similarly, O’Regan and Noë, 2001 posited that actionsconstitute the cognitive processes that govern relevant sensorimotor contingencies.In our study, the production of relevant actions significantly modulated the visualsampling of the tool parts in accordance to goal-oriented factors such as task andtool familiarity irrespective of the action affordance. Taken together, our studyshows that some aspects of anticipatory gaze are dependent on the realism of theaction afforded by the environment.
We conducted the present study in virtual reality, which is still a burgeoning
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technology for vision research. While VR environments pose an exciting avenueof research, there are still limitations that practitioners must face while conductingexperiments in these scenarios. First, the naturalistic setting of both experimentsI and II afforded natural head movements. To maintain optimal quality over thedata, we asked the participants in the study to make limited head movements.Additionally, we presented the tools and the task cues not to cause extreme pitchhead movements. Secondly, mobile eye-trackers can be error-prone and mightsuffer from variable sampling rates (Ehinger et al., 2019) or calibration errorsdue to slippage (Niehorster et al., 2020). To mitigate any calibration errors, wealso made sure that we calibrated the eye-trackers at regular intervals. Thirdly,both controller-based and camera-based VR interaction methods are still newtechnology. It could have been challenging for participants to get used to, eventhoughwemade sure they practiced the interactionmethod before the experiment.While we simulated grasping the tool using LeapMotion’s gesture recognitionand were able to produce a more realistic action affordance through mimickingfiner hand and finger movements, it is still an inadequate substitute for a realgrasp where the tactile feedback of the tool in hand might elicit more accurateresponses. For example,Ozana et al., 2018 showed that grasping movementswithin a virtual environment differ both quantitatively and qualitatively from typicalgrasping. Lastly, there are obvious differences in the realism of the two virtualenvironments used in the study in terms of the visual scene. While there arevisible differences between the environments, we see that there are no significantdifferences between the percentage of fixations allocated to the background vs.tool for both experimental settings. Hence, we contend that the differences inthe eye movement behavior reported in the study are largely a consequence ofthe differences in the action affordance and much less because of mere visualdifferences. In light of these limitations, we know that our studymust be consideredfrom a nuanced perspective. Furthermore, there is still room for replicating ourstudy with novel and more realistic interaction methods.
There are still some open questions pertaining to anticipatory behavior elicited bytool interactions. Firstly, while our study distinguishes between levels of actionaffordances, future work can look at goal-oriented planning for passive observersat both proximal and distal levels. Secondly, it would be interesting to dive deeperinto the predictive brain signals that give rise to the present oculomotor behaviors.Our study provides a first step towards distinctly investigating proximal and distalgoal-oriented planning.
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3.2.6 Conclusion

The present study gives a veridical and ecologically valid context to planning andanticipatory behavior. Our results support the hypothesis that eye movementsserve the cognitive function of actively sampling information from the environmentto produce relevant actions. When semantic information about the object is notreadily available, eye movements are used to seek information from its mechanicalproperties from specific locations. Furthermore, we show that fixations are madein a goal-oriented way in anticipation of the relevant action. When considering therealism of the action affordance, our results show that eye movements prioritizeproximal goals of optimal grasp over task-based demands. Lastly, our study isat the frontiers of naturalistic vision research, where novel technologies can beharnessed to answer questions that were previously far-fetched.
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Figure 3.3: Experiment results. A) top-left: shows the log-odds of fixation oneffector vs. handle in the controller study when the tool handle is oriented to theright. The log odds on fixations are higher on the effector for unfamiliar tools (red)than the familiar tools (green) for both the LIFT and the USE tasks. Bottom-left:log odds of fixation on effector when the tool handle is oriented to the left and isincongruent to the subjects’ handedness. The plot shows that the orientation ofthe tool does not significantly affect the log-odds fixation on the effector. Top-right:the log-odds of fixation on effector in the LeapMotion study when the tool handleis oriented to the right. The log odds of fixations on the effector are higher forunfamiliar tools (red) than the familiar tools (green) and the USE task. Bottom-right:log odds of fixation on effector when the tool handle is oriented to the left and isincongruent to the subjects’ handedness. The plot shows that the orientation ofthe tool results in significant log-odds of fixations over the handle in the LIFT task,while in the USE task and with unfamiliar tools (red) significantly more fixationswere on the effector. B) The linear regression coefficients for the two experiments.The effect of the task is significant for both experiments with higher log-odds offixations on the effector. For the factor orientation, the log-odds are significant inthe LeapMotion experiment and not for the controller experiment. Similarly, theinteraction between task and familiarity is significant for both experiments.



Figure 3.4: Eccentricity of fixations on the tool models. The negative values of theabscissa correspond to fixations towards the handle, the positive values refer tofixations towards the tool effector, and zero represents the center of the tool. Theordinate axis refers to the time elapsed since the tool is visible on the virtual table.The go cue is given to participants at 3s after which they can start interactingwith the tool. The blue lines correspond to the FAMILIAR tool and red to theUNFAMILIAR tools. The error bars represent the standard error of the meanacross subjects. The vertical solid lines correspond to the significant time clustersfor main effects and the vertical dashed lines to the interactions. Panel A showsthe findings from experiment-I and the two handle orientations. Panel B showsthe findings from experiment-II and the two handle orientations.
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3.3 Task Complexity Affects Gaze Guidance Behavior
while Action Planning and Execution in Naturalistic
VR

This section was submitted as a peer reviewed article together with Ashima Ke-shava, Henri Neumann, Krzysztof Izdebski, Thomas Schüler, and Peter König. SeePublication List for details.

3.3.1 Abstract

Eye movements in the natural environment have primarily been studied for over-learned everyday activities such as tea-making, sandwich making, driving thathave a fixed sequence of actions associated with them. These studies indicate aninterplay of low-level action schemas that facilitate task completion. However, itis unclear if this strategy is also in play when the task is novel and a sequence ofactions must be planned in the moment. To study attention mechanisms in a noveltask in a natural environment, we recorded gaze and body movement data in avirtual environment while subjects performed a sorting task where they sortedobjects on a life-size shelf based on some object features. To study the actionplanning and execution related gaze guidance behavior we also controlled thecomplexity of the sorting task by introducing EASY and HARD tasks. We showthat subjects are close to optimal while performing EASY trials and are more sub-optimal while performing HARD tasks. Fixations aligned with action onset showtask complexity elicits greater proportion of look-ahead, and monitoring fixationsbut not directing and guiding fixations. Task complexity affected the scan-paths onthe task-relevant regions of interest during action planning and execution wheresubjects exhibit a greater search and action monitoring behaviors in HARD tasksand less so in EASY tasks. Task complexity also affected the temporal sequenceof first fixations on the task-relevant regions of interest systematically for actionplanning but not for action execution. Our findings show that task complexitymodulates the competition of low-level cognitive schemas during planning andexecution even when sub-optimal decisions are made by the actor.
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3.3.2 Introduction

In a pragmatic turn in cognitive science, there is a more significant push towardsincorporating the study of cognitive processes while interacting with the externalworld (Parada & Rossi, 2020). Moreover, Engel et al. (2013) proposed that cognitionencompasses the body, and in turn, bodily action can be used to infer cognition.To this effect, understanding the control of eye movements in natural, real-lifesituations requires amobile setup that allows for a subject to be recorded in tandemwith voluntary actions in a controlled yet unconstrained environment. Studyingeye movements in mobile subjects might give us a richer picture of cognitiveprocessing in more naturalistic settings.
Humans actively use vision during everyday activities to gather and refine informa-tion about the environment. Since the seminal works of Yarbus (2013) and Buswell(1935) there has been consistent evidence that eye movements depend on theviewing task the observer is performing. Kollmorgen et al. (2010) demonstratedstimulus-dependent features, spatial viewing biases, and task-dependent featuresall influence the exploration of a visual scene. This is further supported by studiesthat emphasize the relevance of semantics in the guidance of eye movements (Ein-häuser et al., 2008; Henderson & Hayes, 2017). Thus, we have growing evidencethat task demands can affect eye movements behavior.
Seminal studies have already investigated eye movement behavior in natural en-vironment with fully mobile participants. In the pioneering studies of M. Landet al. (1999) and Hayhoe et al. (2003), subjects performed everyday activities oftea-making and sandwich-making, respectively. These studies required a sequenceof actions that involved manipulating objects one at a time to achieve the goal.Both studies showed that nearly all the fixations were task-related. Further studiesinvestigated eye movements under a plethora of natural conditions while walking(Matthis et al., 2018), driving (Mars & Navarro, 2012; Navarro et al., 2020; B. T.Sullivan et al., 2012), hand-washing (Pelz & Canosa, 2001), hitting a ball (M. F. Land& McLeod, 2000), and free exploration (Schumann et al., 2008). These experi-ments in naturalistic settings have revealed several distinct functions of the eyemovements during habitual everyday tasks.
Studies investigating habitual tasks uncovered a systematic timing of visual fixa-tions and object manipulation. Specifically, fixations are made to target objectsabout 600ms beforemanipulation. More importantly, Ballard et al. (1995) proposed
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a "just-in-time" strategy that universally applies to this relative timing of fixationsand actions. In other words, fixations that provide information for a particularaction immediately precede that action and are crucial for the fast and economicalexecution of the task.
While performing habitual tasks, fixations have been broadly categorized into fourfunctional groups (M. F. Land & Hayhoe, 2001). ’Locating’ fixations retrieve visualinformation. ’Directing’ fixations acquire the position information of an object andaccompany a manipulation action and facilitate reaching movements. ’Guiding’fixations alternate between two objects being manipulated e.g., knife, bread, andbutter. ’Checking’ fixations monitor where the task constraints in the scene havebeen met. These findings have also been corroborated by Pelz and Canosa (2001)and Mennie et al. (2007). Pelz and Canosa (2001) showed similar just-in-timestrategy of gaze allocation while performing a hand-washing task. They alsoreported a small number of fixations of about 5% that did not serve the immediatesub-task but rather provided information that would be needed for a future action.The authors hypothesize these ´Look-ahead´ fixations provide a mechanism tostabilize the visual input stream that result from a sequence of actions, facilitatetask-switching, and reduce conscious effort required to complete the actions in asequence. Hence, look-ahead fixations can be explained as a perceptual strategyto ease the cognitive load attending to complex tasks in the real world. In sum, thewide-ranging functions of eye movements are well documented in natural routinetasks.
Based on these observations M. F. Land and Hayhoe (2001) proposed a frameworkthat outlines that flow of visual and motor control during task execution Figure3.5A. The process summarizes the various operations that must occur during an’object-related action’ i.e., individual actions performed on separate objects toachieve the desired goal. Each schema "specifies the object to be dealt with, theaction to be performed on it, and the monitoring required to establish that theaction has been satisfactorily completed." (M. F. Land, 2006). Further, the gazecontrol samples the information about the location and identity of the objectand directs the hands to it. Subsequently, the motor control system of the armsand hands implement the desired actions. Here, vision provides the informationof where to direct the body, which state to monitor, and determine when theaction must be terminated. Taken together, a ’script’ of instructions is sequentiallyimplemented where the eye movements earmark the task-relevant locations inthe environment that demand attentional resources for that action.
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This matches the common theme in the above studies investigating natural tasks(e.g., tea-making, sandwich-making, hand-washing) with an organized and well-known structure. These tasks involve specific object-related actions such as pickingup the knife, picking up the teapot, etc. and have a predefined ’script’ for the exe-cution of the tasks. The studies, therefore, study eye movements that are understrict control of a task sequence. Moreover, these tasks are over-learned andover-generalized as they are part of a habitual action repertoire for an adult humanbeing. As discussed by M. F. Land (2006) the low-level schemas (locating, directing,guiding, monitoring) defined above are likely not executed under deliberate con-scious control. This distinction corresponds to James (2007) distinction between"ideo-motor" and "willed" acts. As James described, ideo-motor actions corre-spond to movements where we are "aware of nothing between the conception andexecution" of the said action. In contrast, the willed actions require "an additionalconscious element in the shape of a fiat, mandate, or expressed consent." Hence,it is unclear whether these low-level schemas of gaze control operate similarly fordeliberate actions where an internal task script is not already known.
Norman and Shallice (1986) proposed a theoretical framework for the componentsof attentional mechanisms that govern deliberate/planned actions. In comparisonto the low-level schema proposed by M. F. Land (2006), which can account forroutine, well-learned tasks, theNorman and Shallice (1986)model suggests anothersupervisory module that selects a schema to implement. In well-learned tasks,a schema is triggered automatically without conscious control. However, whena task is fairly complex and requires planning, multiple low-level schemas mightcompete for resources at the same time and require contention scheduling. Forexample, contentions can arise on whether to monitor the current action withrespect to previous actions or future planned actions to fulfill the task-relevantgoals. Such a scheduling mechanism is then required to provide conflict resolutionfor potentially relevant schemas either by inhibition or activation. Taken together,the model predicts that a failure of the supervisory control can lead to an instabilityof attention and heightened distraction.
To generalize the above oculomotor behaviors, one could examine the spatial tem-poral profiles of the fixation in novel task scenarios. First, in cognitively complextasks an abundance of look-ahead saccades would give evidence of elaboratecognitive planning. That is, high-level planning processes with matching eye move-ments would also support optimal decision making. Second, the concurrence ofcognitive processing and actions would emphasize a strict sequence of fixations
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with specific purposes, e.g., locating, directing, guiding, checking where cognitiveschemas and actions would evolve in parallel. Experiments with complex, variabletasks are needed to differentiate these hypotheses.
To further pursue this line of research, it is desirable to perform such experimentsunder tightly controlled laboratory conditions. In recent years, virtual reality (VR)and mobile sensing has offered great opportunity to create controlled, naturalenvironments. Here, subjects’ eye and body movements can be measured reliablyalong with their interactions with the environment (Clay et al., 2019; Keshava et al.,2020; Keshava et al., 2021; Mann et al., 2019). Experiments in virtual environmentshave grown popular in recent years and have shown promise towards studyingcognition in naturalistic and controlled environments.
In the present study, we investigate the mechanisms of allocation of attentionwhile performing a novel task in a naturalistic environment. We created two typesof tasks that varied in complexity and required performing a sequence of actionsto accomplish the cued goal. We asked subjects to sort objects on a life-size shelfbased on the object features. The complexity of the task depended on sortingbased on one object feature or both. We designed the tasks to be novel in away that subjects had to plan their action sequences on-the-fly and in absenceof a pre-defined action "script". We concurrently measured the eye and bodymovements while subjects performed the tasks.

3.3.3 Methods

Participants

A total of 60 participants (39 females, mean age = 23.9 ± 4.6 years) were recruitedfrom the University of Osnabrück and the University of Applied Sciences Os-nabrück. Participants had a normal or corrected-to-normal vision and no historyof neurological or psychological impairments. They either received a monetaryreward of €7.50 or one participation credit per hour. Before each experimentalsession, subjects gave their informed consent in writing. They also filled out aquestionnaire regarding their medical history to ascertain they did not suffer fromany disorder/impairments which could affect them in the virtual environment.Once we obtained their informed consent, we briefed them on the experimentalsetup and task. The Ethics Committee of the University of Osnabrück approved
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the study.

Apparatus & Procedure

For the experiment, we used anHTCVive Pro Eye head-mounted display (HMD)(110°field of view, 90Hz, resolution 1080 x 1200 px per eye) with a built-in Tobii eye-trackerVII. Participants used an HTC Vive controller to manipulate the objectsduring the experiment with their right hand. The HTC Vive Lighthouse trackingsystem provided positional and rotational tracking and was calibrated for 4m x4m space. For calibration of the gaze parameters, we used 5-point calibrationfunction provided by the SRanipal SDK. To make sure the calibration error wasless than 1◦, we performed a 5-point validation after each calibration. Due to thestudy design, which allowed a lot of natural body movements, the eye trackerwas calibrated repeatedly during the experiment after every 3 trials. Furthermore,subjects were fitted with HTC Vive trackers on both ankles, both elbows and,one on the midriff. The body trackers were also calibrated subsequently to givea reliable pose estimation using inverse kinematics of the subject in the virtualenvironment. We designed the experiment using the Unity3DVIII 2018.x.x (version)and SteamVR game engine and and controlled the eye-tracking data recordingusing HTC VIVE Eye Tracking SDK SRanipalIX (v1.1.0.1)

The experimental setup consisted of 16 different objects placed on a shelf of 5x5grid. The objects were differentiated based on two features: color and shape. Weused four high contrast colors (red, blue, green and yellow) and four 3D shapes(cube, sphere, pyramid and cylinder). The objects had an average height of 20cmand width of 20cm. The shelf was designed with a height and width of 2m with 5rows and columns of equal height, width and, depth. Participants were presentedwith a display board on the right side of the shelf where the trial instructions weredisplayed. Subjects were also presented with a red buzzer that they could use toend the trial once they finished the task.

VIIhttps://enterprise.vive.com/us/product/vive-pro-eye-office/VIIIUnity, www.unity.comIXSRanipal, developer.vive.com/resources/vive-sense/sdk/vive-eye-tracking-sdk-sranipal/
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Experimental Task

Subjects performed two practice trials where they familiarized themselves withhandling the VR controller and the general aspects of the setup. In these practicetrials they were free to explore the virtual environment and handle the objects.After the practice trials, subjects were asked to sort object based on the oneand/or two features of the object. There were two types of trials: EASY and HARD.Subjects were not limited by time to complete the task. Each subject performed 24trials with each trial type (as listed below) randomly presented twice throughoutthe experiment. The experimental setup is illustrated in Figure 3.5B. The EASYtrials instructions were as follows:

1. Sort objects so that each row has the same shape or is empty
2. Sort objects so that each row has all unique shapes or is empty
3. Sort objects so that each row has the same color or is empty
4. Sort objects so that each row has all unique colors or is empty
5. Sort objects so that each column has the same shape or is empty
6. Sort objects so that each column has all unique shapes or is empty
7. Sort objects so that each column has the same color or is empty
8. Sort objects so that each column has all unique colors or is empty

The HARD trials instructions were as follows:
1. Sort objects so that each row has all the unique colors and all the uniqueshapes once
2. Sort objects so that each column has all the unique colors and all the uniqueshapes once
3. Sort objects so that each row and column has each of the four colors once.
4. Sort objects so that each row and column has each of the four shapes once.
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3.3.4 Data pre-processing

Gaze Data

The data preprocessing steps are illustrated in Figure 3.5C. As a first step, usingeye-in-head 3d gaze direction vector for the cyclopean eye we calculated the gazeangles for the horizontal θh and vertical θv directions. All of the gaze data wassorted by the timestamps of the collected gaze samples. The 3d gaze directionvector of each sample is represented in (x, y, z) coordinates as a unit vector thatdefines the direction of the gaze in VR world space coordinates. In our setup, thex coordinate corresponds to the left-right direction, y in the up-down direction,z in the forward-backward direction. The formulas used for computing the gazeangles are as follows:

θh =
180

π
∗arctan

x

z

θv =
180

π
∗arctan

y

z

Next, we calculated the angular velocity of the eye in both the horizontal andvertical coordinates by taking a first difference of the angular velocity and dividingby the difference between the timestamp of the samples using the formula below:
ωh =∆θh/∆t

ωv =∆θv/∆t

Finally, we calculated the magnitude of the angular velocity (ω) at every timestampfrom the horizontal and vertical components using:
ω =

√
ω2

h +ω2
v

To filter the samples where gaze was relatively stable, we used an adaptive thresh-old method for saccade detection described by Voloh et al. (2019). We selectedan initial saccade velocity threshold θ0 of 200 ◦/sec. All eye movement sampleswith an angular velocity of less than θ0 were used to compute a new threshold
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θ1. θ1 was three times the median absolute deviation of the selected samples. Ifthe difference between θ1 and θ0 was less than 1 ◦/sec θ1 was selected as thesaccade threshold else, θ1 was used as the new saccade threshold and the aboveprocess was repeated. This was done until the difference between θn and θn+1was less than or equal to 1 ◦/sec. This way we arrived at the cluster of samplesthat belonged to fixations and the rest were classified as saccades. After this, wecalculated the duration of the fixations and saccades. To handle miniscule fixationsand saccades, we labeled all samples with saccade duration less than 0.03 secondsas a fixation. We also labeled all fixation samples with duration of less than 0.05seconds as saccades. Following this, we recalculated the fixation and saccadedurations. Finally, we rejected all fixations with duration greater than 3.5 timesthe median absolute deviation of the sample fixation duration as well as fixationsthat were less than 0.1 seconds long.

Grasp data

Subjects used the trigger button of the HTC vive controller to virtually graspthe objects on the shelf and displace them to other locations. In the data, thetrigger was recorded as a boolean which was set to TRUE when a grasp wasinitiated and was reset to FALSE when the grasp ended. Using the position of thecontroller in the world space, we determined the locations from the shelf where agrasp was initiated and ended. We also removed trials where the controller datawas showed implausible locations in the world space. These faulty data can beattributed to loss of tracking during the experiment. Next, we removed graspingperiods where the beginning and final locations of the objects on the shelf werethe same. We calculated the inter-quartile range (IQR) of the participants objectdisplacement behavior for the two trial types (EASY and HARD). To remove theoutlying object displacements in the trials, we removed the trials with 1.5 timesthe IQR of object displacements. We also removed those trials with fewer thanthree object displacements.

3.3.5 Data Analysis

In order to study the function of eye movements for both action planning andexecution, we divided each trial into 2 types of epochs. The action executionepoch spanned the time from start of object displacement to the end. The action
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planning epochs started from end of previous object displacement to start ofcurrent object displacement. The schematic of this epoch creation is illustratedin Figure 3.5D. This division of time within each trial into separate epochs allowsus to parse the role of overt eye movements in planning and execution of objectrelated actions separately.

For the action planning and execution epochs, we examined the spatial and tem-poral characteristics of eye movements while performing the sorting tasks. Wedivided the object and shelf locations into 7 regions-of-interest (ROIs) comprisingof previous, current, and next target object and target shelf. More specifically, theprevious target object refers to the object that was handled in the previous actionepoch, and previous target shelf as the shelf where the previous target object wasplaced. Similarly, the current target object refers to the object that is picked upand placed on the target shelf in the current epoch and the next target object andnext target shelf in the immediately following epoch. All other regions which didnot conform to the above 6 ROIs are categorized as ’other’ and not relevant to theaction sequence. As we need at least 3 object related actions within a trial to formthe ROIs for the action planning and action execution epochs, we removed trialswhere subjects made fewer than three object displacements. In this format, wecould parse the sequence of eye movements on the seven ROIs that are relevantfor planning and execution of the object related actions.

Task-based behavioral differences

In order to assess the planning behavior of the participants, we determined theoptimal object displacements required to accomplish the tasks for the two trialtype. To determine the optimal object displacements we designed a depth-firstsearch algorithm that computed the minimum number of displacements requiredto sort the objects for the 5000 random initial configurations of 16 objects in 25shelf locations for both EASY and HARD trial constraints. We compared the meannumber of object displacements made by the participants in the EASY and HARDtrials with the model based object displacements using independent t-tests.
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Action Locked Gaze Control

Wewere interested in the average fixation behavior time-locked to action initiation.For each grasp onset in a trial we chose the time period from 2 seconds beforegrasp onset and 2 seconds after. We divided this 4 second period into bins of0.15 seconds and calculated the number of fixations on the seven ROIs describedabove. For each time bin, we calculated the proportion of fixations on the ROIsper trial type (EASY, HARD). To find the time-points where there were significantdifferences between EASY and HARD trials for a given ROI, we used the clusterpermutation method. Here, we use the t-statistic as a test statistic for each time-bin, where t is defined as:

t =
p

N ∗ x

σ

and, x is themean difference between the trial types, andσ is the standard deviationof the mean and N is the number of subjects. We used a threshold for t at 2.14which corresponds to the t-value at which the p-value is 0.05 in the t-distribution.We first found the time-bins where the t-value was greater than the threshold.Then, we computed the sum of the t-values for these clustered time-bins whichgave a single value that represented the mass of the cluster. Next, to assess thesignificance of the cluster, we permuted all the time-bins across trials and subjectsand computed the t-values and cluster mass for 1000 different permutations. Thisgave us the null distribution over which we compared the cluster mass shown bythe real data. To account for the multiple independent comparisons for the sevenROIs, we considered the significant clusters to have a Bonferroni corrected p-valueless than 0.007 (0.05/7). In the results, we report the range of the significanttime-bins for the seven ROIs for the two trial types the corresponding p-values.

Spatio-temporal Gaze Control in Action Planning and Execution

To compute the scan paths within the action planning and execution epochs wecreated transition matrices that show the origin and destination locations of thefixations on the 7 ROIs. We used the steps described by Hooge and Camps (2013)to first create the scan paths and then the transition matrices. We calculated thetransition matrices summarizing gaze transitions from and to the 7 ROIs from the
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action planning and execution epochs for each object displacement. Using thetransition matrices, we calculated the net and total transitions from and to eachROI. For every transition matrix ’A’ per trial, net and total transition are defined asfollows:

Anet = A− AT (3.2)

Atot al = A+ AT (3.3)

As discussed in Hooge and Camps (2013), if subjects make equal number oftransitions between all ROIs, we can expect no transitions in the net transitionmatrix and can surmise that the gaze was allocated more randomly. Conversely,with strong gaze guidance we would expect more net transitions. Hence, using thenet and total transitions per trial, we then calculated the relative net transitions as:

Rel ati veTr ansi t i ons =

∑
Anet∑

Atot al
(3.4)

We then took the mean of the relative transitions per trial as a measure of gazeguidance in that trial. Highermean relative transitionswould indicate gaze allocatedto ROIs in a systematic manner whereas, relative transitions would represent arandom gaze allocation towards the ROIs.
Further, we also calculated the time required to first fixation on the 7 ROIs in agiven planning or execution epoch. We then took the median time to first fixationper trial that would indicate time to first fixate on the ROIs for 50% of the actionplanning and action execution epochs. This method was used by Montfoort etal. (2007) and further applied by Hooge and Camps (2013) to capture the gazeattraction power of ROIs. As the action planning and execution epochs varied induration, we normalized the time points by dividing them by the duration of theepoch. This way, time elapsed since start of an epoch is comparable to all epochsacross trials and subjects.
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Linear Mixed Effects Models

We modelled the linear relationship of the relative net transitions dependent ontrial type (EASY, HARD), epoch type (planning, execution) and number of objectdisplacements and their interactions. All within-subject effects were modeled withrandom intercept and slopes grouped by subject. The categorical variables trialtype and epoch type were effect coded (Schad et al., 2018), so that the modelcoefficients could be interpreted as main effects. The object displacement variablewhich pertained to the number of object displacements in the trial were codedas a continuous numeric variable and centered on zero mean. The model fit wasperformed using restricted maximum likelihood (REML) estimation (Corbeil &Searle, 1976) using the lme4 package (v1.1-26) in R 3.6.1. We used the L-BFGS-Boptimizer to find the best fit using 20000 iterations. Using the Satterthwaitemethod (Luke, 2017), we approximated degrees of freedom of the fixed effects.The full model in Wilkinson notation (Wilkinson & Rogers, 1973) is defined as:

Rel ati veTr ansi t i ons ∼ 1+ tr i al_t y pe ∗epoch_t y pe ∗ob j ect_di spl acement s(3.5)
+(1+ tr i al_t y pe ∗epoch_t y pe ∗ob j ect_di spl acement s|Sub j ect ) (3.6)

We modelled the linear relationship of the median time to first fixation dependenton trial type (EASY, HARD) and the 7 ROIs and their interactions. We computedtwo models for the action planning and execution epochs as the. All within-subjecteffects were modeled with random intercept and slopes grouped by subject. Thecategorical variables trial_type and ROI were effect coded, so that the modelcoefficients could be interpreted as main effects. For both models, we chose thelatency of the first fixation on current target object as the reference factor so thatthe latency of the first fixation of all other ROIs could be compared to it. Themodel fit was performed using restricted maximum likelihood (REML) estimation(Corbeil & Searle, 1976) using the lme4 package (v1.1-26) in R 3.6.1. We usedthe L-BFGS-B optimizer to find the best fit using 20000 iterations. Using theSatterthwaite method (Luke, 2017), we approximated degrees of freedom of thefixed effects. The full model in Wilkinson notation (Wilkinson & Rogers, 1973) isdefined as:
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F i xati ont i me ∼ 1+ tr i al_t y pe ∗ROI (3.7)
+(1+ tr i al_t y pe ∗ROI |Sub j ect ) (3.8)

3.3.6 Results

Our experiment measured the eye and body movements as participants performeda sorting task in a virtual environment. The participants sorted objects based onthe color and/or shape where we modulated the task complexity into EASY andHARD trials. We further divided the trials into planning and execution epochswhere participants planned the selection of the target objects to grasp and thenexecuting the action of displacing it to target shelves, respectively. In this section,we report the behavioral and oculomotor differences of the subjects for the twotask types (EASY, HARD), and the planning and execution epochs.

Task based Behavioral Differences

In the present study, the primary object related action was to repeatedly pickupobjects and place them at a desired locations until they were sorted accordingto the sorting task. To account for the behavioral differences between the taskcomplexities, we used the measure of trial duration and the number of objectdisplacements required to completed the tasks. Figure 3.6A shows the differencesin EASY and HARD trials based on the time taken to finish the sorting task. Atwo-sample independent t-test showed that the trial duration for the two trialtypes were significantly different (t = −10.13, p < 0.001) where EASY trials thatrequired the objects to be sorted based on a single feature were shorter (Mean =

54.12second s,SD = 13.33) as compared toHARD trials (Mean = 111.57second s,SD =

36.92) where subjects had to sort taking into account both features (color and shape)of the objects.
Figure 3.6B shows the comparisons in the object displacements made by thesubjects and the optimal number of displacements as elicited by the optimalmodel for both EASY and HARD trials. Subjects made lower number of objectdisplacements in the EASY trials (Mean = 10.2,SD = 1.99) compared to HARD trials
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(Mean = 15.52,SD = 2.59). In the EASY trials the model required lower number ofobject displacements (Mean = 9.42,SD = 1.48) displacements, whereas, in theHARDtrials, model required higher number of displacements (Mean = 11.24,SD = 2.77).We compared the human and model performance for the two trial types usingindependent t-tests. In the EASY trials, there was a significant difference betweenthe model and human object displacements (t = 3.64, p < 0.001). In the HARD trials,there was also a significant difference between the model and human performance(t = 10,61, p < 0.001). This indicates that the participants did not plan their actionsoptimally and might have used other heuristics to complete the task.
o check if there were any noticeable heuristics applied by the participants, welooked into the propensity to pick-up and drop-off objects to preferred locationson the shelf. In Figure 3.6C shows that subjects preferred to pickup objects fromthe right-most column and bottom-most row of the shelf. Figure 3.6D showsthat subjects had a propensity to drop the objects leaving out the right columnand bottom row of the shelf for both EASY and HARD trials. Given the sortingtasks where subjects were presented with random initial configurations of theobjects on the shelf locations, we did not expect any systematic spatial biasesat play. Further, the expectation was that the subjects would move the objectsrandomly and not display a preference for object pickup and drop-off locations.This shows that subjects systematically, displace the objects leftward and upwardemploying an arbitrary heuristic to complete both task types. As the objectsare instantiated on the shelf randomly, an optimal strategy would not show thisbehavior. We can conclude from the above that subjects offset their cognitive loadof optimally completing the task by employing simple heuristics. In other words,in lieu of optimally performing the task and finishing it in a shorter time, subjectspreferred to offload both cognitive effort on the environment by adopting a moresub-optimal strategy..

3.3.7 Action Locked Gaze Control

We investigated the task complexity based differences in the the average oculo-motor control over the seven ROIs time locked to the grasp onset (time when thehand makes contact with the current target object). For the analysis we chose thetime period from 2s before action onset to 2s after. Figure 3.7 shows the timecourse of proportion of fixations on the seven ROIs as described above in section3.3.5 for the two trial types. The cluster permutation analysis of the time course
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over the ROIs for the EASY and HARD tasks revealed several time periods wherethe proportion of fixations were different.
The proportion of fixations on the previous target object differed between EASYand HARD trials for three time periods. The first time period spanned from -1.25sto -0.75s (p-value<0.001) with lower proportion of fixations in the HARD tasksindicating allocation of gaze to other ROIs task-relevant to the action sequence.The second significant time period was from -0.25s to 1s (p-value<0.001) wherethe proportion of fixations were higher in the HARD tasks. This time period spansthe start of the grasp onset till the execution of the object displacement stronglyindicating that these fixations are related to monitoring of the execution of thecurrent action and could be classified as ’checking’ fixations. The third significanttime period was from 1.5s to 2s (p-value<0.001) with higher proportion of fixationsin the HARD trials. These differences might be constitutive of further ’checking’fixations in the case of HARD trials while executing the object displacement.
The proportion of fixations on the previous target shelf were lower in the HARDtrials compared to the EASY trials from -1.75s to -1.5s (p-value<0.001) beforegrasp onset. These differences suggest allocation of gaze to ROIs relevant to thetask sequence happens earlier in the HARD tasks as more planning is required.
There were differences in the proportion of fixations on the current target ob-ject from 1s to 1.5s (p-value < 0.001) after grasp onset with lower proportionof fixations in the HARD tasks in this time period. These differences indicatethat towards the end of action execution in HARD tasks fixations are allocatedtowards other task-relevant ROIs in the action sequence. Interestingly, there areno differences in the proportion of fixations on the current target object beforethe object displacement is initiated, suggesting that task complexity does not playa role in ’directing’ fixations.
There were higher proportion of fixations on the current target shelf in the HARDtrials compared to EASY trials from -1.75s to -1s (p-value < 0.001) before grasponset. These differences imply that some proportion of fixations are utilized toplan the current task, well before action has been initiated. These fixations couldbe classified as ’locating’ fixations or look-ahead fixations which are predominantlypresent due to the complexity of the task.
Similarly, there were a higher proportion of fixations on the next target object from
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-1.75s to -0.25s (p-value < 0.001) and a lower proportion from 1.75 s to 2s (p-value< 0.001). The differences in the first time period suggest that these fixations serveas ’locating’ fixations to execute the next object displacement in the sequence.The presence of higher proportion of this fixations in the HARD tasks compared toEASY tasks indicates a need to plan the actions more thoroughly. The differencesin the latter time period show a lower proportion of fixations for the HARD tasksindicating that prior locating fixations made it unnecessary to allocate attentionto that object of interest. Conversely, in the EASY trials, the lower proportion ofthese locating fixations indicate an ad hoc gaze allocation for action execution.
There were also a higher proportion of fixations on the next target shelf from -0.5sto 0.75s (p-value < 0.001) in the HARD tasks. These fixations are made in concertwith the onset of the action execution and indicate that these fixations are a playthe role of both ’checking’ fixations to monitor the task progression as well as’locating’ fixations to queue the locations in the scene that are important for thenext action in the sequence.
Finally, the proportion of fixations on the other objects and shelves in the scenewere higher in the HARD tasks from 1s to 2s (p-value < 0.001 ) after grasp onset.These differences indicate search behavior towards the end of the current taskexecution. Given the task complexity of the HARD trials, this search behaviormight function to queue in further objects or shelves of interest in the subsequentaction sequence.

Spatio-temporal Gaze Control in Action Planning and Execution

The above results illustrate the average spatial and temporal aspects of attentionduring action planning and execution. However, the scanning behavior of subjectswhile they perform each action is "averaged out". In order to study the scanningbehavior while subjects plan and execute an action, we computed transition ma-trices to capture fixations to and from each of the seven ROIs as described inSection 3.3.5. Figure 3.8A shows the exemplar transition matrix for a planningepoch in an EASY trial. With the transition matrices we wanted to capture thegaze guidance behavior of the subjects while they plan and execute the actions.The relative net-transitions within the planning and execution epochs of a trial tellus the different functions of gaze guidance behaviors exhibited of the subjects.With higher relative net transitions, we expect higher gaze guidance to the current
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task-relevant ROIs, i.e, subjects perform saccades only for guiding their hand orbody towards the current target object and less so for searching for task-relevantobjects or monitoring the task. If subjects perform a search and fixate on multi-ple ROIs in an epoch, we would expect lower relative net transitions indicatinga pattern of fixations related multiple task relevant schemas that compete forselection.

In order to show the differences in mean gaze guidance behavior in a trial weused a linear mixed effects model (section 3.3.5) with relative net transitions asthe dependent variable and trial type (EASY, HARD), epoch type (PLANNING,EXECUTION) and number of object displacements as independent variables. Asthe independent variables were effect coded, the regression coefficients could bedirectly interpreted as main effects. Figure 3.8B illustrates the effects of trial type,epoch type and number of object displacements on the relative net transitions.There was a significant main effect of factor trial type (HARD - EASY) β = -0.05(95%CI = [-0.06, -0.03], t(77.5)=-5.72), with a p-value < 0.001 showing that HARDtrials had lower relative net transitions than EASY trials. There was also a signifi-cant main effect of factor epoch type (PLANNING - EXECUTION) β = 0.03 (95%CI= [0.00, 0.05], t(46.57)=-2.16), with a p-value = 0.03 showing that PLANNINGepochs had higher relative net transitions than EXECUTION epochs. There was asignificant effect of number of object displacements in a trial β = 0.003 (95%CI= [0.00, 0.01], t(57.64)=2.83), with a p-value = 0.006 showing that a one unitincrease in the number of object displacements in a trial led to increase in relativenet transitions by a factor of 0.003. There was a significant interaction betweentrial type and epoch type β = -0.05 (95%CI = [-0.08, -0.01], t(53.07)=-2.5), with ap-value = 0.01 showing that PLANNING epochs in HARD trials had lower relativenet transitions. There was a significant interaction between trial type and numberof object displacements β = -0.009 (95%CI = [-0.01, -0.01], t(45.82)=-4.31), with ap-value < 0.001 showing that a one unit increase in the number of object displace-ments in HARD trials led to increase in relative net transitions by a factor of -0.009.There was no significant interaction between epoch type and number of objectdisplacements β = 0.001 (95%CI = [0.00, -0.01], t(43.20)=0.64), with a p-value= 0.52. There was a significant interaction between trial type, epoch type andnumber of object displacements β = -0.01 (95%CI = [-0.02, 0.00], t(42.67)=-2.20),with a p-value = 0.03 showing that a one unit increase in the number of objectdisplacements in HARD trials and for PLANNING epochs led to increase in relativenet transitions by a factor of -0.01.
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The analysis above lends further evidence that task complexity had a significanteffect on the gaze guidance behavior at the level of action planning and execution.The lower relative net transitions in the HARD tasks in general are indicativeof competition between action schemas either for searching task-relevant ROIsor for monitoring the task progression. The higher relative net transitions inthe EASY trials suggest saccades were primarily made towards the current task-relevant objects for directing or guiding the body or hand towards the object ofinterest. The significant correlation of the object displacements and the relativenet transitions reveal that gaze allocation predominantly occurred in a just-in-timemanner supporting the sub-optimal behavior exhibited by the subjects as well.
To further disentangle the effect of task complexity on the order of gaze allocationto the task-relevant ROIs, we were interested in the latency of the first fixationsto these . We used linear mixed effects regression to model the median time tofirst fixation on the 7 ROIs in each trial as described in section 3.3.5. We modeledthe latency of the first fixations for the planning and execution epochs separately.Figure 3.8C shows the distribution of the normalized time to first fixations on theseven ROIs for the action planning and execution epochs.
In the action planning epoch, the time to first fixation on the previous target objectwas significantly earlier than the first fixation on the current target object β =-0.35 (95%CI = [-0.37, -0.32], t(49.67)=-29.01), with a p-value < 0.001. Similarly,the time to first fixation on the previous target shelf was significantly earlier thanthe first fixation on the current target object β = -0.35 (95%CI = [-0.37, -0.33],t(65.96)=-37.82), with a p-value < 0.001. The time to first fixation on other ROIwas significantly earlier than the first fixation on the current target object β = -0.33(95%CI = [-0.35, -0.31], t(72.37)=-37.03), with a p-value < 0.001. There was alsoa significant time difference between the first fixation on the next target objectand the current target object β = -0.06 (95%CI = [-0.08, -0.05], t(47.36)=-6.96),with a p-value < 0.001. There was a significant time difference between the firstfixation on the next target shelf and the current target object β = -0.05 (95%CI= [-0.07, -0.02], t(49.25)=-3.81), with a p-value < 0.001. Finally, there was also asignificant time difference between the first fixation on the current target shelfand the current target object β = -0.04 (95%CI = [-0.06, -0.02], t(50.17)=-3.39),with a p-value = 0.001. When taking into account task complexity, there was a asignificant interaction in the latency between previous target object and currenttarget object β = -0.06 (95%CI = [-0.09, -0.02], t(123.78)=-3.11), with a p-value= 0.002. Similarly, there was also a significant interaction of trial type and time
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difference between first fixation between previous target shelf and current targetobject β = -0.04 (95%CI = [-0.07, -0.01], t(403.67)=-2.31), with a p-value = 0.02.There was also a significant interaction of trial type and latency between otherROI and current target object β = -0.05 (95%CI = [-0.08, -0.02], t(486.20)=-3.23),with a p-value = 0.001. There was also a significant interaction between trialtype and latency between next target object and current target object β = -0.05(95%CI = [-0.09, -0.02], t(83.82)=-3.16), with a p-value = 0.002. There was nosignificant interaction between trial type and the latency between next target shelfand current target object β = -0.009 (95%CI = [-0.05, 0.04], t(52.01)=-0.39), witha p-value = 0.69. There was also no significant interaction between trial type anddelay between current target shelf and current target object β = -0.002 (95%CI =[-0.04, 0.04], t(55.39)=-0.10), with a p-value = 0.91.
Taken together, the irrespective of task complexity, the action planning epochsshow a systematic progression of fixations fromone ROI to another. This structuredtemporal sequence of fixations with a defined temporal window shows that thelook-ahead fixations pertaining to the future action relevant ROIs are not incidentaland part of the cognitive schema to accomplish the task. Moreover, given the taskcomplexity, the temporal profiles of these look-ahead fixations can change andoccur slightly earlier.
In the action execution epoch, the time to first fixation on the other ROI wassignificantly later than the first fixation on the current target object β = 0.17 (95%CI= [0.14, 0.19], t(50.47)=11.40), with a p-value < 0.001. Similarly, the time to firstfixation on the previous target object was significantly later than the first fixationon the current target object β = 0.033 (95%CI = [0.30, 0.35], t(61.73)=24.57),with a p-value < 0.001. The time to first fixation on previous target shelf was alsosignificantly later than the first fixation on the current target object β = 0.33 (95%CI= [0.30, 0.36], t(52.69)=23.59), with a p-value < 0.001. There was a significanttime difference between the first fixation on the next target object and the currenttarget object β = 0.36 (95%CI = [0.33, 0.39], t(58.75)=24.56), with a p-value <0.001. There was a significant time difference between the first fixation on thenext target shelf and the current target object β = 0.43 (95%CI = [0.40, 0.46],t(54.68)=28.49), with a p-value < 0.001. Finally, there was also a significant timedifference between the first fixation on the current target shelf and the currenttarget objectβ = 0.42 (95%CI = [0.39, 0.44], t(64.75)=32.13), with a p-value < 0.001.When taking into account task complexity, there was no significant interaction inthe latency between other ROI and current target object β = 0.008 (95%CI = [-0.03,
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0.05], t(136.42)=0.40), with a p-value = 0.69. There was no significant interactionbetween trial type and latency between previous target object and current targetobject β = 0.02 (95%CI = [-0.02, 0.07], t(116.24)=0.96), with a p-value = 0.34.There was no significant interaction between trial type and the latency betweenprevious target shelf and current target object β = 0.01 (95%CI = [-0.04, 0.05],t(98.32)=0.49), with a p-value = 0.62.There was no significant interaction of trialtype and time difference between first fixation between next target object andcurrent target object β = -0.002 (95%CI = [-0.06, 0.05], t(60.67)=-0.10), with ap-value = 0.92. There was also no significant interaction of trial type and latencybetween next target shelf and current target object β = -0.01 (95%CI = [-0.07,0.05], t(63.53)=-0.35), with a p-value = 0.73. There was a significant interactionbetween trial type and delay between current target shelf and current target object
β = 0.05 (95%CI = [0.00, 0.09], t(122.10)=2.15), with a p-value = 0.03.
In sum, irrespective of the task complexity, the action execution epochs show asystematic sequence of first fixations on the seven ROIs. The fixations on theprevious action related object and shelf show that a monitoring of the currentaction with respect to the previous action might be at play, where these fixationsare made to confirm the choice of the current target shelf and might serve as look-back fixations. Similarly, fixations on the target object and shelf for the next actionmight serve as look-ahead fixations. However, with increasing task complexity, thetemporal sequence of the first fixations remained unchanged except for the latergaze allocation to the current target shelf in the case of HARD trials. One mayposit here that the added task complexity does not affect the temporal sequenceof the gaze allocation during action execution.

3.3.8 Discussion and Conclusion

In the present study we investigated the spatio-temporal aspects of gaze controlwhile action execution and action planning with varying task complexity. We reportfive main findings with this study. First, we found subjects used ad-hoc spatialheuristics to reduce the solution search space resulting in moderately increasednumber of object displacements as compared to the optimal model. Second,fixations locked to the action initiation, revealed a prevalence of look-ahead andtask monitoring fixations in the HARD tasks but not in the EASY task. Third, basedon the scan path transitions, we observed greater relative net transitions in theEASY trials compared to HARD trials. The lower proportion of net transitions
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to and from the ROIs in HARD trials is further evidence for an extensive searchbehavior and alternating action guiding and monitoring fixations. Fourth, therelative timing of the first fixations on the immediate task-relevant ROIs in theaction planning and execution phase revealed a systematic sequence of fixationsleading up to the immediate task-relevant ROI, indicating a just-in-time strategyof action supporting fixations. Finally, task complexity affected the systematictemporal sequence of fixations in the action planning phase but not in actionexecution phase. In sum, our findings reveal a structured effect of task complexityon the spatio-temporal features of relevant action supporting cognitive schemas.
The central aim of the our study is to generalize the cognitive mechanisms of gazecontrol for tasks that are not over-learned and routine. Building on the work ofM. Land et al. (1999) where eye movements were studied while preparing tea, thetasks in our study are novel in the sense that they do not have an inherent actionsequence attached to them. Our experimental setup provided a way to captureoculomotor behavior for tasks with varying complexity and that did not have astrict action sequence. By studying the dispersion of fixations on the previous,current, and next task relevant ROIs, we show a structured sequence of fixationsthat can be classified into look-ahead fixations, directing fixations, guiding fixations,checking fixations, etc. Our results generalize the occurrence of these fixations tothe action sequence and the task complexity by doing away with object identity.
M. Land et al. (1999) proposed the various functions of eye movements from locat-ing, directing, guiding, checking during tea-making. In our study, we also showedthe occurrence of these fixations time-locked to the action initiation. Importantly,our study shows that task complexity affects the proportion and timing of fixationsfor locating/look-ahead as well as for checking the task progression. While lookahead fixations occurred predominantly before the initiation of the immediateaction, the checking fixations occurred in parallel with the action execution. In-terestingly, directing and guiding fixations were not affected by task complexityindicating that these fixations are central to the action repertoire.
B. Sullivan et al. (2021) recently showed the various timescales at which look-aheadfixations can occur while assembling a tent. They reported look-ahead fixationsattributed to the current sub-task and within 10 seconds of motor manipulation.In our study, we found look-ahead fixations on the upcoming action related tothe drop-off location of the current object displacement as well as towards thenext object displacement sub-task. Our results show that these fixations are more
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salient in the more complex tasks. As evidenced by the relative net transitions tothe task-relevant ROIs, there are more transitions in the action planning phaseof the cognitively demanding tasks but they are not made at random. Further,we also show the systematic latency of these fixations to the immediate action.Hence, the look-ahead fixations described in our study are part of an elaboratecognitive schema and less likely due to incidental fixations on the task based ROIs.
M. F. Land and Furneaux (1997) have further elaborated on the schemas thatdirect both eye movements and the motor actions. They proposed a chainingmechanism by which one action leads to another where the eyes supply constantinformation to the motor system via a buffer. In our analysis, the strict temporalstructure of the first fixations on the ROIs lends further evidence of such a cognitivebuffer that facilitates moving from one action to another where interspersed eyemovements queue-in the objects and locations necessary for current and futureactions. Importantly, the final first fixation is always the object or location necessaryfor the immediate sub-task, indicating the universality of the ’just-in-time’ natureof these action-related fixations. Taken together, our study further corroboratesthe cognitive schemas that sequentially support action planning and execution.
Our results show higher task solutions with increasing task complexity. To assessthe sorting behavior of the participants we compared their object displacementbehavior with a greedy depth-first search algorithm which optimizes for the short-est path to the solution. Studies in human performance in reasoning tasks as wellas combinatorial optimization problems (MacGregor & Chu, 2011) have revealedthat humans solve these tasks in a self-paced manner rather than being dependenton the size of the problem. Pizlo and Li (2005) found that subjects do not performan implicit search of the problem state space where they plan the moves with-out executing them, where longer solution times would lead to shorter solutionpaths. Instead, they showed that humans break the problem down to componentsub-tasks which gives rise to a low-complexity relationship between the problemsize and time to solution. Further, Pizlo and Li (2005) show that instead of usingimplicit search, subjects use simpler heuristics to decide the next move. To thiseffect, while subjects in our study are sub-optimal compared to a depth-first searchalgorithm and use an arbitrary spatial heuristics during the task, humans in generalare prone to use non-complex heuristics that favor limited allocation of resourcesin the working memory. Hence, the higher time duration and number of objectdisplacements shown by the participants do not necessarily demonstrate a lack ofplanning.

109



Chapter 3 From Lab to Virtual Lab

From the perspective of embodied cognition (Ballard et al., 2013; Van der Stigchel,2020; M. Wilson, 2002), humans off-load cognitive work on the environment andthe environment is central to the cognitive system. The behavioral results showthat subjects use spatial heuristics to complete the tasks indicating they exploit theexternal world to reduce the cognitive effort of selecting optimal actions. Further,Droll and Hayhoe (2007) have suggested that the just-in-time strategy to lower thecognitive cost of encoding objects in the world into the visual working memory. Inthe embodied cognition framework, cognition is situated and for producing actions.With our study, we show that task complexity affected various spatio-temporalfeatures of gaze control in the action planning and execution phase. These findingsare also in line with P. König et al. (2016) illustrating that eye movements revealmuch about the cognitive state.
In conclusion, in the present study we investigated the oculomotor responses tonovel task scenarios that varied in complexity. Our results generalize past workon action-oriented eye movements to tasks that are not routine or over-learnedsuch as tea-making, sandwich-making, hand-washing, etc. We show that eyemovements support various functions of locating object of interest, directing andguiding the body and hands, as well as monitoring the task progression. Further-more, we show how fixations are tightly coupled with the action sequences in thetask. More importantly we show the prevalence of cognitive schemas that areaffected by the task complexity even when sub-optimal decisions are made by theactor.
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Figure 3.5: A. Schematic of motor and gaze control during performance of naturaltasks M. F. Land and Hayhoe (2001). B. Experimental Task. In a virtual environmentparticipants sorted 16 different objects based on 2 features color or shapewhile wemeasured their eye and body movements. The objects were randomly presentedon a 5x5 shelf at the beginning of each trial and were cued to sort objects by shapeand/or color. Trials where objects were sorted based on just one object feature(color or shape) were categorized as EASY trials. Conversely, in the trials wheresorting was based on both features (color and shape) were categorized as HARDtrials. All participants performed 24 trials in total (16 easy trials and 8 hard trials)with no time limit. C. Data preprocessing steps for fixation/saccade detectionand data rejection. D. Action execution and planning epochs. In order to studythe function of eye movements we divided each trial into action planning andaction execution epochs. The action execution epochs start from grasp onset tillgrasp end for each object displacement, whereas the action planning epochs startfrom grasp end of previous object displacement and grasp onset of current objectdisplacement.



Figure 3.6: A. Trial duration of the EASY and HARD trials. The boxplots showthe inter-quartile range (IQR) of the duration of the trials for the two differenttrial types for all trials and participants. The whiskers represent 1.5 times theIQR. B. Distribution of number of object displacements for EASY (blue) and HARD(red) trials. The colored box plots show the inter-quartile range of the number ofobject displacements made by subjects per trial and per participant. The whiskersrepresent 1.5 times the IQR. The dashed box plots show optimal number of dis-placements required to sort the objects for a model computed with a depth-firstsearch algorithm for 5000 random trial initialization for each trial type. C. Propen-sity of picking up objects from a preferred location on the 5x5 shelf locations withblue heatmaps showing probability density over EASY trials and red heatmapsshowing density over HARD trials. The probability density shows that subjectshave a propensity to pickup objects from the rightmost column and bottom col-umn for EASY trials (left) and conversely, in the HARD trials (right) subjects pickupobjects from central locations. D. Propensity of dropping-off objects to a preferredlocation on the 5x5 shelf locations with blue the heatmap showing probabilitydensity over EASY trials and red heatmap showing density over HARD trials. Theprobability density shows that subjects display a systematic propensity to placethe objects every where other than the bottom row or rightmost column.



Figure 3.7: Proportion of fixations time-locked to the object displacement initiation(grasp onset) at time=0 and 2 seconds before and after on the seven regions ofinterest and for the EASY (solid trace) and HARD (dashed trace) tasks. In eachtime bin of 0.15s the proportion of fixations on all 7 ROIs for a trial type add upto 1. The dashed vertical line denotes the median end of the action executionphase The shaded regions show 95% confidence interval of the mean proportionof gaze at each time-bin across all subjects. The proportion of fixations in each Thehorizontal traces at the bottom correspond to the significant time periods wherethe proportion of fixations on an ROI were different for the EASY and HARD trials.



Figure 3.8: A. Exemplar transition matrix for gaze switching in a planning epoch.The ordinate defines the origin of the gaze and the abscissa defines the destinationof the gaze. B. Regression fit over the fixed-effects of trial types (EASY, HARD),epoch types (PLANNING, EXECUTION) and object displacements on the relativenet transitions. The traces denote the the regression fit and the shaded regiondenotes 95% confidence interval. C. Distributions of median time to first fixationon the 7 ROI for the action planning and execution epochs and trial types. Theordinate is sorted in ascending order of latency from epoch start for both planningand execution epochs.



4 Ecological Validity

4.1 Layman’s summary
We have developed large-scale realistic virtual environments and investigated thevalidity of virtual reality experimentation compared to traditional laboratory. Butwhat about the experiments not possible even in real life? In previous parts, wehave investigated the new level of understanding that virtual reality experimentscan offer. We have delved deep into the "How" of designing and conducting virtualreality experiments, as well as the debate of "what ecological validity" means incognitive science studies and related fields. The final goal of the cognitive scientistis to study human cognitive processes in their entire complexity inside complexand dynamic environments, no matter whether ecological validity refers to themundane reality, the closeness of the experimental cues to real life, or the envi-ronment itself. Although feasible in real life, there might also be situations in someexperiments that are impossible to conduct under lab or real-life circumstances.The reason might lie in technological shortcomings to ethical issues. Nonetheless,these experiments, for instance, research on trolley dilemma, were traditionallyperformed by reading and imagining a scenario followed by answering questionsfrom a questionnaire.

In a traditional pen and paper situation, almost everyone will go with the utili-
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tarian approach: saving more lives. However, in virtual reality, manipulation ofprospective shows us the difference between perception and certainty of ourchoice despite the fact that most participants would choose the utilitarian choice.In this experiment on trolley dilemma with manipulation of perspective, meaningchanging the position of participant from being just an observer, to passenger ofthe car or being among the group of people that the car hits, the finding indicatesthe strong role of perspective in our understanding of the situation. Needless tosay, these studies would be impossible without using virtual reality.
The same logic will go for just observing participants’ behavior in virtually simulatedrealistic environments. Utilizing the environment created in the project Westdrive,we managed to drive more than 20000 participants through an arguably shortbut immersive drive through the virtual city. Manipulating the type of the carfrom a typical self-driving car to one that talks to the passenger and well-knowntaxi, we could observe the change in people’s attitude and acceptance towardthe observed vehicle. This change was visible not only through a self-reportedshort questionnaire but also in the participants’ behavior from the observationof their head movement. Here the participants were passive observers yet wereimmersed in the experience. In the end, just a short ninety-second drive usingan immersive virtual reality experience and just observing their behavior andevaluating their reports could already broaden our view on public acceptancetoward the self-driving car.
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4.2 Moral Judgements on Actions of Self-driving Cars
This section was published as a peer reviewed article in Frontiers in Frontiers inpsychology together with Noa Kallioinen, Maria Pershina, Jannik Zeiser, AchimStefan, Gordon Pipa and Peter König. See Publication List for details.

4.2.1 Abstract

Self-driving cars have the potential to greatly improve public safety. However,their introduction onto public roads must overcome both ethical and technicalchallenges. To further understand the ethical issues of introducing self-driving cars,we conducted two moral judgement studies investigating potential differences inthe moral norms applied to human drivers and self-driving cars. In the experiments,participants made judgements on a series of dilemma situations involving humandrivers or self-driving cars. We manipulated which perspective situations werepresented from in order to ascertain the effect of perspective on moral judgements.Two main findings were apparent from the results of the experiments. First, humandrivers and self-driving cars were largely judged similarly. However, there wasa stronger tendency to prefer self-driving cars to act in ways to minimise harm,compared to human drivers. Second, there was an indication that perspectiveinfluences judgements in some situations. Specifically, when considering situationsfrom the perspective of a pedestrian, people preferred actions that would endangercar occupants instead of themselves. However, they did not show such a self-preservation tendency when the alternative was to endanger other pedestrians tosave themselves. This effect was more prevalent for judgements on human driversthan self-driving cars. Overall, the results extend and agree with previous research,again contradicting existing ethical guidelines for self-driving car decision makingand highlighting the difficulties with adapting public opinion to decision makingalgorithms.

4.2.2 Introduction

Self-driving cars are rapidly becoming a reality. In 2016, car manufacturer Teslaannounced that all of its current cars were being equipped with the hardwarenecessary for autonomous driving(The Tesla Team, 2016). Since then, Tesla hasincrementally enabled autonomous and assisted driving features via software
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updates(The Tesla Team, 2019). Other manufacturers have since been followingsuit (Mercer and Macaulay, 2019, see) and the use of partially self-driving cars,such as these, is expected to increase within the next 20 years.
A major argument supporting the development of self-driving cars is the expectedreduction in the number of traffic accidents. For example, close to 90% of themore than 300,000 traffic accidents resulting in injuries to people in Germany in2017 were caused by driver misconduct or error, such as ignoring right of way,inappropriate following distance or speed, overtaking faults and driving under theinfluence of alcohol (Statistisches Bundesamt, 2018, p. 49). Similar observationshave been made in both the United Kingdom and the United States (Departmentfor Transport, 2013; National Highway Traffic Safety Administration, 2008). Theseerrors and misconduct can potentially be mitigated by the introduction of self-driving cars, which highlights their potential to improve public safety.
However, the expected reduction of accidents will need time to be realised. Re-cently published statistics by the California Department of Motor Vehicles showsthat self-driving car prototypes are involved in accidents at a similar rate as humandrivers (Favarò et al., 2017). Other reports give somewhat more favorable numberswith a reduction of accident rates by about one third (Marshall, 2018; Thomas,2018). The discrepancy to the optimistic forecasts cited above stems in part froman increase of, for example, unexpected breaking resulting in rear-end collisions,and the fact that even when an accident is not caused by a self-driving car, it mightstill be involved in it. Thus, during a multi-year introduction period, self-driving carswill be involved in a substantial number of accidents and unexpected situations.Unexpected traffic situations are often highly complex and require split-seconddecisions. For this reason, human drivers are not generally expected to be able torespond optimally and may be excused for making wrong decisions (Trappl, 2016).Self-driving car control systems, on the other hand, can potentially estimate theoutcome of various options within milliseconds and take actions that factor in anextensive body of research, debate, and legislation (Lin, 2015). The actions takenin such situations have potentially harmful consequences for car occupants, othertraffic participants, and pedestrians. Therefore, it is important to carefully considerthe ethics of how self-driving cars will be designed to make decisions, an issuethat is the topic of current debate (Dietrich and Weisswange, 2019; Keeling et al.,2019; Nyholm, 2018a, 2018b).
Comprehensive guidelines for ethical decision making for self-driving cars have
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been provided by the ethics commission of the German Federal Ministry of Trans-port and Digital Infrastructure, 2017. These guidelines speak out against a stan-dardised procedure of decision making in dilemma situations (guideline 8). Incases of unavoidable accidents, “any distinction based on personal features (age,gender, physical or mental constitution) is strictly prohibited” and “[those] partiesinvolved in the generation of mobility risks must not sacrifice non-involved parties”(guideline 9). These guidelines greatly add to the discussion and can inform thedevelopment of decision making systems. However, it is far from obvious that apractical implementation of these guidelines would garner public consensus.
As pointed out by Shariff et al., 2017, and further evident by the number ofstudies focusing on public opinion (Gkartzonikas and Gkritza, 2019, see) theintroduction of self-driving cars requires acceptance from the public. Empiricalresearch investigating public perception and beliefs can be useful for highlightingareas problematic for the acceptance of self-driving cars into public traffic. Suchresearch in the area of ethical decision making for self-driving cars has primarilyfocused on human decision making as a basis. In a typical experiment, participantsmake decisions pertaining to hypothetical dilemma situations in which harm isunavoidable. Situations of this kind, known as trolley dilemmas (Jarvis Thomson,1985), involve two groups of people, one of which must be endangered to sparethe other. The utility of trolley dilemmas does not lie in their use as blueprintsfor crash optimizations (Holstein and Dodig-Crnkovic, 2018). Rather, they arean effective means to elucidate which ethical values are potentially conflictingin accident scenarios and to allow for the design of self-driving cars informedby human values (Gerdes et al., 2019; Keeling, 2019). As argued by J. Bonnefonet al., 2019, trolley dilemmas should not be understood primarily as simulations ofreal-life scenarios, but as representations of conflicts that emerge on a statisticallevel: The introduction of self-driving cars will likely put different people at riskcompared to today. For example, would it be acceptable that due to self-drivingcars, fewer people are harmed in traffic, but those who are harmed are more likelyto be pedestrians than car occupants?
Moral dilemma studies can be grouped broadly into two paradigms: those thatinvestigate moral judgements (what people claim are the right actions) and thosethat investigate moral actions (what people actually do in a given situation). Ananalysis of more than 40 million judgements on vignettes describing hypotheticaldilemma situations concluded that people generally prefer self-driving cars toendanger fewer lives, endanger animals over people and endanger older people
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over younger people (Awad et al., 2018). Other moral judgement studies includesimulation studies by H. Wilson et al., 2019 and Wintersberger et al., 2017 andvignette-based studies by Rhim et al., 2020, Smith, 2019, Meder et al., 2018, J.-F.Bonnefon et al., 2016 and J. Li et al., 2016. Importantly, J.-F. Bonnefon et al., 2016found a discrepancy between what people deemed acceptable for self-drivingcars to do in dilemma situations and their willingness to purchase cars that wouldact accordingly. Specifically, people considered it more morally acceptable forself-driving cars to endanger fewer lives, even at the expense of the occupants’lives, but preferred to purchase cars that would protect occupants. Martin et al.,2017 suggested that this discrepancy may be resolved if people explicitly con-sider the situations from both the perspectives of car occupants and pedestrians.Borenstein et al., 2019 highlighted that the perspectives of pedestrians and othernon-occupants is overshadowed by the focus on car occupants in the literature,but are equally important.
Studies of moral action have used virtual reality environments to determine howhuman drivers would act when faced with dilemma situations. In these studies,participants were put in the perspective of drivers and controlled the steering ofvirtual vehicles when facing such dilemma situations. Skulmowski et al., 2014bplaced participants in the role of train drivers and found participants generallypreferred to save the greater number of lives. Sütfeld et al., 2017 found that thebehavior of participants in the role of car drivers could be well described by avalue-of-life model, such that people are valued more than animals and youngerpeople are valued more than older. S. Li, Zhang, et al., 2019, Faulhaber et al., 2019(further elaborated by Bergmann et al., 2018b) showed that car drivers also tendto act in ways that endanger fewer lives, even at the expense of their own. Juet al., 2019 found that personality characteristics predict the likelihood of driversendangering themselves. Furthermore, Luzuriaga et al., 2019 directly comparedactions chosen by participants tasked with programming a self-driving car withactions made by participants in a driving simulator. They found that participantsprogramming a self-driving car more readily endangered car occupants to savepedestrians, than participants driving in a simulator. Thus, our knowledge of howhumans act in critical situations in virtual reality is increasing.
While the results of these moral judgement and moral action studies have beengenerally consistent, there are important distinctions between the approachesneeding consideration before making strong conclusions. First, there is growingevidence of discrepancies between what people consider to be the right action in
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moral dilemmas and what they would actually do (e.g. FeldmanHall et al., 2012;Francis et al., 2016; N. Gold et al., 2015; Patil et al., 2014; Tassy et al., 2013).Additionally, what is generally considered ethical for human drivers may not be thesame for self-driving cars. Furthermore, the perspective from which the situationsare presented may affect how they are evaluated.
To address aforementioned issues, we conducted two studies in the moral judge-ments paradigm which allowed us to investigate moral beliefs about self-drivingcars and human drivers in dilemmas situations from different perspectives. In bothstudies, we recorded judgements pertaining to virtual dilemma situations involvingeither self-driving cars or human drivers. We included the perspectives of caroccupants, uninvolved observers and pedestrians, which to our knowledge, noprevious studies have done. Study 1 employed virtual reality to investigate judge-ments in specific dilemma situations, while Study 2 used simplified animations andvaried aspects of the situations in a more fine-grained manner.

4.3 Study 1: Moral Judgements in Virtual Reality
In this study, we addressed the effects of perspective (passenger, pedestrianor observer) and type of motorist (human driver or self-driving car) on moraljudgements in immersive virtual environments. We investigated three differentscenarios, all involving the choice between endangering one of two groups ofvirtual avatars. The scenarios were designed to be morally ambiguous to avoidceiling or floor effects. We hypothesised a self-preservation effect, such that,independent of the type of motorist, participants would be less likely to judgeactions that endangered their own virtual avatars as more acceptable.

4.3.1 Materials and method

Participants

184 people (96 male, 88 female) voluntarily participated in the virtual reality ex-periment. Participants were recruited through social media, university mailing lists,word of mouth or were directly approached. Participants could earn experimentparticipation credits required for some university programs, but no monetary in-centive was provided. Participants were required to be at least 18 years old with
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native-level German and gave written informed consent after being briefed onthe content of the experiment. Exclusion criteria included having experiencedprevious car-related trauma, being prone to motion sickness and having a historyof epileptic seizures. The study was approved by the ethics review board at Os-nabrück University, Germany. Descriptive statistics of the participants are shownin Table S1.

Materials

The stimuli consisted of six pairs of virtual reality animations, each approximately30 seconds in duration, created with Unity (Unity Technologies, 2018). Eachscenario involved a car with two occupants: driver and passenger (human drivercondition) or two passengers (self-driving car condition). The car drove in themiddle of a road and encountered a dilemma situation in which it could veer eitherto the left or the right, endangering one of two groups of avatars. Animationsdepicting both possible actions were shown in sequence.
To prevent unnecessary distress, the animations and sound effects in the virtualenvironment ceased immediately before the car would be involved in a collision.A braking sound effect was played in the moments before the animations endedto demonstrate that the car attempted, but was unable, to stop before impact.Participants had no control over the car or avatars, but could freely observe thevirtual environment. If the motorist was a self-driving car, the steering wheelof the car was absent and a label was shown at the front of the car indicatingthat it was self-driving in order to remind participants during the course of theexperiment. Three different scenarios were investigated: child pedestrians versusadult pedestrians; pedestrians on the road versus pedestrians on the sidewalk;and car occupants versus pedestrians. Each scenario included two different trials.
In the child pedestrians versus adult pedestrians scenario the car either veeredtowards a group of pedestrians including children or a group of only adult pedes-trians. The two trials differed by group size, but the ratio was static. In the smallergroups trial, there was one child (and an adult viewpoint avatar) in one group andtwo adults (and an adult viewpoint avatar) in the other group; in the larger groupstrial, there were two children (and an adult viewpoint avatar) in one group and 4adults (and an adult viewpoint avatar) in the other group.
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In the pedestrians on the road versus pedestrians on the sidewalk scenario, thecar veered towards either adult pedestrians standing on the sidewalk or adultpedestrians standing on the road. The two trials differed by group size, but the ratiowas static. In the smaller groups trial, there was one pedestrian on the sidewalk andtwo pedestrians on the road; in the larger groups trial, there were two pedestrianson the sidewalk and four on the road.
In the car occupants versus pedestrians scenario, the car veered towards eitherthe pedestrians on the road or an obstacle that would endanger the lives of thecar occupants. Instead of varying by the size of the groups, the two trials differedby the type of obstacle. In the parked van trial, the car would veer towards alarge van parked on the side of the road, whereas in the cliff trial, the car wouldveer towards a cliff edge. Both variations of these scenarios are equivalent inthe implied outcome: either car occupants or pedestrians will be harmed. WhileFaulhaber et al., 2019 only investigated endangering car occupants in the contextof a cliff setting, we wanted to contrast this scenario with a less extreme setting.By having the car veer towards a parked van, harm towards car occupants is stillimplied, but the scenario is overall more integrated into a typical traffic setting.
We chose these specific types of scenarios as they allow us to contribute to relatedfindings and discussions in recent literature. The influence of potential victims’ages has been investigated by Awad et al., 2018, Faulhaber et al., 2019 ( furtherelaborated by Bergmann et al., 2018b), and Sütfeld et al., 2017. The potentialprotection afforded to pedestrians on a sidewalk has been studied in Faulhaberet al., 2019 (further elaborated by Bergmann et al., 2018b). The issue of prioritisingcar occupants or pedestrians has been theoretically discussed by Gogoll andMüller,2016 and Lin, 2015, and implemented in a multitude of experiments includingJu et al., 2019, Awad et al., 2018, Faulhaber et al., 2019 (further elaborated byBergmann et al., 2018b), Wintersberger et al., 2017 and J.-F. Bonnefon et al., 2016.The three scenarios are conceptually depicted in Figure 4.2 and details of the trialsfor each scenario are shown in Table 4.31.
As described, the numbers of lives at risk were unequal in the first two scenarios.There were twice as many pedestrians on the road compared to the sidewalk,and twice as many adults as children. These particular ratios were chosen basedon the results from the study reported by Faulhaber et al., 2019, which werefurther elaborated by Bergmann et al., 2018b. The number of car occupants andpedestrians at risk were equal in the car occupants versus pedestrians scenario.
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This ratio was anticipated to best elicit differences between the car occupant andpedestrian perspectives, as, barring any intrinsic bias towards pedestrians or caroccupants, both should be equally valued.

Design

We employed a 4 (perspective) × 2 (motorist-type) between-participants factorialdesign. The two levels of motorist-type were self-driving car and human driver.The four levels of perspective were passenger, observer, pedestrian in the smallergroup and pedestrian in the larger group. We used a between-participant designto prevent experimental confounds such as recognition of the trials and attemptsto be self-consistent. As decisions made during previous trials could be easilyrecalled, we considered that a within-participant design would not have allowedus to distinguish whether participants were influenced more by the experimentalmanipulations or by their previous responses. Thus, variables were manipulatedin such a way that each participant saw all trials from the same perspective andinvolving the same motorist-type. To control for gender effects such as thosedescribed by Skulmowski et al., 2014b, the genders of all human avatars in thevirtual environment were matched to each participant.

Procedure

Participants were assigned via permuted block randomisation to one of the eightconditions corresponding to the combinations of perspective and motorist-type(e.g. observer & human driver; car occupant & self-driving car). Participants of thesmaller and larger pedestrian groups shared the same car occupants versus pedes-trians trials as there was only one pedestrian group involved in those scenarios.Participants completed a practice trial and a control trial before the experimentaltrials. The six experimental trials as well as animations within each trial wereshown in random order; trials were separated by distraction tasks. After viewinga pair of animations, participants could replay the pair as many times as theywanted. Participants were then asked to choose which of the two actions of themotorist they considered to be more acceptable by selecting the correspondingoutcome image. In accordance with Mandel and Vartanian, 2007, after makingeach judgement, participants indicated how confident they were in it on a scalefrom 0 (not confident at all) to 100 (very confident). Decision confidence in moral
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dilemmas has also been previously investigated by M. Lee et al., 2018, Parkinsonet al., 2011 and Royzman et al., 2014, as it gives further information than merelythe binary choice. Specifically, the confidence ratings provide information on howconflicted participants were about the corresponding judgements. High scoreson confidence indicate more robust judgements than lower scores. Thus, theproportions of judgements and the corresponding confidence levels should beconsidered in parallel.
After the experiment ended, participants completed a short questionnaire ondemographics, driving experience, prior knowledge of self-driving cars and theirattitudes towards them. Furthermore, as a manipulation check, participants re-ported which party in the situation they identified most with while watching theanimations by responding to the question “while watching the animations, whichparty did you identify most strongly with?”. The options were the pedestrians,the car occupants or the observer. Finally, they were asked whether the motoristwas a human driver or a self-driving car. Those participants who failed the controltask or were not able to recollect the correct motorist-type in the self-driving carcondition were excluded.

Statistical Analysis

Statistical analyses were conducted in R (R Core Team, 2018) using lme4(Bateset al., 2015) for model fitting. Significance testing was performed using parametricbootstrapping with afex (Singmann et al., 2018) and emmeans (Lenth, 2018) wasused for follow-up multiple comparisons on the estimated marginal means (EMMs).
Two models were computed for each of the three scenarios: one for the predictionof judgements (which of the two actions was considered more acceptable); theother for participants’ self-reported confidence in their own judgements. Judge-ments, based on perspective and motorist-type, were modelled by logit mixedmodels. As there were two trials per participant for each dilemma, random by-participant intercepts were included in all models. This corresponds to the maximalrandom effects structure as described by Barr et al., 2013 and Barr, 2013. Sig-nificance testing using Type-III sums of squares was performed by parametricbootstrapping with 1000 simulations. Confidence, based on judgement, perspec-tive, motorist and trial was modelled by linear mixed models. Significance testingusing Type-III sums of squares was performed using Kenward-Roger test. Along
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with trial (smaller groups/larger groups in the first two scenarios, parked van/cliffin the third scenario), the following covariates were included: gender, age, positiveopinion of self-driving cars, visual acuity, education level and driving experience.Models without covariates are reported in the supplementary material, but didnot result in different conclusions. Results for the three scenarios are reportedseparately.

4.3.2 Study 1 Results

Manipulation check

To determine whether varying the visual perspective affected which party par-ticipants self-identified with, we performed a chi-squared test of independence,comparing participants’ self-identification with the perspective from which theyexperienced the situations (Table S2). The majority of participants identified moststrongly with the perspective from which they experienced the scenarios χ2(24, N= 184) = 114.11, p < .0001. Follow up Bonferroni-adjusted comparisons showedall three perspective groups had significantly different patterns of responses fromeach other (all p < .0001) (Table S3). Thus, the manipulation check indicates thatin most cases participants identified with the intended perspective.

Children versus adults

Next, we investigated the influence of perspective and motorist-type on judge-ments on the children versus adults scenario. According to model predictions,endangering the larger group, which consisted of only adult pedestrians, wasconsidered more acceptable than endangering the smaller group, which consistedof adults and children (probability = 0.71). Figure 4.3A depicts the predictedprobability of judgements and levels of confidence separated by perspective andmotorist-type based on the statistical model. There were no significant effectsof perspective or motorist-type on judgements (Table 4.32). The predicted meanself-confidence in judgements (on a 0 to 100 scale) was 49.92, however it variedconsiderably between conditions. There was a significant main effect of perspec-tive (p = .0017) moderated by judgement (p = .0222) on self-reported confidencein judgements (Table 4.33). Within those who chose endangering the larger group(of only adults) as more acceptable, participants in the observer perspective had
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significantly lower confidence in their choices (EMM = 35.86) than either thepedestrian with children (EMM = 58.57) or the pedestrian with adults (EMM =55.62) perspectives, p = .0178, p = .0358, respectively. Within those who choseendangering children as more acceptable, participants in the pedestrian with chil-dren perspective had significantly greater confidence (EMM = 71.87) than eitherthe observer (EMM = 36.13), the passenger (EMM = 41.92) or the pedestrian withadults (EMM = 42.34), p = .0003, p = .0161, p = .0045, respectively (Tables S4 andS5). Thus observers had among the lowest confidence regardless of judgement.

Sidewalk versus road

In the second scenario, we tested small groups of pedestrians on the sidewalkagainst larger groups of pedestrians on the road. Overall, endangering the smallergroup was considered more acceptable than endangering the larger group (prob-ability = 0.84). Thus, participants overwhelmingly considered that endangeringfewer pedestrians was more acceptable, despite those pedestrians being situatedon a sidewalk. Mean confidence (on a 0 to 100 scale) was 62.44 and, thus, con-siderably greater than in the children versus adults scenario. Figure 4.3B depictsthe predicted probability of judgements and levels of confidence separated byperspective and motorist-type based on the model. There were no significanteffects of perspective or motorist type on judgements (Table 4.32). However, therewas a significant effect of gender, such that females (probability = 0.004) wereless likely to consider endangering the larger group of pedestrians (on the road)as more acceptable than males (probability = 0.034). Self-reported confidencedepended on judgement (Table 4.33), such that choosing endangering pedestrianson the sidewalk as more acceptable was associated with greater confidence (EMM= 68.88) than choosing endangering pedestrians on the road (EMM = 60.93), p =.0332 (Tables S6 and S7). Thus, the observed differences in confidence matchesthe bias in judgement in the sidewalk versus road scenario.

Car occupants versus pedestrians

Finally, we investigated a scenario in which endangering car occupants was con-trasted with endangering pedestrians. As the two trial types for this scenario wereconceptually different, an interaction with trial type was included in the model.
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For the parked van trial, the vast majority preferred to endanger the car occupants(probability = 0.99). In the cliff trial however, this was much less likely (probability =0.53). Mean confidence was also different: 67.08 for the parked van trial and 43.62for the cliff trial. Figure 4.3C depicts the predicted probability of judgements andlevels of confidence separated by perspective and motorist-type for the parkedvan trial and Figure 4.3D depicts the same for the cliff trial.
There was a significant main effect of trial-type. Participants were more likely toconsider endangering the car occupants as more acceptable in the van trial thanthe cliff trial, p = .0010. As falling off a cliff is more likely to result in injury or deaththan colliding with a parked van, the judgements by participants appear to takeinto account the degree of potential harm.
Furthermore, there was a significant trial-type × perspective interaction. In thecliff trial, passengers were significantly less likely than either observers (odds-ratio= 5.303, p = .0047) or pedestrians (odds-ratio = 3.584, p = .0118) to considerendangering the car occupants (including themselves) as more acceptable. Thisindicates a self-preservation effect.
Statistical analysis of self-reported confidence was performed only for pedestriansand car occupant perspectives as there were no responses preferring to endangerpedestrians in the observer perspective. There were main effects of trial (p =.0052) and judgement (p = .0002), moderated by a trial × judgement interaction (p= .0011), on self-reported confidence. Confidence when preferring to endanger caroccupants was lower in the cliff trial (EMM = 47.8) than the parked van trial (EMM= 75.2), p < .0001. This was not the case for preferring to endanger pedestrians(EMMs = 50.4 and 55.2, respectively, p = .7582) (Table S11). Note that there wereno observers who preferred endangering pedestrians in the parked van trial, so theconfidence could not be estimated and the follow up comparisons for endangeringpedestrians only considered the responses of the other perspectives.

4.3.3 Study 1 Discussion

For the three scenarios, patterns of judgements aligned with actions taken insimilar dilemma studies reported by Faulhaber et al., 2019 (further elaborated byBergmann et al., 2018b) and Sütfeld et al., 2017: participants generally preferredmotorists to risk the lives of adult pedestrians rather than child pedestrians, despite
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endangering more lives by doing so; it was highly acceptable for a motorist toswerve onto a sidewalk in order to endanger fewer pedestrians; and there was atendency to protect pedestrians over car occupants. However, it seems that theperceived danger to the car occupants plays a role; participants were less likely toaccept a car veering towards a cliff edge, than a car veering towards a parked van.
Only in the cliff trial of the car occupants versus pedestrians scenario did weobserve a main effect of perspective on judgements There was disagreementbetween the car occupant and pedestrian perspectives. Car occupants preferredthe car to remain on course and endanger the pedestrians, rather than veeringtowards a cliff edge, while pedestrians preferred the opposite. Interestingly, ob-servers appear to agree with the pedestrians in this case. This corresponds to aself-preservation effect for both car occupants and pedestrians. However, it isimportant to notice that this effect only arose when the situation clearly pittedthe lives of car occupants against the lives of pedestrians. It was not prevalentbetween pedestrians, nor in the parked van trial (which may have been consideredas less dangerous for the car occupants).
The collection of self-reported confidence allowed for a more fine-grained analysisby enabling effects that were not prevalent in the primary forced-choice responsedata to be investigated. Specifically, there was an effect of perspective in thechildren versus adults scenario: observers were among the lowest in confidence,regardless of judgement, despite there being no significant difference in judgementsthemselves. This is noteworthy as the uninvolved observer is often consideredas an “objective” viewpoint (Coeckelbergh, 2016). One might then expect theobserver perspective to be associatedwith high confidence, but this is not apparenthere.

4.4 Study 2: Moral Judgements on Simplified Anima-
tions

Our second study builds on the first investigating the influence of perspective andmotorist with the addition of investigating the influence of the number of livesat risk and the presence of a sidewalk. We used an online deployment platformand presented the scenarios in the form of simplified animations. Rather thanoffering an immersive experience, the goal of using simplified animations was
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to illustrate the scenarios while prompting participants to evaluate them from aparticular perspective. We consider the use of animations to be a natural extensionof the combination of simplified images and textual vignettes, as used in previousstudies (Awad et al., 2018; J.-F. Bonnefon et al., 2016; J. Li et al., 2016). As such acombination has been shown by Sachdeva et al., 2015 to sufficiently manipulateperspective in moral dilemmas, simplified animations should similarly promptparticipants to consider situations from the presented perspective. Nevertheless,a manipulation check was included in the analysis to confirm that such an effectoccurred.
We tested whether increasing the number of lives at risk by staying on courseincreases the acceptability of swerving to endanger a single life. Further, we testedwhether swerving onto a sidewalk would be less acceptable than swerving ontoanother road. We hypothesised that perspective would influence judgements, suchthat participants would be less likely to consider endangering their own avatars asthe more acceptable action.

4.4.1 Materials and Method

Participants

368 people (176 male, 191 female, 1 other) voluntarily participated in this onlineanimation-based experiment. Participants indicated their age groups, the medianof which was 18–29 years old. Participants were recruited through social media,university mailing lists andword of mouth. 24 different countries were represented,with major participation from Germany, Armenia, Australia and Russia. The studywas approved by the ethics review board at Osnabrück University, Germany.Descriptive statistics of the participants are given in Table S12.

Materials

The stimuli consisted of animations of five seconds in length made with Blender(Blender Online Community, 2018). Each animation depicted a car travelling overa hill. Immediately after the hill, the car encountered a dilemma situation. It couldeither stay on course and risk the lives of pedestrians on the road or swerve tothe side. Depending on the scenario, swerving would direct the car either into a
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single pedestrian (on a road or a sidewalk) or the side of a passing freight train.The animations ended shortly before impact to avoid unnecessary distress forparticipants (Figure 4.4). To manipulate the perspective, each animation depicteda scenario from either a bird’s-eye view; a first-person perspective of a pedestrian;or a first-person perspective of the car occupant (Figure 4.4).

Design

Two scenarios were investigated in this study (pedestrian versus pedestrian; caroccupants versus pedestrians). While the two associated designs differed in im-portant ways, the general framework was the same. Four different lives-at-risksituations were investigated; swerving always endangered a single life, but stayingon course endangered from 1 to 4 lives, depending on the trial.

For the pedestrians versus single pedestrian scenario we employed a 2 (motorist-type) × 4 (perspective) × 2 (road-type) × 4 (lives-at-risk) mixed factorial design.There were two levels of motorist-type (self-driving car, human driver), and fourof perspective (car occupant, pedestrian-straight-ahead, pedestrian-on-the-side,observer). All participants saw the two levels of road-type (split-road, road-with-sidewalk) and lives-at-risk (1 versus 1, 2 versus 1, 3 versus 1, and 4 versus 1).Motorist-type and perspective were manipulated between-participants, whileroad-type and lives-at-risk were manipulated within-participants. Thus, eachparticipant witnessed all pedestrians versus single pedestrian scenario from asingle perspective involving a single motorist-type.

For the pedestrians versus car occupant scenario we employed a 2 (motorist-type) × 3 (perspective) × 4 (lives-at-risk) mixed factorial design. Motorist-typehad two levels (self-driving, human-driven) and perspective had three levels (caroccupant, pedestrian straight ahead, observer). All participants saw all four levelsof lives-at-risk (1v1, 2v1, 3v1 and 4v1). Motorist-type and perspective weremanipulated between-participants, while lives-at-risk was manipulated within-participants. Thus, each participant witnessed all occupant versus pedestriandilemmas from a single perspective involving a single motorist-type.
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Procedure

Participants were given a link to an animation-based online survey, created andhosted on LabVanced, an online platform for social science experiments (Fingeret al., 2017). Upon starting the study, participants were randomly allocated intoone of the eight conditions described above, corresponding to the combinationsof motorist-type and perspective in the larger design. Participants in observer andcar occupant perspectives were presented both scenarios, as described above.However, the participants allocated to the pedestrian on-the-side perspectivedid not view the pedestrians versus car occupant scenario, as there was no cor-responding viewpoint in these animations. A single trial consisted of a pair ofanimations depicting the same situation. One animation showed the car staying oncourse, the other showed it swerving to the side. The order of the two animationswas counterbalanced across trials. After viewing the pair of animations, images ofthe final frames of each animation were presented side-by-side. Participants wereasked to choose which of the two actions was more acceptable by clicking on thecorresponding image. Throughout the trials, a textual notice reminded participantsabout both the perspective from which they are viewing the scenarios and thetype of motorist depicted.

All experimental trials were completed in random order. The experiment alwaysbegan with a control trial; participants who failed it were excluded. After theexperimental block, participants completed a short questionnaire on demographics,driving experience, prior knowledge of self-driving cars and opinion toward them.Furthermore, participants were asked whether they identified more with thepedestrians or the car occupant while watching the animations with the question:“while watching the animations, which party did you most strongly identify with?”The options were: the car, the pedestrians.

Statistical analysis

As with the first study, statistical analyses were conducted in R (R Core Team, 2018)using lme4 (Bates et al., 2015) for model fitting. Significance testing was performedusing likelihood ratio tests with afex (Singmann et al., 2018) and emmeans (Lenth,2018) was used for follow-up multiple comparisons on the estimated marginalmeans (EMMs).
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Following the study design, the two scenarios were analysed individually. For both,we modelled the likelihood of choosing swerving to the side as more acceptablethan staying on course based on lives-at-risk, road-type, perspective and motorist-type, using generalised linear mixed models with logit link functions. To controlfor individual differences, we implemented maximal random-effects structures assuggested by Barr et al., 2013 and Barr, 2013. In the pedestrian versus pedestriandilemmas, due to convergence issues, the maximal random effects structure wasreplaced with a sub-maximal structure, without the random slope for lives-at-risk.The following covariates were included in all models: gender, age, knowledge ofself-driving cars, and opinion of self-driving cars.

4.4.2 Study 2: Results

Similar to Study 1, we first performed a manipulation check to determine if the per-spective from which participants viewed the scenarios affected with which partythey identified most strongly. The omnibus goodness-of-fit test was significant,
χ2(24, N = 350) = 60.66, p < .0001. The majority of participants in the pedestrianor car occupant perspectives identified most strongly with the corresponding per-spective. Approximately equal numbers of participants in the observer perspectiveidentified with car occupants and pedestrians (Tables S13 and S14). Thus, themanipulation check indicates that in most cases participants identify with theallocated perspective and the observer perspective was not biased.
Next, we investigated the effects of the perspective, motorist-type, road-typeand lives-at-risk on judgements on the pedestrian versus pedestrian dilemma(Table 4.34). There was a significant main effect of lives-at-risk (p < .0001). Withincreasing imbalance of the number of pedestrians endangered, the probability ofswerving changed steeply from close to 0.0 to nearly 1.0. Further, we observed asignificant main effect of road-type (p = .0002). Participants tended to perceiveswerving as more acceptable when swerving onto another road (probability = 0.88)than onto a sidewalk (probability = 0.76), odds-ratio = 2.50 (Table S16).
Generally, increases in lives-at-risk were positively associated with the probabilityof preferring to swerve (the more lives at risk by staying, the higher the probabilityof preferring to swerve). However, the nuances of this relationship dependedon perspective and motorist-type and their interaction (Table S17). Lives-at-riskinteracted with perspective (p < .0001) and we observed a three-way interaction
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of lives-at-risk × perspective × motorist-type (p = .0152) (Figure 4.5). Specifically,comparing the case of 2v1 lives-at-risk, the probability of swerving was higherfor car occupant and observer perspectives than for pedestrian perspectives.Furthermore, there was a difference in the case of 2v1 lives-at-risk from thepedestrian-straight-ahead perspective between human driver and self-drivingcar. Follow up comparisons of the lives-at-risk × perspective × motorist-typeinteraction indicated that in all except one condition, acceptability of swervingwas significantly higher at 2v1 compared to 1v1 lives-at-risk, all p < .0001 (TableS18). The exception to this was for participants who judged human drivers fromthe perspective of pedestrians-straight-ahead. In their case, this increase onlyoccurred at 3v1 lives-at-risk (odds-ratio = 31.67, p < .0001). This indicates thatperspective may affect how human drivers’ actions are perceived, and at whichpoint it is considered appropriate for them to intervene.
In the next scenario, car occupants were weighed against pedestrians. There wasa significant main effect of lives-at-risk (p < .0001) and a significant lives-at-risk
× perspective × motorist-type interaction (p = .0288) (Table 4.34). Preferring toswerve was generally positively associated with lives-at-risk. In all conditions,swerving was significantly more acceptable at 4v1 lives-at-risk compared to 1v1lives-at-risk (all p < .05). For judgements on self-driving cars this increase occurredbetween 1v1 and 2v1 lives-at-risk, while for judgements on human drivers, thispoint depended on perspective. For those in the car occupant perspective, therewas no significant difference between 1v1 and 2v1 lives-at-risk (p = .0604), butthere was a significant difference between 1v1 and 3v1 conditions (odds-ratio =68.02, p = .0001). For both observers and pedestrians, this occurred only after 4v1lives-at-risk, odds-ratios = 20.42 (p = .0011) and 11.97 (p = .0136), respectively.However, in the latter case, this was due to the already high acceptability ofswerving at 1v1 lives-at-risk (probability = 0.68). These results are depicted inFigure 4.6. Thus, moral judgements were rather similar in the case of self-drivingcars, and were dependent on perspective only in the case of human drivers.

4.4.3 Study 2: Discussion

In this study we observed that increasing the number of people in the direct pathof a car led to higher acceptability of swerving to endanger a single life. Generally,when two or more pedestrians were in danger, the probability of preferring toswerve was substantially higher than when there was only a single pedestrian
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in danger. This is in line with previous studies, reporting a high sensitivity ofparticipants to the number of lives at risk. Further, we observe that swerving ontoa sidewalk was less acceptable than swerving onto a connecting road. However,this effect was overshadowed by the preference to minimise the number of livesendangered. Additionally, we observed other differences between judgements onhuman drivers and self-driving cars. When swerving would endanger a pedestrian,therewas general agreement between perspectives for self-driving cars tominimisethe number of lives endangered. However, for human drivers, this was not the case.Those in the perspective of pedestrians in the direct path of a car only accepteda human driver swerving when three or more pedestrians would be otherwiseendangered. All other perspectives considered it more acceptable when therewere two pedestrians in the direct path of a car (Figure 4.5). When swerving wouldendanger car occupants, there was general agreement between perspectives onwhat self-driving cars should do. It was more acceptable for self-driving cars tominimise harm while protecting their occupants when all else was equal. However,there was disagreement between perspectives about which action was moreacceptable for human drivers to take. Those in the observer perspective onlyconsidered it more acceptable for drivers to endanger themselves when facedwith four pedestrians on the road. Conversely, those in the pedestrian perspectivealready considered it more acceptable for drivers to swervewhen there was a singlepedestrian at risk (Figure 4.6A). Similar to Study 1, this indicates a self-preservationeffect for pedestrians, however only for judgements on human drivers.

4.4.4 General Discussion

In both studies, we found that judgements on self-driving cars do not seem to differsubstantially from those on human drivers. In cases where there is a discrepancy,it seems to be due to a stronger preference for self-driving cars to minimise harm.Based on this result, it seems that people generally expect self-driving cars tofollow the same traffic regulations as human drivers. The experiments revealedthat differences between perspectives occur in situations where lives of car occu-pants are weighed against those of pedestrians. Results from Study 1 show thatperspective seems to affect the acceptability of a car driving off a cliff: passengersare less likely to prefer swerving off a cliff than observers or pedestrians. Study 2indicates disagreement between perspectives when considering at which pointhuman drivers should intervene and endanger their own lives for the greater good.Additionally, perspective seems to affect confidence: people who observe a colli-
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sion from a detached point of view seem to be less confident in their judgements.Although there are many commonalities in the judgements from different perspec-tives, the identified discrepancies should be taken into consideration in furtherresearch.
Results from our studies on moral judgement generally align with those fromprevious studies of moral action, in which participants were in the roles of driversin similar dilemma scenarios (Faulhaber et al., 2019; Sütfeld et al., 2017). Thisindicates that the discrepancy between moral action and moral judgement shownby e.g. Francis et al., 2016 may not be extremely pronounced in driving-relateddilemmas presented in virtual environments. Thus, previous studies on the topicshould be considered equally relevant irrespective of whether they focused onmoral judgement or action.
One of the more controversial aspects of introducing self-driving cars may concernthe endangering of pedestrians on sidewalks. According to our results, pedestrianson a sidewalk seem to be offered more protection than pedestrians on the roadwhen the numbers of lives at risk are equal (Figure 4.5). However, this protection isovershadowed by the preference to endanger fewer lives. This opposes prominentethical guidelines such as those issued by the ethics commission of the GermanFederal Ministry of Transport and Digital Infrastructure, 2017, which states thatnon-involved parties (e.g. pedestrians on a sidewalk) should not be endangered.Similar divergence occurs when a dilemma involves clearly risking the lives ofcar occupants or children, as there is no general agreement between people’sjudgements on what is considered more acceptable. However, the guidelines statethat personal features, such as age, should not be taken into consideration inunavoidable accident situations. While ethical guidelines are important to consider,another aspect to consider is legality. In research by S. Li, Zhang, et al., 2019 andAwad et al., 2018, the legal liability of different parties involved in a situation (forexample whether pedestrians were crossing legally or not) was shown to affectjudgements. However these studies did not consider the interplay between thetype of motorist, perspective and legality, something that future research shouldaim to elucidate.
Our studies aimed to expand understanding of moral psychology in the context ofartificial intelligence. This research assists in determining criteria that self-drivingcar decision making needs to meet in order to be commonly accepted. However,we want to stress that responses to simplified dilemma situations should not be
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the basis for legal or ethical regulations. Furthermore, in agreement with Nyholm,2018a, and Keeling, 2017, we believe empirical research alone cannot answerthe ethical question of how self-driving cars should be programmed to behave.Nevertheless, we believe the results provide insights into the public’s preferencesregarding the decision making of self-driving cars and potential conflicts thatmay arise. The results from our studies point to specific questions warrantingfurther investigation and attention in the debate surrounding the introductionof self-driving cars. In particular, these relate to the lack of agreement regardingspecific dilemmas, apparent discrepancies between public opinion and ethicalguidelines, the effects of perspective, the identified self-preservation effect andthe albeit slight differences between judgements on self-driving cars and humandrivers. These findings all highlight issues with creating decision making algorithmsthat attempt to simultaneously consider intuitions, ethical guidelines and legalregulations.
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4.4.9 Supplemental Data: Extended procedure descriptions

Study 1

Participants were randomly assigned to one of the eight conditions correspondingto the combinations of perspective and motorist-type (e.g. observer & humandriver; car occupant & self-driving car). Participants of the smaller and largerpedestrian groups shared the same pedestrians versus car occupants trials as therewas only one pedestrian group involved in those scenarios.
Participants were asked to observe the environment carefully before pressing abutton to begin each animation. There was a pause after the animation and soundstopped and participants could freely inspect the scene again before pressing abutton to continue. The order of the animations within a trial was randomisedfor each participant. After viewing a pair of animations, participants could replaythe pair in the same order as originally shown or continue to the response screen.There was no limit on the number of times the animations could be replayed beforeresponding.
The response screen consisted of side-by-side images of the final frames of eachanimation. Participants were asked to choose which of the two actions of themotorist they considered to be more acceptable by selecting the correspondingoutcome image. Depending on the motorist-type, the question either mentionedthat the actions were taken by a person driving the car or a self-driving car. Aftermaking the judgement, participants indicated how confident they were with theirchoice on a scale from 0 (not confident at all) to 100 (very confident).
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Participants completed a practice trial and a control trial before the experimentaltrials. The practice trial involved a scenario with a single pedestrian on one side ofthe road and a group of five pedestrians on the other side. This task allowed theparticipants to become accustomed to the immersion of VR and the controls.
The control trial consisted of a single pedestrian on one side and empty road onthe other. The intention of the control trial was to check whether participantsconsidered swerving to empty road more acceptable than endangering a singleperson. Participants were excluded if they considered swerving to the pedestrianas more acceptable than swerving to the empty side of the road, as this behaviourindicated a tendency to risk a life for no purpose or a misunderstanding of thetask.
To separate each trial, distraction tasks were presented between them. Theseconsisted of simple mathematical equations which participants had to indicatewhether they were correct or incorrect. The distraction trial lasted 20 secondsregardless of the number of responses in that time. Therewas no visible countdownin order to avoid stress. The distraction trial ended once the participant respondedto the final question displayed within the 20 seconds. No data from the distractiontask was recorded or analysed.
After completing the practice and control trials, participants completed the sixexperimental trials in random order, separated by distraction tasks.
After the experiment ended, participants completed a short questionnaire ondemographics, driving experience, prior knowledge of self-driving cars and theirattitudes towards them. Furthermore, as a manipulation check, participants re-ported which party in the situation they identified most with while watching theanimations: the pedestrians, the car occupants or the observer. Finally, they wereasked whether the motorist was a human driver or a self-driving car. Participantsin the self-driving car condition that could not recollect their motorist-type wereexcluded, since this indicated they did not fully understand the instructions. Wechose to not equally exclude the participants of the human driver condition as theywere not briefed about different motorist-type conditions and only presented theterm ‘self-driving car’ in the post-study questionnaire. On completion of the ques-tionnaire, participants were debriefed. The entire procedure took approximately25–30 minutes.
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Figure 4.1: The screenshot depicts the decision screen presented to participants inthe virtual reality study after have seen the animations. Two images of each choicewere shown to show the scene from different angles. The scenario depicted hereis a practice trial involving the choice between endangering a group of pedestriansor a single pedestrian. (Left) Self-driving car (with a relaxing second pedestrian)is veering towards one pedestrian; (B) Self-driving car is veering towards a groupof pedestrians. Instructions translated from German: “Which option of the au-tonomous vehicle is more acceptable? (Left/Right) – To alternate between options,move the analog stick ‘left’ or ‘right’ respectively. Subsequently, continue with ‘A’.”

Study 2

Participants were given a link to an animation-based online survey, created andhosted on LabVanced, an online platform for social science experiments. Uponstarting the study, participants were randomly allocated into one of the eightconditions mentioned before, corresponding to the combinations of motorist-type and perspective in the larger design. Participants were presented scenariosituations of both types, as described above. However, the participants allocated to
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the pedestrian on the side perspective did not view occupant-pedestrian scenarios,as there was no corresponding viewpoint in these animations.
A single trial consisted of a pair of animations depicting the same moral scenariosituation. One animation showed the car staying on course, the other showed thecar swerving to the side. The order of the two videos was counterbalanced acrosstrials. After viewing the pair of animations, images of the final frames of eachanimation were presented side-by-side. Participants were asked to choose whichof the two actions was more acceptable by clicking on the corresponding image.Depending on the motorist-type, the question either stated the actions were madeby a person driving the car or a self-driving car. Below the question was a reminderof which perspective the animations were viewed from. Participants could clicka button to replay the pair of animations in the same order as originally shown.There was no limit to the number of times the animations could be replayed beforemaking a choice nor the amount of time participant needed to answer the upcoming question.
The first trial was always a control task. The presented scenario involved a singlepedestrian in the path of the car and a clear road to the side. Participants wereexcluded if they considered “stay” as more acceptable than “swerve”, as this indi-cated either a tendency to risk a life for no purpose or a misunderstanding of thetask.
All participants completed eight trials of pedestrian vs. pedestrian scenarios, cor-responding to the combinations of the levels of the road-type and lives-at-risk.An additional four trials were occupant vs. pedestrian scenarios, correspondingto the four different levels of lives-at-risk. However, participants assigned to thepedestrian on the side perspective only completed the trials relating to the pedes-trian vs. pedestrian scenario. This was due to no corresponding viewpoint in theoccupant vs. pedestrian scenario. Thus, participants completed a total of eithereight or twelve trials. All experimental trials were completed in random order.
After the experimental block, participants completed a short questionnaire ondemographics, driving experience, prior knowledge of self-driving cars and atti-tudes toward them. Furthermore, participants were asked whether they identifiedmore with the pedestrians or the car occupant while watching the animations. Theentire study procedure took approximately five minutes.
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4.4.10 Study 1 Supplementary Tables

Table 4.1: Descriptive statistics of the participants in Study 1.
motorist: human driver observer passenger pedestrian(smallergroup)

pedestrian(largergroup)gender (male:female) 12:11 12:11 12:11 12:11age (M ,SD) 23.57(4.41) 21.87(3.31) 23.35(6.12) 23.04(2.99)driving experienceno experience 6 3 3 41–5 years 6 15 16 95–10 years 10 4 2 9
≥10 years 1 1 2 1educationno higher education achieved 18 21 20 13undergraduate education 3 2 3 10post-graduate education 2 0 0 0opinion of self-driving cars (M ,SD) 3.52(1.04) 3.48(1.24) 3.48(1.31) 3.48(1.27)visual acuitynormal vision 17 13 15 9corrected vision 5 6 6 12uncorrected vision 1 4 2 2
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motorist: self-driving car observer passenger pedestrian(smallergroup)
pedestrian(largergroup)gender (male:female) 12:11 12:11 12:11 12:11age (M ,SD) 23.30(3.72) 21.70(2.36) 22.43(2.73) 24.26(6.08)driving experienceno experience 4 4 2 31–5 years 9 14 13 115–10 years 8 5 7 6

≥10 years 2 0 1 3educationno higher education achieved 14 19 21 15undergraduate education 6 4 2 6post-graduate education 3 0 0 2opinion of self-driving cars (M ,SD) 3.30(1.18) 3.43(1.27) 3.52(1.20) 3.3(1.02)visual acuitynormal vision 13 13 15 10corrected vision 9 7 7 10uncorrected vision 1 3 1 3
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Table 4.2: Contingency table for manipulation check (Study 1).
identification

perspective observer passenger pedestrian
observer 31 10 5passenger 8 35 3pedestrian 33 3 56

Table 4.3: Follow up comparisons for manipulation check (Study 1).
comparison p

1 observer vs. passenger < .01 **2 observer vs. pedestrian < .01 **3 passenger vs. pedestrian < .01 **
Note: * p < .05, ** p < .01, *** p < .001.

4.5 Study 2 supplementary tables

contrast odds ratio SE df z lives-at-risk p

perspective = car occupantmotorist = self-driving car1v1 / 2v1 0.0066 0.0043 Inf −7.715 <.0001 ***1v1 / 3v1 0.0018 0.0013 Inf −8.377 <.0001 ***1v1 / 4v1 0.0026 0.0019 Inf −8.257 <.0001 ***2v1 / 3v1 0.2661 0.1588 Inf −2.218 .11822v1 / 4v1 0.3893 0.2216 Inf −1.657 .34663v1 / 4v1 1.4633 0.9111 Inf 0.611 .9285
perspective = observermotorist = self-driving car1v1 / 2v1 0.0097 0.0057 Inf −7.869 <.0001 ***1v1 / 3v1 0.0046 0.0030 Inf −8.315 <.0001 ***1v1 / 4v1 0.0017 0.0013 Inf −8.574 <.0001 ***2v1 / 3v1 0.4685 0.2592 Inf −1.370 .51802v1 / 4v1 0.1747 0.1108 Inf −2.752 .0302 *
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contrast odds ratio SE df z lives-at-risk p

3v1 / 4v1 0.3730 0.2421 Inf −1.519 .4257
perspective = pedestrian forwardmotorist = self-driving car1v1 / 2v1 0.0320 0.0188 Inf −5.869 <.0001 ***1v1 / 3v1 0.0027 0.0020 Inf −7.884 <.0001 ***1v1 / 4v1 0.0033 0.0024 Inf −7.814 <.0001 ***2v1 / 3v1 0.0851 0.0518 Inf −4.050 .0003 ***2v1 / 4v1 0.1040 0.0615 Inf −3.830 .0007 ***3v1 / 4v1 1.2224 0.7812 Inf 0.314 .9893
perspective = pedestrian sidemotorist = self-driving car1v1 / 2v1 0.0395 0.0228 Inf −5.594 <.0001 ***1v1 / 3v1 0.0344 0.0202 Inf −5.744 <.0001 ***1v1 / 4v1 0.0073 0.0051 Inf −7.040 <.0001 ***2v1 / 3v1 0.8705 0.4623 Inf −0.261 .99382v1 / 4v1 0.1847 0.1140 Inf −2.737 .0315 *3v1 / 4v1 0.2122 0.1313 Inf −2.506 .0590
perspective = car occupantmotorist = human1v1 / 2v1 0.0024 0.0016 Inf −9.147 <.0001 ***1v1 / 3v1 0.0006 0.0005 Inf −9.708 <.0001 ***1v1 / 4v1 0.0008 0.0006 Inf −9.667 <.0001 ***2v1 / 3v1 0.2689 0.1532 Inf −2.306 .09662v1 / 4v1 0.3171 0.1762 Inf −2.067 .16413v1 / 4v1 1.1793 0.7115 Inf 0.273 .9929
perspective = observermotorist = human1v1 / 2v1 0.0061 0.0040 Inf −7.821 <.0001 ***1v1 / 3v1 0.0032 0.0022 Inf −8.189 <.0001 ***1v1 / 4v1 0.0038 0.0026 Inf −8.096 <.0001 ***2v1 / 3v1 0.5151 0.2996 Inf −1.141 .66432v1 / 4v1 0.6159 0.3528 Inf −0.846 .83243v1 / 4v1 1.1958 0.7140 Inf 0.299 .9907
perspective = pedestrian forward
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contrast odds ratio SE df z lives-at-risk p

motorist = human1v1 / 2v1 0.4276 0.1922 Inf −1.890 .23241v1 / 3v1 0.0316 0.0174 Inf −6.277 <.0001 ***1v1 / 4v1 0.0119 0.0075 Inf −7.036 <.0001 ***2v1 / 3v1 0.0738 0.0386 Inf −4.981 <.0001 ***2v1 / 4v1 0.0279 0.0168 Inf −5.943 <.0001 ***3v1 / 4v1 0.3775 0.2199 Inf −1.672 .3383
perspective = pedestrian sidemotorist = human1v1 / 2v1 0.0642 0.0370 Inf −4.768 <.0001 ***1v1 / 3v1 0.0390 0.0237 Inf −5.339 <.0001 ***1v1 / 4v1 0.0330 0.0205 Inf −5.503 <.0001 ***2v1 / 3v1 0.6081 0.3496 Inf −0.865 .82292v1 / 4v1 0.5148 0.3003 Inf −1.138 .66573v1 / 4v1 0.8465 0.5028 Inf −0.281 .9923
Note: * p < .05, ** p < .01, *** p < .001.

lives-at-risk P (“swerve”) SE df lower asymptotic 95% CI upper asymptotic 95% CI
perspective = carmotorist = self-driving
1v1 0.1275 0.0686 Inf 0.0418 0.3284
2v1 0.9569 0.0286 Inf 0.8506 0.9886
3v1 0.9881 0.0092 Inf 0.9472 0.9974
4v1 0.9827 0.0127 Inf 0.9288 0.9960
perspective = observermotorist = self-driving
1v1 0.1089 0.0591 Inf 0.0357 0.2873
2v1 0.9262 0.0454 Inf 0.7736 0.9787
3v1 0.9640 0.0246 Inf 0.8695 0.9908
4v1 0.9863 0.0107 Inf 0.9387 0.9970
perspective = pedestrian (forward)motorist = self-driving
1v1 0.1153 0.0637 Inf 0.0369 0.3072
2v1 0.8030 0.0981 Inf 0.5473 0.9322
3v1 0.9796 0.0151 Inf 0.9165 0.9952
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lives-at-risk P (“swerve”) SE df lower asymptotic 95% CI upper asymptotic 95% CI
4v1 0.9751 0.0178 Inf 0.9028 0.9940
perspective = pedestrian (side)motorist = self-driving
1v1 0.1737 0.0922 Inf 0.0563 0.4255
2v1 0.8417 0.0912 Inf 0.5816 0.9532
3v1 0.8593 0.0838 Inf 0.6108 0.9597
4v1 0.9664 0.0252 Inf 0.8624 0.9925
perspective = carmotorist = human
1v1 0.0339 0.0207 Inf 0.0101 0.1080
2v1 0.9361 0.0384 Inf 0.8063 0.9810
3v1 0.9820 0.0128 Inf 0.9298 0.9956
4v1 0.9788 0.0147 Inf 0.9200 0.9946
perspective = observermotorist = human
1v1 0.0540 0.0320 Inf 0.0165 0.1630
2v1 0.9028 0.0587 Inf 0.7145 0.9718
3v1 0.9475 0.0351 Inf 0.8188 0.9863
4v1 0.9378 0.0406 Inf 0.7940 0.9833
perspective = pedestrian (forward)motorist = human
1v1 0.2078 0.1006 Inf 0.0734 0.4649
2v1 0.3802 0.1426 Inf 0.1579 0.6676
3v1 0.8926 0.0635 Inf 0.6941 0.9682
4v1 0.9565 0.0301 Inf 0.8419 0.9891
perspective = pedestrian (side)motorist = human
1v1 0.2694 0.1261 Inf 0.0951 0.5641
2v1 0.8518 0.0868 Inf 0.5988 0.9568
3v1 0.9043 0.0612 Inf 0.7027 0.9742
4v1 0.9178 0.0541 Inf 0.7324 0.9785
Note: * p < .05, ** p < .01, *** p < .001.
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Table 4.4: Estimated marginal means for self-reported confidence in judgements —children versus adults scenario (Study 1).
perspective EMM SE df lower 95% CI upper 95% CI
judgement = endanger larger group (adults)observer 37.4348 6.9340 186.98 23.7558 51.1138passenger 50.6119 7.7075 181.57 35.4042 65.8196pedestrian (smaller group) 55.8615 8.0671 181.26 39.9441 71.7790pedestrian (larger group) 53.7088 7.2938 181.68 39.3174 68.1002
judgement = endanger smaller group (children)observer 37.3025 7.3825 218.66 22.7525 51.8525passenger 46.8662 8.2803 202.90 30.5397 63.1928pedestrian (smaller group) 69.7271 8.5895 206.26 52.7926 86.6615pedestrian (larger group) 39.8304 8.0855 226.03 23.8978 55.7630

Table 4.5: Follow up comparisons for self-reported confidence in children versusadults scenario (Study 1).
contrast estimate SE df t p

judgement = endanger larger group (adults)observer − passenger −13.1771 7.2467 211.35 −1.818 .2676observer − pedestrian (smaller group) −18.4267 7.0260 205.78 −2.623 .0459 *observer − pedestrian (larger group) −16.2740 6.8486 207.04 −2.376 .0849passenger − pedestrian (smaller group) −5.2496 7.1644 214.91 −0.733 .8838passenger − pedestrian (larger group) −3.0969 7.1190 207.64 −0.435 .9724pedestrian (smaller group) − pedestrian (larger group) 2.1528 6.9085 200.55 0.312 .9895
judgement = endanger smaller group (children)observer − passenger −9.5637 8.1973 260.82 −1.167 .6484observer − pedestrian (smaller group) −32.4246 8.3792 276.43 −3.870 .0008 ***observer − pedestrian (larger group) −2.5279 8.3234 286.57 −0.304 .9903passenger − pedestrian (smaller group) −22.8608 8.2415 258.10 −2.774 .0301 *passenger − pedestrian (larger group) 7.0358 8.5637 273.21 0.822 .8442pedestrian (smaller group) − pedestrian (larger group) 29.8966 8.7240 285.26 3.427 .0039 **

Note: * p < .05, ** p < .01, *** p < .001.
4.5.1 Data Availability Statement

The datasets for the studies are available as supplementary materials.
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Table 4.6: Estimated marginal means for self-reported confidence in sidewalkversus road scenario (Study 1).
judgement EMM SE df lower 95% CI upper 95% CI
endanger smaller group (sidewalk) 68.8838 5.8744 162.94 57.2840 80.4837endanger larger group (road) 60.9278 6.6278 203.52 47.8599 73.9957

Table 4.7: Follow up comparisons for self-reported confidence in sidewalk versusroad scenario (Study 1).
contrast estimate SE df t p

endanger smaller (sidewalk) − endanger larger (road) 7.9561 3.7212 337.76 2.138 .0332 *
Note: * p < .05, ** p < .01, *** p < .001.

Table 4.8: Estimated probability of preferring to endanger car occupants in caroccupants versus pedestrians scenario (Study 1).
trial P (“endanger car occupants”) SE df lower 95% CI upper 95% CI
parked van 0.9145 0.0403 Inf 0.7956 0.9671cliff edge 0.5531 0.1078 Inf 0.3448 0.7442

contrast odds ratio SE df z p

parked van / cliff edge 8.6435 2.9567 Inf 6.305 <.0001 ***
Table 4.9: Follow up comparisons for estimated probability of preferring to endan-ger car occupants in car occupants versus pedestrians scenario (Study 1).

Note: * p < .05, ** p < .01, *** p < .001.

trial EMM SE df lower 95% CI upper 95% CI
parked van 64.5887 5.5074 205.55 53.7304 75.4470cliff edge 48.4315 5.2839 188.95 38.0085 58.8546

Table 4.10: Estimatedmarginal means for self-reported confidence in car occupantsversus pedestrians scenario (Study 1).



trial EMM SE df lower 95% CI upper 95% CI
judgement = endanger pedestriansparked van 55.2472 15.9957 330.19 23.7809 86.7134cliff 50.3588 7.2760 259.22 36.0312 64.6864
judgement = endanger car occupantsparked van 75.2332 5.2659 192.35 64.8470 85.6195cliff 47.8217 5.8862 237.91 36.2260 59.4175

Table 4.11: Estimated Marginal Means for self-reported confidence separated bytrial and judgement in car occupants versus pedestrians scenario (Study 1).
Note that for the parked van trial, there were no observers preferring to endan-ger pedestrians, so the EMMs for that trial only consider the other perspectives.

Table 4.12: Descriptive statistics of the groups in car occupants versus pedestriansscenario (Study 2).
age group gender knowledge of self-driving cars driving experience country
18–29: 142 female:151 no: 23 0: 52 Germany: 5530–39: 43 male: 130 yes:259 5: 54 Armenia: 3040–49: 18 NA’s: 1 6–10: 35 Australia: 2550–59: 18 10+: 95 Russia: 1060–69: 24 NA’s: 37 (Other): 1970–79: 3 NA’s: 14280–89: 1

Table 4.13: Contingency table for manipulation check (Study 2).
identificationcar occupant pedestrianperspective

car occupant 73 28observer 53 42pedestrian (in car’s path) 21 65pedestrian (to side of car’s path) 23 63



Table 4.14: Follow up comparisons for manipulation check (Study 2).
comparison p

car vs. observer .02car vs. pedestrian (in car’s path) <.01 **car vs. pedestrian (to side of car’s path) <.01 **observer vs. pedestrian (in car’s path) <.01observer vs. pedestrian (to side of car’s path) <.01 **pedestrian (in car’s path) vs. pedestrian (to side of car’s path) .86
Note: * p < .05, ** p < .01, *** p < .001.

Table 4.15: Follow up comparisons for sidewalk versus road scenarios (Study 2).
contrast estimate SE df z p

road − sidewalk 0.8677 0.2576 Inf 3.369 .0008 ***
Note: * p < .05, ** p < .01, *** p < .001.

Table 4.16: Estimated marginal means for acceptability of swerving in sidewalkversus road scenarios (Study 2).
scenario EMM SE df lower asymptotic 95% CI upper asymptotic 95% CI
road 2.0196 0.3237 Inf 1.3852 2.6540sidewalk 1.1519 0.3579 Inf 0.4504 1.8534

Table 4.17: Follow-up comparisons of lives-at-risk in pedestrians versus pedestriansscenario (Study 2).
contrast odds ratio SE d f z lives-at-risk p

1v1 / 2v1 0.0206 0.0054 Inf −14.706 <.0001 ***1v1 / 3v1 0.0061 0.0019 Inf −16.347 <.0001 ***1v1 / 4v1 0.0043 0.0014 Inf −16.739 <.0001 ***2v1 / 3v1 0.2950 0.0606 Inf −5.940 <.0001 ***2v1 / 4v1 0.2092 0.0452 Inf −7.241 <.0001 ***3v1 / 4v1 0.7089 0.1549 Inf −1.574 .3933
Note: * p < .05, ** p < .01, *** p < .001.



Table 4.18: Follow-up comparisons of lives-at-risk in pedestrians versus pedestriansscenario.
contrast P(swerve) SE d f z lives-at-risk p

1v1 / 2v1 0.0206 0.0054 Inf −14.706 <.0001 ***1v1 / 3v1 0.0061 0.0019 Inf −16.347 <.0001 ***1v1 / 4v1 0.0043 0.0014 Inf −16.739 <.0001 ***2v1 / 3v1 0.2950 0.0606 Inf −5.940 <.0001 ***2v1 / 4v1 0.2092 0.0452 Inf −7.241 <.0001 ***3v1 / 4v1 0.7089 0.1549 Inf −1.574 .3933
Note: * p < .05, ** p < .01, *** p < .001.

Table 4.19: Estimatedmarginal means for Lives-At-Risk factor in pedestrians versuspedestrians scenario (Study 2).
lives-at-risk P (swerve) SE df lower asymptotic 95% CI upper asymptotic 95% CI
1v1 .1170 0.0346 Inf 0.0642 0.20362v1 .8653 0.0397 Inf 0.7672 0.92603v1 .9561 0.0153 Inf 0.9140 0.97804v1 .9685 0.0114 Inf 0.9365 0.9846



Table 4.20: Preference of swerving for lives-at-risk × perspective interaction inpedestrians versus pedestrians scenario
lives-at-risk P (“swerve”) SE df lower asymptotic 95% CI upper asymptotic 95% CI
perspective = car1v1 0.0668 0.0304 Inf 0.0268 0.15712v1 0.9474 0.0260 Inf 0.8664 0.98043v1 0.9854 0.0084 Inf 0.9554 0.99534v1 0.9809 0.0106 Inf 0.9441 0.9936
perspective = observer1v1 0.0771 0.0339 Inf 0.0317 0.17532v1 0.9152 0.0394 Inf 0.7997 0.96693v1 0.9565 0.0224 Inf 0.8846 0.98444v1 0.9705 0.0161 Inf 0.9161 0.9900
perspective = pedestrian fwd1v1 0.1561 0.0616 Inf 0.0688 0.31632v1 0.6126 0.1088 Inf 0.3917 0.79523v1 0.9523 0.0240 Inf 0.8761 0.98254v1 0.9671 0.0174 Inf 0.9098 0.9884
perspective = pedestrian side1v1 0.2178 0.0837 Inf 0.0961 0.42162v1 0.8468 0.0680 Inf 0.6643 0.93923v1 0.8837 0.0549 Inf 0.7272 0.95594v1 0.9472 0.0285 Inf 0.8543 0.9821



Table 4.23: Follow-up comparisons for lives-at-risk × perspective interaction forpedestrians versus pedestrians scenario.
contrast odds ratio SE df z lives-at-risk p

lives-at-risk= 1v1car occupant / observer 0.8579 0.4594 Inf −0.286 .9918car occupant / pedestrian (in car’s path) 0.3873 0.2149 Inf −1.710 .3186car occupant / pedestrian (to side of car’s path) 0.2573 0.1505 Inf −2.320 .0935observer / pedestrian (in car’s path) 0.4514 0.2491 Inf −1.441 .4735observer / pedestrian (to side of car’s path) 0.2999 0.1748 Inf −2.066 .1644pedestrian (in car’s path) / pedestrian (to side of car’s path) 0.6643 0.3761 Inf −0.722 .8882
lives-at-risk = 2v1car occupant / observer 1.6701 0.9872 Inf 0.868 .8216car occupant / pedestrian (in car’s path) 11.3976 6.7101 Inf 4.133 .0002 ***car occupant / pedestrian (to side of car’s path) 3.2605 2.0813 Inf 1.852 .2493observer / pedestrian (in car’s path) 6.8247 3.9824 Inf 3.291 .0055 **observer / pedestrian (to side of car’s path) 1.9523 1.2394 Inf 1.054 .7176pedestrian (in car’s path) / pedestrian (to side of car’s path) 0.2861 0.1710 Inf −2.094 .1550
lives-at-risk = 3v1car / observer 3.0675 2.0122 Inf 1.709 .3190car / pedestrian (in car’s path) 3.3778 2.2723 Inf 1.809 .2688car / pedestrian (to side of car’s path) 8.8704 6.1554 Inf 3.145 .0090 **observer / pedestrian (in car’s path) 1.1011 0.7140 Inf 0.149 .9988observer / pedestrian (to side of car’s path) 2.8917 1.9156 Inf 1.603 .3769pedestrian (in car’s path) / pedestrian (to side of car’s path) 2.6261 1.7060 Inf 1.486 .4458
lives-at-risk = 4v1car / observer 1.5594 1.0308 Inf 0.672 .9077car / pedestrian (in car’s path) 1.7467 1.1731 Inf 0.830 .8400car / pedestrian (to side of car’s path) 2.8616 2.0073 Inf 1.499 .4381observer / pedestrian (in car’s path) 1.1201 0.7601 Inf 0.167 .9983observer / pedestrian (to side of car’s path) 1.8351 1.2945 Inf 0.861 .8251pedestrian (in car’s path) / pedestrian (to side of car’s path) 1.6383 1.1199 Inf 0.722 .8883

Note: * p < .05, ** p < .01, *** p < .001.
Table 4.24: Follow-up comparisons for lives-at-risk in car occupants versus pedes-trians scenario (Study 2).

contrast odds ratio SE df z lives-at-risk p

1v1 / 2v1 0.2037 0.0673 Inf −4.813 < .0001 ***1v1 / 3v1 0.0540 0.0220 Inf −7.164 < .0001 ***1v1 / 4v1 0.0299 0.0133 Inf −7.871 < .0001 ***2v1 / 3v1 0.2650 0.0924 Inf −3.807 .0008 ***2v1 / 4v1 0.1468 0.0559 Inf −5.038 <.0001 ***3v1 / 4v1 0.5541 0.2037 Inf −1.606 .3751
Note: * p < .05, ** p < .01, *** p < .001.



Table 4.25: Preference of swerving for different lives-at-risk in car occupantsversus pedestrians scenario (Study 2).
lives-at-risk P (swerve) SE df lower asymptotic 95% CI upper asymptotic 95% CI
1v1 0.3442 0.1330 Inf 0.1419 0.62492v1 0.7204 0.1215 Inf 0.4413 0.89373v1 0.9067 0.0541 Inf 0.7349 0.97154v1 0.9461 0.0337 Inf 0.8276 0.9847

Table 4.26: Follow up comparison of motorist-type × Lives-At-Risk factor interac-tion (Study 2).
contrast odds ratio SE df z p

motorist = self-driving2v1 / 1v1 9.5327 4.5049 Inf 4.771 <.0001 ***3v1 / 1v1 35.3768 19.8466 Inf 6.357 <.0001 ***4v1 / 1v1 50.2008 30.0540 Inf 6.541 <.0001 ***
motorist = human2v1 / 1v1 2.1436 0.8766 Inf 1.865 0.15783v1 / 1v1 6.6640 3.0346 Inf 4.165 0.0001 ***4v1 / 1v1 16.1888 8.2770 Inf 5.446 <.0001 ***

Note: * p < .05, ** p < .01, *** p < .001.

Table 4.27: Preference for swerving based on motorist-type (Study 2).
lives-at-risk P (“swerve”) SE df lower asymptotic 95% CI upper asymptotic 95% CI
motorist = self-driving1v1 0.2913 0.1331 Inf 0.1041 0.59242v1 0.7967 0.1085 Inf 0.5131 0.93583v1 0.9357 0.0435 Inf 0.7794 0.98364v1 0.9538 0.0329 Inf 0.8267 0.9889
motorist = human1v1 0.4308 0.1621 Inf 0.1717 0.73442v1 0.6187 0.1570 Inf 0.3058 0.85673v1 0.8346 0.0953 Inf 0.5659 0.95134v1 0.9246 0.0506 Inf 0.7475 0.9807



Table 4.28: Follow up comparisons for lives-at-risk × perspective× motorist-typein pedestrian versus car occupant scenario (Study 2).
contrast odds ratio SE df z p

perspective = carmotorist = self-driving2v1 / 1v1 8.2638 6.6516 Inf 2.624 .0244 *3v1 / 1v1 15.8926 13.7236 Inf 3.203 .0040 **4v1 / 1v1 33.9867 32.2364 Inf 3.717 .0006 ***
perspective = observermotorist = self-driving2v1 / 1v1 9.1710 7.1300 Inf 2.850 .01243v1 / 1v1 35.0391 31.8736 Inf 3.910 .0003 ***4v1 / 1v1 12.3135 9.8459 Inf 3.140 .0049 **
perspective = pedestrianmotorist = self-driving2v1 / 1v1 14.8127 12.6942 Inf 3.145 .0048 **3v1 / 1v1 101.2472 104.1660 Inf 4.488 <.0001 ***4v1 / 1v1 462.8984 576.8877 Inf 4.925 <.0001 ***
perspective = carmotorist = human2v1 / 1v1 5.7257 4.3716 Inf 2.285 .06043v1 / 1v1 68.0244 69.9305 Inf 4.105 .0001 ***4v1 / 1v1 29.5189 27.3060 Inf 3.659 .0007 ***
perspective = observermotorist = human2v1 / 1v1 2.7827 2.0350 Inf 1.399 .36443v1 / 1v1 3.6255 2.6863 Inf 1.738 .20294v1 / 1v1 20.4203 17.2913 Inf 3.562 .0011 **
perspective = pedestrianmotorist = human2v1 / 1v1 0.7835 0.5459 Inf −0.350 .94963v1 / 1v1 2.9083 2.1650 Inf 1.434 .34534v1 / 1v1 11.9686 10.5255 Inf 2.823 .0136 *

Note: * p < .05, ** p < .01, *** p < .001.



Table 4.29: Estimated marginal means for lives-at-risk × perspective × motorist-type interaction in car occupants versus pedestrians scenario
contrast odds ratio SE df z lives-at-risk p

perspective = car occupantmotorist = self-driving car1v1 / 2v1 0.1210 0.0974 Inf −2.624 .0432 *1v1 / 3v1 0.0629 0.0543 Inf −3.203 .0074 **1v1 / 4v1 0.0294 0.0279 Inf −3.717 .0012 **2v1 / 3v1 0.5200 0.4258 Inf −0.799 .85512v1 / 4v1 0.2431 0.2131 Inf −1.613 .37103v1 / 4v1 0.4676 0.4111 Inf −0.865 .8231
perspective = observermotorist = self-driving car1v1 / 2v1 0.1090 0.0848 Inf −2.850 .0227 *1v1 / 3v1 0.0285 0.0260 Inf −3.910 .0005 ***1v1 / 4v1 0.0812 0.0649 Inf −3.140 .0092 **2v1 / 3v1 0.2617 0.2225 Inf −1.577 .39182v1 / 4v1 0.7448 0.5733 Inf −0.383 .98093v1 / 4v1 2.8456 2.4293 Inf 1.225 .6109
perspective = pedestrianmotorist = self-driving car1v1 / 2v1 0.0675 0.0579 Inf −3.145 .0090 **1v1 / 3v1 0.0099 0.0102 Inf −4.488 <.0001 ***1v1 / 4v1 0.0022 0.0027 Inf −4.925 <.0001 ***2v1 / 3v1 0.1463 0.1281 Inf −2.195 .12452v1 / 4v1 0.0320 0.0350 Inf −3.149 .0089 **3v1 / 4v1 0.2187 0.2310 Inf −1.439 .4750
perspective = car occupantmotorist = human1v1 / 2v1 0.1747 0.1333 Inf −2.285 .10141v1 / 3v1 0.0147 0.0151 Inf −4.105 .0002 ***1v1 / 4v1 0.0339 0.0313 Inf −3.659 .00142v1 / 3v1 0.0842 0.0801 Inf −2.602 .04582v1 / 4v1 0.1940 0.1673 Inf −1.902 .22723v1 / 4v1 2.3044 2.1254 Inf 0.905 .8021
perspective = observermotorist = human1v1 / 2v1 0.3594 0.2628 Inf −1.399 .49971v1 / 3v1 0.2758 0.2044 Inf −1.738 .30381v1 / 4v1 0.0490 0.0415 Inf −3.562 .0021 **2v1 / 3v1 0.7675 0.5581 Inf −0.364 .98352v1 / 4v1 0.1363 0.1096 Inf −2.479 .06323v1 / 4v1 0.1775 0.1413 Inf −2.172 .1309
perspective = pedestrianmotorist = human1v1 / 2v1 1.2763 0.8892 Inf 0.350 .98531v1 / 3v1 0.3438 0.2560 Inf −1.434 .47801v1 / 4v1 0.0836 0.0735 Inf −2.823 .0246 *2v1 / 3v1 0.2694 0.2009 Inf −1.758 .29362v1 / 4v1 0.0655 0.0580 Inf −3.078 .0112 *3v1 / 4v1 0.2430 0.2127 Inf −1.616 .3694

Note: * p < .05, ** p < .01, *** p < .001.



Table 4.30: Preference for swerving for lives-at-risk × perspective × motorist-typeinteraction in car occupants versus pedestrians scenario.
lives-at-risk P (swerve) SE df lower asymptotic 95% CI upper asymptotic 95% CI
perspective = car occupantmotorist = self-driving car1v1 0.3681 0.2336 Inf 0.0752 0.80652v1 0.8280 0.1496 Inf 0.3804 0.97423v1 0.9025 0.0954 Inf 0.5249 0.98734v1 0.9519 0.0521 Inf 0.6798 0.9946
perspective = observermotorist = self-driving car1v1 0.4146 0.2438 Inf 0.0900 0.83532v1 0.8666 0.1220 Inf 0.4509 0.98093v1 0.9613 0.0424 Inf 0.7271 0.99574v1 0.8971 0.0986 Inf 0.5179 0.9861
perspective = pedestrianmotorist = self-driving car1v1 0.1614 0.1338 Inf 0.0270 0.57202v1 0.7403 0.1900 Inf 0.2913 0.95183v1 0.9512 0.0504 Inf 0.6987 0.99394v1 0.9889 0.0137 Inf 0.8856 0.9990
perspective = car occupantmotorist = human1v1 0.3694 0.2323 Inf 0.0766 0.80532v1 0.7704 0.1824 Inf 0.3077 0.96203v1 0.9755 0.0285 Inf 0.7939 0.99764v1 0.9453 0.0580 Inf 0.6569 0.9936
perspective = observermotorist = human1v1 0.1715 0.1428 Inf 0.0281 0.59732v1 0.3656 0.2305 Inf 0.0759 0.80163v1 0.4288 0.2436 Inf 0.0965 0.84064v1 0.8087 0.1601 Inf 0.3574 0.9698
perspective = pedestrianmotorist = human1v1 0.6844 0.2191 Inf 0.2289 0.94062v1 0.6295 0.2357 Inf 0.1899 0.92493v1 0.8632 0.1238 Inf 0.4470 0.98014v1 0.9629 0.0408 Inf 0.7347 0.9959
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4.5.2 Tables

Table 4.31: Outline of trials for Study 1.
Scenario Trial Groups at risk
children vs. smaller groups 1 child (+ viewpoint avatar†) vs. 2 adults (+ viewpoint avatar†)adults larger groups 2 children (+ viewpoint avatar†) vs. 4 adults (+ viewpoint avatar†)
sidewalk vs. smaller groups 1 adult on sidewalk vs. 2 adults on roadroad larger groups 2 adults on sidewalk vs. 4 adults on road
car occupants vs. parked van 2 adult car occupants vs. 2 adults on roadpedestrians cliff 2 adult car occupants vs. 2 adults on road
Note: † To avoid the artificiality of presenting the scenarios from the perspective of a child, additionaladult avatars were added to both groups in the children vs. adults scenario, from which the pedestrianperspectives were presented.
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Table 4.32: Predictors of judgements based on separate logit mixed mod-els for each scenario (Study 1). p-values are calculated by parametricbootstrapping with 1000 samples.
χ2 df p

children versus adults scenarioperspective 2.92 3 .5205motorist-type 3.57 1 .0991trial 1.22 1 .2475perspective × motorist-type 1.60 3 .7293gender 0.58 1 .4635age 0.38 1 .5972positive opinion of self-driving cars 11.33 4 .0639education 4.47 2 .1968driving experience 5.60 3 .2070visual acuity 6.05 2 .0859
sidewalk versus road scenarioperspective 6.94 3 .0986motorist-type 3.70 1 .0744trial 5.11 1 .0543perspective × motorist-type 5.50 3 .1698gender 5.15 1 .0253 *age 0.65 1 .4200positive opinion of self-driving cars 7.51 4 .0866education 4.37 2 .1512driving experience 6.06 3 .1040visual acuity 3.81 2 .1170
car occupants versus pedestrians scenarioperspective 5.12 2 .1399motorist-type 3.45 1 .0909trial 68.89 1 .0010 **perspective × motorist-type 3.43 2 .2452perspective × trial 8.58 2 .0170 *motorist-type × trial 2.64 1 .1515perspective × motorist-type × trial 6.48 2 .0630gender 0.05 1 .8417age 0.62 1 .4754positive opinion of self-driving cars 5.40 4 .3083education 1.98 2 .4230driving experience 3.28 3 .4210visual acuity 5.68 2 .0960
Note: * p < .05, ** p < .01, *** p < .001.



Table 4.33: Predictors of self-reported confidence based on separate linear mixed models foreach scenario (Study 1). p-values are calculated by Kenward-Roger test.
num df den df F p

children versus adults scenarioperspective 3 169 5.27 .0017 **motorist-type 1 169 1.50 .2230decision 1 325 0.09 .7600trial 1 180 0.24 .6275perspective × motorist-type 3 170 0.55 .6509perspective × judgement 3 322 3.25 .0222 *motorist-type × decision 1 329 1.55 .2139perspective × motorist-type × judgement 3 320 2.25 .0823gender 1 164 0.04 .8500age 1 159 1.68 .1970positive opinion of self-driving cars 4 161 0.52 .7180education 2 164 0.13 .8825driving experience 3 161 0.28 .8373visual acuity 2 163 0.63 .5337
sidewalk versus road scenarioperspective 3 191 2.30 .0791motorist-type 1 191 0.03 .8542judgement 1 338 4.57 .0332 *trial 1 180 1.73 .1900perspective × motorist-type 3 190 1.92 .1279perspective × judgement 3 332 0.78 .5044motorist-type × judgement 1 338 2.47 .1170perspective × motorist-type × judgement 3 332 2.12 .0979gender 1 164 2.95 .0875age 1 160 0.02 .8910positive opinion of self-driving cars 4 161 1.10 .3607education 2 161 0.23 .7982driving experience 3 161 0.50 .6810visual acuity 2 160 2.86 .0603
car occupants versus pedestrians scenarioperspective 2 250 1.07 .3457motorist-type 1 284 0.20 .6534judgement 1 326 13.77 .0002 ***trial 1 248 7.93 .0052 **perspective × motorist-type 2 232 0.19 .8263perspective × judgement 2 327 1.69 .1866motorist-type × judgement 1 322 0.68 .4118perspective × trial 2 242 2.49 .0852motorist-type × trial 1 258 0.00 .9652judgement × trial 1 298 10.81 .0011 **perspective × motorist-type × judgement 2 321 0.16 .8508perspective × motorist-type × trial 2 236 0.18 .8339perspective × judgement × trial 2 287 0.49 .6112motorist-type × judgement × trial 1 301 0.07 .7974perspective × motorist-type × judgement × trial 1 303 0.17 .6827gender 1 164 0.54 .4627age 1 164 0.51 .4752positive opinion of self-driving cars 4 164 1.21 .3074education 2 161 4.06 .0191 *driving experience 3 165 0.53 .6639visual acuity 2 166 0.17 .8457
Note: * p < .05, ** p < .01, *** p < .001.



Table 4.34: Predictors of judgements based on separate logit mixed models for eachscenario (Study 2). p-values are calculated via likelihood ratio tests.
df χ2 χ2 df p

pedestrians versus single pedestrian scenariolives-at-risk 46 899.92 3 < .0001 ***perspective 46 2.99 3 .3928motorist-type 48 2.19 1 .1389road-type 48 9.87 1 .0017 **lives-at-risk × perspective 40 70.19 9 < .0001 ***lives-at-risk × motorist-type 46 1.72 3 .6316perspective × motorist-type 46 0.96 3 .8108lives-at-risk × road-type 46 2.97 3 .3956motorist-type × road-type 48 0.98 1 .3214lives-at-risk × perspective × motorist-type 40 20.47 9 .0152 *lives-at-risk × motorist-type × road-type 46 0.84 3 .8409first animation 48 0.01 1 .9305positive opinion of self-driving cars 45 12.92 4 .0117 *knowledge of self-driving cars 48 1.29 1 .2566
pedestrians versus car occupant scenariolives-at-risk 28 123.35 3 < .0001 ***perspective 29 1.95 2 .3767motorist-type 30 0.94 1 .3319lives-at-risk × perspective 25 7.13 6 .3086lives-at-risk × motorist-type 28 6.93 3 .0742perspective × motorist-type 29 2.36 2 .3079lives-at-risk × perspective × motorist-type 25 14.07 6 .0288 *first animation 30 0.01 1 .9190positive opinion of self-driving cars 27 10.20 4 .0371 *knowledge of self-driving cars 30 5.71 1 .0168 *
Note: * p < .05, ** p < .01, *** p < .001.
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4.5.3 Figures

Figure 4.2: Pictorial representations of the three scenarios in Study 1. The relativenumbers of orange figures in each scenario represent the ratios between the twogroups at risk (assuming a single car occupant). The arrows indicate possible caractions and are colored corresponding to the graphs in Figure 4.3. (A) Childrenversus adults scenario; (B) Sidewalk versus road scenario; (C) Car occupants versuspedestrians scenario.
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Figure 4.3: Model predictions for judgements and confidence (Study 1). Coloredbars indicate the predicted probability of making particular judgements (indicatedon the top x-axis) and are colored corresponding to the actions shown in Figure1. Black and white squares with error bars indicate predicted mean self-reportedconfidence (95% CI) in the judgements made on a 0–100 scale (indicated on thebottom x-axis). As there were no significant effects of motorist-type, predictionsare only separated by perspective. (A) Children versus adults scenario; (B) Sidewalkversus road scenario; (C) Car occupants versus pedestrians scenario (parked vantrial) — note there were no observers who preferred endangering pedestrians,so the confidence in that case could not be estimated; (D) Car occupants versuspedestrians scenario (cliff trial).



Figure 4.4: Final frames from animations for the pedestrians versus car occupantscenario (Study 2). The car either stays on course, endangering two pedestrians (toprow), or swerves into a freight train, endangering the car occupant (bottom row).Different perspectives are shown: car occupant perspective (left column), observerperspective (middle column), pedestrian perspective (right column). Images depict2v1 lives-at-risk (2 pedestrians vs. 1 car occupant). The animations used graphicalmodels based on those by Jim van Hazendonk (https://racoon.media/) and ClintBellanger (http://clintbellanger.net/).

https://racoon.media/
http://clintbellanger.net/


Figure 4.5: Model predictions for judgements on the pedestrians versus singlepedestrian scenario (Study 2). Height of bars indicate the probability of choosing‘swerve’ (endanger a single pedestrian to the side) as more acceptable. Differentperspectives are separated in columns, combinations of motorist-type and road-type are separated in rows.



Figure 4.6: Model predictions for judgements on the pedestrians versus car oc-cupant scenario (Study 2). Height of bars indicate the probability of choosing‘swerve’ (endanger the car occupant) as more acceptable. Different perspectivesare separated in columns, different motorist-types are separated in rows.
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4.6 Talking cars, doubtful users - a population study in
virtual reality

This section was submitted as a peer reviewed article in IEEE Transactions onHuman-Machine Systems together with Shadi Derakhshan Maximilian AlexanderWächter, Ashima Keshava, Artur Czeszumski, Hristofor Lukanov, Marc Vidal dePalol, Gordon Pipa and Peter König. See Publication List for details.

4.6.1 abstract

ADVs are a significant development in our society, and their acceptance will largelydepend on trust. This study investigates strategies to increase trust and acceptanceby making the cars’ decisions transparent. We created a virtual reality experimentwith a self-explaining autonomous car, providing participants with verbal cuesabout crucial traffic decisions. First, we investigated attitudes toward self-drivingcars in 7850 participants by a simplified version of the Technology AcceptanceModel questionnaire. Results revealed that female participants show less accep-tance than male participants, and there is a general decrease in acceptance withincreasing age. A self-explaining car impacts trust and perceived usefulness pos-itively. Surprisingly, it negatively influences the intention to use and perceivedease of use. This implies that trust is dissociated from the other items of thequestionnaire. Secondly, we analyzed behavioral data of 26750 participants toinvestigate the effect of self-explaining systems on head movements during thevirtual reality drive. We observed significant differences in head movements duringthe critical events and the baseline periods of the drive between the three drivingconditions. Further, we demonstrated positive correlations between head move-ment parameters and the TAM scores, where trust showed lowest correlation.This is further evidence for the dissociation of trust from the other TAM factors.These results demonstrate the benefits of combining subjective data obtained byquestionnaires with objective behavioral data. Overall, the outcome indicated apartial dissociation of self-stated trust from the intention to use and objectivebehavioral data.
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4.6.2 Introduction

Autonomous driving vehicles (ADVs) are the primary goal ofmost carmanufacturersHars, 2016. The development seems to be cumulative since more and morefunctionalities are automated in new cars Dajsuren and van den Brand, 2019.One primary reason why ADVs are of value is the possibility of eliminating humandriving error, which is responsible for 93% of road accidents Allahyari et al., 2008;T. Johnson, 2013. Further, ADVs are safer as they are faster and more precise in thedynamic driving task as well as in object and event detection Carranza-García et al.,2021; Papadoulis et al., 2019; SAE Internation, 2014; Schoettle, 2017. As technicaldevelopments in the field are fast and continuously improving, there is little doubtthat self-driving cars will have a significant impacts on our society Chehri andMouftah, 2019. These can ranges from drastically decreasing greenhouse gasemissions to reducing the number of traffic-related injuries. Which consequentlymight lead to possible reshaping the infrastructure of our current cities Benleulmiand Blecker, 2017; Chehri and Mouftah, 2019; Othman, 2021; Ryan, 2020. Thus,introducing ADVs into our daily lives appears as a highly desirable goal.
Trust and acceptance of potential customers define the extent to which ADVsare used for individual transportation Howard and Dai, 2014b; Krueger et al.,2016. According to current research, there is a limited willingness among potentialcustomers to use ADVs C. Lee et al., 2019; C. Lee et al., 2017; M. et al., 2015; Ryan,2020; Ward et al., 2017. Various surveys have shown that most potential buyersare unwilling to use an ADV at all or to use it to its full extent Othman, 2021; Rezaeiand Caulfield, 2020b. Primary reasons for the lack of trust and acceptance are thefear of system malfunctions and the hesitation of giving complete control to thecar C. Lee et al., 2019; Othman, 2021; Szikora and Madarász, 2017. The furtherreluctance of potential customers may stem from low technology self-efficacyCzaja et al., 2001, meaning that people do not feel confident enough to operatean ADV proficiently M. König and Neumayr, 2017. Since trust and acceptanceare shaped by knowledge and experience, the cause of this reluctance might berooted in the lack of transparency in and knowledge of the ADVs’ decision-making.It might not be clear on what basis an ADV is deciding on. Not knowing whatthe artificial agent perceives or reasons, directly influences the concerns of safetyForster et al., 2017; Koo et al., 2016. Therefore it is crucial to find measures thatare able to increase the trust and acceptance of ADVs.
According to the Technology Acceptance Model (TAM), perceived usefulness and
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ease of use are cognitive responses to new technology and predict the intentionof using it Davis and Venkatesh, 1996. Consequently, a low intention to use makesthe future application of ADVs questionable Bergmann et al., 2018a; Howard andDai, 2014b; Rezaei and Caulfield, 2020a. Belanche and colleagues developed aresearch model Belanche et al., 2012 expanding the TAM by adding trust as acomponent. They found a causal relationship between trust and all three elementsof the original TAM Belanche et al., 2012. Therefore, trust can be seen as acritical factor for the acceptance of a new technology C. Lee and Coughlin, 2015;Lüders and Brandtzæg, 2017; Wintersberger and Riener, 2016. Earlier studiesinvestigated trust modulating factors, such as human-machine communicationstyle, feedback, and anthropomorphic features in automation Hoff and Bashir,2015; Seppelt and Lee, 2019; Wintersberger et al., 2019; Wintersberger et al.,2020. Hoff and Bashir Hoff and Bashir, 2015 suggested that trust in an ADV is anaccumulation of personal tendencies, environment, and user’s perception of theautonomous system. Lee and See J. D. Lee and See, 2004 argue that the perceivedhomogeneity of communication style, feedback, and anthropomorphic featuresshape trust levels. The shared statement in all these findings is that the user shouldperceive the system as reliable and trustworthy. Moreover, previous researchshowed that excess information about the driving state of a car is perceived asdistracting or unpleasant. Howard and Dai, 2014b; Koo et al., 2015; Kruegeret al., 2016; Othman, 2021; Rezaei and Caulfield, 2020b; Ryan, 2020. The desiredamount of information by the ADV may be the key to understanding trust and,consequently, acceptance of self-driving cars Du et al., 2019.
Research on trust as a high-level cognitive phenomenon relies heavily on self-reported data. A review of Raats and colleagues of 258 experiments on trust inADVs revealed that 84% used questionnaires as the assessment method. Only4.7% of the studies used observations as a data-gathering tool Raats et al., 2020.An objective form of data is needed since the participant’s self-assessment is oftenbiased by self-perception or socially desired behavior Choi and Pak, 2005. For this,we propose head movement data, since humans represent their cognitive statesimplicitly based on body language, facial expression, gaze direction, and movementof the head Newen et al., 2018; Zhao et al., 2013. Even though previous researchhas established the link between gaze shift and cognition Yarbus, 1967, severalstudies showed that head rotation corresponds to the visual gaze Fang et al., 2015;Yarbus, 1967 and both coordinate cognitive processes M. F. Land, 2004; Proudlocket al., 2003. This coordination exists in orientation, which means that the headand eyes move in the same direction. Thereupon, the head orientation provides
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information about the center of attention Fang et al., 2015. Behavioral datasuch as head movements are unconscious, fine-grained, and provide continuousinformation that can be used to access cognitive processes like trust Grafsgaardet al., 2012; Lu and Sarter, 2019.
To gain insight into modulating factors of acceptance towards ADVs and theirrepresentation in users’ head movements, we used a previously developed large-scale virtual reality (VR) experiment called WestdriveNezami et al., 2020. Weexpected to find significant differences in the participants’ attitudes and significantdifferences between different age groups and genders. Additionally, we predicteddifferences in head movements between different conditions. We expected tofind significant variance in head movement patterns and head angular velocityas an effect of transparent communication of an ADV. We assumed that the self-reported acceptance in conjunction with head movements enables more objectiveinsights into modulating factor of acceptance.

4.6.3 Materials and Methods

We gathered data from visitors in the German Ministry of Education over sixmonths, and in a traveling exhibition (MS-Wissenschaft) over the course of a fullsummer. Participants experienced a 90-second drive in a virtual environmentcalled Westdrive, covering 2,5 km² with more than 100 cars and 150 pedestrians.Participants experienced a single trial in one of three driving conditions. The firstcondition was a fully autonomous car with an anthropomorphic voice assistantsystem (AVAS) giving information about critical traffic events and the correspondingdecisions of the car. The second condition was an ADV with a radio broadcastplaying through the whole trial. In the third condition, a female Taxi-Driver drovethe participant through the city. Here, the TaxiDriver responded verbally to thesurrounding traffic. We gathered objective and subjective data in the form of headorientation and head angular velocity, as well as by an adaptation of the TAMquestionnaire Davis and Venkatesh, 1996.
During each trial, participants were confronted with three critical traffic eventswithout the possibility to intervene (Figure 4.7). The duration of the events was thetime between entering and exiting the event objects to the participants’ view. Inthe first event, a jogger crossed the road directly in front of the car. In the secondevent, a high-speed car took the right of way at an intersection and the third event
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included a slow pedestrian crossing the street. The onset and end of the eventswere the same for all the participants in all conditions. At none of the events, theparticipants’ cars hit any event objects. In the AVAS condition, the ADV gave shortinformation about the critical event situation. This happened at the spawning ofthe critical traffic objects to warn at the earliest possible point. The design of theseevents was based on previous research that showed feedback should include thereason why an ADV decides in a specific way Koo et al., 2015. Also, additionalinformation should be provided while interacting with vulnerable road users whentheir intentions are not clear but can influence the car’s behavior Wintersbergeret al., 2020. These events were implemented to test the participants reactions asa passive passenger in critical situations. They were designed to test whether thein-vehicle communication can alter behavioral reactions and acceptance.
Before starting the trial and data recording, participants were asked to adjust theHMD by themselves. This adjustment phase was not limited in time and was notcounted as part of the experiment. Afterwards, participants were informed aboutthe study procedure and the goal of this study. Because of possible symptoms ofcybersickness, the participants were informed in the introduction that they couldremove the HMD at any given time. If so, this data has been excluded from theanalysis.
The simplified questionnaire consists of three questions from the original TAM inperceived usefulness, ease of use, the intention of use, and one additional questionon perceived trust. It also included questions on age, gender, aviophobia, drivingexperience, amount of gaming hours per week and the number of exposures tovirtual reality before the experiment. The questionnaire has been answered inthe Likert scale, with numbers from 0 (strongly disagree / dislike) to 100 (stronglyagree / like) indicated by thumb icons of like and dislike.
The used experimental setup consists of two HTC Vive pro HMDs and lighthousesversion 1 for tracking head position and rotation while seated in the car. The VRcomputers were equipped with Nvidia Geforce RTX 2080Ti GPUs, 16Gb of RAM,and Intel Xeon W-2133 CPU @ 3.60Ghz core, resulting in an average frame rateof 25,2 fps. Additionally, the setup used two raspberry pies and touch monitorsfor web-based questionnaires. For analyses, Python 3.6, pandas 0.24.2, NumPy1.16.4, Scipy 1.7.2, statsmodels 0.10.0, as well as SPSS 29 were used. All plotswere created using Matplotlib 3.1.0 combined with seaborn 0.9.0. Data-drivenprepossessing on questionnaire data was performed with the OPTBIN algorithm
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Figure 4.7: Three scripted critical events occurred during the ride from top tobottom: Pedestrians running on the street from left to right, fast cars cutting inthe self-driving car path, and pedestrians walking in the middle of the road.
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Knuth, 2013 using histogram-based age binning.

Analysis of the data

Head movement data were obtained from 26750 participants and the question-naire was answered by a fraction of them. Elimination of incomplete answersresulted in 7850 data sets.
First, we focused on the analysis of the questionnaire data. Of the complete dataset, 4464 participants identified as male, 3386 as female. By using optimal binningKnuth, 2013, we divided participants into five age groups. The cleaned data setconsisted of 2812, 1513, 1883, 582, and 86 in the age groups <20 years, 21-40years, 41-60 years, 61y-80 years, and above 80 years, respectively. In the AVAS,TaxiDriver and RadioTalk condition we recorded 2691, 2636, and 2509 data sets,respectively. The large number of participants in each bin allowed the use ofregression-like inferential tests (i. e. MANOVA) due to their robustness againstnon-normalities in large data-sets Pek et al., 2018.
To investigate the effect of gender, age, and driving condition on the four aspectsof the questionnaire, a one-way multivariate analysis of variance (MANOVA) hasbeen performed. MANOVA tests the optimal linear combination of dependentvariables to find significant effects. We performed a one-way MANOVA for thefour TAM aspects modeled with respect to gender, age, and driving condition.Pillai’s Trace test statistic uses estimated F-Values to test significance, which isrobust against non-normalities. Therefore, Pillai’s Trace adds an extra layer ofprotection against false positives Finch and French, 2013 and is a good choicefor interpreting the results. To understand how different categories within eachfactor, e.g., male or female in gender, affect the four TAM aspects, we calculateda separate one-way analysis of the variance (ANOVA). Following, we calculatedthe different effect sizes (Cohen’s D and Hedge’s G) for each of the factors usingestimated means and standard deviations reported for the category within thatfactor. Although both of these effect sizes are based on Cohen’s suggestions,Hedge’s G considers the sample sizes of the compared groups. Therefore, botheffect sizes have been used to interpret the results. Further, each participant’s fourTAM aspects were combined into one single value. Together with the MANOVA,we were able to make statements about how gender, age, and the condition affectthe questionnaire scores.
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However, ANOVA can only be calculated on a single independent variable. Thebest way to combine the four TAM aspects into one value is by multiplying eachaspect’s score for a given participant by a corresponding weight and adding them alltogether to get a single value. This acceptance score was calculated by performinga linear discriminant function for each factor that will yielded in a different raw co-efficient for each TAM aspect concerning the given factor. The linear discriminantanalysis (LDA) intends to find a linear combination of features that characterizesor separates two or more classes. It expresses the dependent variable as a linearcombination of the independent variables that maximizes the group differenceswithin the dependent variable McLachlan, 1992. The raw discriminant functioncoefficients can be used as weights to calculate the four TAM aspects into oneindependent number, which we can call acceptance score.
Next, we turn to the analysis of the objective behavior. A head-mounted HMDmeasured the orientation and position of the participant’s head in the virtualenvironment. We determine the head orientation in a reference frame fixed to thecar. Since most interesting visual detail was placed near the ground level and allthe dynamic objects of the virtual city moved along the horizontal axis, we focusedon the orientation along the horizontal plane. Further, we compared the headangular velocity, meaning the change in head orientation degree over time. Toexamine the differences between conditions, we used one-way ANOVA followedby the Tukey Honest Significant Difference (HSD) post-hoc test. The Tukey HSDcompares pairs of means to detect which of the group means are different fromthe others (Meandiff). With this test, we could define the separate condition thatcauses differences in orientation and angular velocity in specific point of time Abdiand Williams, 2010. Additionally, we calculated the Pearson Correlation betweenthe head angular velocity and the TAM scores for each questionnaire item to checkfor consistencies in both subjective and objective measures.

4.6.4 Results

Questionnaire Results

The questionnaire data of the simplified TAM from 7850 participants showed a pos-itive correlation of r>0.4 between the questionnaire items. Therefore, these itemshave to be analyzed together as multivariate dependent variables. To check validityof the assumptions, a Levene’s test was performed. If the test was significant we
175



Chapter 4 Ecological Validity

would assume a violation of variance homogeneity in the groups. Levenes’s testresulted in F-values of 1.369 for perceived Usefulness (p = 0.089), 2.333 for Easeof use (p < 0.001), 1.459 for Intention of use (p = 0.053) and 1.443 for Trust (p =0.058). Considering the large sample size, known to reduce p-values in Levene’stest, a further check of the covariance matrices for the dependent variables of theTAM concerning the main factors of gender, age group, and condition has beendone. We found homogeneity of covariances, as assessed by Box’s test (p > .001).Together, Levene’s test and the covariance matrices provide essential evidencefor the validity of the assumptions of MANOVA. Out of the four different nullhypothesis tests of the multivariate analysis, Pillai’s Trace was chosen due to itsknown robustness toward non-normalities in the data Ateş et al., 2019. Therefore,the multivariate analysis of variance is the prime analysis method Warne, 2014;Warne et al., 2012.
To gain deeper insights into how gender, age, and condition affect the TAM factors,a linear discriminant analysis (LDA) was used to extract each independent variable’sweighted influence. Linear discriminant analysis tries to find a set of coefficientsthat will maximize the separability within the given independent variable. Thesecoefficients were used to interpret the influence of each independent variable oneach of the modulator factors of the TAM.

The effect of gender

First analysis checked for differences between male and female participants re-garding the acceptance scores. In order to find out the influence of gender onacceptance, we performed an MANOVA with a follow-up LDA for gender. ThePillai’s Trace resulted in 0.00293 (F(4,7835) = 4.761, p < 0.001) showing that thereis a significant effect of gender on overall acceptance. The follow-up LDA showedthat females have a lower score based on the observed discriminant coefficients.The resulting coefficients were -0.33 for the intention of use, -0.06 for perceivedusefulness, -0.60 for perceived ease of use, and -0.18 for trust (Figure 4.8 a), allwith a medium effect size (Cohen’s D = 0.45). Additionally, the LDA showed thatperceived usefulness and trust were less affected by gender than the intentionof use and the perceived ease of use (Figure 4.8 a). These findings indicate thatfemales and males have an almost equivalent attitude towards the perceived use-fulness but differ in the perception of ease of use and, consequently, the intentionof using self-driving cars. Thus, we interpreted that females anticipate difficulties
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in handling and therefore score lower in the intention to use.

The effect of age group

As a next step, we investigated what influence age had on the answers in thequestionnaire. Similar to the effects of gender, the result of the MANOVA waspaired with a follow-up LDA for the age group to find the influence of the TAMitems. The resulting Pillai’s Trace of 0.04561 (F(16,313) = 24.107, p < 0.001)indicated a significant effect of age group on the overall acceptance. LDA resultedin discriminant coefficients of -0.27 for the intention of use, -0.19 for perceivedusefulness, -0.46 for perceived ease of use, and -0.30 for trust. These resultsshowed that age has a negative effect on all TAM items. The age group under 20years showed high scores in all questions, with medium effect sizes compared tothe age group between 20-40 (Cohen’s D = 0.50) and 61-80 (Cohen’s D = 0.43) (forthe full list of the effect sizes, see Appendix I Table 4.35). Similar to the analysis ofgender, perceived ease of use was affected by age the most (Figure 4.8 b). Togetherwith the decreased intention of use, it can be stated that older adults anticipatehardships in using this technology, therefore showing lower scores in the intentionto use. However, the overall acceptance scores increased again beyond 80 yearsof age, especially in the perceived usefulness (Figure 4.8 b). This is also reflected insmaller effect sizes between the age group below 20 and above 80 years (Cohen’sD = 0.18) (Table 4.35). Concluding, data showed the highest acceptance in the agegroup below 20 years, with a general decrease of acceptance until 80 years.

The effect of condition

A central hypothesis of the study was, that compared to a traditional taxi theacceptance level of ADVs is reduced, but can be partially recovered by makingthe decisions of the ADV transparent. The result of MANOVA showed that thecondition had a significant effect with Pillai’s Trace of 0.00259 (F(8,15672) =2.541, p = 0.009). The LDA for condition resulted in coefficients of -1.12 forthe intention of use, 0.99 for perceived usefulness, -0.33 perceived ease of use,and 0.44 for trust, with overall small effect sizes in all comparisons (Cohen’s D= <0.11) (Appendix I Table 4.36). While the effect on trust and ease of use isnegligible between conditions, differences could be found in intention to use andperceived usefulness. The AVAS condition had a slightly higher median score in the
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perceived usefulness of 71 compared to 69 in the TaxiDriver (Figure 4.8 c). Here,the AVAS condition resulted in a lower median score of 65 than the TaxiDriverwith a median of 68 (Figure 4.8 a). We concluded that there were no adverseeffects of the condition on the ease of use like in gender and age. Still, there was anegative effect on the intention to use such technology independently of genderand age. These results already accommodated that additional factors besides ageand gender negatively influenced the intention of use. This observed effect couldalso be due to technology aversion, which had already been mentioned in theeffects of age and gender. It can be summarized that there was a small positiveeffect of in-car communication methods on accepting ADVs regarding the ease ofuse and a small negative effect regarding the intention of use.

The Interaction effect of gender and age group

While investigating the effects of gender, age and condition, it became clear thatthese factors separately did not explain all variance observed in the data. Therewas a significant interaction effect of gender and age group with Pillai’s Trace of0.00498 (F(16,31352) = 2.441, p = 0.001). According to the follow-up LDA, therewas a negative effect for the intention of use and perceived ease of use (both-0.73) and a positive effect on the perceived usefulness (0.22) and trust (0.55) inthe questionnaire items. Here, the effect sizes were most notably between the agegroups 21-60 years compared to under 20 years and above 60 for each gender(Appendix I Table 4.37). These results support findings of the previous analyses ongender and age. In addition, it could be shown that the interaction of gender andage had a significant influence on the acceptance of ADVs. In addition, the largesteffect sizes ( 0.5 < Cohens’ D <= 0.9) resulted by comparing female participantsin the age between 21-60 years against the male participants in the same range.Participants below 20 years had the highest TAM scores, and females betweenthe ages of 21-60 years showed the lowest TAM scores. Although there is wasa decrease in all TAM factors in both genders for ages between 21-60 years oldcompared to the below 20 years, female participants showed stronger decreasesin TAM scores (Figure 4.9). This accounts especially for the intention of use andperceived ease of use. Once again, as age increases for people between ages 21-80 years, we can also observe TAM scores. In conclusion, gender and age groupinteraction significantly affect all TAM factors, specifically negative influences onthe intention of use and perceived ease of use for ADVs, but a positive effect onperceived usefulness and trust. This means that although the ADV was seen as
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useful and trustworthy, there were still other hidden factors that decreased theease of use and the intention to use it. Consequently, the demographic factorsof age, gender and the interaction of these two, have much more impact on theitems of the TAM questionnaire. The positive effects of a self-explanatory ADVwere not sufficient to compensate for the negative influence of demographics onease of use and, accordingly, intention to use.

4.6.5 Behavioral Results

Identification of critical events

As a first step of the head movement analyses, we investigated whether partici-pants’ behavior differs during the critical events from the baseline parts of the drive.The initial analysis was performed regardless of the driving condition. We consid-ered the mean orientation and variance of head orientation over all participants asthe relevant dependent variables. Collapsing the data over conditions, we testedwhether the mean of head orientation in each frame was significantly differentfrom the distribution resulting from a permutation over time (permutation test).Head orientation differed significantly from baseline at the end on the first andsecond and at the very end of the third event. (Figure 4.10). Further, we observeddifferences early in the trial, when participants where intensively looking aroundinside the car. Additionally, three other significant intervals were observed. Duringthese times pedestrians were visible on the sidewalk in crowded places of the city.We assume that this is related to a need of information to assess the situation. Afinal period of deviant head orientation is observed at the very end of the drive,when participants prepared to exit the car in a crowded area. By applying thismethod we are confident that an additional measurement of head movements is avalid approach to enhance subjective data. Overall, compared to the baseline headorientation, the three critical events showed significant differences in participantbehavior regardless of the effect of conditions. These differences were not limitedto the critical event intervals but identified in additional areas of the trial.

The effect of condition

As a next step, we consider how much of the observed variance was related to theeffect of condition. We investigated whether participants’ behavior objectively
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Figure 4.10: Time intervals of significant differences in head orientation after thepermutation test (n=1000). Shaded areas represent the critical traffic event inter-vals. a) Mean of head orientation over all subjects. Each point indicates an averageof the head orientation across the participant within each frame. b)Variance ofhead orientation over all subject. The red areas indicate the intervals where therewas a difference in head orientation between all participants. Please note that thedata is collapsed over condition.
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differs between conditions. Differences in head orientation were seen as indicatorsof participants’ reaction to the environment in different conditions. By visualizingthe head movement data, we observed differences in the mean head orientation,over large parts of the drive and during the critical traffic events. (Figure 4.11). Tosee, whether these differences were significant, we calculated a one-way ANOVAbased on head orientation for each frame as the dependent variable and applieda post-hoc comparison of Tukey HSD in the significant Intervals. The result ofthe ANOVA showed significant differences in head orientation between the threeconditions during most of the drive time (F>10, p < 0.05) (Figure 4.12). Specifically,the TaxiDriver condition was significantly different from the two others over alarge part of the drive. The post-hoc comparison revealed larger mean difference(Meandiff) for TaxiDriver compared to AVAS (i.e. Meandiff = 2.07, p = 0.001 forframe = 1300) and RadioTalk (i.e. Meandiff = 1.77, p = 0.001 for frame = 1300)condition. This result was mostly constant during the experimental trial, includingthe three critical events. At the start of the first and the second event, no significantdifferences between the RadioTalk and AVAS condition were found. In the thirdevent we found differences between all three conditions. Here, participants elicitedthe smallest degrees of the head orientation in the AVAS condition, and the highestdegree in the TaxiDriver condition. We mainly observed a higher mean headorientation in the TaxiDriver condition in the beginning of the critical traffic events.This means, the distribution of the head orientations in angular space were widerin the TaxiDriver condition compared to the two autonomous conditions in mostof the trial times (Figure 4.11).

Head angular velocity

To gain deeper insights into the participants’ head movement behavior, we calcu-lated the magnitude of change in head orientation throughout time as the angularvelocity. We quantify the absolute value of the angular velocity in frame n foreach critical traffic event separately (ωn = |θn −θn−1|/∆t ) where θn is the headorientation in frame n and ∆t = 0.04s based on the experiment’s overall averageframe rate. The analysis of the angular velocity showed that in the AVAS condi-tion, participants rotated their heads significantly faster only in the first criticaltraffic event (F(2,24447) = 71.35, p < 0.01). In the second critical traffic event, nosignificant differences between conditions were found (F(2,24447) = 2.8, p= 0.06).In the third critical traffic event, the angular velocity in AVAS was significantlylower than the two other conditions (F(2,24447) = 29.06, p < 0.01) (Figure 4.13).
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Figure 4.11: Mean head orientation in each frame divided in three conditions. Thepositive and negative values of the mean orientation relate respectively to theright and left directions. Shaded areas represent the critical traffic event intervals.

Overall, the data revealed that the angular velocity of head movements decreasedduring the experimental trial in all three conditions. However, the AVAS conditionreduced the head’s angular velocity to a larger degree than the other autonomouscondition. With the analysis of the angular velocity, we were able to show thatparticipants’ behavior changed as an effect of self-explaining ADV over time.

4.6.6 Questionnaire comparison

The head angular velocity was an illustration of the participant’s head movementsbehavior during the trial. Calculating the relationship between the angular velocityand the TAM items allowed us to determine if the participants self-assessedacceptance had been expressed in their previous behavior during the experimentaltrial. We used Pearsons’ correlation for the participant’s absolute head angularvelocity over the entire trial and participants’ respective TAM item scores. Theanalysis showed positive correlation between the head angular velocity and all TAMitem scores in all three conditions (Figure 4.14). Comparing the TAM items, therewas a lower correlation between the angular velocity and trust compared to itscorrelation with other TAM items. Along with the previous finding in the analysis ofthe questionnaire, the mismatch between trust and the other questionnaire itemshas been demonstrated in the correlation of the items and the angular velocity.
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Figure 4.12: Time intervals of significantly different behavior between the threeconditions. The graph depicts the P and F values of one-way ANOVA overall theexperimental trial. Each dot shows the original F value of each frame. The red dashindicates the significance threshold (p < 0.05). Shaded areas represent the criticaltraffic event intervals. The result of Tukey’s post hoc comparison is represented bydifferent colors. Each color shows the significant variable mean(s) in cross-check.

The dissociation between trust and the other questionnaire items lead us to theassumption that trust is not an ideal item in self assessments via a questionnaire.This claim is supported by the mismatch in the self-assessment, as well objectbehavioral data. Therefore, we argue that the objective behavioral data was ableto reflect the findings in the TAM questionnaire.

4.6.7 Discussion

The present study revealed that self-reported acceptance in conjunction with ob-jective observation enhances the understanding of modulating acceptance factors.According to the results, subjective data from a post-experimental questionnaireand objective data from headmovements during the experimental trial were largelycongruent. Outcomes of investigating gender, age, and condition effect on theoverall acceptance showed a lower acceptance of female participants toward ADVthan males. However, this effect is even more pronounced in the intention touse ADVs. The results also indicated that people below 20 years of age have thehighest acceptance toward ADV, gradually decreasing with age while increasingagain above 80 years. Regarding the effect of a self-explaining ADV, we found a
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Figure 4.13: Head angular velocity for the critical event intervals. The y axis refersthe rotation change divided by the number of event frames.

small positive effect in the ease of use and a small negative effect regarding theintention of use. However, age, gender, and the interaction of these two have asubstantially higher impact on the questionnaire scores. Therefore, the positiveeffects of a self-explanatory ADV are not sufficient to compensate for the negativeinfluence of demographics on ease of use and the intention to use. We couldshow that participants’ head orientation differed between the conditions by ana-lyzing the head movement data. Especially in the TaxiDriver condition, we did seesignificant differences over the whole drive with further differentiation betweenconditions during the critical events. Further, we observed a decrease in the head’sangular velocity over time for all conditions. This effect was most substantial inthe AVAS condition. Finally, correlating the magnitude of the participant’s headangular velocity with the TAM scores showed a significant relationship betweenacceptance as a combination of the TAM factors, which was weaker for the factortrust.
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Previous studies mainly depended on answers gathered from the potential usersHoward and Dai, 2014b; Raats et al., 2020; Wintersberger et al., 2020. However,behavioral data is not as susceptible as questionnaire answers and can be usedto validate possible self-assessments Davis and Venkatesh, 1996. The presentedstudy could show a dissociation of the self-assessed trust and the other TAM items,especially with the intention to use. This observation contrasts previous researchsuch as the work of Belanche Belanche et al., 2012. In fact in the present study itis shown that self-assessments are heavily modulated by the demographic factorssuch as age and gender, as well as the interaction of these two factors. Behavioraldata confirmed the dissociation of trust and intention, by showing a connectionbetween head movements and scores in intention, ease of use and perceivedusefulness. Therefore we are arguing that including behavioral data is a validapproach to better understand underlying factors of acceptance and correctingpotentially faulty subjective data. This is due to the fact that head movements canbe considered as part of nonverbal communication in humans Mehrabian, 2017.It contains information of the participant’s emotions and intentions Gunes andPantic, 2010. For instance, head angular velocity and acceleration were higherduring negative affects Hammal et al., 2015. Combining sources of subjective andobjective data, make it is possible to validate the questionnaire data. In conclusion,it could be stated that the behavioral data is an important resource that can be usedto validate investigations of the technology acceptance model and its underlyingfactors.
Due to the nature of the experiment within a public exhibition and a significantnumber of visitors, the technology acceptance questionnaire used in this studywas a simplified version. Thus it might not grasp the entire aspect and spectrum offactors that modulate acceptance, such as technology self-efficacy, which mightplay an essential role in perceived ease of use. Furthermore, the questionnaire wasalso translated into German, and we could not validate the questionnaire beforeusing it in the experiment. Although part of the variance in the data might be dueto the translation, such effect is thought to be minuscule and negligible since ourmain findings align with that of the previous works Chen and Chan, 2011; Kooet al., 2016; Othman, 2021; Venkatesh, 2000. Due to the simplified nature of thestudy, we can not directly address and analyze the underlying information process-ing that influences attitude. Still, we are confident to make informed statementsdue to the large effects in a vast data set. Additionally, there is a possibility thatcybersickness influenced the TAM scores and head movement data. Nevertheless,we tried to control as much as possible for motion or cybersickness in this trial.
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The first step was to include a bigger static frame for the participants as the carinterior, reducing the probability of cybersickness during the trial. Also, we onlyused a low-speed environment, without sharp turns to reduce cybersickness asmuch as possible van Emmerik et al., 2011. Further, We acknowledge that a moreprecise measurement instrument such as eye trackers would have enhanced theanalysis and the findings. However, once more, the nature of the experiment andthe absence of experimenters on-site (not counting the numerous visits for main-tenance) rendered the use of such methods impossible. Another criticism couldbe that the experimental time was limited to 90 seconds, and each participantobserved only one of the experimental conditions. However, this experience canalready investigate participants’ acceptance toward various in-car communicationsin ADVs. Additionally, the vast amount of data gathered by the experiment al-lowed for entirely data-driven analyses both for questionnaire and behavioral data.Therefore, the results of this study are valuable for understanding the population’sacceptance of ADVs and the importance of objective measurements.
Despite these limitations, we are confident to show an effect of a self-explainingADV based on subjective and objective data. As mentioned earlier, previousresearch explained trust as a combination of the communication style, feedback,and the anthropomorphic features of the ADV Belanche et al., 2012; Koo et al.,2015. In contrast, Hoff and Bashir state that trust is largely shaped by the personaltraits of the usersHoff and Bashir, 2015. This is supported by newer findings in realdriving scenarios, where personality traits were identified as relevant factors oftrust Stephan, 2019, andwere only out weighted by the actual driving performance.These factors are summarized under "dispositional trust," which consists of ageand gender, and personality traits. In line with previous research our study couldshow that the demographic factors have a higher impact on acceptance comparedto the ADVs’ features.
Nevertheless, our findings are not generalizable over all demographic groups, sincetheir communication needs are different: While we see a positive influence of thetalking car in one group, the second group may view the in-vehicle information asexcess and distracting. Following, the user-specific communication could increasetrust in doubtful users - making them more confident to properly operate such asystem since it might be able to increase system knowledge. However, there is aneed for a further investigations using more extensive questionnaires to examinefurther modulators of acceptance, specifically trust in combination with moreobjective measurement instruments such as eye tracking. In the end, we argue
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that user specific in-vehicle communication can be useful to create guidelines forthe further development of a safer and inclusive future of mobility.

4.6.8 SI: Calculated Effect Sizes for each significant factor

Table 4.35: Effect Sizes between different age groups on Intention to use, perceivedusefulness, perceived ease of use and trust. Numbers in the table present theCohen’s D and in the case of difference Hedges G
age group below 20 20 - 40 40 - 60 60 - 80 above 80
below 20 0 0.40 0.50 0.43 0.17 / 0.220 - 40 0.40 0 0.10 0.01 0.18 / 0.2040 - 60 0.50 0.10 0 0.08 0.2860 - 80 0.43 0.01 0.08 0 0.20 / 0.22above 80 0.17 / 0.2 0.18 / 0.20 0.28 0.20 / 0.22 0

Table 4.36: Effect Sizes between different condition on Intention to use, perceivedusefulness, perceived ease of use and trust. Numbers in the table present theCohen’s D and in the case of difference Hedges G
condition AVAS RadioTalk TaxiDriver

AVAS 0 0.05 0.11RadioTalk 0.99 0 0.06TaxiDriver 0.11 0.06 0
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Table 4.37: Effect Sizes between different combination of gender and age group onIntention to use, perceived usefulness, perceived ease of use and trust. Numbersin the table present the Cohen’s D and in the case of difference Hedges G
gender = male

Gender/Age Group below 20 20 - 40 40 - 60 60 - 80 80+
Male / below 20 0 0.30 0.36 0.39 0.28 - 0.32Male / 20 - 40 0.30 0 0.06 0.07 0Male / 40 - 60 0.36 0.06 0 0.01 0.05Male / 60 - 80 0.39 0.07 0.01 0 0.06Male / 80+ 0.28 - 0.32 0 0.05 0.06 0Female / below 20 0.31 0.01 0.05 0.06 0.04Female / 20 - 40 0.73 0.42 0.36 0.35 0.39 - 0.41Female / 40 - 60 0.90 0.58 0.51 0.51 0.53 - 0.56Female / 60 - 80 0.78 - 0.80 0.46 0.40 0.40 0.42 - 0.44Female / 80+ 0.29 - 0-33 0 0.03 0.05 0.01

gender = female
Gender/Age Group below 20 20 - 40 40 - 60 60 - 80 80+

Male / below 20 0.31 0.73 0.9 0.78 - 0.80 0.29 - 0-33Male / 20 - 40 0.01 0.42 0.58 0.46 0Male / 40 - 60 0.05 0.36 0.51 0.40 0.03Male / 60 - 80 0.06 0.35 0.51 0.40 0.05Male / 80+ 0.04 0.39 - 0.41 0.53 - 0.56 0.42 - 0.44 0.01Female / below 20 0 0.42 0.57 0.46 0.01Female / 20 - 40 0.42 0 0.15 0.03 0.37 - 0.40Female / 40 - 60 0.57 0.15 0 0.11 0.51 - 0.55Female / 60 - 80 0.46 0.03 0.11 0 0.41 - 0.44Female / 80+ 0.01 0.37 - 0.40 0.51 - 0.55 0.41 - 0.44 0
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Figure 4.14: Summary of the Pearson correlation between the head angular velocityand the TAM questionnaire items. The correlation p value for Intention, usefulness,ease of use and trust are as follows for each condition: a) AVAS (Intention: p<0.001, Usefulness: p <0.0010, Ease of use: p <0.001, Trust: p <0.01) b) RadioTalk(Intention: p <0.001, Usefulness: p <0.001, Ease of use: p <0.001, Trust: p <0.001)c) TaxiDriver (Intention: p <0.001, Usefulness: p <0.001, Ease of use: p <0.001,Trust: p <0.001)



5 General Discussion

Toward real-life experimentation, this thesis tries to argue for the use of virtualreality to improve the validity of the findings of our experiments. Performingsimulations, especially in driving or self-driving vehicle research, is not a new ideain science. The idea of computer simulation itself dates back to the era of WorldWar II and the mathematicians, Jon Von Neumann and Stanislaw Ulam (Univer-sity of Houston, 2000). One can argue that any experimentation is a simplifiedsimulation of a real-world phenomenon. Some experiments can arguably alreadybe conducted in a real-life scenario. However, that is not the case for all fields ofstudy. For self-driving cars, simulators are often bulky, expensive, and nonethelessnot that close to reality. Other studies, such as spatial navigation, can be donein real-life environments.Yet despite this possibility , in real-life experimentation,researchers will eventually need to deal with various sources of unaccountednoise. We live in a boisterous environment, and as such, there will be undoubtedlysome of this noise present in the data gathered and can affect the researcher’sconclusion if not careful enough. An example of such noises is the electromagneticfield produced by the alternating current, namely AC, electricity passing throughthe power lines, affecting the quality of EEG data. Although some of these noisesare systematic and well studied, we still cannot account for all possible noisesources on the data and remove them to clean up the data. Here virtual realityoffers a solution. It offers a cost-effective, realistic simulation and experimentalenvironment that can be conducted in areas with controlled or at least knownpossible noises. These reasons were the primary motivation behind the develop-ment of both projects, Westdrive, and Westdrive LoopAR. This environment was
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designed with the open-source and open science philosophy in mind and tuned tobe suitable for research on self-driving vehicles and other fields of research suchas social interaction or spatial navigation. While project Westdrive showed us thelimitations of a realistic simulation, such as computational limitations or the cost ofa physically-based simulation project, LoopAR tried to overcome those simulations.Utilizing dynamic loading and partial in time data saving to avoid any data loss,optimizing the physics and path creation, and integrating real-world terrain datafrom OpenStreetMap framework, LoopAR offered a performant yet huge ( 25square kilometer) environment. These projects help us learn the best practices increating virtual worlds and designing virtual reality experiments. They also werecreated in order to be utilized by other researchers with few modifications toconduct studies in face perception, spatial navigation, and even more complexdriving scenarios.
Investigating the benefits of experimentation using immersive virtual reality envi-ronments, one should not neglect possible challenges that arise simply fromwhat ispossible with today’s hardware. Although today’s virtual reality hardware is not likeSword of Damocles (Virtual Reality Society, 2017) anymore, that is so heavy thatit needs to be suspended from the ceiling of the lab, a compelling computationalpower that enables running acceptably realistic experiences is still needed.. Fur-thermore, there are movements in creating standards on the software side, namelyOpenVR, so that the simulation, or the environment itself, is not dependent on onespecific brand of virtual reality device. There is still a significant variation of devicesthat differ in many fundamental aspects from each other. These differences caninclude but are not limited to the type of spatial tracking, the field of view, displayresolution, and technology to the type of sensors used in the device itself. Herewe have investigated one such aspect by comparing a new eye integrated eyetracker from Varjo VR and Finnish tech startup with the integrated eye trackerfrom Tobii inside the Vive pro virtual reality glasses from HTC, a well-establishedname among the virtual reality hardware producers. Although our tests, whichwere an extension of the test battery from Ehinger et al., 2019, indicate that botheye trackers are precise enough for conducting scientific experiments, there isstill a significant difference in the quality of the data. Not only is one hardwareinherently better than the other, but each hardware performed better in specificmeasurements such as blink detection, where Tobii outperforms Varjo with a largemargin. Therefore when one decides on conducting their experiments using virtualreality, there should be caution and careful attention when choosing the hardwarethat the researcher will, conduct their experiment with in the end.
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When designing and developing virtual reality-based experiments, the choiceof appropriate hardware is only one part of the consideration to ensure a validexperiment. Currently, most such experiments are created using developmentenvironments and game engines, to be more precise, such as Unity3D and Unrealengine. The reasoning behind the choices is evident as both of these tools arefree and can be used without any further cost if there is no financial gain plannedfor the project. They support almost all possible platforms as the final target ofthe project and the most commonly used virtual reality hardware that can bebought today. Nevertheless, one should remember that these tools were designedas game engines, and therefore they are inherently not optimized or made forscientific experimentation. They are made with maximizing the visual fidelity ofthe rendered scene in mind rather than precise timing or persistence betweenruns. Wiesing et al., 2020 showed in his work the hardware delay between theintended stimuli onset and when the stimuli are presented to the participant onthe virtual reality glasses. Although these slight delays do not affect how the usersinteract with games, they are crucial in studies with a high temporal resolution,such as studies that use neuro-imaging techniques such as EEG. Although Wiesinget al., 2020 offers a simple solution for one of these systematic delays for Unrealengine that relates to the vertical sync of the virtual reality glasses displays, thesame solution might not work for all sources of delay or even be generalized todifferent game engines. The different game engine uses different strategies whilecomputing the programmed code and use different pathways for physics, graphics,and audio processing which means that the experiment might need to deal withvarious sources of delays, in the end, it depends on the complexity of cues. Onesuch limitation investigated in this dissertation is the lack of proper networkingsolutions that prioritize simplicity, speed, and accuracy, which can be used toperform join the action, social interaction, or hyper scanning studies. Here we wereable to offer a lightweight solution for such networking multi-participant needs.However, this solution will also inherit the issues mentioned earlier associatedwith the game engine the solution was developed for, here Unity3D, with highercomplexity. Despite the great potential and what virtual reality experiments canoffer regarding close to real-world experimentation plus improving the ecologicalvalidity of experiments, in the sense of mundane reality, this dissertation callsfor the development of a scientific engine that functions as a foundation for thedevelopment of scientific experiments.
Although, We do hope to observe human cognition unfold in its full complexityin a dynamic, real-life environment as described by Parada, 2018, discoveries in
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cognitive science and similar field are made in small incremental steps. Thereis still a lot that we do not know yet about human cognitive processes. Even inthe reductionist simple lab environment, there have been many new and validdiscoveries during past decades. However, 4E cognition view as described in depthin the 4E cognition book by Newen et al., 2018 tries to compel and convince usthat our cognition is not simply the process of a single isolated brain. It tries toargue that cognition emerges through our interactions and enactment with ourenvironment and can be extended to the mundane objects in our reality.In simplerwords not only every day objects such as a cellphone, a simple pen, and paper, or aprinted map can affect our cognition but essentially become part of our cognitiveprocesses. This premise is the foundation for the arguments of this dissertation,observing behavior and measuring under natural interaction.
This premise is what we have tried to investigate. When asked to lift or use a tool,observing participants’ gaze behavior yields the same results as the study, whichit tries to replicate. However, the original tool interaction study by M. F. Landand Hayhoe, 2001 only used viewing tools on the 2d monitor and contained nointeraction with the presented use. Participants had to imagine using or lifting thepresented tool. In contrast, in the study performed in virtual reality, they could liftor mimic using the tools with the help of standard controllers, which come with afull HTC Vive pro eye virtual reality headset. It is indeed a piece of good news thatwe could successfully replicate the results of an otherwise previously Lab-basedexperiment. However, this can lead to a valid concern. If we can replicate theexact findings of a traditional Lab-based experiment, why should any researcherinvest the time and effort to design a virtual reality experiment if there is no newinformation to be learned. Although a valid question; however, as mentionedbefore based of 4E cognition view, our cognitive processes emerge in "natural"interaction with the environment.In other words using virtual reality might resultin finding that could not be observed in the traditional lab based experiments.Herein the virtual reality based study with tool interaction, when participants usetheir hands, in contrast to controllers, to interact with the tools, the previouslyinsignificant orientation of the tools presented turned into a significant effect(Keshava et al., 2021. This study also indicates that a simple act of actual motorand bodily adjustments necessary to grasp an object with different orientations canaffect our eye movement and planning. This finding indicates that realism lies notonly in cue or environment but rather in natural interaction with the environment.It is simply different if one should use their hands to interact with objects whichrequire higher levels of cognitive planning than just click a mouse button or a key
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on the keyboard as it often is with traditional Lab experiments. Virtual realityexperiments not only comply well with 4E cognition movement but also Keshavaet al., 2021 showed that this realism and natural interaction indeed matter inunderstanding our cognitive processes.
Knowing the importance of natural interaction, we have further investigatedplanning as a cognitive process under a simulated sorting task closely resemblinga factory. In this study resemblance and realism does not lie within simulating afactory. Instead, the realism here refers to the full-body movement involved tograsp and move virtual objects. In this planning experiment since the shelf was ofactual size, people needed to grasp some objects from areas considered harder toreach than others. Interestingly, the study’s primary goal was to investigate theergonomics of the work environment and underlying mechanisms of human taskplanning. However, we could observe unaccounted artifacts originating from thefull-body interaction. We can observe that participants are often unwilling to movethe objects for far distances but instead move them only to the neighboring emptyplace on the shelf. The two studies combined, therefore, show the importance ofthe ecological validity lies within the natural interaction with the environment thatwill activate the entire underlying cognitive processes.
After learning the challenges and the importance of embodiment and interactionwith the environment, we can finally observe behavior unfolds. There are alreadymany works, especially by Mel Slater (Slater, 2009; Slater et al., 1994; Slater andWilbur, 1997) on the role and depth of presence, body perception, andmodificationof the self-body perception in virtual reality. There are particular modificationsand manipulation that are either impossible or extremely hard to perform in eitherreality or the lab environment. The case of the trolley dilemma, specifically withregards to self-driving vehicles, is one such example. However, with a carefulpresentation of environment and experimental conditions, setting participants indifferent perspectives of such a dilemma situation revealed a better, or relativelymore complete understanding of people’s moral judgments toward the correctdecision in such situations. The immersion of virtual reality experiences can engageparticipants emotionally and directly expose them to the situation. In such cases,the behavior that emerged from the environment is hoped to approximate thenatural behavior. Here, one can observe a more fine grade opinion on the rightchoice in a trolley dilemma scenario by asking how much participants agree withtheir own choice, notably when participants are put in the perspective of the groupbeing hit by the car. Therefore it is apparent that immersion and sense of presence
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in the environment does affect our perception and consequently can affect ourresponses to the observed experimental cues or conditions.
Under the right experimental design, even being a passive viewer in an immersiveexperience can elicit desired behavior under experimentation. Being immersed ina virtual city, filled with dynamic actors such as other cars and pedestrians andreacting to the self-driving car’s actions and explanations enriches our currentunderstanding of the general public acceptance of self-driving cars. In the talkingcars experiments, participants only observed one experimental condition in ashort ninety-second drive. However, they were placed inside a real car cut in halfbefore putting on the virtual reality glasses. Thanks to the power of simulation,although realistic and immersive, there was complete control over what everyparticipant observed. Since the goal of this study was to compare acceptanceto a well-known condition such as a ride in a taxi, the change in acceptance,notably trust and intention to use after such a short experience, was a significantdiscovery. However, here, we can observe the change through a simplified self-report questionnaire and the lens of behavioral data such as head movements.Altogether, these experiments testify the opportunity immersive virtual realityexperiences can offer. In the end, such experiences under the presentation ofvalid cues and immersion can elicit real-life and natural behavior, which can helpus study cognition as it is in mundane real-life situations.

5.1 A middle-ground for real-life experimentation
This dissertation suggests a solid case for experimentation following the banner of4E cognition and closer to real-life observations. Immersiorama may be a made-upname, yet believes that immersing individuals in realistic virtual environmentswill consequently lead to the observation of natural behavior as a contrast to theartificial environment of our traditional laboratories. There is much that is yet notunderstood about human cognitive processes and cognition. However, we alsocannot learn the in-depth truth about cognition if experimentation in the fieldalways attempts to dissect the complex interconnected cognitive processes inisolated, austere environments. In addition, this dissertation’s goal is not to under-mine the validity and importance of low-level lab-based experimentation. Until the
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whole scientific community concurs to move entirely to real-life experimentation,it can offer a middle ground to perform lab-based close to reality experimentationthat is more in line with the nature of our cognition.

5.2 Concluding remarks
The 4E cognition already emphasizes the environment and interactions (Newenet al., 2018). Whether one believes in the philosophy of the movement or not,there is an increasing body of evidence on how social interaction and engagingin a task with others can affect our cognitive processes down to the neuronallevel (Czeszumski et al., 2019; Czeszumski et al., 2020). One should not viewvirtual reality just as another experimentation method or tool, but virtual realitycan be view as the new lab itself. Virtual reality combined with other moderntechnologies such as the modern telecommunication networks and internet aswell as modern computation hardware and measurement sensors offers a uniqueopportunity for the researcher. In this new lab, one can study human cognitionwith relative ease, not isolated, deprived of social interaction with just a screenand keyboard. It offers the opportunity to study cognition in its full complexityunder any imaginable environment, even what is yet impossible in our reality.Indeed, there is a need for better hardware and advancement in our methods andtools. However, there is also a need for advancement to our view on studyingcognition, be it cognitive science or related fields. As such, until new ideas replacethat of today, virtual reality experimentation, MoBI movement, and real-worldexperimentation might help us gain a deeper and better understanding of ourcognition.
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